SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
Understanding Measures of Uncertainty for
Adversarial Example Detection
Makoto Kawano, Keio Univ.
http://deeplearning.jp/
● Understanding measures of Uncertainty for
Adversarial Example Detection
● Lewis Smith, Yarin Gal
• Department of Engineering Science, University of Oxford
● 2018 3 22
● twitter
• Adversarial examples /
• Gal
•
●Gal MC
•
•
•
• MC
• MNIST Kaggle
•
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• /
• Softmax Variance
●Bayesian Neural Networks/MC Dropout
• Bayesian Neural Network
●Experiments
•
•
•
Adversarial Examples /
●Szegedy(2013)
● DNN
●
● [Kurakin, 2016]
● [Sharif, 2016]
[Szegedy et al., 2013]
●
● A B
●
ckx − ˜xk2
2 + Loss(˜x, y)
˜x = x + ⌘
Fast Gradient Method [Goodfellow et al., 2014]
●NN
●
●
● 1
˜x = x + ✏sign(rxLoss(x, y))
wT
˜x = wT
x + wT
⌘
˜x = x + ⌘ k⌘k1 < ✏
Basic Iterative Method [Kurakin et al., 2016]
●FGM
●
• JPEG
•
˜x0 = x, ˜xN+1 = Clipx,✏{˜xN + ↵sign(rxJ(˜xN , ytrue))}
[DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection
[DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection
Momentum Iterative Method [Dong et al., 2017]
●FGM/BIM
●NIPS
●Carlini
•
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• /
• Softmax Variance
●Bayesian Neural Networks/MC Dropout
• Bayesian Neural Network
●Experiments
•
•
•
●
●
•
•
•
•
●
•
● aleatoric uncertainty
• ≒
•
• p( )=p( )=0.5
● epistemic uncertainty
•
•
•
● x y
H[P(y|x)] = −
X
y2Y
P(y|x) log P(y|x)
I(X, Y ) = H[P(X)] − EP (y)H[P(X|Y )]
= H[P(Y )] − EP (x)H[P(Y |X)]
I(w, y|D, x) = H[p(y|x, D)] − Ep(w|D)H[p(y|x, w)]
x y
w y
●
●
•
• MNIST 1 7 →
●
•
•
•
•
I(w, y|D, x) = H[p(y|x, D)] − Ep(w|D)H[p(y|x, w)]
=
X
j
1
T
X
i
pij(pij − 1)
!
− ˆpj(ˆpj − 1) + . . .=
1
C
0
@
CX
j=1
1
T
TX
i=1
p2
ij
!
− ˆp2
j
1
A
ˆσ2
=
1
C
CX
j=1
1
T
TX
i=1
(pij − ˆpi)2
ˆI = H(ˆp) −
1
T
X
i
H(pi)
=
X
j
1
T
X
i
pij log pij
!
− ˆpj log ˆpj
=
X
j
1
T
X
i
p2
ij
!
− ˆp2
j −
1
T
X
i
pij
!
+ ˆpj + . . .
=
CX
j
1
T
TX
i
p2
ij
!
− ˆp2
j + . . .
Softmax
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• /
• Softmax Variance
●Bayesian Neural Networks/MC Dropout
• Bayesian Neural Network
●Experiments
•
•
•
●
•
• L2
ˆw = arg min
w
X
i
E(f(xi; w), y) + λ
X
l
kWlk2
●
• w p(w)
p(w) w
p(y|x, D) =
Z
p(y|x, w)p(w|D)dw
● q p
•
●L
●q
Wl = Ml · diag([zl,j]Kl
j=1)
where zl,j ⇠ Bernoulli(pl), l = 1..L, j = 1..Kl−1
Ki ⇥ Ki−1
✓ = {Ml, pl|l = [1..L]}
※ pl
LV I :=
Z
q✓(w) log p(D|w)dw − DKL(q✓kp(w))
MC
●
•
●
p(y|D, x) '
1
T
TX
i=1
p(y|wi, x)
:= pMC (y|D, x)
H[p(y|D, x)] ' H[pMC(y|D, x)]
I(w, y|D, x) ' H[pMC(y|D, x)] −
1
T
TX
i=1
H[p(y|wi, x)] wi ⇠ q(w|D)
Ep(w|D)[fw
(x)] =
Z
p(w|D)fw
(x)dw
'
Z
q✓(w)fw
(x)dw
'
1
T
TX
i=1
fw
(x), w1..T ⇠ q✓(w)
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• /
• Softmax Variance
●Bayesian Neural Networks/MC Dropout
• Bayesian Neural Network
●Experiments
•
•
•
[DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection
●
●
●
●
●
●
●
●
●VAE
●VAE
[DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection
●
•
●
•
• KL
•
!
[DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection
●MNIST
●Kaggle ASSIRA
•
•
●ResNet50 Dropout FC
● ROC
• NN PE/dropout PE/dropout MI
● BIM/FGM/MIM
●
●
• False-Positive AUC
● ( )
•
•
•
• ( Dropout )
● NN
•
•
●
• NN
•
●
•

More Related Content

PPTX
ウェーブレットと多重解像度処理
PPTX
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
PDF
Hyperoptとその周辺について
PDF
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
PPTX
[DL輪読会]World Models
PDF
研究発表を準備する(2022年版)
PDF
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
PPTX
Transformerを雰囲気で理解する
ウェーブレットと多重解像度処理
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Hyperoptとその周辺について
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]World Models
研究発表を準備する(2022年版)
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
Transformerを雰囲気で理解する

What's hot (20)

PDF
CPU / GPU高速化セミナー!性能モデルの理論と実践:実践編
PDF
プロセスとコンテキストスイッチ
PDF
動画像理解のための深層学習アプローチ
PDF
単一事例研究法と統計的推測:ベイズ流アプローチを架け橋として (文字飛び回避版はこちら -> https://www.slideshare.net/yos...
PDF
クラスタリングとレコメンデーション資料
PDF
【チュートリアル】コンピュータビジョンによる動画認識
PPTX
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
PDF
[DL輪読会]SlowFast Networks for Video Recognition
PPTX
[DL輪読会]HoloGAN: Unsupervised learning of 3D representations from natural images
PDF
動画認識における代表的なモデル・データセット(メタサーベイ)
PPTX
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
PDF
「世界モデル」と関連研究について
PDF
実機で動かす深層強化学習(画像なし)
PDF
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
PDF
機械学習モデルのハイパパラメータ最適化
PPTX
ゲーム木探索技術とコンピュータ将棋への応用
PDF
画像認識の初歩、SIFT,SURF特徴量
PDF
組み込み関数(intrinsic)によるSIMD入門
PDF
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
PDF
【メタサーベイ】数式ドリブン教師あり学習
CPU / GPU高速化セミナー!性能モデルの理論と実践:実践編
プロセスとコンテキストスイッチ
動画像理解のための深層学習アプローチ
単一事例研究法と統計的推測:ベイズ流アプローチを架け橋として (文字飛び回避版はこちら -> https://www.slideshare.net/yos...
クラスタリングとレコメンデーション資料
【チュートリアル】コンピュータビジョンによる動画認識
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
[DL輪読会]SlowFast Networks for Video Recognition
[DL輪読会]HoloGAN: Unsupervised learning of 3D representations from natural images
動画認識における代表的なモデル・データセット(メタサーベイ)
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
「世界モデル」と関連研究について
実機で動かす深層強化学習(画像なし)
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
機械学習モデルのハイパパラメータ最適化
ゲーム木探索技術とコンピュータ将棋への応用
画像認識の初歩、SIFT,SURF特徴量
組み込み関数(intrinsic)によるSIMD入門
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
【メタサーベイ】数式ドリブン教師あり学習
Ad

Similar to [DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection (20)

PPTX
Bayesian Neural Networks
PDF
(研究会輪読) Weight Uncertainty in Neural Networks
PDF
Modeling uncertainty in deep learning
PDF
UNCERTAINTY ESTIMATION IN NEURAL NETWORKS THROUGH MULTI-TASK LEARNING
PDF
UNCERTAINTY ESTIMATION IN NEURAL NETWORKS THROUGH MULTI-TASK LEARNING
PDF
Bayesian Deep Learning
PDF
Uncertainty in Deep Learning
PPTX
GAN for Bayesian Inference objectives
PDF
Are you sure about that?! Uncertainty Quantification in AI
PDF
Uncertainty Quantification in AI
PDF
DESSERTATION 4 SEM cybersecurity ensemble approach
PDF
Uncertainty in deep learning
PDF
Bayesian Model-Agnostic Meta-Learning
PDF
Uncertainty Modeling in Deep Learning
PDF
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
PPTX
Fast Gradient Sign Method (FGSM)___.pptx
PDF
Robustness of Deep Neural Networks on White-box Attacks and Defense Strategie...
PDF
Deep Learning by JSKIM (Korean)
PPTX
DeepLearningLecture.pptx
PDF
Generative adversarial networks
Bayesian Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks
Modeling uncertainty in deep learning
UNCERTAINTY ESTIMATION IN NEURAL NETWORKS THROUGH MULTI-TASK LEARNING
UNCERTAINTY ESTIMATION IN NEURAL NETWORKS THROUGH MULTI-TASK LEARNING
Bayesian Deep Learning
Uncertainty in Deep Learning
GAN for Bayesian Inference objectives
Are you sure about that?! Uncertainty Quantification in AI
Uncertainty Quantification in AI
DESSERTATION 4 SEM cybersecurity ensemble approach
Uncertainty in deep learning
Bayesian Model-Agnostic Meta-Learning
Uncertainty Modeling in Deep Learning
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
Fast Gradient Sign Method (FGSM)___.pptx
Robustness of Deep Neural Networks on White-box Attacks and Defense Strategie...
Deep Learning by JSKIM (Korean)
DeepLearningLecture.pptx
Generative adversarial networks
Ad

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
PPTX
【DL輪読会】事前学習用データセットについて
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
PPTX
【DL輪読会】マルチモーダル LLM
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
PPTX
【DL輪読会】Hopfield network 関連研究について
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】事前学習用データセットについて
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】マルチモーダル LLM
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...

Recently uploaded (20)

PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Machine Learning_overview_presentation.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Machine learning based COVID-19 study performance prediction
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
Cloud computing and distributed systems.
PDF
Encapsulation theory and applications.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
Assigned Numbers - 2025 - Bluetooth® Document
20250228 LYD VKU AI Blended-Learning.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Mobile App Security Testing_ A Comprehensive Guide.pdf
NewMind AI Weekly Chronicles - August'25-Week II
sap open course for s4hana steps from ECC to s4
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Dropbox Q2 2025 Financial Results & Investor Presentation
Machine Learning_overview_presentation.pptx
Building Integrated photovoltaic BIPV_UPV.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Network Security Unit 5.pdf for BCA BBA.
Machine learning based COVID-19 study performance prediction
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Cloud computing and distributed systems.
Encapsulation theory and applications.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Programs and apps: productivity, graphics, security and other tools
Chapter 3 Spatial Domain Image Processing.pdf
“AI and Expert System Decision Support & Business Intelligence Systems”

[DL輪読会]Understanding Measures of Uncertainty for Adversarial Example Detection