SlideShare a Scribd company logo
Dislocation Theory
Kutubuddin ANSARI
kutubuddin.ansari@ikc.edu.tr
GNSS Surveying, GE 205
Lecture 11, May 13, 2015
Dislocation Theory
Length
Width
DIP Angle
Slip
Fault
RakeFault is a planar
fracture or discontinuity
in a volume of rock,
across which there has
been significant
displacement along the
fractures as a result of
rock mass movement.
DIP Angle (δ )
Rake (ψ)
Depth
Top Depth
Length
Width
Bottom Depth
Earth Surface
( )
Bottom Depth Top Depth
Sin Dip Angle
Width
−
=
Strike-Slip Fault
• The movement of
blocks along a fault is
horizontal.
•Rake zero (0o
)
Fault plane
solution of
strike-slip
Earthquake
Slip
•If the block on the far side of
the fault moves to the left,
the fault is called Left-lateral
(sinistral) Fault.
•If the block on the far side moves
to the right, the fault is called
Right-lateral (dextral) Fault.
Strike-Slip Fault
Dip-Slip Fault
• The movement of
blocks along a fault is
vertical.
•Rake zero (90o
)
Slip
Dip-Slip Fault
•If the hanging wall moves
downward relative to the footwall,
the fault is called Normal
(extensional) Fault.
•If the hanging wall moves upward
relative to the footwall, the fault is
called Reverse Fault. Reverse
faults indicate compressive
shortening of the crust.
• Reverse fault having dip angle less
than 450
is called Thrust Fault.
Dip-Slip Fault
Normal Fault
Thrust Fault
Reverse Fault
Oblique-Slip Fault
•A fault which has a
component of dip-slip and
a component of strike-slip
is termed an oblique-slip
fault.
• Rake will be (0 < ψ >90)
Slip
The Geometry of the fault having parameters (length, width, depth, dip
angle) can be given by analytically by Green function (G):
2 2
1 1
AL AW
AL AW
G d dη ξ= ∫ ∫
(Okada, 1985 &1992)
Length
Width
DIP
Slip
Length(AL)
Width(AW)
Length
Width
cos sin
x AL
y d AW
ξ
η δ δ
= −
= + −
(δ)
Dislocation Theory
1
1
2
1
tan sin
2 ( )
1 cos
sin
2 ( )
x
y
q
G I
R R qR
yq q
G I
R R R
ξ ξη
δ
π η
δ
δ
π η η
−
  
= − + +  ÷
+   
 
= − + + + + 
%
are arbitrary constants
1 2 3, , , , , ,R p y d I I I%%
(Okada, 1985)
3
1
sin cos
2
x
q
G I
R
δ δ
π
 
=− −  
1
1
1
cos tan sin cos
2 ( )
y
yq
G I
R R qR
ξη
δ δ δ
π ξ
− 
= − + − + 
Strike Slip case
Dip Slip case
(P. Cervelli et. al 2001)
S is Slip For Oblique Slip
S= s.cosα + s.sinα
d= sG(m)
Relationship between dislocation field (d) and the fault
geometry G(m)
Consider the case we have observed data d1, d2, ……. dn
and the Green function of each observation data are G1, G2,
……. Gn respectively, Then:
India fixed-velocity
field
Modelled velocity
Results Single dislocation model
' '
1 11 11
' '
2 21 21
1 2
' '
1 1
( ) ( )
( ) ( )
. . .
. . .
. . .
( ) ( )n n n
d G m G m
d G m G m
s s
d G m G m
    
    
    
    
= +     
    
    
    
          
Two dislocation model
Three dislocation model
Modelled velocity
Case Length (Km) Width
(Km)
Bottom
Depth
Top
Depth
Dip
Angle
Rever
se Slip
Strike
Slip
1 73 (Fault 1) 115.18 25± 2 5±0.3 10± 1 15± 1 0
2 79 (Fault 1)
73 (Fault 2)
240.95
115.18
24± 3
25± 3
3± 0.2
5± 0.3
5± 0.5
10± 0.3
19±1
11
3
0
3 73 (Fault 1)
73 (Fault 2)
73 (Fault 3)
149.16
200.70
286.71
16± 0.2
16± 0.5
21± 4
3± 0.2
2± 0.3
1± 0.2
5± 0.1
4± 0.1
4± 0.5
20± 1
8
1
6
1
0
Dislocation Theory
Richter magnitude scale
The Richter magnitude scale (Richter scale) 
assigns a magnitude number to quantify the 
energy released by an earthquake.
Seismic moment = μ* slip*rupture area 
MO= μ*s*A
MO= μ*s*L*W
μ = shear modulus of the crust (approx 3x1010
 N/m2
)
L= Length of finite rectangular fault
W= Width of finite rectangular fault
s = slip
10 0log ( )
6.07
1.5
w
M
M Nm= −
Moment Magnitude
Moment magnitude Mw comes from seismic moment Mo
μ = 3x1010
 N/m2
L=200 km
W= 100 km
s = 10 mm
MO= μsLW
Mo=(3x1010 
)x(10 x10-3 
)x (200 x 103 
)x(100 x 103 
)
Mo=(3x1010 
)x(10-2 
)x (2 x 105
)x(1x105 
)
Mo=6x1018 
Example
18
10log (6 10 )
6.07
1.5
wM Nm
×
= −
18
10
10
log (6 10 )
6.07
1.5
log(6) 18log (10)
6.07
1.5
 0.778+18
6.07
1.5
6.448
w
w
w
w
M
M
M
M Nm
×
= −
+
= −
= −
=

More Related Content

PPT
Method of fault modelling
PPTX
Ball and beam system
PPTX
Skewed plate problem
PDF
09 review
PPSX
3 bending stress-asgn
PPSX
4 transvere shear-asgn
PDF
348 project report
PPT
Forces
Method of fault modelling
Ball and beam system
Skewed plate problem
09 review
3 bending stress-asgn
4 transvere shear-asgn
348 project report
Forces

What's hot (20)

PPTX
Caculus
PDF
Moment of inertia of non symmetric object
PDF
An introduction to isogeometric analysis
PPTX
what is static and kinematic indeterminacy of structure
PPTX
j integral for double cantilever beam
PPTX
Energy principle in structure analysis in civil engineering
PDF
Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
PDF
My presentation slides (3)
PDF
J012546068
PPTX
INTERPOLATION
PPT
4th 2 lecture shear and moment diagram structure i
PPT
311 Ch14 Version2
PPT
Capitulo2
PPTX
Laplaces transformer
PDF
Coupling_of_IGA_plates_and_3D_FEM_domain
PDF
Interface cohesive elements for fracture modeling
PDF
Computation of stress intensity factor of brass plate
PPTX
Homogeneous Representation: rotating, shearing
PPT
311 Ch17
PDF
Determinate structures
Caculus
Moment of inertia of non symmetric object
An introduction to isogeometric analysis
what is static and kinematic indeterminacy of structure
j integral for double cantilever beam
Energy principle in structure analysis in civil engineering
Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
My presentation slides (3)
J012546068
INTERPOLATION
4th 2 lecture shear and moment diagram structure i
311 Ch14 Version2
Capitulo2
Laplaces transformer
Coupling_of_IGA_plates_and_3D_FEM_domain
Interface cohesive elements for fracture modeling
Computation of stress intensity factor of brass plate
Homogeneous Representation: rotating, shearing
311 Ch17
Determinate structures
Ad

Similar to Dislocation Theory (12)

PDF
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
PPTX
2019-10-15 Small-scale deformation of active volcanoes measured by
PPTX
Strain
PPTX
2019-10-07 Small-scale deformation of active volcanoes measured by Synthetic ...
PPT
03 Motion in Two & Three Dimensions.ppt
PDF
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
PDF
HexMat_Workshop_TJun_Poster_v2
PDF
Numerical Study of Star Anchor Plate Embedded in Cohesive Soil
PDF
Numerical and Analytical Solutions for Ovaling Deformation in Circular Tunnel...
PDF
Ground Response Analysis - Geotechnical Earthquake engineering
PDF
unit 3 final.pdf
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
2019-10-15 Small-scale deformation of active volcanoes measured by
Strain
2019-10-07 Small-scale deformation of active volcanoes measured by Synthetic ...
03 Motion in Two & Three Dimensions.ppt
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
HexMat_Workshop_TJun_Poster_v2
Numerical Study of Star Anchor Plate Embedded in Cohesive Soil
Numerical and Analytical Solutions for Ovaling Deformation in Circular Tunnel...
Ground Response Analysis - Geotechnical Earthquake engineering
unit 3 final.pdf
Ad

More from Kutubuddin ANSARI (13)

PPT
The motion of Earth
PPT
Interior Structure of the Earth
PDF
Problem of Geodesy
PPT
Basic of Geodesy
PPT
Coordinate-transformation
PPT
Gnss data-processing
PPT
GNSS data collection
PPT
GPS sattelite orbit
PPT
Gps-signal
PPT
GPS-errors-2
PPT
GPS-errors-1
PPT
Introduction-of-GNSS-2
PPT
introduction-of-GNSS-1
The motion of Earth
Interior Structure of the Earth
Problem of Geodesy
Basic of Geodesy
Coordinate-transformation
Gnss data-processing
GNSS data collection
GPS sattelite orbit
Gps-signal
GPS-errors-2
GPS-errors-1
Introduction-of-GNSS-2
introduction-of-GNSS-1

Recently uploaded (20)

PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Sports Quiz easy sports quiz sports quiz
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Complications of Minimal Access Surgery at WLH
PDF
Computing-Curriculum for Schools in Ghana
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Institutional Correction lecture only . . .
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Cell Types and Its function , kingdom of life
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Basic Mud Logging Guide for educational purpose
PDF
RMMM.pdf make it easy to upload and study
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Insiders guide to clinical Medicine.pdf
Renaissance Architecture: A Journey from Faith to Humanism
VCE English Exam - Section C Student Revision Booklet
01-Introduction-to-Information-Management.pdf
Final Presentation General Medicine 03-08-2024.pptx
Sports Quiz easy sports quiz sports quiz
TR - Agricultural Crops Production NC III.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Complications of Minimal Access Surgery at WLH
Computing-Curriculum for Schools in Ghana
Anesthesia in Laparoscopic Surgery in India
Institutional Correction lecture only . . .
2.FourierTransform-ShortQuestionswithAnswers.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
Cell Types and Its function , kingdom of life
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Basic Mud Logging Guide for educational purpose
RMMM.pdf make it easy to upload and study
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Insiders guide to clinical Medicine.pdf

Dislocation Theory

  • 3. Length Width DIP Angle Slip Fault RakeFault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of rock mass movement. DIP Angle (δ ) Rake (ψ) Depth
  • 4. Top Depth Length Width Bottom Depth Earth Surface ( ) Bottom Depth Top Depth Sin Dip Angle Width − =
  • 5. Strike-Slip Fault • The movement of blocks along a fault is horizontal. •Rake zero (0o ) Fault plane solution of strike-slip Earthquake Slip
  • 6. •If the block on the far side of the fault moves to the left, the fault is called Left-lateral (sinistral) Fault. •If the block on the far side moves to the right, the fault is called Right-lateral (dextral) Fault. Strike-Slip Fault
  • 7. Dip-Slip Fault • The movement of blocks along a fault is vertical. •Rake zero (90o ) Slip
  • 8. Dip-Slip Fault •If the hanging wall moves downward relative to the footwall, the fault is called Normal (extensional) Fault. •If the hanging wall moves upward relative to the footwall, the fault is called Reverse Fault. Reverse faults indicate compressive shortening of the crust. • Reverse fault having dip angle less than 450 is called Thrust Fault.
  • 10. Oblique-Slip Fault •A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault. • Rake will be (0 < ψ >90) Slip
  • 11. The Geometry of the fault having parameters (length, width, depth, dip angle) can be given by analytically by Green function (G): 2 2 1 1 AL AW AL AW G d dη ξ= ∫ ∫ (Okada, 1985 &1992) Length Width DIP Slip Length(AL) Width(AW) Length Width cos sin x AL y d AW ξ η δ δ = − = + − (δ) Dislocation Theory
  • 12. 1 1 2 1 tan sin 2 ( ) 1 cos sin 2 ( ) x y q G I R R qR yq q G I R R R ξ ξη δ π η δ δ π η η −    = − + +  ÷ +      = − + + + +  % are arbitrary constants 1 2 3, , , , , ,R p y d I I I%% (Okada, 1985) 3 1 sin cos 2 x q G I R δ δ π   =− −   1 1 1 cos tan sin cos 2 ( ) y yq G I R R qR ξη δ δ δ π ξ −  = − + − +  Strike Slip case Dip Slip case
  • 13. (P. Cervelli et. al 2001) S is Slip For Oblique Slip S= s.cosα + s.sinα d= sG(m) Relationship between dislocation field (d) and the fault geometry G(m)
  • 14. Consider the case we have observed data d1, d2, ……. dn and the Green function of each observation data are G1, G2, ……. Gn respectively, Then:
  • 18. ' ' 1 11 11 ' ' 2 21 21 1 2 ' ' 1 1 ( ) ( ) ( ) ( ) . . . . . . . . . ( ) ( )n n n d G m G m d G m G m s s d G m G m                     = +                                Two dislocation model
  • 21. Case Length (Km) Width (Km) Bottom Depth Top Depth Dip Angle Rever se Slip Strike Slip 1 73 (Fault 1) 115.18 25± 2 5±0.3 10± 1 15± 1 0 2 79 (Fault 1) 73 (Fault 2) 240.95 115.18 24± 3 25± 3 3± 0.2 5± 0.3 5± 0.5 10± 0.3 19±1 11 3 0 3 73 (Fault 1) 73 (Fault 2) 73 (Fault 3) 149.16 200.70 286.71 16± 0.2 16± 0.5 21± 4 3± 0.2 2± 0.3 1± 0.2 5± 0.1 4± 0.1 4± 0.5 20± 1 8 1 6 1 0
  • 23. Richter magnitude scale The Richter magnitude scale (Richter scale)  assigns a magnitude number to quantify the  energy released by an earthquake. Seismic moment = μ* slip*rupture area  MO= μ*s*A MO= μ*s*L*W μ = shear modulus of the crust (approx 3x1010  N/m2 ) L= Length of finite rectangular fault W= Width of finite rectangular fault s = slip
  • 24. 10 0log ( ) 6.07 1.5 w M M Nm= − Moment Magnitude Moment magnitude Mw comes from seismic moment Mo
  • 26. 18 10 10 log (6 10 ) 6.07 1.5 log(6) 18log (10) 6.07 1.5  0.778+18 6.07 1.5 6.448 w w w w M M M M Nm × = − + = − = − =