SlideShare a Scribd company logo
Control of Wind
Turbine Generators
James Cale – Guest Lecturer
EE 566, Fall Semester 2014
Colorado State University
Review from Day 1
Review
• Lasttime, westarted withbasicconcepts from
physicssuch asmagnetic fields, flux, and
inductancetodefineterms andderivemagnetic
equivalent circuits(MECs) for different devices.
• Weexamined somebasicstationary devicesand
introduced arotating member—giving riseto the
concept ofinductancethat isposition dependent.
• Wethen looked atcylindricaldevicesand
introduced the conceptof sinusoidal winding
distributions.
• Weshowed how balanced three phasecurrents
insinusoidalwindingsgiveriseto arotating mmf.
Review (continued)
• Wesawhow rotating mmfsgiverisetotorque in
electrical machines:
o Inthe inductionmachine, the rotating mmfon
the stator inducesanmmf onthe rotor. The
rotor seekstoalignwith thestator mmf which
causesatorque.
o Inthe permanent magnet machine, there are
magnetic polesalready onthe rotor—these
polesseekto alignwiththe stator mmf giving
risetotorque.
Why is EM Torque Produced?
Considerthedeviceshownbelow, wheretherotorpositionis
initiallyfixedataposition and
Whathappenswhenthewindingisenergized?Canweprove
whatwillhappen?
𝑣
𝑖
+
−
𝜃𝑟(0)
𝜃𝑟 0 𝑖 = 0.
𝑇𝑒
𝑇𝐿
Mathematical Derivation
Torque and Co-Energy
Forthissimplemachine,
Wecanderivethefollowingequationfromfundamental
energyrelations:
𝑇𝑒(𝑖, 𝜃𝑟) =
𝜕𝑊
𝑐(𝑖, 𝜃𝑟)
𝜕𝜃𝑟
⇒ 𝑇𝑒= −
1
2
𝐿2𝑖2sin𝜃𝑟
𝐿 𝜃𝑟 = 𝐿1 + 𝐿2 cos 𝜃𝑟
𝑊
𝑐 =
1
2
𝐿(𝜃𝑟)𝑖2
Torque vs. Position
Wecanseethatwiththetorquerelationthatwasderived,
therewillbeanelectromagnetictorquethatpullstherotorin
thenegative directionuntil at
𝑇𝐿 = 0
𝜃𝑟 𝑇𝑒 = 𝑇𝐿 = 0 𝜃𝑟 = 0.
starting point
Induction Machines (Review)
𝜙𝑠
𝜙𝑟
𝜃𝑟
as’
as
bs’
bs
cs
cs’
ar’
ar
cr
cr’
br’
br
Review of Induction Machines
Summary Notes:
• Operates(produces torque) atspeeds other than
synchronous speed.
• Sincetorque-speed curvehas large slopenear s =
0,oncemachineisinsteady-state, rotor speed
will notvary much. It islikea“constant” speed
machine.
• For steady-stateanalysis, use theequivalent T
circuit; for transientanalysis, must usefull time
domain equations, typicallyin qd0variables.
Induction Machines (Review)
Torque-Speed Curve
𝑇𝐿 = 𝑇𝑒
Permanent Magnet Synchronous
Generators (Review)
𝜙𝑠
𝜙𝑟
𝜃𝑟
as’
as
bs’
bs
cs
cs’
PMSG Machine Review
Summary Notes:
• Inthe PMSG,the frequency of the rotor currents
isthe sameasthe frequency of thestator
currents (not true inIM machine) –hencethe
word “synchronous” inthetitle.
• Another view–bycontrolling the frequency of
the stator currents (e.g., through power
electronics) wecancontrol the rotor speed.
• We’ll seethat bycontrol of thevoltage phase
angle, cangenerate uniquetorque-speed curves.
Wind Turbine Controls
Four Types of Wind Turbine
Generators
Type1 Type2
Type3 Type4
Type 1 Topology
Squirrel-cage induction machine
(a) Squirrel cage induction motor; (b) conductors in rotor; (c) photograph of
squirrel cage induction motor; (d) views of Smokin’ Buckey motor: rotor, stator,
and cross section of stator (Courtesy: David H. Koether Photography)
Squirrel Cage Induction Machine
Type 1 Topology
Advantages:
• Rugged electrical machineand simple
(inexpensive) design—nopower electronics.
Disadvantages:
• Can’tcontrol rotor speed—singletorque-speed
relation determinesspeed.
• Lackofrotor speed control meansweare
(generally) notat theoptimal tip-speed ratio.
• Variationsinrotor speed fromwindcancouple
directlyonto electrical grid.
• Requirescap bankfor improved power quality.
Induction Machines
Torque-Speed CurvewithWindTorqueLoad Curves
Different torque loads (from
wind) result in different rotor
speeds. But generally not at the
optimal tip-speed ratio.
Type 1 Topology
Other Notes:
• Firstgeneration ofwind turbine designs—many
turbine manufacturers still usethis design.
• Rotor speed varieswith slip(0-2%), mostrated
at1%,withmax slipat2%.
• Connected tothe turbine shaft viaagear box.
• It alwaysabsorbs reactivepower—in generator
andmotoring mode(thus requiring VAR
compensation).
• Minimum absolute valueoftorque isreachedat
xxxxx(i.e., synchronous speed).
𝑠 = 0
Type 2 Topology
Wound-rotor induction machine
Type 2 Topology
Advantages:
• Allows for somedegreeof rotor speedcontrol
through theuse ofvariablerotor resistance.
Disadvantages:
• Speed control limitedbyrange ofacceptable slip
values—typically 0-10%.Notoptimal for wind
turbine design.
• Efficiencypoor athigh valuesof slip,sincemore
power isbeinglost inthe rotor resistance. From
(3.1)ofAliprantis’ notes:
𝑃𝑎𝑔 = 1 − 𝑠 𝑃𝑚
Type 2 Topology
Disadvantages(continued):
• Brushes aremechanical—require maintenance.
• Lackofrefined rotor speedcontrol meanswestill
may not beatthe optimal tip-speed ratio.
• Windvariabilitystill coupled togrid.
• Still havepower factor correcting cap bank.
Other Notes:
• Connected tothe turbine shaft viaagear box.
• It alwaysabsorbs reactivepower—in generator
andmotoring mode(thus requiring VAR
compensation).
Wound-Rotor Induction Machines
Steady-State EquivalentT Circuit –Wound Rotor
𝑟𝑠 𝑋𝑠 𝑋𝑟
𝑟𝑟 + 𝑅𝑒 /s
′
′
𝐼𝑠 𝐼𝑟
′
𝑉
𝑠
−
+
𝑋𝑀
𝑟𝑀
s =
𝜔𝑒 − 𝜔𝑟
𝜔𝑒
= 1 −
𝜔𝑟
𝜔𝑒
′
Induction Machines
Usingrotor resistance tochange torque-speed
curve—to help achieveoptimal tip-speedratio.
What are Brushes?
Recallthatbrushesareusedinsomeelectricalmachines(e.g.,
wound-rotorinductionmachines)toaccesstherotorwinding.
𝑅𝑒
Brush
Insulation
Copper
segment
Varying Resistance using PE
Togenerateafamilyoftoquespeedcurves,youcouldconnect
abankofpowerresistorstotherotorthroughbrushes.You
couldthenobtainadiscretenumberofresistorvaluesby
seriesorparallelcombinationsoftheresistors, usingpower
electronicswitches.
Anotheridea:couldyouusepowerelectronicstogetalinearly
varyingrotorresistance?
Varying Resistance using PE
𝑅0
𝑅1
𝑅𝑒𝑞?
𝑅0 ≫ 𝑅1
Whenswitch off:
Whenswitch on:
𝑅𝑒𝑞 = 𝑅0
𝑅𝑒𝑞 ≅ 𝑅1
Switch
Defining the “Fast-Average”
𝑓𝑎𝑣𝑔(𝑡) =
1
𝑇
𝑓 𝜏 𝑑𝜏
𝑡+𝑇/2
𝑡−𝑇/2
𝑡
𝑇
Thefast (“moving”) averagegenerally tracksthe
waveform more closely than thesimpleaverage.
Fast Avg
Simple Avg
𝑓
Varying Resistance using PE
𝑅𝑒𝑞 =
1
𝑇𝑠𝑤
𝑅𝑒𝑞 𝜏 𝑑𝜏
𝑡0+𝑇𝑠𝑤
𝑡0
𝑡
𝑅0
𝑅1
𝑇𝑠𝑤
𝐷
=
𝐷𝑅1 + (𝑇𝑠𝑤 − 𝐷)𝑅0
𝑇𝑠𝑤
=
𝐷
𝑇𝑠𝑤
𝑅1 − 𝑅0 + 𝑅0
𝑡0
Varying Resistance using PE
𝑅𝑒𝑞 =
𝐷
𝑇𝑠𝑤
𝑅1 − 𝑅0 + 𝑅0
𝐷
𝑅0
𝑅1
𝑇𝑠𝑤
𝑅𝑒𝑞
When𝐷 = 0, 𝑅𝑒𝑞 = 𝑅0
When𝐷 = 𝑇𝑠𝑤, 𝑅𝑒𝑞 = 𝑅1
Howisthisuseful?(a)Givesawidevariationineffectiverotor
resistancewithtworesistors,(b)Canobtainadesiredtorque-
speedrelationthroughclosed-loopcontrolof𝐷 –thiscorrects
fortemperatureeffectsonresistanceand/orbrushcorrosion.
Variable Speed Wind Turbines
Power
Converter
Generator
P, Q
PF or V
Q-Controller
PF* or V*
Q*
UTILITY
Rotor speed
– pitch angle
P-Controller
P* wm
wm
b
wm
P*
P* = k wm
3
w m_rated
Type 3 Topology
Wound-rotor, doubly-fed induction generator (DFIG)
Type 3 Topology
• Usesawound-rotor inductionmachine, but now
the rotor isconnected tothe gridthrough an ac-
dc-acpower electronic link.
• Thepower electronic linkiscomposed of two bi-
directional converters, connected through adc
link(capacitor).
• These convertersarereferred toasthe rotor-side
converter (connects the rotor circuitstothe dc
link) andthe grid-sideconverter (connects the dc
linktothe grid).
Rotor-Side Converter
• Controls the frequency of therotor currents to
maintainsynchronism between therotor and
stator rotating mmfs.
• Controls the magnitude andphaseof the rotor
currents—which controls the real and reactive
power deliveredtothe grid.
Grid-Side Converter
• Maintains thedclinkvoltage, whichprovidesthe
dcvoltage for the rotor-sideconverter.
AC-DC-AC Power Electronic Link
𝐿𝑑𝑐
𝒗𝑎𝑏𝑐 𝐿𝑐
𝑣𝑑𝑐
𝒊𝑎𝑏𝑐
𝑃
*
𝑺
Control
How can we use power electronics to generate arbitrary currents,
with phase angle referenced from utility voltage?
𝒗𝑎𝑏𝑐
𝐿𝑙𝑟
𝑄
*
Example AC-DC-AC Converter
AC-DC-AC Power Electronic Link
Power Electronics; Converters, Applications and Design, 3rd Edition, by
N. Mohan, T.M. Undeland and W.P. Robins; John Wiley & Sons
𝑖𝑎
Induction Machines-Doubly Fed
Induction Machine EquivalentT Circuit
𝑟𝑠 𝑋𝑙𝑠 𝑋𝑙𝑟
𝑟𝑟/s
′ ′
𝐼𝑠 𝐼𝑎𝑟
′
𝑉
𝑠
−
+
𝑋𝑀
𝑟𝑀
s =
𝜔𝑒 − 𝜔𝑟
𝜔𝑒
= 1 −
𝜔𝑟
𝜔𝑒
𝑉
𝑟
𝑠
−
+
′
Rotor-Side Converter
Fromthevoltageequationsderivedfromthesteady-state
equivalentcircuit,youcanderive(seeAliprantis’notes,page
30):
• For𝑠 > 0(“sub-synchronousoperation”),therotorside
powerhasoppositesignofstatorsidepower.Forgenerator
action𝑃
𝑠 < 0,therotorisabsorbingpower.
• For𝑠 < 0,(“super-synchronousoperation”),therotorside
powerhasthesamesignasstatorsidepower.For
generatoraction𝑃
𝑠 < 0,therotorisgeneratingpower.
𝑃𝑟 ≈ −𝑠𝑃𝑠
𝑃𝑎𝑔 =
𝑃𝑚
(1 − 𝑠)
Note on Terminology
𝑠 =
𝜔𝑒 − 𝜔𝑟
𝜔𝑟
> 0
⇒ 𝜔𝑒 − 𝜔𝑟 > 0
⇒ 𝜔𝑟 < 𝜔𝑒
Fromthedefinitionofslip:
Sointhiscase,therotorspeedislessthanthesynchronous
speed,hencetheterm“sub-synchronous.”Theoppositeistrue
inthesuper-synchronouscase.
Type 3 Wind Turbine Generator
Rotor-Side Converter
OtherNotes:
• PowerthatwaslostintheresistoroftheType2turbinecan
berecoveredusingpowerelectronics.Canoperateefficiently
atlargeslips(±30%istypical).
• Since
forlowvaluesofslip,thestatorcarriesthebulkofthe
power.Sorotorsidepowerelectronicsareratedforlower
powerlevels(whichmeansthey’relessexpensive!).
|𝑃𝑠| ≈
𝑃𝑟
𝑠
Control of 𝑷 and 𝑸
FromtheequivalentTcircuit
wherewe’vedefined𝑋𝑠= 𝑋0 + 𝑋1.Nowif𝑅1 ≪ 𝑋𝑠,
Usingtheseexpressionstocomputecomplexpower𝑆𝑠= 3𝑉
𝑠𝐼𝑠
where𝐼𝑟 = 𝐼𝑟 𝜃𝑖𝑟 = 𝐼𝑟𝑎 + 𝑗𝐼𝑟𝑏
𝑉
𝑠 = 𝑅1 + 𝑗𝑋𝑠 𝐼𝑠 + 𝑗𝑋0𝐼𝑟
𝐼𝑠 ≈
𝑉
𝑠 − 𝑗𝑋0𝐼𝑟
𝑗𝑋𝑠
𝑃𝑠 ≈ −3
𝑋0
𝑋𝑠
𝑉
𝑠𝐼𝑟𝑎
𝑄𝑠 ≈ 3𝑉
𝑠
𝑉
𝑠 + 𝑋0𝐼𝑟𝑏
𝑋𝑠
′
′
′
′
′
′
′ ′
A Simple PLL
𝑲𝑠 =
2
3
cos 𝜃 cos 𝜃 −
2𝜋
3
cos 𝜃 +
2𝜋
3
sin 𝜃 sin 𝜃 −
2𝜋
3
sin 𝜃 +
2𝜋
3
1
2
1
2
1
2
⇒ 𝒗𝑞𝑑0 = 𝑲𝑠 𝒗𝑎𝑏𝑐 =
2𝑉
𝑠
𝟎
𝟎
𝒗𝑎𝑏𝑐 = 2𝑉
𝑠
cos 𝜃
cos 𝜃 −
2𝜋
3
cos 𝜃 +
2𝜋
3
Firstnotethatfor
Keypoints:(a)wetransformtothe𝑞𝑑0referenceframesothat
sinusoidallyvarying quantitiesbecomedcquantities,(b)note
thatinthiscase,𝑣𝑑 shouldbezero.
A Simple PLL
𝜃𝑒 = 𝜔𝑒 𝜏 𝑑𝜏
𝑡
0
+ 𝜃𝑒(0)
𝑣𝑑
𝐾𝑝 +
1
𝑠
𝐾𝑖
0 𝜔𝑒
𝒗𝑞𝑑0 = 𝑲𝑠𝒗𝑎𝑏𝑐
Σ
−
+
A Simple PLL
Line frequency jumps from 60 to 62 Hz
Type 3 Topology
Summary Notes:
• Variablespeed (±30slip,or 70%<speed<130%)
• Variablefrequency 3-phase, currentregulated
PWMinverter isfed tothe rotor winding.
• Cancontrol real andreactivepower bycontrol of
the rotor magnitudeand phase.
• Lowpower absorbed/generated byrotor results
inlessexpenserotor converter.
• Induction generator always absorbsreactive
power (still needreactive power compensation)
• Currently dominatesthe global market.
Type 4 Topology
Permanent Magnetic Synchronous Generator (PMSG)
Type 4 Topology
• Usesapermanent magnetic synchronous
machinewith stator connected tothe grid
through anac-dc-acpower electronic link.
• Thepower electronic linkiscomposed of two bi-
directional converters, connected through adc
link(capacitor).
• These convertersarereferred toasthe stator-
sideconverter (connects the stator circuitstothe
dclink) andthe grid-sideconverter (connects the
dclinktothe grid).
Type 4 Topology
• VariableSpeed –variablefrequency atgenerator
sideandfixedfrequency (60Hz)atthe utility side
• Latest generation ofwindturbines.
• Rotor speed variesinavery largerange—so
connected tothe turbine shaft viagear boxor
directdrive(no gear box).
• Absorbs/supplies reactivepower (+ 95%power
factor) sonocap bankneeded.
• Always usepower converter toconvert generator
power andto return the power tothe utility supply
(ac-dc-ac)
• Power converter sizedto carryrated power.
Type 4 Topology
• Outputpower(realpower,activepower)–adjustableat
anyspeed(withindesignlimit).
• Reactivepower(non-revenuerelated)–adjustableatany
speed(withindesignlimit).
• Realandreactivepowerarecontrollableindependently.
• Outputelectricalpoweriscontrollableindependentof
inputmechanicalpowerandspeed,however,itisnormally
controlledtofollow:
• Real power as a cube function of rotor rpm to
optimize the aerodynamic energy capture - real
power = Kw wm
3
• Reactive power is controlled to control constant
voltage at the output of the generator or power
factor.
Type 4 Topology
StatorSideConverter
• Current magnitude is adjustable by controlling the
power converter
• Starting current and starting torque is adjustable
• Max Const. Pitch Operation: Real power = Kw wm
3
GridSideConverter
• Output power factor adjustable (normally between
0.95 pf-lagging to 0.95 pf-leading.
• Real power is adjusted to keep the DC bus voltage
constant
Havingcapabilitytoadjustthepowerfactormeansthatthe
generatoroutputterminalvoltagecanbeadjustedbycontrolling
theoutputreactivepower.
Stator-Side Converter
• Controls the frequency of thestator currents to
maintainsynchronism between therotor and
stator rotating mmfs.
• Controls the magnitude andphaseof the stator
currents tocontrol electromagnetic torque—in
order toobtainthe optimal tip-speed ratio.
Determining 𝑷 and 𝑸
From theequivalent steady-state circuit:
Realpower
Reactive
power
𝑆𝑠 ≈ 3 𝐸𝑝𝑚 − 𝑗𝜔𝑟𝐿𝑞𝐼𝑠 𝐼𝑠
≈
3
2
𝜔𝑟 𝜆𝑝𝑚 − 𝐿𝑑 − 𝐿𝑞 𝐼𝑑𝑠 𝐼𝑞𝑠 +
j
3
2
𝜔𝑟 𝜆𝑝𝑚𝐼𝑑𝑠 − 𝐿𝑑𝐼𝑑𝑠 − 𝐿𝑞𝐼𝑞𝑠
*
2 2
Torque
𝑇𝑒 =
3
2
𝑃
2
𝜆𝑝𝑚 − 𝐿𝑑 − 𝐿𝑞 𝐼𝑑𝑠 𝐼𝑞𝑠
𝐸 = 𝑃𝑠𝑑𝑡 = 𝑇𝑒𝑑𝜃
Energy, torque, and power arerelated by:
where𝜔𝑟𝑚 =
2
𝑃
𝜔𝑟 (here 𝑃 isthe number of machine
poles, not power!)
For anon-salient machine,𝐿𝑑 = 𝐿𝑞, inwhichcase
⇒ 𝑃𝑠= 𝑇𝑒
𝑑𝜃
𝑑𝑡
= 𝑇𝑒𝜔𝑟𝑚
𝑇𝑒 =
3
2
𝑃
2
𝜆𝑝𝑚𝐼𝑞𝑠
Current Regulated Speed Control
𝜔𝑟𝑚
𝑇𝑒
2
3
2
𝑃
1
𝜆𝑝𝑚
𝐾 1 +
1
𝑠𝜏
Current
Reg
Plant
𝑃
2
𝜔𝑟𝑚
𝑆
𝜃𝑟 𝒊𝑎𝑏𝑐𝑠
𝑣𝑑𝑐
∗
∗ 𝑟*
𝑖𝑞𝑠
𝑟*
𝑖𝑑𝑠
Maximum Torque Per Amp

More Related Content

PPTX
Induction machines
PDF
Speed Control of Induction Motor Using Hysteresis Method
PPT
PPT
Rotating Electrical Machines-AC & DC Machines,Induction Motor and DC Motor
PPT
Unit 5-6-7 a
PPTX
UNIT-III-EV.pptx
PPT
Induction Machines.ppt
PPT
Induction machines
Induction machines
Speed Control of Induction Motor Using Hysteresis Method
Rotating Electrical Machines-AC & DC Machines,Induction Motor and DC Motor
Unit 5-6-7 a
UNIT-III-EV.pptx
Induction Machines.ppt
Induction machines

Similar to ECE566_Week5_LectureSlides_Cale.pdf Theory (20)

PPT
Induction machines
PPT
Induction machines
PPT
Induction Machines.ppt
PPTX
Induction motor speed control using solid state drives.pptx
PDF
EM_II_PPT.pdf
PDF
Induction motors
PPT
CH-2_3 Induction Machines.ppt
PDF
three phase induction motor and starting methods
PDF
Cm36532538
PDF
Speed Control System of Induction Motor by using Vector Control Method
PPT
Induction Machine electrical and electronics
PPT
Induction Machines electrical machines electrical and electronics
PDF
Active and Reactive Power Control of a Doubly Fed Induction Generator
PDF
Field_Oriented_Control_Induction_Machine
PPT
Induction machine courses and technology
PPTX
UNIT 4 IMaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
PPT
Unit 4
PDF
Three Phase Induction Motors, Equivalent Circuits
PDF
Synchronous machines
PPTX
EMC II.pptx
Induction machines
Induction machines
Induction Machines.ppt
Induction motor speed control using solid state drives.pptx
EM_II_PPT.pdf
Induction motors
CH-2_3 Induction Machines.ppt
three phase induction motor and starting methods
Cm36532538
Speed Control System of Induction Motor by using Vector Control Method
Induction Machine electrical and electronics
Induction Machines electrical machines electrical and electronics
Active and Reactive Power Control of a Doubly Fed Induction Generator
Field_Oriented_Control_Induction_Machine
Induction machine courses and technology
UNIT 4 IMaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
Unit 4
Three Phase Induction Motors, Equivalent Circuits
Synchronous machines
EMC II.pptx
Ad

Recently uploaded (20)

PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
737-MAX_SRG.pdf student reference guides
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT
introduction to datamining and warehousing
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PPTX
introduction to high performance computing
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
communication and presentation skills 01
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
737-MAX_SRG.pdf student reference guides
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
introduction to datamining and warehousing
Exploratory_Data_Analysis_Fundamentals.pdf
Abrasive, erosive and cavitation wear.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Automation-in-Manufacturing-Chapter-Introduction.pdf
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
introduction to high performance computing
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
communication and presentation skills 01
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
R24 SURVEYING LAB MANUAL for civil enggi
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
III.4.1.2_The_Space_Environment.p pdffdf
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Ad

ECE566_Week5_LectureSlides_Cale.pdf Theory

  • 1. Control of Wind Turbine Generators James Cale – Guest Lecturer EE 566, Fall Semester 2014 Colorado State University
  • 3. Review • Lasttime, westarted withbasicconcepts from physicssuch asmagnetic fields, flux, and inductancetodefineterms andderivemagnetic equivalent circuits(MECs) for different devices. • Weexamined somebasicstationary devicesand introduced arotating member—giving riseto the concept ofinductancethat isposition dependent. • Wethen looked atcylindricaldevicesand introduced the conceptof sinusoidal winding distributions. • Weshowed how balanced three phasecurrents insinusoidalwindingsgiveriseto arotating mmf.
  • 4. Review (continued) • Wesawhow rotating mmfsgiverisetotorque in electrical machines: o Inthe inductionmachine, the rotating mmfon the stator inducesanmmf onthe rotor. The rotor seekstoalignwith thestator mmf which causesatorque. o Inthe permanent magnet machine, there are magnetic polesalready onthe rotor—these polesseekto alignwiththe stator mmf giving risetotorque.
  • 5. Why is EM Torque Produced? Considerthedeviceshownbelow, wheretherotorpositionis initiallyfixedataposition and Whathappenswhenthewindingisenergized?Canweprove whatwillhappen? 𝑣 𝑖 + − 𝜃𝑟(0) 𝜃𝑟 0 𝑖 = 0. 𝑇𝑒 𝑇𝐿
  • 7. Torque and Co-Energy Forthissimplemachine, Wecanderivethefollowingequationfromfundamental energyrelations: 𝑇𝑒(𝑖, 𝜃𝑟) = 𝜕𝑊 𝑐(𝑖, 𝜃𝑟) 𝜕𝜃𝑟 ⇒ 𝑇𝑒= − 1 2 𝐿2𝑖2sin𝜃𝑟 𝐿 𝜃𝑟 = 𝐿1 + 𝐿2 cos 𝜃𝑟 𝑊 𝑐 = 1 2 𝐿(𝜃𝑟)𝑖2
  • 8. Torque vs. Position Wecanseethatwiththetorquerelationthatwasderived, therewillbeanelectromagnetictorquethatpullstherotorin thenegative directionuntil at 𝑇𝐿 = 0 𝜃𝑟 𝑇𝑒 = 𝑇𝐿 = 0 𝜃𝑟 = 0. starting point
  • 10. Review of Induction Machines Summary Notes: • Operates(produces torque) atspeeds other than synchronous speed. • Sincetorque-speed curvehas large slopenear s = 0,oncemachineisinsteady-state, rotor speed will notvary much. It islikea“constant” speed machine. • For steady-stateanalysis, use theequivalent T circuit; for transientanalysis, must usefull time domain equations, typicallyin qd0variables.
  • 11. Induction Machines (Review) Torque-Speed Curve 𝑇𝐿 = 𝑇𝑒
  • 12. Permanent Magnet Synchronous Generators (Review) 𝜙𝑠 𝜙𝑟 𝜃𝑟 as’ as bs’ bs cs cs’
  • 13. PMSG Machine Review Summary Notes: • Inthe PMSG,the frequency of the rotor currents isthe sameasthe frequency of thestator currents (not true inIM machine) –hencethe word “synchronous” inthetitle. • Another view–bycontrolling the frequency of the stator currents (e.g., through power electronics) wecancontrol the rotor speed. • We’ll seethat bycontrol of thevoltage phase angle, cangenerate uniquetorque-speed curves.
  • 15. Four Types of Wind Turbine Generators Type1 Type2 Type3 Type4
  • 16. Type 1 Topology Squirrel-cage induction machine
  • 17. (a) Squirrel cage induction motor; (b) conductors in rotor; (c) photograph of squirrel cage induction motor; (d) views of Smokin’ Buckey motor: rotor, stator, and cross section of stator (Courtesy: David H. Koether Photography) Squirrel Cage Induction Machine
  • 18. Type 1 Topology Advantages: • Rugged electrical machineand simple (inexpensive) design—nopower electronics. Disadvantages: • Can’tcontrol rotor speed—singletorque-speed relation determinesspeed. • Lackofrotor speed control meansweare (generally) notat theoptimal tip-speed ratio. • Variationsinrotor speed fromwindcancouple directlyonto electrical grid. • Requirescap bankfor improved power quality.
  • 19. Induction Machines Torque-Speed CurvewithWindTorqueLoad Curves Different torque loads (from wind) result in different rotor speeds. But generally not at the optimal tip-speed ratio.
  • 20. Type 1 Topology Other Notes: • Firstgeneration ofwind turbine designs—many turbine manufacturers still usethis design. • Rotor speed varieswith slip(0-2%), mostrated at1%,withmax slipat2%. • Connected tothe turbine shaft viaagear box. • It alwaysabsorbs reactivepower—in generator andmotoring mode(thus requiring VAR compensation). • Minimum absolute valueoftorque isreachedat xxxxx(i.e., synchronous speed). 𝑠 = 0
  • 21. Type 2 Topology Wound-rotor induction machine
  • 22. Type 2 Topology Advantages: • Allows for somedegreeof rotor speedcontrol through theuse ofvariablerotor resistance. Disadvantages: • Speed control limitedbyrange ofacceptable slip values—typically 0-10%.Notoptimal for wind turbine design. • Efficiencypoor athigh valuesof slip,sincemore power isbeinglost inthe rotor resistance. From (3.1)ofAliprantis’ notes: 𝑃𝑎𝑔 = 1 − 𝑠 𝑃𝑚
  • 23. Type 2 Topology Disadvantages(continued): • Brushes aremechanical—require maintenance. • Lackofrefined rotor speedcontrol meanswestill may not beatthe optimal tip-speed ratio. • Windvariabilitystill coupled togrid. • Still havepower factor correcting cap bank. Other Notes: • Connected tothe turbine shaft viaagear box. • It alwaysabsorbs reactivepower—in generator andmotoring mode(thus requiring VAR compensation).
  • 24. Wound-Rotor Induction Machines Steady-State EquivalentT Circuit –Wound Rotor 𝑟𝑠 𝑋𝑠 𝑋𝑟 𝑟𝑟 + 𝑅𝑒 /s ′ ′ 𝐼𝑠 𝐼𝑟 ′ 𝑉 𝑠 − + 𝑋𝑀 𝑟𝑀 s = 𝜔𝑒 − 𝜔𝑟 𝜔𝑒 = 1 − 𝜔𝑟 𝜔𝑒 ′
  • 25. Induction Machines Usingrotor resistance tochange torque-speed curve—to help achieveoptimal tip-speedratio.
  • 27. Varying Resistance using PE Togenerateafamilyoftoquespeedcurves,youcouldconnect abankofpowerresistorstotherotorthroughbrushes.You couldthenobtainadiscretenumberofresistorvaluesby seriesorparallelcombinationsoftheresistors, usingpower electronicswitches. Anotheridea:couldyouusepowerelectronicstogetalinearly varyingrotorresistance?
  • 28. Varying Resistance using PE 𝑅0 𝑅1 𝑅𝑒𝑞? 𝑅0 ≫ 𝑅1 Whenswitch off: Whenswitch on: 𝑅𝑒𝑞 = 𝑅0 𝑅𝑒𝑞 ≅ 𝑅1 Switch
  • 29. Defining the “Fast-Average” 𝑓𝑎𝑣𝑔(𝑡) = 1 𝑇 𝑓 𝜏 𝑑𝜏 𝑡+𝑇/2 𝑡−𝑇/2 𝑡 𝑇 Thefast (“moving”) averagegenerally tracksthe waveform more closely than thesimpleaverage. Fast Avg Simple Avg 𝑓
  • 30. Varying Resistance using PE 𝑅𝑒𝑞 = 1 𝑇𝑠𝑤 𝑅𝑒𝑞 𝜏 𝑑𝜏 𝑡0+𝑇𝑠𝑤 𝑡0 𝑡 𝑅0 𝑅1 𝑇𝑠𝑤 𝐷 = 𝐷𝑅1 + (𝑇𝑠𝑤 − 𝐷)𝑅0 𝑇𝑠𝑤 = 𝐷 𝑇𝑠𝑤 𝑅1 − 𝑅0 + 𝑅0 𝑡0
  • 31. Varying Resistance using PE 𝑅𝑒𝑞 = 𝐷 𝑇𝑠𝑤 𝑅1 − 𝑅0 + 𝑅0 𝐷 𝑅0 𝑅1 𝑇𝑠𝑤 𝑅𝑒𝑞 When𝐷 = 0, 𝑅𝑒𝑞 = 𝑅0 When𝐷 = 𝑇𝑠𝑤, 𝑅𝑒𝑞 = 𝑅1 Howisthisuseful?(a)Givesawidevariationineffectiverotor resistancewithtworesistors,(b)Canobtainadesiredtorque- speedrelationthroughclosed-loopcontrolof𝐷 –thiscorrects fortemperatureeffectsonresistanceand/orbrushcorrosion.
  • 32. Variable Speed Wind Turbines Power Converter Generator P, Q PF or V Q-Controller PF* or V* Q* UTILITY Rotor speed – pitch angle P-Controller P* wm wm b wm P* P* = k wm 3 w m_rated
  • 33. Type 3 Topology Wound-rotor, doubly-fed induction generator (DFIG)
  • 34. Type 3 Topology • Usesawound-rotor inductionmachine, but now the rotor isconnected tothe gridthrough an ac- dc-acpower electronic link. • Thepower electronic linkiscomposed of two bi- directional converters, connected through adc link(capacitor). • These convertersarereferred toasthe rotor-side converter (connects the rotor circuitstothe dc link) andthe grid-sideconverter (connects the dc linktothe grid).
  • 35. Rotor-Side Converter • Controls the frequency of therotor currents to maintainsynchronism between therotor and stator rotating mmfs. • Controls the magnitude andphaseof the rotor currents—which controls the real and reactive power deliveredtothe grid. Grid-Side Converter • Maintains thedclinkvoltage, whichprovidesthe dcvoltage for the rotor-sideconverter.
  • 36. AC-DC-AC Power Electronic Link 𝐿𝑑𝑐 𝒗𝑎𝑏𝑐 𝐿𝑐 𝑣𝑑𝑐 𝒊𝑎𝑏𝑐 𝑃 * 𝑺 Control How can we use power electronics to generate arbitrary currents, with phase angle referenced from utility voltage? 𝒗𝑎𝑏𝑐 𝐿𝑙𝑟 𝑄 * Example AC-DC-AC Converter
  • 37. AC-DC-AC Power Electronic Link Power Electronics; Converters, Applications and Design, 3rd Edition, by N. Mohan, T.M. Undeland and W.P. Robins; John Wiley & Sons 𝑖𝑎
  • 38. Induction Machines-Doubly Fed Induction Machine EquivalentT Circuit 𝑟𝑠 𝑋𝑙𝑠 𝑋𝑙𝑟 𝑟𝑟/s ′ ′ 𝐼𝑠 𝐼𝑎𝑟 ′ 𝑉 𝑠 − + 𝑋𝑀 𝑟𝑀 s = 𝜔𝑒 − 𝜔𝑟 𝜔𝑒 = 1 − 𝜔𝑟 𝜔𝑒 𝑉 𝑟 𝑠 − + ′
  • 39. Rotor-Side Converter Fromthevoltageequationsderivedfromthesteady-state equivalentcircuit,youcanderive(seeAliprantis’notes,page 30): • For𝑠 > 0(“sub-synchronousoperation”),therotorside powerhasoppositesignofstatorsidepower.Forgenerator action𝑃 𝑠 < 0,therotorisabsorbingpower. • For𝑠 < 0,(“super-synchronousoperation”),therotorside powerhasthesamesignasstatorsidepower.For generatoraction𝑃 𝑠 < 0,therotorisgeneratingpower. 𝑃𝑟 ≈ −𝑠𝑃𝑠 𝑃𝑎𝑔 = 𝑃𝑚 (1 − 𝑠)
  • 40. Note on Terminology 𝑠 = 𝜔𝑒 − 𝜔𝑟 𝜔𝑟 > 0 ⇒ 𝜔𝑒 − 𝜔𝑟 > 0 ⇒ 𝜔𝑟 < 𝜔𝑒 Fromthedefinitionofslip: Sointhiscase,therotorspeedislessthanthesynchronous speed,hencetheterm“sub-synchronous.”Theoppositeistrue inthesuper-synchronouscase.
  • 41. Type 3 Wind Turbine Generator
  • 42. Rotor-Side Converter OtherNotes: • PowerthatwaslostintheresistoroftheType2turbinecan berecoveredusingpowerelectronics.Canoperateefficiently atlargeslips(±30%istypical). • Since forlowvaluesofslip,thestatorcarriesthebulkofthe power.Sorotorsidepowerelectronicsareratedforlower powerlevels(whichmeansthey’relessexpensive!). |𝑃𝑠| ≈ 𝑃𝑟 𝑠
  • 43. Control of 𝑷 and 𝑸 FromtheequivalentTcircuit wherewe’vedefined𝑋𝑠= 𝑋0 + 𝑋1.Nowif𝑅1 ≪ 𝑋𝑠, Usingtheseexpressionstocomputecomplexpower𝑆𝑠= 3𝑉 𝑠𝐼𝑠 where𝐼𝑟 = 𝐼𝑟 𝜃𝑖𝑟 = 𝐼𝑟𝑎 + 𝑗𝐼𝑟𝑏 𝑉 𝑠 = 𝑅1 + 𝑗𝑋𝑠 𝐼𝑠 + 𝑗𝑋0𝐼𝑟 𝐼𝑠 ≈ 𝑉 𝑠 − 𝑗𝑋0𝐼𝑟 𝑗𝑋𝑠 𝑃𝑠 ≈ −3 𝑋0 𝑋𝑠 𝑉 𝑠𝐼𝑟𝑎 𝑄𝑠 ≈ 3𝑉 𝑠 𝑉 𝑠 + 𝑋0𝐼𝑟𝑏 𝑋𝑠 ′ ′ ′ ′ ′ ′ ′ ′
  • 44. A Simple PLL 𝑲𝑠 = 2 3 cos 𝜃 cos 𝜃 − 2𝜋 3 cos 𝜃 + 2𝜋 3 sin 𝜃 sin 𝜃 − 2𝜋 3 sin 𝜃 + 2𝜋 3 1 2 1 2 1 2 ⇒ 𝒗𝑞𝑑0 = 𝑲𝑠 𝒗𝑎𝑏𝑐 = 2𝑉 𝑠 𝟎 𝟎 𝒗𝑎𝑏𝑐 = 2𝑉 𝑠 cos 𝜃 cos 𝜃 − 2𝜋 3 cos 𝜃 + 2𝜋 3 Firstnotethatfor Keypoints:(a)wetransformtothe𝑞𝑑0referenceframesothat sinusoidallyvarying quantitiesbecomedcquantities,(b)note thatinthiscase,𝑣𝑑 shouldbezero.
  • 45. A Simple PLL 𝜃𝑒 = 𝜔𝑒 𝜏 𝑑𝜏 𝑡 0 + 𝜃𝑒(0) 𝑣𝑑 𝐾𝑝 + 1 𝑠 𝐾𝑖 0 𝜔𝑒 𝒗𝑞𝑑0 = 𝑲𝑠𝒗𝑎𝑏𝑐 Σ − +
  • 46. A Simple PLL Line frequency jumps from 60 to 62 Hz
  • 47. Type 3 Topology Summary Notes: • Variablespeed (±30slip,or 70%<speed<130%) • Variablefrequency 3-phase, currentregulated PWMinverter isfed tothe rotor winding. • Cancontrol real andreactivepower bycontrol of the rotor magnitudeand phase. • Lowpower absorbed/generated byrotor results inlessexpenserotor converter. • Induction generator always absorbsreactive power (still needreactive power compensation) • Currently dominatesthe global market.
  • 48. Type 4 Topology Permanent Magnetic Synchronous Generator (PMSG)
  • 49. Type 4 Topology • Usesapermanent magnetic synchronous machinewith stator connected tothe grid through anac-dc-acpower electronic link. • Thepower electronic linkiscomposed of two bi- directional converters, connected through adc link(capacitor). • These convertersarereferred toasthe stator- sideconverter (connects the stator circuitstothe dclink) andthe grid-sideconverter (connects the dclinktothe grid).
  • 50. Type 4 Topology • VariableSpeed –variablefrequency atgenerator sideandfixedfrequency (60Hz)atthe utility side • Latest generation ofwindturbines. • Rotor speed variesinavery largerange—so connected tothe turbine shaft viagear boxor directdrive(no gear box). • Absorbs/supplies reactivepower (+ 95%power factor) sonocap bankneeded. • Always usepower converter toconvert generator power andto return the power tothe utility supply (ac-dc-ac) • Power converter sizedto carryrated power.
  • 51. Type 4 Topology • Outputpower(realpower,activepower)–adjustableat anyspeed(withindesignlimit). • Reactivepower(non-revenuerelated)–adjustableatany speed(withindesignlimit). • Realandreactivepowerarecontrollableindependently. • Outputelectricalpoweriscontrollableindependentof inputmechanicalpowerandspeed,however,itisnormally controlledtofollow: • Real power as a cube function of rotor rpm to optimize the aerodynamic energy capture - real power = Kw wm 3 • Reactive power is controlled to control constant voltage at the output of the generator or power factor.
  • 52. Type 4 Topology StatorSideConverter • Current magnitude is adjustable by controlling the power converter • Starting current and starting torque is adjustable • Max Const. Pitch Operation: Real power = Kw wm 3 GridSideConverter • Output power factor adjustable (normally between 0.95 pf-lagging to 0.95 pf-leading. • Real power is adjusted to keep the DC bus voltage constant Havingcapabilitytoadjustthepowerfactormeansthatthe generatoroutputterminalvoltagecanbeadjustedbycontrolling theoutputreactivepower.
  • 53. Stator-Side Converter • Controls the frequency of thestator currents to maintainsynchronism between therotor and stator rotating mmfs. • Controls the magnitude andphaseof the stator currents tocontrol electromagnetic torque—in order toobtainthe optimal tip-speed ratio.
  • 54. Determining 𝑷 and 𝑸 From theequivalent steady-state circuit: Realpower Reactive power 𝑆𝑠 ≈ 3 𝐸𝑝𝑚 − 𝑗𝜔𝑟𝐿𝑞𝐼𝑠 𝐼𝑠 ≈ 3 2 𝜔𝑟 𝜆𝑝𝑚 − 𝐿𝑑 − 𝐿𝑞 𝐼𝑑𝑠 𝐼𝑞𝑠 + j 3 2 𝜔𝑟 𝜆𝑝𝑚𝐼𝑑𝑠 − 𝐿𝑑𝐼𝑑𝑠 − 𝐿𝑞𝐼𝑞𝑠 * 2 2
  • 55. Torque 𝑇𝑒 = 3 2 𝑃 2 𝜆𝑝𝑚 − 𝐿𝑑 − 𝐿𝑞 𝐼𝑑𝑠 𝐼𝑞𝑠 𝐸 = 𝑃𝑠𝑑𝑡 = 𝑇𝑒𝑑𝜃 Energy, torque, and power arerelated by: where𝜔𝑟𝑚 = 2 𝑃 𝜔𝑟 (here 𝑃 isthe number of machine poles, not power!) For anon-salient machine,𝐿𝑑 = 𝐿𝑞, inwhichcase ⇒ 𝑃𝑠= 𝑇𝑒 𝑑𝜃 𝑑𝑡 = 𝑇𝑒𝜔𝑟𝑚 𝑇𝑒 = 3 2 𝑃 2 𝜆𝑝𝑚𝐼𝑞𝑠
  • 56. Current Regulated Speed Control 𝜔𝑟𝑚 𝑇𝑒 2 3 2 𝑃 1 𝜆𝑝𝑚 𝐾 1 + 1 𝑠𝜏 Current Reg Plant 𝑃 2 𝜔𝑟𝑚 𝑆 𝜃𝑟 𝒊𝑎𝑏𝑐𝑠 𝑣𝑑𝑐 ∗ ∗ 𝑟* 𝑖𝑞𝑠 𝑟* 𝑖𝑑𝑠