SlideShare a Scribd company logo
6
Most read
8
Most read
18
Most read
EIGENFACES FOR RECOGNITON

Paper: EigenFaces For Recognition, 1991

Authors: Matthew Turk and Alex Pentland

Presenter: Semih Korkmaz

1/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON

Left: Prof. Dr. Matthew Turk, currently working at UC Santa Barbara
University(http://transliteracies.english.ucsb.edu) Right :Prof. Dr. Alex
Pentland, Currently working at MIT. (http://ticsp.cs.tut.fi)
2/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Contents

• Overview of the method
• Principal Component Analysis

• Recognition Process
• Acquiring Images
• Calculating EigenFaces
• Training the system

• Additional Capabilities

• Conclusion and Recent Work
EigenFaces For Recognition, 91

3/24

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Overview
• Acquire training images.
• Calculate Eigenfaces.

• Project them to face space.
• Project test image to face space.

• Calculate the Euclidean distance and make
a decision.
4/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Principal Component Analysis
Find the dimensions of data with highest variance

http://web.media.mit.edu/

EigenFaces For Recognition, 91

5/24

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Principal Component Analysis
Finding patterns in many dimensions is hard.
Mapping to a simpler domain is desirable.
𝑛 → 𝑘 | 𝑘≪ 𝑛
𝑛, 𝑘 number dimensions

Invented in 1901, by Karl Pearson.

6/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Acquire Training Images
Get 𝑀 training samples with variances

…
𝐼1

𝐼2

𝐼3

𝐼4

…

𝐼 𝑀−1

𝐼𝑀

(Olivetti - Att – ORL dataset, ‘94)

Images are in same size and equivalently framed.
7/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Calculate EigenFaces
• Convert all the images in vector form.
25

55

8

200

180

70

𝐼𝑖 =

40
65

Γ𝑖 ′ =

18

25

40

55

8

200 180 70

65

18

𝑁2

𝑁 × 𝑁

• Calculate the mean . (Average Face)
1
Ψ=
𝑀
EigenFaces For Recognition, 91

𝑀

Γ𝑛
𝑛=1

8/24

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Calculate EigenFaces
• Normalize vectors.
Φ𝑖 = Γ 𝑖 − Ψ

• Form the covariance matrix
𝐴 = [Φ1 , Φ2 , . . , Φ 𝑚 ]
1
𝐶=
𝑀

𝑀
𝑇
Φ 𝑛 Φ 𝑛 = 𝐴𝐴 𝑇
𝑛=1

EigenFaces For Recognition, 91

9/24

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Calculate EigenFaces
• We calculate the Eigen vectors of Covariance Matrix
𝐶 = 𝐴𝐴 𝑇 → 𝑁 2 × 𝑀 . 𝑀 × 𝑁 2 → 𝑵 𝟐 × 𝑵 𝟐

• Do we need so many eigenvectors anyway ?
No, we don’t ! Calculate eigenvectors of the
Covariance matrix with reduced dimensionality.
10/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Calculate EigenFaces
𝐶 = 𝐴 𝑇 𝐴 → 𝑀 × 𝑁2. 𝑁2 × 𝑀 → 𝑴 × 𝑴
𝑣 𝑖 is an eigenvector of 𝐴 𝑇 𝐴
𝜇 𝑖 is an eigenvector of 𝐴 𝐴 𝑇 (Eigen Face)
𝜇 𝑖 = 𝐴𝑣 𝑖
(𝐴 𝑇 𝐴)𝑣 𝑖 = 𝜆 𝑖 𝑣 𝑖

𝐴𝐴 𝑇 𝐴𝑣 𝑖 = 𝜆 𝑖 (𝐴𝑣 𝑖 )
Calculate 𝑘 eigenvectors and associate remaining to 0.
11/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Training the system
Ψ
=

𝜇1 * 𝜔1

+

6 eigenfaces
case

+

𝜇2 ∗ 𝜔2 +

𝜇3 ∗ 𝜔3 +

𝜇4 ∗ 𝜔4 + 𝜇5 ∗ 𝜔5 +

𝜇6 ∗ 𝜔6
12/24

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Training the system
• Images projected to face space.
𝜔 𝑘 = 𝜇 𝑘𝑇 (Γ − Ψ)

• Images projected to face space.
Ω𝑖 =

𝜔1
𝜔2
𝜔3
…
𝜔𝑘

𝑀′

Φ𝑓 =

𝜔𝑖 𝜇𝑖
𝑖=1

13/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Training the system
Testing a face has two cases:

• Find the nearest face with designated threshold 𝜃 𝜖
𝜖2 = ( Ω − Ω 𝑘)
𝑘

2

compare with 𝜃 𝜖

• Normalize and find out if it is a face according to𝜃 𝜖
2

𝜖 = ( Φ − Φ 𝑓)

2

compare with 𝜃 𝜖

14/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Additional Capabilities
Detection and Tracking

• Check around every pixel for an image
• Try to classify faces using spatiotemporal filtering
for a video
• Both methods can be combined
15/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Additional Capabilities
Relation to Neural Networks

• Model the system as Neural Network.
Φ

Ω

Φ𝑓

16/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Additional Capabilities
Increasing Robustness

• Multiply around the face with Gaussian for
attenuating the effects of background.
• Try different scales of eigenfaces, estimate head
pose.

• Up to 45 𝜊 turned faces with profile might be
interpolated.
17/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Summary
1. Acquire a set images with variations
2. Calculate eigenfaces and choose M’ of them
associated with highest eigenvalues.

3. By projecting each indivual’s images to face space,
train the system.
4. Given a test image; project it to face space and
make decision according to threshold.
18/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Results
Percentage results for Recognition from AT&T dataset, equal number
of training and test images.
96
90

94

85

92

80

EigenFaces

90

75

Fisher Faces

88

LBP

86
70
10 Faces 50 Faces

100
Faces

EigenFaces For Recognition, 91

84
r:1 n:8 r:2 n:8 r:1 n:8
nx:8 nx:8 nx:4
19/23
ny:8 ny:8 ny:4
Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Results
Speed of Eigenfaces, 200 images for training and testing.
Eigenfaces

Training+Test

Test

10

0.52 seconds

0.02 seconds

50

0.7

0.11

100

0.92

0.25

20/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
Results

(Caltech Face Dataset,’99)

Selection of 150 images from Caltech Faces(Converted to
Grayscale);
45 Training, 105 test and 10 eigenfaces selected. Eigenfaces
used directly and..
Only 7 (!) are correctly classified.
EigenFaces For Recognition, 91

21/23

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
References
[1]Matthew Turk and Alex Pentland. 1991. Eigenfaces for recognition. J.
Cognitive Neuroscience 3, 1 (January 1991), 71-86.
DOI=10.1162/jocn.1991.3.1.71 http://dx.doi.org/10.1162/jocn.1991.3.1.71
[2]L. Sirovich and M. Kirby, Low-dimensional Procedure for the
Characterization of Human Faces, Journal of the Optical Society of
America A, 4:519--524, 1987
[3]Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D., "Eigenfaces vs.
Fisherfaces: recognition using class specific linear projection," Pattern
Analysis and Machine Intelligence, IEEE Transactions on , vol.19, no.7,
pp.711,720, Jul 1997 doi: 10.1109/34.598228
22/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON
References
[4] Anil K. Jain and Stan Z. Li. 2005. Handbook of Face Recognition. SpringerVerlag New York, Inc., Secaucus, NJ, USA.

23/23

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz
EIGENFACES FOR RECOGNITON

Thank you for listening
Questions ?

EigenFaces For Recognition, 91

Presenter: Semih Korkmaz

More Related Content

PPT
Eigenface For Face Recognition
PPTX
face recognition based on PCA
PPTX
Face Recognition using PCA-Principal Component Analysis using MATLAB
PDF
Autoencoders
PDF
Anomaly detection
PDF
Facial emotion recognition
PPTX
Three classes of deep learning networks
PPTX
Object recognition
Eigenface For Face Recognition
face recognition based on PCA
Face Recognition using PCA-Principal Component Analysis using MATLAB
Autoencoders
Anomaly detection
Facial emotion recognition
Three classes of deep learning networks
Object recognition

What's hot (20)

PPTX
Deep belief network.pptx
PPTX
Facial expression recognition based on local binary patterns final
PDF
An introduction to Deep Learning
PDF
An introduction to Machine Learning
PPTX
Face Recognition System
PPTX
Support Vector Machine ppt presentation
PPTX
FACE RECOGNITION SYSTEM PPT
PDF
Introduction to Autoencoders
PPT
Face detection ppt
PPTX
Feature selection concepts and methods
PDF
Lecture: Word Sense Disambiguation
PPTX
Predicting Emotions through Facial Expressions
PDF
EMOTION DETECTION USING AI
PPT
Face recognition ppt
PPT
Anatomy of a Texture Fetch
PPTX
Introduction to Deep learning
PDF
Computer Vision
PPTX
Anomaly Detection Using Generative Adversarial Network(GAN)
Deep belief network.pptx
Facial expression recognition based on local binary patterns final
An introduction to Deep Learning
An introduction to Machine Learning
Face Recognition System
Support Vector Machine ppt presentation
FACE RECOGNITION SYSTEM PPT
Introduction to Autoencoders
Face detection ppt
Feature selection concepts and methods
Lecture: Word Sense Disambiguation
Predicting Emotions through Facial Expressions
EMOTION DETECTION USING AI
Face recognition ppt
Anatomy of a Texture Fetch
Introduction to Deep learning
Computer Vision
Anomaly Detection Using Generative Adversarial Network(GAN)
Ad

Similar to Eigenfaces (20)

PDF
Computer Vision Computer Vision: Algorithms and Applications Richard Szeliski
PDF
Derivative Free Optimization and Robust Optimization
PDF
Domain adaptation: A Theoretical View
PPT
Machine Learning Deep Learning Machine learning
PPTX
Optimization/Gradient Descent
PPT
Machine Learning workshop by GDSC Amity University Chhattisgarh
PDF
stable_diffusion_a_tutorial, How stable_diffusion works, build stable_diffusi...
PPTX
Optimization Using Evolutionary Computing Techniques
PDF
Paper Study: Melding the data decision pipeline
PPTX
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
PDF
Face recognition and deep learning โดย ดร. สรรพฤทธิ์ มฤคทัต NECTEC
PPTX
Svm algorithm
PDF
Evolutionary (deep) neural network
PDF
Score-Based Generative Modeling through Stochastic Differential Equations
PPTX
Eigenfaces , Fisherfaces and Dimensionality_Reduction
PDF
Super resolution in deep learning era - Jaejun Yoo
PPT
Sift based arabic sign language recognition aecia 2014 –november17-19, addis ...
PDF
Salt Identification Challenge
PPT
White box testing-200709
PDF
Genetic Algorithm
Computer Vision Computer Vision: Algorithms and Applications Richard Szeliski
Derivative Free Optimization and Robust Optimization
Domain adaptation: A Theoretical View
Machine Learning Deep Learning Machine learning
Optimization/Gradient Descent
Machine Learning workshop by GDSC Amity University Chhattisgarh
stable_diffusion_a_tutorial, How stable_diffusion works, build stable_diffusi...
Optimization Using Evolutionary Computing Techniques
Paper Study: Melding the data decision pipeline
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Face recognition and deep learning โดย ดร. สรรพฤทธิ์ มฤคทัต NECTEC
Svm algorithm
Evolutionary (deep) neural network
Score-Based Generative Modeling through Stochastic Differential Equations
Eigenfaces , Fisherfaces and Dimensionality_Reduction
Super resolution in deep learning era - Jaejun Yoo
Sift based arabic sign language recognition aecia 2014 –november17-19, addis ...
Salt Identification Challenge
White box testing-200709
Genetic Algorithm
Ad

Recently uploaded (20)

PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
Virtual and Augmented Reality in Current Scenario
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Indian roads congress 037 - 2012 Flexible pavement
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Hazard Identification & Risk Assessment .pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Virtual and Augmented Reality in Current Scenario
202450812 BayCHI UCSC-SV 20250812 v17.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Indian roads congress 037 - 2012 Flexible pavement
TNA_Presentation-1-Final(SAVE)) (1).pptx
Computing-Curriculum for Schools in Ghana
Chinmaya Tiranga quiz Grand Finale.pdf
IGGE1 Understanding the Self1234567891011
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
FORM 1 BIOLOGY MIND MAPS and their schemes
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Introduction to pro and eukaryotes and differences.pptx
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
History, Philosophy and sociology of education (1).pptx
Weekly quiz Compilation Jan -July 25.pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Hazard Identification & Risk Assessment .pdf

Eigenfaces

  • 1. EIGENFACES FOR RECOGNITON Paper: EigenFaces For Recognition, 1991 Authors: Matthew Turk and Alex Pentland Presenter: Semih Korkmaz 1/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 2. EIGENFACES FOR RECOGNITON Left: Prof. Dr. Matthew Turk, currently working at UC Santa Barbara University(http://transliteracies.english.ucsb.edu) Right :Prof. Dr. Alex Pentland, Currently working at MIT. (http://ticsp.cs.tut.fi) 2/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 3. EIGENFACES FOR RECOGNITON Contents • Overview of the method • Principal Component Analysis • Recognition Process • Acquiring Images • Calculating EigenFaces • Training the system • Additional Capabilities • Conclusion and Recent Work EigenFaces For Recognition, 91 3/24 Presenter: Semih Korkmaz
  • 4. EIGENFACES FOR RECOGNITON Overview • Acquire training images. • Calculate Eigenfaces. • Project them to face space. • Project test image to face space. • Calculate the Euclidean distance and make a decision. 4/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 5. EIGENFACES FOR RECOGNITON Principal Component Analysis Find the dimensions of data with highest variance http://web.media.mit.edu/ EigenFaces For Recognition, 91 5/24 Presenter: Semih Korkmaz
  • 6. EIGENFACES FOR RECOGNITON Principal Component Analysis Finding patterns in many dimensions is hard. Mapping to a simpler domain is desirable. 𝑛 → 𝑘 | 𝑘≪ 𝑛 𝑛, 𝑘 number dimensions Invented in 1901, by Karl Pearson. 6/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 7. EIGENFACES FOR RECOGNITON Acquire Training Images Get 𝑀 training samples with variances … 𝐼1 𝐼2 𝐼3 𝐼4 … 𝐼 𝑀−1 𝐼𝑀 (Olivetti - Att – ORL dataset, ‘94) Images are in same size and equivalently framed. 7/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 8. EIGENFACES FOR RECOGNITON Calculate EigenFaces • Convert all the images in vector form. 25 55 8 200 180 70 𝐼𝑖 = 40 65 Γ𝑖 ′ = 18 25 40 55 8 200 180 70 65 18 𝑁2 𝑁 × 𝑁 • Calculate the mean . (Average Face) 1 Ψ= 𝑀 EigenFaces For Recognition, 91 𝑀 Γ𝑛 𝑛=1 8/24 Presenter: Semih Korkmaz
  • 9. EIGENFACES FOR RECOGNITON Calculate EigenFaces • Normalize vectors. Φ𝑖 = Γ 𝑖 − Ψ • Form the covariance matrix 𝐴 = [Φ1 , Φ2 , . . , Φ 𝑚 ] 1 𝐶= 𝑀 𝑀 𝑇 Φ 𝑛 Φ 𝑛 = 𝐴𝐴 𝑇 𝑛=1 EigenFaces For Recognition, 91 9/24 Presenter: Semih Korkmaz
  • 10. EIGENFACES FOR RECOGNITON Calculate EigenFaces • We calculate the Eigen vectors of Covariance Matrix 𝐶 = 𝐴𝐴 𝑇 → 𝑁 2 × 𝑀 . 𝑀 × 𝑁 2 → 𝑵 𝟐 × 𝑵 𝟐 • Do we need so many eigenvectors anyway ? No, we don’t ! Calculate eigenvectors of the Covariance matrix with reduced dimensionality. 10/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 11. EIGENFACES FOR RECOGNITON Calculate EigenFaces 𝐶 = 𝐴 𝑇 𝐴 → 𝑀 × 𝑁2. 𝑁2 × 𝑀 → 𝑴 × 𝑴 𝑣 𝑖 is an eigenvector of 𝐴 𝑇 𝐴 𝜇 𝑖 is an eigenvector of 𝐴 𝐴 𝑇 (Eigen Face) 𝜇 𝑖 = 𝐴𝑣 𝑖 (𝐴 𝑇 𝐴)𝑣 𝑖 = 𝜆 𝑖 𝑣 𝑖 𝐴𝐴 𝑇 𝐴𝑣 𝑖 = 𝜆 𝑖 (𝐴𝑣 𝑖 ) Calculate 𝑘 eigenvectors and associate remaining to 0. 11/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 12. EIGENFACES FOR RECOGNITON Training the system Ψ = 𝜇1 * 𝜔1 + 6 eigenfaces case + 𝜇2 ∗ 𝜔2 + 𝜇3 ∗ 𝜔3 + 𝜇4 ∗ 𝜔4 + 𝜇5 ∗ 𝜔5 + 𝜇6 ∗ 𝜔6 12/24 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 13. EIGENFACES FOR RECOGNITON Training the system • Images projected to face space. 𝜔 𝑘 = 𝜇 𝑘𝑇 (Γ − Ψ) • Images projected to face space. Ω𝑖 = 𝜔1 𝜔2 𝜔3 … 𝜔𝑘 𝑀′ Φ𝑓 = 𝜔𝑖 𝜇𝑖 𝑖=1 13/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 14. EIGENFACES FOR RECOGNITON Training the system Testing a face has two cases: • Find the nearest face with designated threshold 𝜃 𝜖 𝜖2 = ( Ω − Ω 𝑘) 𝑘 2 compare with 𝜃 𝜖 • Normalize and find out if it is a face according to𝜃 𝜖 2 𝜖 = ( Φ − Φ 𝑓) 2 compare with 𝜃 𝜖 14/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 15. EIGENFACES FOR RECOGNITON Additional Capabilities Detection and Tracking • Check around every pixel for an image • Try to classify faces using spatiotemporal filtering for a video • Both methods can be combined 15/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 16. EIGENFACES FOR RECOGNITON Additional Capabilities Relation to Neural Networks • Model the system as Neural Network. Φ Ω Φ𝑓 16/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 17. EIGENFACES FOR RECOGNITON Additional Capabilities Increasing Robustness • Multiply around the face with Gaussian for attenuating the effects of background. • Try different scales of eigenfaces, estimate head pose. • Up to 45 𝜊 turned faces with profile might be interpolated. 17/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 18. EIGENFACES FOR RECOGNITON Summary 1. Acquire a set images with variations 2. Calculate eigenfaces and choose M’ of them associated with highest eigenvalues. 3. By projecting each indivual’s images to face space, train the system. 4. Given a test image; project it to face space and make decision according to threshold. 18/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 19. EIGENFACES FOR RECOGNITON Results Percentage results for Recognition from AT&T dataset, equal number of training and test images. 96 90 94 85 92 80 EigenFaces 90 75 Fisher Faces 88 LBP 86 70 10 Faces 50 Faces 100 Faces EigenFaces For Recognition, 91 84 r:1 n:8 r:2 n:8 r:1 n:8 nx:8 nx:8 nx:4 19/23 ny:8 ny:8 ny:4 Presenter: Semih Korkmaz
  • 20. EIGENFACES FOR RECOGNITON Results Speed of Eigenfaces, 200 images for training and testing. Eigenfaces Training+Test Test 10 0.52 seconds 0.02 seconds 50 0.7 0.11 100 0.92 0.25 20/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 21. EIGENFACES FOR RECOGNITON Results (Caltech Face Dataset,’99) Selection of 150 images from Caltech Faces(Converted to Grayscale); 45 Training, 105 test and 10 eigenfaces selected. Eigenfaces used directly and.. Only 7 (!) are correctly classified. EigenFaces For Recognition, 91 21/23 Presenter: Semih Korkmaz
  • 22. EIGENFACES FOR RECOGNITON References [1]Matthew Turk and Alex Pentland. 1991. Eigenfaces for recognition. J. Cognitive Neuroscience 3, 1 (January 1991), 71-86. DOI=10.1162/jocn.1991.3.1.71 http://dx.doi.org/10.1162/jocn.1991.3.1.71 [2]L. Sirovich and M. Kirby, Low-dimensional Procedure for the Characterization of Human Faces, Journal of the Optical Society of America A, 4:519--524, 1987 [3]Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D., "Eigenfaces vs. Fisherfaces: recognition using class specific linear projection," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.19, no.7, pp.711,720, Jul 1997 doi: 10.1109/34.598228 22/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 23. EIGENFACES FOR RECOGNITON References [4] Anil K. Jain and Stan Z. Li. 2005. Handbook of Face Recognition. SpringerVerlag New York, Inc., Secaucus, NJ, USA. 23/23 EigenFaces For Recognition, 91 Presenter: Semih Korkmaz
  • 24. EIGENFACES FOR RECOGNITON Thank you for listening Questions ? EigenFaces For Recognition, 91 Presenter: Semih Korkmaz