SlideShare a Scribd company logo
Standard Application Program 6.x
for ACS 600 Frequency Converters
ACS 600 Firmware Manual
This manual includes information on:
• Control Panel
• Application macros (including the I/O
channel wiring diagrams)
• Parameters
• Fault tracing
• Fieldbus control
En 600stdprg fwmanual
ã 2000 ABB Industry Oy. All Rights Reserved.
Standard Application Program 6.x
for ACS 600 Frequency Converters
Firmware Manual
3AFY 61201441 R0725 EN
EFFECTIVE: 16.10.2000
SUPERSEDES: 06.09.1999
En 600stdprg fwmanual
Firmware Manual iii
Safety Instructions
Overview This chapter states the safety instructions which must be followed
when installing, operating and servicing the ACS 600. If neglected,
physical injury and death may follow, or damage may occur to the
frequency converter, the motor and driven equipment. The material in
this chapter must be studied before attempting any work on, or with,
the unit.
Warnings and Notes This manual distinguishes two sorts of safety instructions. Warnings
are used to inform of conditions which can, if proper steps are not
taken, lead to a serious fault condition, physical injury and death. Notes
are used when the reader is required to pay special attention or when
there is additional information available on the subject. Notes are less
crucial than Warnings, but should not be disregarded.
Warnings Readers are informed of situations that can result in serious physical
injury and/or serious damage to equipment with the following symbols:
Notes Readers are notified of the need for special attention or additional
information available on the subject with the following symbols:
Dangerous Voltage Warning: warns of situations
in which a high voltage can cause physical injury
and/or damage equipment. The text next to this
symbol describes ways to avoid the danger.
General Warning: warns of situations which can
cause physical injury and/or damage equipment by
means other than electrical. The text next to this
symbol describes ways to avoid the danger.
Electrostatic Discharge Warning: warns of
situations in which an electrostatic discharge can
damage equipment. The text next to this symbol
describes ways to avoid the danger.
CAUTION! Caution aims to draw special attention to a
particular issue.
Note: Note gives additional information or points out
more information available on the subject.
Safety Instructions
iv Firmware Manual
General Safety
Instructions
These safety instructions are intended for all work on the ACS 600. In
addition to the instructions given below, there are more safety
instructions on the first pages of the appropriate hardware manual.
WARNING! All electrical installation and maintenance work on the
ACS 600 should be carried out by qualified electricians.
The ACS 600 and adjoining equipment must be properly earthed.
Do not attempt any work on a powered ACS 600. After switching off the
mains, always allow the intermediate circuit capacitors 5 minutes to
discharge before working on the frequency converter, the motor or the
motor cable. It is good practice to check (with a voltage indicating
instrument) that the frequency converter is in fact discharged before
beginning work.
The ACS 600 motor cable terminals are at a dangerously high voltage
when mains power is applied, regardless of motor operation.
There can be dangerous voltages inside the ACS 600 from external
control circuits when the ACS 600 mains power is shut off. Exercise
appropriate care when working with the unit. Neglecting these
instructions can cause physical injury and death.
WARNING! The ACS 600 introduces electric motors, drive train
mechanisms and driven machines to an extended operating range. It
should be determined from the outset that all equipment is up to these
conditions.
Operation is not allowed if the motor nominal voltage is less than one
half of the ACS 600 nominal input voltage, or the motor nominal current
is less than 1/6 of the ACS 600 nominal output current. Proper attention
should be given to the motor insulation properties. The
ACS 600 output comprises of short, high voltage pulses (approximately
1.35 ... 1.41 · mains voltage) regardless of output frequency. This
voltage can be almost doubled by unfavourable motor cable properties.
Contact an ABB office for additional information if multimotor operation
is required. Neglecting these instructions can result in permanent
damage to the motor.
All insulation tests must be carried out with the ACS 600 disconnected
from the cabling. Operation outside the rated capacities should not be
attempted. Neglecting these instructions can result in permanent
damage to the ACS 600.
There are several automatic reset functions in the ACS 600. If selected,
they reset the unit and resume operation after a fault. These functions
should not be selected if other equipment is not compatible with this
kind of operation, or dangerous situations can be caused by such
action.
Firmware Manual v
Table of Contents
Safety Instructions
Table of Contents
Chapter 1 – Introduction to This Manual
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Before You Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
What This Manual Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
ACS 600 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Application Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1
Parameter Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1
Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Panel Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Keypad Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4
Identification Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4
Actual Signal Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4
Parameter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8
Function Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-9
Drive Selection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12
Operational Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13
Reading and Entering Packed Boolean Values on the CDP 312 . . . . . . . . . . . . . . . . . . . . . . .2-14
Chapter 3 – Start-up Data
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Start-up Data Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5
Chapter 4 – Control Operation
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Group 1 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
Group 2 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3
Group 3 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
Fault History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Local Control vs. External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table of Contents
vi Firmware Manual
Local Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Chapter 5 – Standard Application Macro Programs
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Application Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
User Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Application Macros Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Application Macro 1 – Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Application Macro 2 – Hand/Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Application Macro 3 – PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Application Macro 4 – Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Application Macro 5 – Sequential Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Chapter 6 – Parameters
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Parameter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Group 10 Start/Stop/Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Group 11 Reference Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Group 12 Constant Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Group 13 Analogue Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14
Group 14 Relay Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
Group 15 Analogue Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Group 16 System Ctr Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28
Group 20 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31
Group 21 Start/Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34
Group 22 Accel/Decel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38
Group 23 Speed Ctrl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41
Table of Contents
Firmware Manual vii
Group 24 Torque Ctrl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-46
Group 25 Critical Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-47
Group 26 Motor Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-49
Group 30 Fault Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-52
Group 31 Automatic Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-62
Group 32 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-64
Group 33 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-66
Group 34 Process Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-67
Group 35 Mot Temp Meas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-69
Group 40 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-75
Group 42 Brake Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-87
Group 45 Function Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-93
Group 50 Encoder Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-95
Group 51 Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-97
Group 52 Standard Modbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-97
Group 60 MASTER/FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-98
Group 70 DDCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-105
Group 90 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-106
Group 92 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-106
Group 96 EXTERNAL AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-107
Group 98 Option Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-109
Chapter 7 – Fault Tracing
Fault Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Fault Resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-1
Fault History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2
Fault and Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2
Appendix A – Complete Parameter Settings
Appendix B – Default Settings of Application Macros
Appendix C – Fieldbus Control
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
Control via NDCO Board Channel CH0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Fieldbus Adapter Communication Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
AF 100 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3
Control through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5
Communication Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5
Drive Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-6
The Fieldbus Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9
The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9
How Direction of Rotation Is Determined in Fieldbus Control . . . . . . . . . . . . . . . . . . . . . . . . C-12
Actual Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14
Modbus Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14
Communication Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-17
Table of Contents
viii Firmware Manual
Appendix D – Analogue Extension Module NAIO
Speed Control Through NAIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
Basic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1
NAIO Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1
ACS 600 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1
Bipolar Input in Basic Speed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-2
Bipolar Input in Joystick Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-3
Index
Firmware Manual 1-1
Chapter 1 – Introduction to This Manual
Overview This chapter describes the purpose, contents and the intended
audience of this manual. It also lists related publications.
This Manual is compatible with the ACS 600 Standard Application
Program version 6.0 or later.
Before You Start The purpose of this manual is to provide you with the information
necessary to control and program your ACS 600 drive.
The audience for this manual is expected to have:
• Knowledge of standard electrical wiring practices, electronic
components, and electrical schematic symbols.
• Minimal knowledge of ABB product names and terminology.
• No experience or training in installing, operating, or servicing the
ACS 600.
What This Manual
Contains
Safety Instructions can be found on pages iii - iv of this manual. The
Safety Instructions describe the formats for various warnings and
notations used in this manual. This chapter also states the general
safety instructions which must be followed.
Chapter 1 – Introduction, the chapter you are reading now, introduces
you to the ACS 600 Firmware Manual.
Chapter 2 – Overview of ACS 600 Programming and the Control Panel
provides an overview of programming your ACS 600. This chapter
describes the operation of the Control Panel used for controlling and
programming.
Chapter 3 – Start-up Data lists and explains the Start-up Data
parameters.
Chapter 4 – Control Operation describes actual signals and keypad
and external controls.
Chapter 5 – Standard Application Macro Programs describes the
operation and suitable applications of five standard Application Macros
and the User Macro.
Chapter 6 – Parameters lists the ACS 600 parameters and explains the
functions of each parameter.
Chapter 7 – Fault Tracing lists the ACS 600 fault and warning
messages, possible causes and remedies.
Chapter 1 – Introduction to This Manual
1-2 Firmware Manual
Appendix A – Complete Parameter Settings lists, in tabular form, all
parameter settings for the ACS 600.
Appendix B – Default Settings of Application Macros lists default
settings of ACS 600 Application Macros in tabular form.
Appendix C – Fieldbus Control contains the information needed to
control the ACS 600 through a fieldbus adapter module. There are
several fieldbus adapter modules for the ACS 600 available as optional
equipment.
Appendix D – Analogue Extension Module NAIO contains the
information needed to control the ACS 600 through an Analogue
Extension Module NAIO (optional).
Index helps you locate the page numbers of topics contained in this
manual.
Related Publications In addition to this manual the ACS 600 user documentation includes
the following manuals:
• Start-up Guide for ACS 600 equipped with Standard Application
Program (English code: 3BFE 64049224)
• Hardware manuals for various ACS 600 family members
• Several Installation and Start-up Guides for the optional devices for
the ACS 600
Firmware Manual 2-1
Chapter 2 – Overview of ACS 600 Programming and
the CDP 312 Control Panel
Overview This chapter describes how to use the panel with ACS 600 to modify
parameters, monitor actual values and control the drive.
Note: The CDP 312 Panel does not communicate with ACS 600
Standard Application Program versions 3.x or earlier. The CDP 311
Panel does not communicate with program version 5.x or later.
ACS 600 Programming The user can change the configuration of the ACS 600 to meet the
needs of the application by programming. The ACS 600 is
programmable through a set of parameters.
Application Macros Parameters can be set one by one or a preprogrammed set of
parameters can be selected. Preprogrammed parameter sets are
called Application Macros. See Chapter 5 – Standard Application
Macro Programs for further information on the Application Macros.
Parameter Groups In order to simplify programming, parameters in the ACS 600 are
organised in Groups. Parameters of the Start-Up Data Group are
described in Chapter 3 – Start-up Data and other parameters in
Chapter 6 – Parameters.
Start-up Data Parameters The Start-up Data Group contains the basic settings needed to match
the ACS 600 with your motor and to set the Control Panel display
language. This group also contains a list of preprogrammed Application
Macros. The Start-up Data Group includes parameters that are set at
start-up, and should not need to be changed later on. See Chapter 3 –
Start-up Data for description of each parameter.
Control Panel The Control Panel is the device used for controlling and programming
the ACS 600. The Panel can be attached directly to the door of the
cabinet or it can be mounted, for example, in a control desk.
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-2 Firmware Manual
Figure 2-1 The Control Panel.
Display The LCD type display has 4 lines of 20 characters.
The language is selected at start-up by Parameter 99.01 LANGUAGE.
Keys The keys on the Control Panel are flat, labelled push-buttons. Their
functions are explained on the next page.
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
ACT PAR FUNC DRIVE
ENTER
LOC RESET REF
REM
I 0
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Firmware Manual 2-3
Figure 2-2 Control Panel Display indications and function of the Control Panel keys.
Figure 2-3 Operational commands of the Control Panel keys.
Parameter Mode
Function Mode
Drive Selection Mode
Act. Signal/Fault History
Enter selection mode
Accept new signal
Group selection
Parameter selection
Enter change mode
Accept new value
Fast value change
Slow value change
Row selection
Function start
Drive selection
Enter change mode
Accept new value
Actual Signal Display Mode
ENTER
ENTER
ENTER
ENTER
selection
ID number change
ID Number of the
Selected Drive
Panel Status
L = Local
The Value of
the Reference
Run Status
O = Stop
I = Run
Rotation Direction
" = Forward
# = Reverse
Group Number
Parameter Number
Parameter Value
and Name
and Name
Device Type
ID Number
Status Row
Status Row
ACT
PAR
FUNC
DRIVE
Actual Signals
= Run disabled
Names and
Values
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
1 L " 1242.0 rpm I
10 START/STOP
01 EXT1 STRT/STP/DIR
DI1,2
1 L " 1242.0 rpm I
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 7
ACS 601 75 kW
ASAA5000 xxxxxx
ID NUMBER 1
Status Row
Selectable
Functions
Application SW Name
and Version Date
Act. Signal/Fault Message
scrolling
R = External
LOC
RESET
REF
REM
Keypad / External Control
Fault Reset
Reference Setting Function
Forward
Reverse
Start
Stop
I
0
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-4 Firmware Manual
Panel Operation The following is a description of the operation of the Control Panel. The
Control Panel Keys and Displays are explained in Figure 2-1, Figure 2-
2, and Figure 2-3.
Keypad Modes The Control Panel has four different keypad modes: Actual Signal
Display Mode, Parameter Mode, Function Mode, and Drive Selection
Mode. In addition to these, there is a special Identification Display,
which is displayed after connecting the panel to the link. The
Identification Display and the keypad modes are described briefly
below.
Identification Display When the panel is connected for the first time, or the power is applied
to the drive, the Identification Display appears.
Note: The panel can be connected to the drive while power is applied
to the drive.
After two seconds, the display will clear, and the Actual Signals of the
drive will appear.
Actual Signal Display
Mode
This mode includes two displays, the Actual Signal Display and the
Fault History Display. The Actual Signal Display is displayed first when
the Actual Signal Display mode is entered. If the drive is in a fault
condition, the Fault Display will be shown first.
The panel will automatically return to the Actual Signal Display Mode
from other modes if no keys are pressed within one minute (exceptions:
Status Display in Drive Selection Mode and Fault Display Mode).
In the Actual Signal Display Mode you can monitor three Actual Signals
at a time. For more information of actual signals see Chapter 4 –
Control Operation. How to select the three Actual Signals to the display
is explained in Table 2-2.
The Fault History includes information on 64 faults and warnings that
occurred in your ACS 600. 16 remain in the memory over a power
switch-off. The procedure for clearing the Fault History is described in
Table 2-3.
The table below shows the events that are stored in the Fault History.
For each event it is described what information is included.
ACS 600 75 kW
ID NUMBER 1
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Firmware Manual 2-5
When a fault or warning occurs in the drive, the message will be
displayed immediately, except in the Drive Selection Mode. Table 2-4
shows how to reset a fault. From the fault display, it is possible to
change to other displays without resetting the fault. If no keys are
pressed the fault or warning text is displayed as long as the fault exists.
See Chapter 7 – Fault Tracing for information on fault tracing.
Table 2-1 How to display the full name of the three Actual Signals.
Step Function Press key Display
1. To display the full name of the three actual
signals.
Hold
2. To return to the Actual Signal Display
Mode.
Release
1 L " 1242.0 rpm I
2 LAST FAULT
+OVERVOLTAGE
1121 H 1 MIN 23 S
Event Information
A fault is detected by ACS 600. Sequential number of the event.
Name of the fault and a “+” sign in
front of the name.
Total power on time.
A fault is reset by user. Sequential number of the event.
-RESET FAULT text.
Total power on time.
A warning is activated by
ACS 600.
Sequential number of the event.
Name of the warning and a “+” sign in
front of the name.
Total power on time.
A warning is deactivated by
ACS 600.
Sequential number of the event.
Name of the warning and a “-” sign in
front of the name.
Total power on time.
Sequential number
(1 is the most recent event)
Sign
Power-
on time
Name
A Fault History View
ACT
1 L " 1242.0 rpm I
FREQUENCY
CURRENT
POWER
ACT
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-6 Firmware Manual
Table 2-2 How to select Actual Signals to the display.
Step Function Press key Display
1. To enter the Actual Signal Display Mode.
2. To select a row (a blinking cursor indicates
the selected row).
3. To enter the Actual Signal Selection
Function.
4. To select an actual signal.
To change the actual signal group.
5.a To accept the selection and to return to the
Actual Signal Display Mode.
5.b To cancel the selection and keep the
original selection, press any of the Mode
keys
The selected Keypad Mode is entered.
ACT
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
ENTER
1 L " 1242.0 rpm I
1 ACTUAL SIGNALS
04 CURRENT
80.00 A
1 L " 1242.0 rpm I
1 ACTUAL SIGNALS
05 TORQUE
70.00 %
ENTER
1 L " 1242.0 rpm I
FREQ 45.00 Hz
TORQUE 80.00 A
POWER 75.00 %
ACT
FUNC DRIVE
PAR
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Firmware Manual 2-7
Table 2-3 How to display a fault and reset the Fault History. The fault history cannot be reset if there is
a fault or warning active.
Table 2-4 How to display and reset an active fault.
Step Function Press key Display
1. To enter the Actual Signal Display Mode.
2. To enter the Fault History Display.
3. To select the previous (UP) or the next
fault/warning (DOWN).
To clear the Fault History.
The Fault History is empty.
4. To return to the Actual Signal Display
Mode.
Step Function Press Key Display
1. To display an active fault.
2. To reset the fault.
ACT
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
1 L " 1242.0 rpm I
1 LAST FAULT
+OVERCURRENT
6451 H 21 MIN 23 S
1 L " 1242.0 rpm I
2 LAST FAULT
+OVERVOLTAGE
1121 H 1 MIN 23 S
RESET
1 L " 1242.0 rpm I
2 LAST FAULT
H MIN S
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
ACT
1 L " 1242.0 rpm
ACS 601 75 kW
** FAULT **
ACS 600 TEMP
RESET 1 L " 1242.0 rpm O
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-8 Firmware Manual
Parameter Mode The Parameter Mode is used for changing the ACS 600 parameters.
When this mode is entered for the first time after power up, the display
will show the first parameter of the first group. The next time the
Parameter Mode is entered, the previously selected parameter is
shown.
Table 2-5 How to select a parameter and change the value.
Step Function Press key Display
1. To enter the Parameter Mode.
2. To select a different group.
3. To select a parameter.
4. To enter the Parameter Setting function.
5. To change the parameter value.
(slow change for numbers and text)
(fast change for numbers only)
6a. To save the new value.
6b. To cancel the new setting and keep the
original value, press any of the Mode
keys.
The selected Keypad Mode is entered.
PAR
1 L " 1242.0 rpm O
10 START/STOP/DIR
01 EXT1 STRT/STP/DIR
DI1,2
1 L " 1242.0 rpm O
11 REFERENCE SELECT
01 KEYPAD REF SEL
REF1 (rpm)
1 L " 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
AI1
ENTER
1 L " 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
[AI1]
1 L " 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
[AI2]
ENTER
1 L " 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
AI2
ACT
FUNC DRIVE
PAR
1 L " 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
AI1
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Firmware Manual 2-9
Function Mode The Function Mode is used to select special functions. These functions
include Parameter Upload, Parameter Download and setting the
contrast of the Control Panel display.
Parameter Upload will copy all parameters and the results of motor
identification from the drive to the panel. The upload function can be
performed while the drive is running. Only the STOP command can be
given during the uploading process.
Table 2-6 and subsection Copying Parameters from One Unit to Other
Units below describe how to select and perform Parameter Upload and
Parameter Download functions.
Note:
• By default, Parameter Download will copy parameter Groups 10 to
97 stored in the panel to the drive. Groups 98 and 99 concerning
options, language, macro and motor data are not downloaded.
• Uploading has to be done before downloading.
• The parameters can be uploaded and downloaded only if the drive
firmware versions (see Parameters 33.01 SOFTWARE VERSION
and 33.02 APPL SW VERSION) of the destination drive are the
same as the versions of the source drive.
• The drive must be stopped during the downloading process.
Table 2-6 How to select and perform a function.
Step Function Press Key Display
1. To enter the Function Mode.
2. To select a function (a flashing cursor
indicates the selected function).
3. To start the selected function.
ACS600
UPLOAD
DOWNLOAD
FUNC
1 L " 1242.0 rpm O
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 4
1 L " 1242.0 rpm O
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 4
ENTER
1 L " 1242.0 rpm O
=>=>=>=>=>=>=>
DOWNLOAD
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-10 Firmware Manual
Table 2-7 How to set the contrast of the panel display.
Step Function Press Key Display
1. To enter the Function Mode.
2. To select a function (a flashing cursor
indicates the selected function).
3. To enter the contrast setting function.
4. To adjust the contrast.
5.a To accept the selected value.
5.b To cancel the new setting and retain the
original value, press any of the Mode
keys.
The selected Keypad Mode is entered.
FUNC
1 L " 1242.0 rpm O
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 4
1 L " 1242.0 rpm O
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 4
ENTER
1 L " 1242.0 rpm O
CONTRAST [4]
1 L " 1242.0 rpm O
CONTRAST [6]
ENTER
1 L " 1242.0 rpm O
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 6
ACT
FUNC DRIVE
PAR
1 L " 1242.0 rpm O
UPLOAD <=<=
DOWNLOAD =>=>
CONTRAST 4
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Firmware Manual 2-11
Copying Parameters from
One Unit to Other Units
You can copy parameters from one drive to another by using the
Parameter Upload and Parameter Download functions in the Function
Mode. Follow the procedure below:
1. Select the correct options (Group 98), language and macro (Group
99) for each drive.
2. Set the rating plate values for the motors (Group 99), and perform
the identification for each motor (the Identification Magnetisation at
zero speed by pressing start, or an ID Run. For the ID Run
procedure see Chapter 3 – Start-up Data).
3. Set the parameters in Groups 10 to 97 as preferred in one
ACS 600 drive.
4. Upload the parameters from the ACS 600 to the panel
(see Table 2-6).
5. Press the key to change to external control (no L visible on the
first row of the display).
6. Disconnect the panel and reconnect it to the next ACS 600 unit.
7. Ensure the target ACS 600 is in Local control (L shown on the first
row of the display). If necessary, change by pressing .
8. Download the parameters from the panel to the ACS 600 unit
(see Table 2-6).
9. Repeat steps 7. and 8. for the rest of the units.
Note: Parameters in Groups 98 and 99 concerning options, language,
macro and motor data are not downloaded.1)
LOC
REM
LOC
REM
1)
The restriction prevents downloading of incorrect motor data (Group 99). In special cases it is also
possible to download Groups 98 and 99 and the results of the motor identification. For more informa-
tion, please contact your local ABB representative.
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-12 Firmware Manual
Drive Selection Mode In normal use the features available in the Drive Selection Mode are
not needed; these features are reserved for applications where several
drives are connected to one Panel Link. (For more information, see the
Installation and Start-up Guide for the Panel Bus Connection Interface
Module, NBCI, Code: 3AFY 58919748).
Panel Link is the communication link connecting the Control Panel and
the ACS 600. Each on-line station must have an individual identification
number (ID). By default, the ID number of the ACS 600 is 1.
CAUTION! The default ID number setting of the ACS 600 should not be
changed unless it is to be connected to the Panel Link with other drives
on-line.
Table 2-8 How to select a drive and change its ID number.
Step Function Press key Display
1. To enter the Drive Selection Mode.
2. To select the next drive/view.
The ID number of the station is changed
by first pressing ENTER (the brackets
round the ID number appear) and then
adjusting the value with buttons.
The new value is accepted with ENTER.
The power of the ACS 600 must be
switched off to validate its new ID number
setting (the new value is not displayed until
the power is switched off and on).
The Status Display of all devices
connected to the Panel Link is shown after
the last individual station. If all stations do
not fit on the display at once, press to
view the rest of them.
Status Display Symbols:
á = Drive stopped, direction forward
Ñ = Drive running, direction reverse
F = Drive has tripped on a fault
3. To connect to the last displayed drive and
to enter another mode, press one of the
Mode keys.
The selected Keypad Mode is entered.
DRIVE
ACS 600 75 kW
ASAAA5000 xxxxxx
ID NUMBER 1
ACS 600 75 kW
ASAA5000 xxxxxx
ID NUMBER 1
1á
PAR
FUNC
ACT 1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
Firmware Manual 2-13
Operational Commands Operational commands control the operation of the ACS 600. They
include starting and stopping the drive, changing the direction of
rotation and adjusting the reference. The reference value is used for
controlling motor speed or torque.
Changing Control
Location
Operational commands can be given from the Control Panel always
when the status row is displayed and the control location is the panel.
This is indicated by L (Local Control) on the display. R (Remote
Control) indicates that External control is active and the Panel is the
signal source for the external reference or the Start/Stop/Direction
signals the ACS 600 is following.
If there is neither an L nor an R on the first row of the display, the drive
is controlled by another device. Operational commands cannot be
given from this panel. Only monitoring actual signals, setting
parameters, uploading and changing ID numbers is possible.
The control is changed between Local and External control locations
by pressing the LOC REM key. See Chapter 4 – Control Operation for
the explanation of Local and External control.
Start, Stop, Direction and
Reference
Start, Stop and Direction commands are given from the panel by
pressing , , or . Table 2-9 explains how to set the
Reference from the panel.
1 L " 1242.0 rpm I 1 R " 1242.0 rpm I
Local Control External Control by Panel
1 " 1242.0 rpm I
External Control through the I/O interface or communication module
I 0
Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel
2-14 Firmware Manual
Table 2-9 How to set the reference.
Reading and Entering
Packed Boolean Values
on the CDP 312
Some actual values and parameters are Packed Boolean, i.e. each
individual bit has a defined meaning (explained at the corresponding
signal or parameter). On the CDP 312 Control Panel, Packed Boolean
values are read and entered in hexadecimal format.
In this example, Bits 1, 3 and 4 of the Packed Boolean value are ON:
Step Function Press Key Display
1. To enter a Keypad Mode displaying the
status row, press a Mode key.
2. To enter the Reference Setting function.
A blinking cursor indicates that the
Reference Setting function has been
selected.
3. To change the reference.
(slow change)
(fast change)
4.a To save the reference, press Enter.
The value is stored in the permanent
memory; it is restored automatically after
power switch-off.
4.b To escape the Reference Setting Mode
without saving, press any of the Mode
keys.
The selected Keypad Mode is entered.
ACT PAR
FUNC
1 L " 1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
REF 1 L "[ 1242.0 rpm]I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
1 L "[ 1325.0 rpm]I
FREQ 48.00 Hz
CURRENT 85.00 A
POWER 80.00 %
ENTER
1 L " 1325.0 rpm I
FREQ 48.00 Hz
CURRENT 85.00 A
POWER 80.00 %
ACT PAR
FUNC DRIVE
1 L " 1325.0 rpm I
FREQ 48.00 Hz
CURRENT 85.00 A
POWER 80.00 %
Boolean 0000 0000 0001 1010
Hex 0 0 1 A
Bit 15 Bit 0
Firmware Manual 3-1
Chapter 3 – Start-up Data
Overview This chapter lists and explains the Start-up Data Parameters. The
Start-up Data Parameters are a special set of parameters that allow
you to set up the ACS 600 and motor information. Start-up Data
Parameters should only need to be set during start-up and should not
need to be changed afterwards.
Start-up Data
Parameters
When changing the value of the Start-up Data Parameters, follow the
procedure described in Chapter 2 – Overview of ACS 600
Programming..., Table 2-5. Table 3-1, lists the Start-up Data
Parameters. The Range/Unit column in Table 3-1 shows the parameter
values, which are explained in detail below the table.
WARNING! Running the motor and the driven equipment with incorrect
start-up data can result in improper operation, reduction in control
accuracy and damage to equipment.
Table 3-1 Group 99, Start-up Data Parameters.
Parameter Range/Unit Description
01 LANGUAGE Languages Display language selection.
02 APPLICATION
MACRO
Application Macros Application Macro selection.
03 APPLIC
RESTORE
NO; YES Restores parameters to factory
setting values.
04 MOTOR CTRL
MODE
DTC; SCALAR Motor control mode selection.
05 MOTOR NOM
VOLTAGE
1/2 · UN of ACS 600 ...
2 · UN of ACS 600
Nominal voltage from the motor
rating plate.
06 MOTOR NOM
CURRENT
1/6 · I2hd of ACS 600
... 2 · I2hd of ACS 600
Matches the ACS 600 to the
rated motor current.
07 MOTOR NOM
FREQ
8 ... 300 Hz Nominal frequency from the
motor rating plate.
08 MOTOR NOM
SPEED
1 ... 18000 rpm Nominal speed from the motor
rating plate.
09 MOTOR NOM
POWER
0 ... 9000 kW Nominal power from the motor
rating plate.
10 MOTOR ID RUN NO; STANDARD;
REDUCED
Selects the type of the motor
identification run.
Chapter 3 – Start-up Data
3-2 Firmware Manual
Parameters 99.04 ... 99.09 are always to be set at start-up.
If several motors are connected to the ACS 600, some additional
instructions must be considered when setting the Start-up Data
Parameters. Please contact your local ABB representative for more
information.
99.01 LANGUAGE The ACS 600 displays all information in the language you select. The
alternatives are:
• English, English (Am), French, Spanish, Portuguese, German,
Italian, Dutch, Danish, Swedish, Finnish, Czech, Polish
If English (Am) is selected, the unit of power used is HP instead of kW.
99.02 APPLICATION
MACRO
This parameter is used to select the Application Macro which will
configure the ACS 600 for a particular application. Refer to Chapter 5 –
Standard Application Macro Programs for a list and description of
available Application Macros. There is also a selection for saving the
current settings as a User Macro (USER 1 SAVE or USER 2 SAVE),
and recalling these settings (USER 1 LOAD or USER 2 LOAD).
There are parameters that are not included in Macros. See section
99.03 APPLIC RESTORE.
Note: User Macro load restores also the motor settings of the Start-up
Data group and the results of the Motor Identification. Check that the
settings correspond to the motor used.
99.03 APPLIC RESTORE Selection YES restores the original settings of an application macro as
follows:
• If a standard macro (Factory, ... , Sequential Control) is in use, the
parameter values are restored to the default settings (factory
settings). Exception: Parameter settings in Group 99 remain
unchanged. Results of the motor identification remain unchanged.
• If User Macro 1 or 2 is in use, the parameter values are restored to
the last saved values. In addition, the last saved results of the motor
identification are restored (see Chapter 5 – Standard Application
Macro Programs). Exceptions: Settings of Parameters 16.05 USER
MACRO IO CHG and 99.02 APPLICATION MACRO remain
unchanged.
Note: The parameter settings and the results of motor identification are
restored according to the same principles when a macro is changed to
another.
Chapter 3 – Start-up Data
Firmware Manual 3-3
99.04 MOTOR CTRL
MODE
This parameter sets the motor control mode.
DTC
The DTC (Direct Torque Control) mode is suitable for most
applications. The ACS 600 performs precise speed and torque control
of standard squirrel cage motors without pulse encoder feedback.
If several motors are connected to the ACS 600, there are certain
restrictions on the usage of DTC. Please contact your local ABB
representative for more information.
SCALAR
The scalar control should be selected in those special cases in which
the DTC cannot be applied. The SCALAR control mode is
recommended for multimotor drives when number of motors connected
to the ACS 600 is variable. The SCALAR control is also recommended
when the nominal current of the motor is less than 1/6 of the nominal
current of the inverter or the inverter is used for test purposes with no
motor connected.
The outstanding motor control accuracy of DTC cannot be achieved in
the scalar control mode. The differences between the SCALAR and
DTC control modes are discussed further in this manual in relevant
parameter lists.
There are some standard features that are disabled in the SCALAR
control mode: Motor Identification Run (Group 99), Speed Limits
(Group 20), Torque Limit (Group 20), DC Hold (Group 21), DC
Magnetizing (Group 21), Speed Controller Tuning (Group 23), Torque
Control (Group 24), Flux Optimization (Group 26), Flux Braking (Group
26), Underload Function (Group 30), Motor Phase Loss Protection
(Group 30), Motor Stall Protection (Group 30).
99.05 MOTOR NOM
VOLTAGE
This parameter matches the ACS 600 with the nominal voltage of the
motor as indicated on the motor rating plate.
Note: It is not allowed to connect a motor with nominal voltage less
than 1/2 · UN or more than 2 · UN of the ACS 600.
99.06 MOTOR NOM
CURRENT
This parameter matches the ACS 600 to the rated motor current. The
allowed range 1/6 · I2hd ... 2 · I2hd of ACS 600 is valid for DTC motor
control mode. In SCALAR mode the allowed range is
0 · I2hd ... 2 · I2hd of ACS 600.
Correct motor run requires that the magnetizing current of the motor
does not exceed 90 per cent of the nominal current of the inverter.
99.07 MOTOR NOM
FREQUENCY
This parameter matches the ACS 600 to the rated motor frequency,
adjustable from 8 Hz to 300 Hz.
Chapter 3 – Start-up Data
3-4 Firmware Manual
99.08 MOTOR NOM
SPEED
This parameter matches the ACS 600 to the nominal speed as
indicated on the motor rating plate.
Note: It is very important to set this parameter exactly to the value
given on the motor rating plate to guarantee proper operation of the
drive. The motor synchronous speed or another approximate value
must not be given instead!
Note: The speed limits in Group 20 Limits are linked to the setting of
99.08 MOTOR NOM SPEED. If value of Parameter 99.08 MOTOR
NOM SPEED is changed, the speed limit settings change automatically
as well.
99.09 MOTOR NOM
POWER
This parameter matches the ACS 600 to the rated power of the motor,
adjustable between 0 kW and 9000 kW.
99.10 MOTOR ID RUN This parameter is used to initiate the Motor Identification Run. During
the run, the ACS 600 will identify the characteristics of the motor for
optimum motor control. The ID Run takes about one minute.
The ID run cannot be performed if the scalar control mode is selected
(Parameter 99.04 MOTOR CTRL MODE is set to SCALAR).
NO
The Motor ID Run is not performed. This can be selected in most
applications. The motor model is calculated at first start by magnetising
the motor for 20 to 60 s at zero speed.
Note: The ID Run (Standard or Reduced) should be selected if:
• operation point is near zero speed
• operation at torque range above the motor nominal torque within
wide speed range and without any pulse encoder (i.e. without any
measured speed feedback) is required.
STANDARD
Performing the Standard Motor ID Run guarantees that the best
possible control accuracy is achieved. The motor must be de-coupled
from the driven equipment before performing the Standard Motor ID
Run.
REDUCED
The Reduced Motor ID Run should be selected instead of the Standard
ID Run:
• if mechanical losses are higher than 20 % (i.e. the motor cannot be
de-coupled from the driven equipment)
• if flux reduction is not allowed while the motor is running (i.e. in case
of a braking motor in which the brake switches on if the flux is
reduced below a certain level).
Chapter 3 – Start-up Data
Firmware Manual 3-5
Note: Check the rotation direction of the motor before starting the
Motor ID Run. During the run the motor will rotate in the forward
direction.
WARNING! The motor will run at up to approximately 50 % ... 80 % of
the nominal speed during the Motor ID Run. BE SURE THAT IT IS
SAFE TO RUN THE MOTOR BEFORE PERFORMING THE MOTOR
ID RUN!
ID Run Procedure To perform the Motor ID Run:
Note: If parameter values (Group 10 to 98) are changed before the ID
Run, check that the new settings meet the following conditions:
• 20.01 MINIMUM SPEED < 0.
• 20.02 MAXIMUM SPEED > 80 % of motor rated speed.
• 20.03 MAXIMUM CURRENT > 100*Ihd.
• 20.04 MAXIMUM TORQUE > 50 %.
1. Ensure that the Panel is in the local control mode (L displayed on
the status row). Press the key to switch modes.
2. Change the selection to STANDARD or REDUCED:
3. Press ENTER to verify selection. The following message will be
displayed:
LOC
REM
1 L ->1242.0 rpm O
99 START-UP DATA
10 MOTOR ID RUN
[STANDARD]
1 L ->1242.0 rpm O
ACS 600 55 kW
**WARNING**
ID RUN SEL
Chapter 3 – Start-up Data
3-6 Firmware Manual
4. To start the ID Run, press the key. The run enable signal must
be active (see Parameter 16.01 RUN ENABLE).
In general it is recommended not to press any control panel keys
during the ID run. However:
• The Motor ID Run can be stopped at any time by pressing the
Control Panel key or removing the Run enable signal.
• After the ID Run is started with the key, it is possible to monitor
the actual values by first pressing the ACT key and then the key.
Warning when the ID Run is
started
Warning during the ID Run Warning after a successfully
completed ID Run
1 L -> 1242.0 rpm I
ACS 600 55 kW
**WARNING**
MOTOR STARTS
1 L -> 1242.0 rpm I
ACS 600 55 kW
**WARNING**
ID RUN
1 L -> 1242.0 rpm I
ACS 600 55 kW
**WARNING**
ID DONE
Firmware Manual 4-1
Chapter 4 – Control Operation
Overview This chapter describes the Actual Signals, the Fault History, and the
Local and External control modes.
Actual Signals Actual Signals monitor ACS 600 functions. They do not affect the
performance of the ACS 600. Actual Signal values are measured or
calculated by the drive and they cannot be set by the user.
To select the actual values to be displayed follow the procedure
described in Chapter 2 – Overview..., Table 2-2.
Group 1 Actual Signals
Table 4-1 Group 1 Actual Signals. The signals marked with * are updated only when the PID Control
Macro is selected.
Actual Signal Short Name Range/Unit Description
01 PROCESS VARIABLE PROC VAR 0 ... 100000/user
units
Process variable based on settings in Parameter
Group 34.
02 SPEED SPEED rpm Calculated speed, in motor rpm. Filter time setting by
34.04 MOTOR SP FILTER TIM.
03 FREQUENCY FREQ Hz Calculated motor frequency.
04 CURRENT CURRENT A Measured motor current.
05 TORQUE TORQUE % Calculated motor torque. 100 is the motor nominal
torque rating. Filter time setting by 34.05 TORQ ACT
FILT TIM.
06 POWER POWER % Motor power. 100 is the nominal power rating.
07 DC BUS VOLTAGE V DC BUS V V Measured Intermediate circuit voltage.
08 MAINS VOLTAGE MAINS V V Calculated supply voltage.
09 OUTPUT VOLTAGE OUT VOLT V Calculated motor voltage.
10 ACS 600 TEMP ACS TEMP C Temperature of the heatsink.
11 EXTERNAL REF 1 EXT REF1 rpm, Hz External reference 1. The unit is Hz with scalar motor
control mode only. See the section Local Control vs.
External Control in this chapter
12 EXTERNAL REF 2 EXT REF2 % External reference 2. See the section Local Control
vs. External Control in this chapter.
13 CTRL LOCATION CTRL LOC LOCAL; EXT1;
EXT2
Active control location. See the section Local Control
vs. External Control in this chapter.
14 OP HOUR COUNTER OP HOURS h Elapsed time meter. The timer is running when the
NAMC board is powered.
15 KILOWATT HOURS KW HOURS kWh kWh meter.
16 APPL BLOCK OUTPUT APPL OUT % Application block output signal.
See Figure 4-3.
17 DI6-1 STATUS DI6-1 Status of digital inputs. 0 V = “0”
+24 VDC = “1”
Chapter 4 – Control Operation
4-2 Firmware Manual
18 AI1 (V) AI1 (V) V Value of analogue input 1.
19 AI2 (mA) AI2 (mA) mA Value of analogue input 2.
20 AI3 (mA) AI3 (mA) mA Value of analogue input 3.
21 RO3-1 STATUS RO3-1 Status of relay outputs. 1 = relay is energised,
0 = relay is de-energised
22 AO1 (mA) AO1 (mA) mA Value of analogue output 1.
23 AO2 (mA) AO2 (mA) mA Value of analogue output 2.
24 ACTUAL VALUE 1 * ACT VAL1 % Feedback signal for the PID Controller.
25 ACTUAL VALUE 2 * ACT VAL2 % Feedback signal for the PID Controller.
26 CONTROL DEVIATION* CONT DEV % Deviation of the PID Controller (difference between
the reference value and the actual value of the PID
process controller).
27 APPLICATION MACRO MACRO FACTORY;
HAND/AUTO;
PID-CTRL; T-CTRL;
SEQ CTRL;
USER 1 LOAD;
USER 2 LOAD
Active application macro (value of Parameter 99.02
APPLICATION MACRO)
28 EXT AO1 [mA] EXT AO1 mA Value of output 1 of the NAIO Analogue I/O Extension
Module (optional).
29 EXT AO2 [mA] EXT AO2 mA Value of output 2 of the NAIO Analogue I/O Extension
Module (optional).
30 PP 1 TEMP PP 1 TEM °C IGBT maximum temperature inside inverter 1 (used
only in the high power units with parallel inverters)
31 PP 2 TEMP PP 2 TEM °C IGBT maximum temperature inside inverter 2 (used
only in the high power units with parallel inverters)
32 PP 3 TEMP PP 3 TEM °C IGBT maximum temperature inside inverter 3 (used
only in the high power units with parallel inverters)
32 PP 4 TEMP PP 4 TEM °C IGBT maximum temperature inside inverter 4 (used
only in the high power units with parallel inverters)
34 ACTUAL VALUE ACT VAL % PID controller actual value (see Parameter 40.06
ACTUAL VALUE SEL)
35 MOTOR 1 TEMP M1 TEMP °C/ohm Measured temperature of motor 1. See Parameter
35.01 MOT1 TEMP AI1 SEL.
36 MOTOR 2 TEMP M2 TEMP °C/ohm Measured temperature of motor 2. See Parameter
35.04 MOT2 TEMP AI2 SEL.
37 MOTOR TEMP EST MOTOR TE °C Estimated motor temperature.
38 AI5 mA AI5 mA mA Value of analogue input AI5 read from AI1 of the
Analogue I/O Extension Module (NAIO). See Group
98 Option Modules.1)
39 AI6 mA AI6 mA mA Value of analogue input AI6 read from AI1 of the
Analogue I/O Extension Module (NAIO). See Group
98 Option Modules.1)
40 DI7..12 STATUS DI7..12 Status of digital inputs DI7 to DI12 read from the
Digital I/O Extension Modules (NDIO). See Group 98
Option Modules.
41 EXT RO STATUS EXT RO Status of external relay outputs on the Digital I/O
Extension Module no. 1 (NDIO).
1 = relay is energised, 0 = relay is de-energised
Actual Signal Short Name Range/Unit Description
0000001
DI7 is on
0000001
RO1/NDIO 1
is on
Chapter 4 – Control Operation
Firmware Manual 4-3
1)
A voltage signal connected to an analogue input on the NAIO Analogue I/O Extension Module is also
displayed in mA (instead of V).
Group 2 Actual Signals By the Group 2 Actual Signals it is possible to monitor the processing
of speed and torque references in the drive. For the signal measuring
points see Figure 4-3, or the Control Signal Connections figures of the
Application Macros (Chapter 5 – Standard Application Macro
Programs).
Table 4-2 The Table below lists the Group 2 Actual Signals.
1)
Max. speed is the value of Parameter 20.02 MAXIMUM SPEED, or 20.01
MINIMUM SPEED if the absolute value of the minimum limit is greater than the
maximum limit.
42 PROCESS SPEED REL P SPEED % Motor actual speed in percent of maximum speed i.e.
of Parameter 20.02 MAXIMUM SPEED (or 20.01
MINIMUM SPEED if it has a greater absolute value). If
Parameter 99.04 MOTOR CTRL MODE is SCALAR,
this value is the relative actual output frequency of
ACS 600.
43 MOTOR RUN TIME MOTOR RUN
TIME
h Motor run time counter. The counter runs when the
inverter modulates. Can be reset by 34.06 RESET
RUN TIME.
Actual Signal
Short
Name
Range/
Unit
Description
01 SPEED REF 2 S REF 2 rpm Limited speed reference. 100 % =
max. speed.1)
02 SPEED REF 3 S REF 3 rpm Ramped and shaped speed
reference. 100 % = max. speed.1)
03 ... 08 Reserved
09 TORQ REF 2 T REF 2 % Speed controller output. 100 % =
motor nominal torque.
10 TORQ REF 3 T REF 3 % Torque reference. 100 % = motor
nominal torque.
11 ... 12 Reserved
13 TORQ REF
USED
T USED R % Torque reference after frequency,
voltage and torque limiters. 100 %
= motor nominal torque.
14 ... 16 Reserved
17 SPEED
ESTIMATED
SPEED ES rpm Estimated motor speed.
18 SPEED
MEASURED
SPEED
ME
rpm Measured motor actual speed
(zero when no encoder is in use).
Actual Signal Short Name Range/Unit Description
Chapter 4 – Control Operation
4-4 Firmware Manual
Group 3 Actual Signals Group 3 contains actual signals mainly for fieldbus use (a master
station controls the ACS 600 via a serial communication link). All
signals in Group 3 are 16 bit data words, each bit corresponding one
piece of binary (0,1) information from the drive to the master station.
The signal values (data words) can be viewed also with the Control
Panel in hexadecimal format.
For more information on Group 3 Actual Signals, see Appendix A –
Complete Parameter Settings and Appendix C – Fieldbus Control.
Fault History The Fault History includes information on the 16 most recent faults and
warnings that occurred in the ACS 600 (or 64, if the power is not
switched off meanwhile). The description of the fault and the total
power-on time are available. The power-on time is calculated always
when the NAMC board of the ACS 600 is powered.
Chapter 2 – Overview..., Table 2-4, describes how to display and clear
the Fault History from the Control Panel.
Local Control vs.
External Control
The ACS 600 can be controlled, i.e. reference, and Start/Stop and
Direction commands can be given, from an External control location or
from the Local control location.
The selection between Local control and External control can be done
with the LOC REM key on the Control Panel keypad.
Figure 4-1 Local and external control.
Fieldbus Adapter
Control Panel
Digital and Analogue
I/O Terminals
DriveWindow
External ControlLocal Control
CH0
(DDCS)
Panel Link
CH3
(DDCS) Standard Modbus Link
(Modbus RTU)
FIELDBUS
CONTROL
RS-485
ACS 600
RS-485
Chapter 4 – Control Operation
Firmware Manual 4-5
Local Control The control commands are given from the Control Panel keypad or
from the DriveWindow PC tool when ACS 600 is in Local control. This
is indicated by L on the Control Panel display.
External Control When the ACS 600 is in External control, the commands are given
through the control terminal block on the NIOC board (digital and
analogue inputs), optional I/O extension modules and/or either of the
two fieldbus interfaces, CH0 Fieldbus Adapter or the Standard Modbus
Link. In addition it is also possible to set the Control Panel as the
source for the external control.
External control is indicated by a blank character on the Control Panel
display or with an R in those special cases when the Panel is defined
as a source for the external control.
Signal Source Selection In the application program the user can define signal sources for two
external control locations EXT1 and EXT2, one of which can be active
at a time. Parameter 11.02 EXT1/EXT2 SELECT (O) selects between
EXT1 and EXT2.
For EXT1, the source of the Start/Stop/Direction commands is defined
by Parameter 10.01 EXT1 STRT/STP/DIR, and the reference source is
defined by Parameter 11.03 EXT REF1 SELECT (O).External
reference 1 is always a speed reference.
1 L ->1242 rpm I
External Control through the
Input/Output terminals, or through the
fieldbus interfaces
1 R ->1242 rpm I1 ->1242 rpm I
External Control by Control Panel
(Start/Stop/Direction commands
and/or reference given by an
“external” Panel)
Chapter 4 – Control Operation
4-6 Firmware Manual
The figure below illustrates the signal source selection for EXT1.
Figure 4-2 Block diagram of the EXT1 signal source selection.
For EXT2, the source of the Start/Stop/Direction commands is defined
by Parameter 10.02 EXT2 STRT/STP/DIR, and the reference source is
defined by Parameter 11.06 EXT REF2 SELECT (O). External
reference 2 can be a speed reference, a torque reference, or a process
reference, depending on the Application Macro selected. For the type
of external reference 2 refer to the description of the selected
Application Macro.
If the ACS 600 is in External control, constant speed operation can also
be selected by setting Parameter 12.01 CONST SPEED SEL. One of
15 constant speeds can be selected with digital inputs. Constant
speed selection overrides external speed reference signal unless
EXT2 is selected as the active control location in PID Control
Macro or Torque Control Macro.
DI1 / NIOC board
10.01
Fieldbus Selection
See Appendix C –
Fieldbus Control
CH0 / NAMC board
KEYPAD
EXT1
EXT1
DI6 / NIOC board
DI1 / NDIO 1
DI2 / NDIO 1
DI1 / NDIO 2
DI2 / NDIO 2
St.Modbus Link / NIOC board
I/O Extensions
See Group 98 Option
Modules
Select
DI7 to DI9
COMM.
MODULE
DI1
DI6
Control panel
AI1 / NIOC board
AI1 / NAIO
AI2 / NAIO
11.03
Select
DI1 / NDIO 3
DI2 / NDIO 3
CH0 / NAMC board
KEYPAD
St.Modbus Link / NIOC board
COMM.
MODULE
Control panel
I/O Extensions
See Group 98 Option
Modules
AI2 / NIOC board
AI3 / NIOC board
DI3 / NIOC board
DI4 / NIOC board
AI1, AI2, AI3, DI3, DI4
Fieldbus Selection
See Appendix C –
Fieldbus Control
AI5, AI6
DI11, DI12
Start/Stop/Direction
EXT 1 Start/Stop/Direction
EXT1 Reference
Reference (rpm)
Chapter 4 – Control Operation
Firmware Manual 4-7
Figure 4-3 Selecting control location and control source.
NAIO
DI1-12,
COMM.MOD.
12
EXTERNAL
REF 2
Start/Stop/Direction
source selection
10.01 EXT1
STRT/STP/DIR
Group 25
CRITICAL SPEEDS
20.01 MINIMUM SPEED
20.02 MAXIMUM SPEED
Group 22
ACCEL/DECEL
Group 23
SPEED CTRL
Speed Controller
2.02
SPEED REF 3
2.01
SPEED REF 2
ACS 600I/O Termi-
nals on
NIOC
I/O
Extension
Modules
CH0
Fieldbus
Adapter
Reference source selection
Reference selection
11.06 EXT
REF2 SELECT
Group 12
CONSTANT
SPEEDS
11.03 EXT
REF1 SELECT
12.01 CONST
SPEED SEL
11.01 KEYPAD
REF SELECT
11.02 EXT1/
EXT2 SELECT
EXT1
11
EXTERNAL
REF 1
EXT1
KEYPAD
EXT2
CONTROL
PANEL
REF
LOC
REM
EXT1
NOT SEL
EXTERNAL
NOT SEL
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
DI1-12, COMM.MOD.
AI1-6,DI1-12,
COMM.MOD.
EXTERNAL
Speed
REF2(%)
REF1(rpm)
NOT SEL
REQUEST
FORWARD
REVERSE
10.02 EXT2
STRT/STP/DIR
10.03
DIRECTION
16.01
RUN ENABLE
AI1-6, DI1-12,
COMM.MOD.
DI1-6
A
P
P
L
I
C
A
T
I
O
N
S
16 APPL
BLOCK
OUTPUT
12
EXTERNAL
REF 2
EXT2
Torque
REF2(%)
REF1(rpm)
EXTERNAL
KEYPAD
EXT2
EXTERNAL
YES, DI1-12,
COMM.MOD.
20.04
MAXIMUM TORQUE
Group 24
TORQUE CTRL
Torque Controller
2.13
TORQ REF USED
2.10
TORQ REF 3
2.09
TORQ REF 2
Start/Stop
Direction
Start/Stop, Direction
Standard
Modbus
Link
Fieldbus
Selection
App. C
NDIO
I/O Ext.
Settings
Group 98
Chapter 4 – Control Operation
4-8 Firmware Manual
Firmware Manual 5-1
Chapter 5 – Standard Application Macro Programs
Overview This chapter describes the operation of, and suitable applications for,
the five standard Application Macros and the two User Macros.
The chapter begins with a general description of Application Macros.
Table 5-1, lists the macros along with suitable applications, controls
and how to access each macro for parameter modification.
The remainder of this chapter contains the following information for
each macro:
• Operation
• Input and Output Signals
• External Connections
The default parameter settings are given in Appendix B – Default
Settings of Application Macros.
Application Macros Application Macros are preprogrammed parameter sets. Using the
Application Macros enables a quick and easy start-up of the ACS 600.
Application Macros minimise the number of different parameters to be
set during start-up. All parameters have factory-set default values. The
Factory Macro is the factory-set default macro.
While starting up the ACS 600, you can select one of the standard
macros as the default for your ACS 600 (see Parameter 99.02
APPLICATION MACRO):
• Factory
• Hand/Auto Ctrl
• PID Control
• Sequential Control
• Torque Control
The Application Macro default values are chosen to represent the
average values in a typical application. Check that the default settings
match your requirements and customise the settings when appropriate.
All inputs and outputs are programmable.
Note: When you change the parameter values of a standard macro, the
new settings become active immediately and stay active even if the
power of the ACS 600 is switched off and on. However, the default
parameter settings (factory settings) of each standard macro are still
available. The default settings are restored when Parameter 99.03
APPLIC RESTORE is changed to YES, or if the macro is changed.
Chapter 5 – Standard Application Macro Programs
5-2 Firmware Manual
Note: There are certain parameters that remain the same even though
the macro were changed to another, or the default settings of the
macro were restored. For more information, see Chapter 3 – Start-up
Data, section 99.03 APPLIC RESTORE.
User Macros In addition to the standard Application Macros, it is possible to create
two User Macros. The User Macro allows the user to save the
Parameter settings including Group 99, and the results of the motor
identification into the permanent memory1)
, and recall the data at a
later time.
To create User Macro 1:
1. Adjust the Parameters. Perform the motor identification if not yet
performed.
2. Save the parameter settings and the results of the motor
identification by changing Parameter 99.02 APPLICATION
MACRO to USER 1 SAVE (press ENTER). The storing takes from
20 s to one minute.
To recall the User Macro:
1. Change Parameter 99.02 APPLICATION MACRO to USER 1
LOAD.
2. Press ENTER to load.
The User Macro can also be switched via digital inputs (see Parameter
16.05 USER MACRO IO CHG).
Note: User Macro load restores also the motor settings of the Start-up
Data group and the results of the motor identification. Check that the
settings correspond to the motor used.
Example: User Macros make it possible to switch the ACS 600
between two motors without having to adjust the motor parameters and
to repeat the motor identification every time the motor is changed. The
user can simply adjust the settings and perform the motor identification
once for both motors, and then save the data as two User Macros.
When the motor is changed, only the corresponding User Macro needs
to be loaded and the drive is ready to operate.
1)
Also the panel reference and the control location setting (Local or Remote) are saved.
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-3
Application Macros
Overview
Table 5-1 Application Macros.
Macro Suitable Applications Controls Select
Factory Conveyors and other industrial constant torque applications.
Applications to be run for long periods with constant speed
different from the nominal speed of the motor.
Vibration endurance test benches needing variable speeds of
vibrating motors.
Testing of rotating machines.
All applications needing traditional external controls.
Keypad,
External
FACTORY
Hand/Auto Processes requiring motor speed control automatically with
PLC or other process automation and manually with an
external control panel. Active control location selection is made
with a digital input.
Speed controls having one or two external control locations
with reference setting and START/STOP control. Active
reference selection is made with digital input.
EXT1, EXT2 HAND/AUTO
PID Control Intended for use with different closed loop control systems
such as pressure control, level control, and flow control. For
example:
• Booster pumps of municipal water supply systems.
• Automatic level control of water reservoirs.
• Booster pumps of district heating systems.
• Speed control of different types of material handling systems
where the material flow has to be regulated.
EXT1, EXT2 PID-CTRL
Torque Control Processes requiring torque control, e.g. mixers and slave
drives. Torque reference comes from a PLC or some other
process automation system or control panel. Manual reference
is speed reference.
EXT1, EXT2 T-CTRL
Sequential
Control
Processes requiring motor speed control in addition to the
adjustable speed with 1 to 15 constant speeds and/or with two
different acceleration/deceleration times. The control can be
performed automatically with a PLC or some other process
automation system or by using normal speed selection
switches.
Regulated
Constant Speed
SEQ CTRL
Chapter 5 – Standard Application Macro Programs
5-4 Firmware Manual
Application Macro 1 –
Factory
All drive commands and reference settings can be given from the
Control Panel keypad or selectively from an external control location.
The active control location is selected with the LOC REM key on the
Control Panel keypad. The drive is speed controlled.
In External Control the control location is EXT1. The reference signal is
connected to analogue input AI1 and Start/Stop and Direction signals
to digital inputs DI1 and DI2. By default, the direction is fixed to
FORWARD (Parameter 10.03 DIRECTION). DI2 does not control the
rotation direction unless Parameter 10.03 DIRECTION is changed to
REQUEST.
Three constant speeds are available on digital inputs DI5 and DI6 with
external control location selection. Two acceleration/deceleration
ramps are preset. The acceleration and deceleration ramps are applied
according to the state of digital input DI4.
Two analogue and three relay output signals are available on terminal
blocks. Default signals for the Actual Signal Display Mode of the
Control Panel are FREQUENCY, CURRENT and POWER.
Operation Diagram
Figure 5-1 Operation Diagram for Factory Macro.
Input and Output
Signals
Table 5-2 Input and Output Signals as set by the Factory Macro.
Input Signals Output Signals
Start, Stop, Direction (DI1,2)
Analogue Reference (AI1)
Constant Speed Selection (DI5,6)
ACC/DEC 1/2 SEL through (DI4)
Analogue Output AO1: Speed
Analogue Output AO2: Current
Relay Output RO1: READY
Relay Output RO2: RUNNING
Relay Output RO3: FAULT (-1)
rpm
A
M
3~
Relay
Motor
Ext. Controls
Input
1 L ->1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
1 ->1000.0 rpm I
FREQ 40.00 Hz
CURRENT 65.00 A
POWER 60.00 %
Power
Current
Outputs
Speed
Reference and Start/Stop and Direction commands are given from the
Control Panel. To change to External, press LOC REM key.
Reference is read from analogue input AI1. Start/Stop and Direction
commands are given through digital inputs DI1 and DI2.
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-5
External Connections The following connection example is applicable when the Factory
Macro settings are used.
Figure 5-2 Control Connections for Application Macro 1 - Factory. The markings of the NIOC board
terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to
the input and output terminals of the NIOC board. In ACS 607 the connections are made either
directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block
intended for the user connections. The separate terminal block is optional. See the appropriate
hardware manual for the corresponding terminal markings.
Relay output 2
RUNNING
1
2
3
4
7
8
8
7
1
2
3
4
5
6
9
10
11
12
1
2
3
1
2
3
1
2
3
VREF
GND
AI1+
AI1-
AI3+
AI3-
+24DVDC
+24DVDC
DI1
DI2
DI3
D4
DI5
DI6
AO1+
AO1-
AO2+
AO2-
RO11
RO12
RO13
RO21
RO22
RO23
RO31
RO32
RO33
Terminal Block X21 Function
Reference voltage 10 VDC
External reference 1
0 ... 10 V
Not specified in this application
+24 VDC max. 100 mA
STOP/START
FORWARD/REVERSE (if 10.3 is REQUEST)
CONSTANT SPEED SELECT*
ACCEL/DECEL 1/2
Speed
0 ... 20 mA <-> 0 ... Motor nom. speed
Current
Relay output 1
READY
Relay output 3
FAULT (-1)
A
rpm
0 ... 20 mA <-> 0 ... Motor nom. current
* Operation: 0 = Open, 1 = Closed
DI 5 DI 6 Output
0
1
0
1
0
0
1
1
set speed through AI1
Constant Speed 1
Constant Speed 2
Constant Speed 3
Reference
max. 10 mA
CONSTANT SPEED SELECT*
NOT IN USE
Terminal Block X25
Terminal Block X26
Terminal Block X27
5
6
AI2+
AI2-
Not specified in this application
9 DGND Digital ground
Terminal Block X22
0 ... 20 mA
0 ... 20 mA
1
2
+24 VDC
GND
Auxiliary voltage output 24 VDC
Terminal Block X23
Ready
Run
Fault
max. 250 mA
Chapter 5 – Standard Application Macro Programs
5-6 Firmware Manual
Control Signal
Connections
Control signals i.e. Reference, Start, Stop and Direction command
connections are established as in Figure 5-3 when you select the
Factory Macro.
Figure 5-3 Control Signal connections for the Factory Macro.
11
EXTERNAL
REF 1
Start/Stop/Direction
source selection
10.01 EXT1
STRT/STP/DIR
Group 25
CRITICAL SPEEDS
20.01 MINIMUM SPEED
20.02 MAXIMUM SPEED
Group 22
ACCEL/DECEL
Group 23
SPEED CTRL
Speed Controller
2.02
SPEED REF 3
2.01
SPEED REF 2
ACS 600
Reference source selection
Reference selection
11.06 EXT
REF2 SELECT
Group 12
CONSTANT
SPEEDS
11.03 EXT
REF1 SELECT
12.01 CONST
SPEED SEL
11.01 KEYPAD
REF SELECT
11.02 EXT1/
EXT2 SELECT
DI5,6
12
EXTERNAL
REF 2
EXT1DI1,2
KEYPAD
EXT2
CONTROL
PANEL
REF
LOC
REM
AI1
EXT1
NOT SEL
EXTERNAL
NOT SEL
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
YES
DI1-6, COMM.MOD.
AI1-3,DI1-6
COMM.MOD.
EXTERNAL
REF2(%)
REF1(rpm)
NOT SEL
REQUEST
FORWARD
REVERSE
10.02 EXT2
STRT/STP/DIR
10.03
DIRECTION
16.01
RUN ENABLE
EXT2
EXTERNAL
Start/Stop
Direction
NAIO
I/O Termi-
nals on
NIOC
I/O
Extension
Modules
CH0
Fieldbus
Adapter
Standard
Modbus
Link
Fieldbus
Selection
App. C
NDIO
I/O Ext.
Settings
Group 98
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-7
Application Macro 2 –
Hand/Auto
Start/Stop and Direction commands and reference settings can be
given from one of two external control locations, EXT1 (Hand) or EXT2
(Auto). The Start/Stop/Direction commands of the EXT1 (Hand) are
connected to digital inputs DI1 and DI2, and the reference signal is
connected to analogue input AI1. The Start/Stop/Direction commands
of the EXT2 (Auto) are connected to digital inputs DI5 and DI6, and the
reference signal is connected to analogue input AI2. The selection
between EXT1 and EXT2 is dependent on the status of digital input
DI3. The drive is speed controlled. Speed reference and Start/Stop and
Direction commands can be given from the Control Panel keypad also.
One constant speed can be selected through digital input DI4.
Speed reference in Auto Control (EXT2) is given as a percentage of the
maximum speed of the drive (see Parameters 11.07 EXT REF2
MINIMUM and 11.08 EXT REF2 MAXIMUM).
Two analogue and three relay output signals are available on terminal
blocks. Default signals for the Actual Signal Display Mode of the
Control Panel are FREQUENCY, CURRENT and CTRL LOC.
Operation Diagram
Figure 5-4 Operation Diagram for Hand/Auto Macro.
Input and Output
Signals
Table 5-3 Input and Output Signals as set by the Hand/Auto Macro.
Input Signals Output Signals
Start/Stop (DI1,6) and Reverse (DI2,5)
Switch for each control location
Two analogue reference inputs (AI1,AI2)
Control Location Selection (DI3)
Constant Speed Selection (DI4)
Speed (AO1)
Current (AO2)
READY (RO1)
RUNNING (RO2)
FAULT (-1) (RO3)
rpm
A
M
3~
Relay
Motor
EXT1 (rpm) =
Input
1 L ->1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
CTRL LOC LOCAL
1 L ->1200.0 rpm I
FREQ 43.00 Hz
CURRENT 77.00 A
CTRL LOC EXT1
Power
Current
Outputs
Hand/Auto
Const.Speed1
PLC
or
automation
EXT2 (%) =
Speed
Hand Control
Auto Control
Reference, Start/Stop and Direction commands are given from
the Control Panel. To change to External, press
LOC REM key.
Hand control: Reference is read from analogue input AI1. Start/
Stop and Direction commands are given through digital inputs
DI1 and DI2.
Chapter 5 – Standard Application Macro Programs
5-8 Firmware Manual
External Connections The following connection example is applicable when the Hand/Auto
Macro settings are used.
Figure 5-5 Control Connections for Hand/Auto Application Macro. The markings of the NIOC board
terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to
the input and output terminals of the NIOC board. In ACS 607 the connections are made either
directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block
intended for the user connections. The separate terminal block is optional. See the appropriate
hardware manual for the corresponding terminal markings.
Relay output 2
RUNNING
1
2
3
4
7
8
1
2
8
7
1
2
3
4
5
6
9
10
11
12
1
2
3
1
2
3
1
2
3
VREF
GND
AI1+
AI1-
AI3+
AI3-
+24 VDC
GND
+24DVDC
DI1
DI2
DI3
DI4
DI5
DI6
AO1+
AO1-
AO2+
AO2-
RO11
RO12
RO 13
RO21
RO22
RO23
RO 31
RO 32
RO 33
Terminal Block X21 Function
Reference voltage 10 VDC
External reference 1 (Hand Control)
0 ... 10 V
Not specified in this application
Auxiliary voltage output 24 VDC
+24 VDC max. 100 mA
STOP/START (Hand)
FORWARD/REVERSE (Hand)
STOP/START (Auto)
CONSTANT SPEED 4
Speed
0 ... 20 mA <-> 0 ... Motor rated speed
Current
Relay output 1
READY
Relay output 3
FAULT (-1)
0 ... 20 mA <-> 0 ... Motor nom. current
* Operation: Open Switch = Hand (EXT1),
Reference
max. 10 mA
FORWARD/REVERSE (Auto)
EXT1/EXT2 SELECT*
Terminal Block X25
Terminal Block X26
Terminal Block X27
5
6
AI2+
AI2-
External reference 2 (Auto Control)
9 DGND Digital ground
Terminal Block X22
(Hand)
Reference
(Auto) 0 ... 20 mA
Terminal Block X23
A
rpm
+24DVDC
Closed Switch = Auto (EXT2)
250 mA
Ready
Run
Fault
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-9
Control Signal
Connections
Control signals i.e. Reference, Start, Stop and Direction command
connections are established as in Figure 5-6 when you select the
Hand/Auto Macro.
Figure 5-6 Control Signal connections for the Hand/Auto Macro.
EXTERNAL
KEYPAD
Start/Stop/Direction
source selection
10.01 EXT1
STRT/STP/DIR
Group 25
CRITICAL SPEEDS
20.01 MINIMUM SPEED
20.02 MAXIMUM SPEED
Group 22
ACCEL/DECEL
Group 23
SPEED CTRL
Speed Controller
2.02
SPEED REF 3
2.01
SPEED REF 2
ACS 600
Reference source selection
Reference selection
11.06 EXT
REF2 SELECT
Group 12
CONSTANT
SPEEDS
11.03 EXT
REF1 SELECT
12.01 CONST
SPEED SEL
11.01 KEYPAD
REF SELECT
11.02 EXT1/
EXT2 SELECT
DI4(SPEED4)
12
EXTERNAL
REF 2
11
EXTERNAL
REF 1
EXT1DI1,2
KEYPAD
EXT2
CONTROL
PANEL
REF
LOC
REM
AI1
EXT1
NOT SEL
NOT SEL
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
YES
EXTERNAL
DI6,5
REF2(%)
REF1(rpm)
NOT SEL
REQUEST
FORWARD
REVERSE
10.02 EXT2
STRT/STP/DIR
10.03
DIRECTION
16.01
RUN ENABLE
EXT2
DI3
AI2
EXTERNAL
Statr/Stop
Direction
NAIO
I/O Termi-
nals on
NIOC
I/O
Extension
Modules
CH0
Fieldbus
Adapter
Standard
Modbus
Link
Fieldbus
Selection
App. C
NDIO
I/O Ext.
Settings
Group 98
Chapter 5 – Standard Application Macro Programs
5-10 Firmware Manual
Application Macro 3 –
PID Control
The PID Control macro is used for controlling a process variable – such
as pressure or flow – by controlling the speed of the driven motor.
Process reference signal is connected to analogue input AI1 and
process feedback signal to analogue input AI2.
Alternatively, a direct speed reference can be given to the ACS 600
through analogue input AI1. Then the PID controller is bypassed and
the ACS 600 no longer controls the process variable. Selection
between the direct speed control and the process variable control is
done with digital input DI3.
Two analogue and three relay output signals are available on terminal
blocks. Default signals for the Actual Signal Display Mode of the
Control Panel are SPEED, ACTUAL VALUE1 and CONTROL
DEVIATION.
Operation Diagram
Figure 5-7 Operation Diagram for the PID Control Macro.
Input and Output
Signals
Table 5-4 Input and Output Signal as set by the PID Control Macro.
Note: Constant speeds (parameter Group 12) are not considered while the process reference is fol-
lowed (PID controller is in use).
Input Signals Output Signals
START/STOP for each control location (DI1,DI6)
Analogue Reference (AI1)
Actual Value (AI2)
Control Location Selection (DI3)
Constant Speed Selection (DI4)
Run Enable (DI5)
Speed (AO1)
Current (AO2)
READY (RO1)
RUNNING (RO2)
FAULT (-1) (RO3)
rpm
A
M
3~
Relay
Motor
Input
1 L ->1242.0 rpm I
SPEED 1242.0 rpm
ACT VAL1 52.00 %
CONT DEV 0.1 %
Power
Current
Outputs
Const.Speed
Speed
Run Enable
Speed/Process
PIDPT
EXT1
EXT2
START/STOP(EXT2)
START/STOP(EXT1)
Ref.
Actual value
(EXT1/EXT2)
1 -> 52.1 % I
SPEED 1242.0 rpm
ACT VAL1 52.0 %
CONT DEV 0.1 %
Reference is read from analogue input AI1. Start/
Stop command is given through digital input DI1
while in direct speed control (EXT1) or through
digital input DI6 while in Process Control (EXT2).
Reference and Start/Stop and Direction
commands are given from the Control Panel. To
change to External, press the LOC REM key.
External Control
EXT1 (rpm) = Direct Speed Control
EXT2 (%) = Process PID Control
Keypad Control
REF1 (rpm) = Direct Speed Control
REF2 (%) = Process PID Control
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-11
External Connections The following connection example is applicable when the PID Control
Macro settings are used.
Figure 5-8 Control Connections for the PID Control Application Macro. The markings of the NIOC
board terminals are given above. In ACS 601 and ACS 604, user connections are always made
directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made
either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal
block intended for the user connections. The separate terminal block is optional. See the appropriate
hardware manual for the corresponding terminal markings.
Relay output 2
RUNNING
1
2
3
4
7
8
8
7
1
2
3
4
5
6
9
10
11
12
1
2
3
1
2
3
1
2
3
VREF
GND
AI1+
AI1-
AI3+
AI3-
+24DVDC
+24DVDC
DI1
DI2
DI3
DI4
DI5
DI6
AO1+
AO1-
AO2+
AO2-
RO11
RO12
RO13
RO21
RO22
RO23
RO 31
RO 32
RO 33
Terminal Block X21 Function
Reference voltage 10 VDC
EXT1 or EXT2 reference
0 ... 10 V
Not specified in this application
+24 VDC max. 100 mA
STOP/START (Manual)
Not specified in this application
STOP/START (Process)
CONSTANT SPEED 4****
Speed
0 ... 20 mA <-> 0 ... Motor rated speed
Current
Relay output 1
READY
Relay output 3
FAULT (-1)
0 ... 20 mA <-> 0 ... Motor nom. current
Reference Setting***
max. 10 mA
RUN ENABLE**
EXT1/EXT2 SELECT*
Terminal Block X25
Terminal Block X26
Terminal Block X27
5
6
AI2+
AI2-
Actual Signal
9 DGND Digital ground
Terminal Block X22
(EXT1 and EXT2)
Transducer feedback
0 ... 20 mA
* Open Switch = Speed Control (direct speed setting)
PT
Closed Switch (+24 V) = Process Control (PID control)
*** Reference setting possible also internally with the
1
2
+24 VDC
GND
Auxiliary voltage output 24 VDC
Terminal Block X23
A
rpm
250 mA
** Open switch = No RUN ENABLE signal received; The
drive will not start (or it stops).
Closed switch (+24 V) =RUN ENABLE activated;
Normal operation is allowed.
keypad.
**** No constant speeds can be selected if the Process
Control is selected (i.e. if +24 V d.c. is connected to
DI3). See Figure 5-9.
Ready
Run
Fault
Chapter 5 – Standard Application Macro Programs
5-12 Firmware Manual
Control Signal
Connections
Control signals i.e. Reference, Start, Stop and Direction command
connections are established as in Figure 5-9 when you select the PID
Control Macro.
Figure 5-9 Control Signal connections for the PID Control Macro.
AI1
AI3
AI2
NOT SEL
DI6
12
EXTERNAL
REF 2
Start/Stop/Direction
source selection
10.01 EXT1
STRT/STP/DIR
Group 25
CRITICAL SPEEDS
20.01 MINIMUM SPEED
20.02 MAXIMUM SPEED
Group 22
ACCEL/DECEL
Group 23
SPEED CTRL
Speed Controller
2.02
SPEED REF 3
2.01
SPEED REF 2
ACS 600
Reference source selection
Reference selection
11.06 EXT
REF2 SELECT
Group 12
CONSTANT
SPEEDS
11.03 EXT
REF1 SELECT
12.01 CONST
SPEED SEL
11.01 KEYPAD
REF SELECT
11.02 EXT1/
EXT2 SELECT
DI4(SPEED4)
11
EXTERNAL
REF 1
EXT1
KEYPAD
EXT2
EXT1
NOT SEL
EXTERNAL
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
EXTERNAL REF2(%)
REF1(rpm)
NOT SEL
REQUEST
FORWARD
REVERSE
10.02 EXT2
STRT/STP/DIR
10.03
DIRECTION
16.01
RUN ENABLE
DI1-6
PID
CONTROL-
LER
16 APPL
BLOCK
OUTPUT
EXT2
EXTERNAL
Start/Stop
Direction
DI3
AI1
AI1
Actual source selection
40.08 ACTUAL 2
INPUT SEL
40.06 ACTUAL
VALUE SEL
40.07 ACTUAL 1
INPUT SEL
26 CONTROL
DEVIATION
24 ACTUAL
VALUE 1
25 ACTUAL
VALUE 2
AI1
AI3
AI2
ACT1
DI1
11.02 EXT1/
EXT2 SELECT
DI3 DI5
CONTROL
PANEL
REF
LOC
REM
NAIO
I/O Termi-
nals on
NIOC
I/O
Extension
Modules
CH0
Fieldbus
Adapter
Standard
Modbus
Link
Fieldbus
Selection
App. C
NDIO
I/O Ext.
Settings
Group 98
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-13
Application Macro 4 –
Torque Control
Torque Control macro is used in applications that require torque control
of the motor. Torque reference is given through analogue input AI2 as a
current signal. By default, 0 mA corresponds to 0 %, and 20 mA to 100
% of the rated motor torque. The Start/Stop/Direction commands are
given through digital inputs DI1 and DI2. The Run enable signal is
connected to DI6.
Through digital input DI3 it is possible to select speed control instead of
torque control. It is also possible to change the external control location
to local (i.e. to Control Panel) by pressing the key. The Panel
controls the speed by default. If torque control with the Panel is
required, the value of Parameter 11.01 KEYPAD REF SEL should be
changed to REF2 (%).
Two analogue and three relay output signals are available on terminal
blocks. Default signals for the Actual Signal Display Mode of the
Control Panel are SPEED, TORQUE and CTRL LOC.
Operation Diagram
Figure 5-10 Operation Diagram for the Torque Control Macro.
Input and Output
Signals
Table 5-5 Input and Output Signals as set by the Torque Control Macro.
Input Signals Output Signals
Start/Stop (DI1,2)
Analogue Speed Reference (AI1)
Analogue Torque Reference (AI2)
Torque Control Selection (DI3)
Accel/Decel 1/2 Selection (DI5)
Constant Speed Selection (DI4)
Run Enable (DI6)
Speed (AO1)
Current (AO2)
READY (RO1)
RUNNING (RO2)
FAULT (-1) (RO3)
LOC
REM
1 L ->1242.0 rpm I
SPEED 1242.0 rpm
TORQUE 66.00 %
CTRL LOC LOCAL
1 -> 50.0 % I
SPEED 1242.0 rpm
TORQUE 66.00 %
CTRL LOC EXT2
rpm
A
M
3~
Relay
Motor
Ext. Controls
Input
Power
Current
Outputs
Speed
External Control
EXT1 (rpm) = Speed Control
EXT2 (%) = Torque Control
Keypad Control
REF1 (rpm) = Speed Control
REF2 (%) = Torque Control
Reference and Start/Stop and Direction commands are given
from the Control Panel. To change to External, press
LOC REM key.
Reference is read from analogue input AI2 (torque control
selected) or AI1 (speed control selected). Start/Stop and Direc-
tion commands are given through digital inputs DI1 and DI2.
Selection between speed and torque control is done through
DI3.
EXT1
EXT2
Speed ref.
Torque ref.
Chapter 5 – Standard Application Macro Programs
5-14 Firmware Manual
External Connections The following connection example is applicable when the Torque
Control Macro settings are used.
Figure 5-11 Control Connections for Torque Control Application Macro. The markings of the NIOC
board terminals are given above. In ACS 601 and ACS 604, user connections are always made
directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made
either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal
block intended for the user connections. The separate terminal block is optional. See the appropriate
hardware manual for the corresponding terminal markings.
Relay output 2
RUNNING
1
2
3
4
7
8
1
2
8
7
1
2
3
4
5
6
9
10
11
12
1
2
3
1
2
3
1
2
3
VREF
GND
AI1+
AI1-
AI3+
AI3-
+24 VDC
GND
+24DVDC
+24DVDC
DI1
DI2
DI3
DI4
DI5
DI6
AO1+
AO1-
AO2+
AO2-
RO11
RO12
RO13
RO21
RO22
RO23
RO 31
RO 32
RO 33
Terminal Block X21 Function
Reference voltage 10 VDC
Speed reference (EXT1)
0 ... 10 V
Not specified in this application
Auxiliary voltage output 24 VDC
+24 VDC max. 100 mA
STOP/START
FORWARD/REVERSE
RUN ENABLE***
CONSTANT SPEED SELECTION****
Speed
0 ... 20 mA <-> 0 ... Motor rated speed
Current
Relay output 1
READY
Relay output 3
FAULT (-1)
0 ... 20 mA <-> 0 ... Motor nom .current
Speed Reference
max.10 mA
ACC/DEC 1/2 SEL**
SPEED/TORQUE CONTROL SEL*
Terminal Block X25
Terminal Block X26
Terminal Block X27
5
6
AI2+
AI2-
Torque reference (EXT2)
9 DGND Digital ground
Terminal Block X22
Torque Reference
0 ... 20 mA
Terminal Block X23
A
rpm
* Open Switch = EXT1 selected = Speed Control
Closed Switch (+24 V) = EXT2 selected = Torque Control
** Open switch = ACC/DEC 1 selected
Closed Switch (+24 V) = ACC/DEC 2 selected
*** Open switch = No RUN ENABLE signal received; The
drive will not start (or it stops).
Closed switch (+24 V) =RUN ENABLE activated; Normal
operation is allowed.
**** No constant speeds can be selected if the Torque Control
is selected (i.e. if +24 V d.c. is connected to DI3). See
Figure 5-12.
250 mA
Ready
Run
Fault
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-15
Control Signal
Connections
Control signals i.e. Reference, Start, Stop and Direction command
connections are established as in Figure 5-12 when you select the
Torque Control Macro.
Figure 5-12 Control Signal connections for the Torque Control Macro.
Start/Stop/Direction
source selection
10.01 EXT1
STRT/STP/DIR
Group 25
CRITICAL SPEEDS
20.01 MINIMUM SPEED
20.02 MAXIMUM SPEED
Group 22
ACCEL/DECEL
Group 23
SPEED CTRL
Speed Controller
2.02
SPEED REF 3
2.01
SPEED REF 2
ACS 600
Reference source selection
Reference selection
11.06 EXT
REF2 SELECT
Group 12
CONSTANT
SPEEDS
11.03 EXT
REF1 SELECT
12.01 CONST
SPEED SEL
11.01 KEYPAD
REF SELECT
11.02 EXT1/
EXT2 SELECT
EXT1
11
EXTERNAL
REF 1
EXT1
KEYPAD
EXT2
EXT1
NOT SEL
EXTERNAL
NOT SEL
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
EXTERNAL REF2(%)
REF1(rpm)
NOT SEL
REQUEST
FORWARD
REVERSE
10.02 EXT2
STRT/STP/DIR
10.03
DIRECTION
16.01
RUN ENABLE
DI1-6
12
EXTERNAL
REF 2
EXT2
REF2(%)
REF1(rpm)
EXTERNAL
KEYPAD
EXT2
EXTERNAL
20.04
MAXIMUM TORQUE
Group 24
TORQUE CTRL
Torque Controller
2.13
TORQ REF USED
2.10
TORQ REF 3
2.09
TORQ REF 2
Start/Stop
Direction
DI1,2
DI1,2
DI6
AI1
AI2
DI3 DI4(SPEED4)
CONTROL
PANEL
REF
LOC
REM
NAIO
I/O Termi-
nals on
NIOC
I/O
Extension
Modules
CH0
Fieldbus
Adapter
Standard
Modbus
Link
Fieldbus
Selection
App. C
NDIO
I/O Ext.
Settings
Group 98
Chapter 5 – Standard Application Macro Programs
5-16 Firmware Manual
Application Macro 5 –
Sequential Control
This macro offers seven preset constant speeds, which can be
activated by digital inputs DI4 to DI6 according to the Figure 5-16. Two
acceleration/deceleration ramps are preset. The acceleration and
deceleration ramps are applied according to the state of digital input
DI3. The Start/Stop and Direction commands are given through digital
inputs DI1 and DI2.
External speed reference can be given through analogue input AI1. It is
active only when all of the digital inputs DI4 to DI6 are 0 VDC. Giving
operational commands and setting reference is possible also from the
Control Panel.
Two analogue and three relay output signals are available on terminal
blocks. Default stop mode is ramp. Default signals for the Actual Signal
Display Mode of the Control Panel are FREQUENCY, CURRENT and
POWER.
Operation Diagram
Figure 5-13 Operation Diagram for the Sequential Control Macro.
rpm
A
M
3~
Relay
Motor
Ext. Controls
Input
Power
Current
Outputs
Speed
Accel1 Accel1 Accel2 Decel2
Speed 3
Speed 2
Speed 1
Speed
Time
Start/Stop
Accel1/Decel1
Speed 1
Speed 2
Accel2/Decel2
Speed 3
Stop with
deceleration
ramp
Example of sequential control using constant speeds and different
acceleration and deceleration times.
External Control
EXT1 (rpm) = Speed Control
EXT2 (%) = Speed Control
Keypad Control
REF1 (rpm) = Speed Control
REF2 (%) = Speed Control
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-17
Figure 5-14 Keypad Control and External Control modes of the Sequential Control Macro.
Input and Output
Signals
Input and Output signals of the ACS 600 as set by the Sequential
Control Macro are listed in Table 5-6.
Table 5-6 Input and Output Signals for Sequential Control Macro.
Input Signals Output Signals
Start/Stop (DI1) and Reverse (DI2)
Analogue Reference (AI1)
Accel/Decel 1/2 Selection (DI3)
Constant Speed Selection (DI4-6)
Speed (AO1)
Current (AO2)
READY (RO1)
RUNNING (RO2)
FAULT (-1) (RO3)
1 L ->1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
1 ->1242.0 rpm I
FREQ 45.00 Hz
CURRENT 80.00 A
POWER 75.00 %
To change to External, press the LOC REM key.
Reference is read from analogue input AI1 or
constant speed is used. Start/Stop and Direction
commands are given through digital inputs DI1
and DI2.
Reference and Start/Stop and Direction
commands are given from the Control Panel.
Chapter 5 – Standard Application Macro Programs
5-18 Firmware Manual
External Connections The following connection example is applicable when the Sequential
Control Macro settings are used.
Figure 5-15 Control Connections for Sequential Control Application Macro. The markings of the NIOC
board terminals are given above. In ACS 601 and ACS 604, user connections are always made
directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made
either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal
block intended for the user connections. The separate terminal block is optional. See the appropriate
hardware manual for the corresponding terminal markings.
Relay output 2
RUNNING
1
2
3
4
7
8
1
2
8
7
1
2
3
4
5
6
9
10
11
12
1
2
3
1
2
3
1
2
3
VREF
GND
AI1+
AI1-
AI3+
AI3-
+24 VDC
GND
+24 DVDC
+24 DVDC
DI1
DI2
DI3
DI4
DI5
DI6
AO1+
AO1-
AO2+
AO2-
RO11
RO12
RO13
RO21
RO22
RO23
RO31
RO32
RO33
Terminal Block X21 Function
Reference voltage 10 VDC
External reference
0 ... 10 V
Not specified in this application
Auxiliary voltage output 24 VDC
+24 VDC max. 100 mA
STOP/START
FORWARD/REVERSE
CONSTANT SPEED SELECT*
CONSTANT SPEED SELECT*
Speed
0 ... 20 mA <-> 0 ... Motor rated speed
Current
Relay output 1
READY
Relay output 3
FAULT (-1)
0 ... 20 mA <-> 0 ... Motor nom. current
max. 10 mA
CONSTANT SPEED SELECT*
ACC/DEC 1/2 SEL
Terminal Block X25
Terminal Block X26
Terminal Block X27
5
6
AI2+
AI2-
Not specified in this application
9 DGND Digital ground
Terminal Block X22
DI4 DI5 DI6 Output
set speed through AI1
Constant Speed 1
Constant Speed 2
Constant Speed 3
Constant Speed 4
Constant Speed 5
Constant Speed 6
Constant Speed 7
0
0 0
1 0
1 0
0 1
0 1
1 1
1 1
* Operation: 0 = Open, 1 = Closed
1
0
0
1
1
0
0
1
0
Terminal Block X23
A
rpm
Reference
250 mA
Ready
Run
Fault
Chapter 5 – Standard Application Macro Programs
Firmware Manual 5-19
Control Signal
Connections
Control signals i.e. Reference, Start, Stop and Direction command
connections are established as in Figure 5-16 when you select the
Sequential Control Macro.
Figure 5-16 Control Signal connections for the Sequential Control Macro.
EXTERNAL
KEYPAD
Start/Stop/Direction
source selection
10.01 EXT1
STRT/STP/DIR
Group 25
CRITICAL SPEEDS
20.01 MINIMUM SPEED
20.02 MAXIMUM SPEED
Group 22
ACCEL/DECEL
Group 23
SPEED CTRL
Speed Controller
2.02
SPEED REF 3
2.01
SPEED REF 2
ACS 600
Reference source selection
Reference selection
11.06 EXT
REF2 SELECT
Group 12
CONSTANT
SPEEDS
11.03 EXT
REF1 SELECT
12.01 CONST
SPEED SEL
11.01 KEYPAD
REF SELECT
11.02 EXT1/
EXT2 SELECT
DI4,5,6
12
EXTERNAL
REF 2
11
EXTERNAL
REF 1
EXT1DI1,2
KEYPAD
EXT2
AI1
EXT1
NOT SEL
NOT SEL
KEYPAD
KEYPAD
KEYPAD
KEYPAD
KEYPAD
YES
EXTERNAL
DI1,DI2
REF2(%)
REF1(rpm)
NOT SEL
REQUEST
FORWARD
REVERSE
10.02 EXT2
STRT/STP/DIR
10.03
DIRECTION
16.01
RUN ENABLE
EXT2
AI1
EXTERNAL
Statr/Stop
Direction
EXT1
CONTROL
PANEL
REF
LOC
REM
NAIO
I/O Termi-
nals on
NIOC
I/O
Extension
Modules
CH0
Fieldbus
Adapter
Standard
Modbus
Link
Fieldbus
Selection
App. C
NDIO
I/O Ext.
Settings
Group 98
Chapter 5 – Standard Application Macro Programs
5-20 Firmware Manual
Firmware Manual 6-1
Chapter 6 – Parameters
Overview This chapter explains the function of, and valid selections for, each
ACS 600 parameter.
Parameter Groups The ACS 600 parameters are arranged into groups by their function.
Figure 6-1 illustrates the organisation of the parameter groups. Chapter
2 – Overview of ACS 600 Programming... explains how to select and
set the parameters. Refer to Chapter 3 – Start-up Data and Chapter 4 –
Control Operation for more information on the Start-up Data and Actual
Signals. Some parameters that are not in use in the current application
are hidden to simplify programming.
CAUTION! Exercise caution when configuring input/output
connections, as it is possible (albeit not recommended) to use one
I/O connection to control several operations. If an I/O is programmed
for some purpose the setting remains, even if you select the I/O for
another purpose with another parameter.
Figure 6-1 Parameter Groups.
35 MOT TEMP MEAS
34 PROCESS SPEED
33 INFORMATION
32 SUPERVISION
31 AUTOMATIC RESET
30 FAULT FUNCTIONS
.
.
.
22 ACCEL/DECEL
20 LIMITS
21 START/STOP
24 TORQUE CTRL
25 CRITICAL SPEEDS
26 MOTOR CONTROL
23 SPEED CTRL
.
.
.
.
.
99 START-UP DATA
98 OPTION MODULES
96 EXTERNAL AO
92 D SET TR ADDR
90 D SET REC ADDR
70 DDCS CONTROL
60 MASTER/FOLLOWER
12 CONSTANT SPEEDS
10 START/STOP/DIR
11 REFERENCE SELECT
14 RELAY OUTPUTS
15 ANALOGUE OUTPUTS
16 SYSTEM CTR INPUTS
13 ANALOGUE INPUTS
.
.
.
52 STANDARD MODBUS
51 COMMUNICATION MOD
50 ENCODER MODULE
45 FUNCTION SELECTION
42 BRAKE CONTROL
40 PID CONTROL
40.1 PID GAIN
.
.
.
Chapter 6 – Parameters
6-2 Firmware Manual
Group 10 Start/Stop/Dir These parameter values can only be altered with the ACS 600 stopped.
The Range/Unit column in Table 6-1 shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-1 Group 10.
Start, Stop and Direction commands can be given from the keypad or
from two external locations. The selection between the two external
locations is made with Parameter 11.02 EXT1/EXT2 SELECT. For
more information on control locations refer to Chapter 4 – Control
Operation.
10.01 EXT1
STRT/STP/DIR
This parameter defines the connections and the source of Start, Stop
and Direction commands for External control location 1 (EXT1).
NOT SEL
No Start, Stop and Direction command source for EXT1 is selected.
DI1
Two-wire Start/Stop, connected to digital input DI1. 0 V DC on DI1 =
Stop; 24 V DC on DI1 = Start. Direction of rotation is fixed according to
Parameter 10.3 DIRECTION.
WARNING! After a fault reset, the drive will start if the start signal is on.
DI1,2
Two-wire Start/Stop. Start/Stop is connected to digital input DI1 as
above. Direction is connected to digital input DI2. 0 V DC on DI2 =
Forward; 24 V DC on DI2 = Reverse. To control Direction, value of
Parameter 10.3 DIRECTION should be REQUEST.
WARNING! After a fault reset, the drive will start if the start signal is on.
Parameter Range/Unit Description
1 EXT1
STRT/STP/DIR
NOT SEL; Digital Inputs;
KEYPAD; COMM.
MODULE
Selects source of Start/Stop/
Direction commands for External
control location EXT1.
2 EXT2
STRT/STP/DIR
NOT SEL; Digital Inputs;
KEYPAD; COMM.
MODULE
Selects source of Start/Stop/
Direction commands for External
control location EXT2.
3 DIRECTION FORWARD; REVERSE;
REQUEST
Rotation direction lock.
Chapter 6 – Parameters
Firmware Manual 6-3
DI1P,2P
Three-wire Start/Stop. Start/Stop commands are given by means of
momentary push-buttons (the P stands for “pulse”). The Start push-
button is normally open, and connected to digital input DI1. The Stop
push-button is normally closed, and connected to digital input DI2.
Multiple Start push-buttons are connected in parallel; multiple Stop
push-buttons are connected in series. Direction of rotation is fixed
according to Parameter 10.03 DIRECTION.
DI1P,2P,3
Three-wire Start/Stop. Start/Stop connected as with DI1P,2P. Direction
is connected to digital input DI3. 0 V DC on DI3 = Forward; 24 V DC on
DI3 = Reverse. To control Direction, value of Parameter 10.03
DIRECTION should be REQUEST.
DI1P,2P,3P
Start Forward, Start Reverse, and Stop. Start and Direction commands
are given simultaneously with two separate momentary push-buttons
(the P stands for “pulse”). The Stop push-button is normally closed,
and connected to digital input DI3. The Start Forward and Start
Reverse push-buttons are normally open, and connected to digital
inputs DI1 and DI2 respectively. Multiple Start push-buttons are
connected in parallel, and multiple Stop push-buttons are connected in
series. To control Direction, value of Parameter 10.03 DIRECTION
should be REQUEST.
DI6
Two-wire Start/Stop, connected to digital input DI6. 0 V DC on DI6 =
Stop and 24 V DC on DI6 = Start. Direction of rotation is fixed
according to Parameter 10.03 DIRECTION.
WARNING! After a fault reset, the drive will start if the start signal is on.
DI6,5
Two-wire Start/Stop. Start/Stop is connected to digital input DI6.
Direction is connected to digital input DI5. 0 V DC on DI5 = Forward
and 24 V DC on DI5 = Reverse. To control Direction, value of
Parameter 10.03 DIRECTION should be REQUEST.
WARNING! After a fault reset, the drive will start if the start signal is on.
KEYPAD
The Start/Stop and Direction commands are given from the Control
Panel keypad when External control location 1 is active. To control
Direction, value of Parameter 10.03 DIRECTION should be REQUEST.
COMM. MODULE
The Start/Stop and Direction commands are given through Fieldbus
Control Word. See Appendix C – Fieldbus Control.
Chapter 6 – Parameters
6-4 Firmware Manual
DI7; DI7,8; DI7P,8P; DI7P,8P,9; DI7P,8P,9P
For the connection of digital inputs DI7, DI8 and DI9, see Parameter
Group 98 Option Modules. For the function descriptions, see the
corresponding selections implemented using DI1, DI2 and DI3.
10.02 EXT2
STRT/STP/DIR
This parameter defines the connections and the source of Start, Stop
and Direction commands for External control location 2 (EXT2).
NOT SEL; DI1; DI1,2; DI1P,2P; DI1P,2P,3; DI1P,2P,3P; DI6; DI6,5;
KEYPAD; COMM. MODULE; DI7; DI7,8; DI7P,8P; DI7P,8P,9;
DI7P,8P,9P
Refer to Parameter 10.01 EXT1 STRT/STP/DIR above for details on
these settings.
10.03 DIRECTION This parameter allows you to fix the direction of rotation of the motor to
FORWARD or REVERSE. If you select REQUEST, the direction is
selected as defined by Parameters 10.01 EXT1 STRT/STP/DIR and
10.02 EXT2 STRT/STP/DIR or by keypad push-buttons.
Chapter 6 – Parameters
Firmware Manual 6-5
Group 11 Reference
Select
These parameter values can be altered with the ACS 600 running,
except those marked with (O). The Range/Unit column in Table 6-2
shows the allowable parameter values. The text following the table
explains the parameters in detail.
Table 6-2 Group 11.
Reference can be set from the keypad or from two external locations.
Refer to Chapter 4 – Control Operation.
11.01 KEYPAD REF SEL REF1 (rpm)
Keypad reference 1 is selected as the active keypad reference. The
type of the reference is speed, given in rpm. If scalar control is selected
(Parameter 99.04 is set to SCALAR), the reference is given in Hz.
REF2 (%)
Keypad reference 2 is selected as the active keypad reference. Keypad
reference 2 is given in %. The type of Keypad reference 2 depends on
the selected Application Macro. For example, if the Torque Control
macro is selected, REF 2 (%) is torque reference.
Parameter Range/Unit Description
1 KEYPAD REF SEL REF1 (rpm);
REF2 (%)
Selection of active
keypad reference.
2 EXT1/EXT2 SELECT
(O)
DI1 ... DI12; EXT1; EXT2;
COMM. MODULE
External control
location selection input.
3 EXT REF1 SELECT
(O)
KEYPAD; Analogue and
Digital Inputs; COMM. REF;
COMMREF+AI1;
COMMREF*AI1;
FAST COMM;
COMMREF+AI5;
COMMREF*AI5;
External reference 1
input.
4 EXT REF1 MINIMUM (0 ... 18000) rpm External reference 1
minimum value.
5 EXT REF1 MAXIMUM (0 ... 18000) rpm External reference 1
maximum value.
6 EXT REF2 SELECT
(O)
KEYPAD; Analogue and
Digital Inputs; COMM. REF;
COMMREF+AI1;
COMMREF*AI1;
FAST COMM;
COMMREF+AI5;
COMMREF*AI5
External reference 2
input.
7 EXT REF2 MINIMUM 0 ... 100 % External reference 2
minimum value.
8 EXT REF2 MAXIMUM 0 ... 500 % External reference 2
maximum value.
Chapter 6 – Parameters
6-6 Firmware Manual
11.02 EXT1/EXT2
SELECT (O)
This parameter sets the input used for selecting the external control
location, or fixes it to EXT1 or EXT2. The external control location of
both Start/Stop/Direction commands and reference is determined by
this parameter.
EXT1
External control location 1 is selected. The control signal sources for
EXT1 are defined with Parameter 10.01 EXT1 STRT/STP/DIR and
Parameter 11.03 EXT REF1 SELECT (O).
EXT2
External control location 2 is selected. The control signal sources for
EXT2 are defined with Parameter 10.02 EXT2 STRT/STP/DIR and
Parameter 11.06 EXT REF2 SELECT (O).
DI1 - DI12
External control location 1 or 2 is selected according to the state of the
selected digital input (DI1 ... DI12), where 0 V DC = EXT1 and 24 V DC
= EXT2. For the connection of DI7 to DI12, see Group 98 Option
Modules.
COMM. MODULE
External control location 1 or 2 is chosen through Fieldbus Control
Word. See Appendix C – Fieldbus Control.
11.03 EXT REF1
SELECT (O)
This parameter selects the signal source of External reference 1.
KEYPAD
Reference is given from the Keypad. The first line on the display shows
the reference value.
AI1
Reference from analogue input 1 (voltage signal).
AI2
Reference from analogue input 2 (current signal).
AI3
Reference from analogue input 3 (current signal).
AI1/JOYST; AI2/JOYST
Reference from analogue input 1 (or 2 accordingly) configured for a
joystick. The minimum input signal runs the drive at maximum
reference in the reverse direction. The maximum input signal runs the
drive at maximum reference in the forward direction (See Figure 6-2).
See also Parameter 10.03 DIRECTION.
CAUTION: Minimum reference for joystick must be higher than 0.5 V. If
a 0 ... 10 V signal is used, the ACS 600 will operate at maximum
reference in the reverse direction if the control signal is lost. Set
Parameter 13.01 MINIMUM AI1 to 2 V or to a value higher than 0.5 V,
and Parameter 30.01 AI<MIN FUNCTION to FAULT, and the ACS 600
will stop in case the control signal is lost.
Chapter 6 – Parameters
Firmware Manual 6-7
Figure 6-2 Joystick control. Maximum for the external reference 1 is set
with Parameter 11.05 EXT REF1 MAXIMUM and minimum with
Parameter 11.04 EXT REF1 MINIMUM.
AI1+AI3; AI2+AI3; AI1-AI3; AI2-AI3; AI1*AI3; AI2*AI3; MIN(AI1,AI3);
MIN(AI2,AI3); MAX(AI1,AI3); MAX(AI2,AI3)
The reference is calculated from the selected input signals according to
the mathematical functions defined by this setting.
DI3U,4D(R)
Speed reference is given through digital inputs as motor potentiometer
control (or Floating Point Control). Digital input DI3 increases the speed
(the U stands for “up”), and digital input DI4 decreases the speed (the
D stands for “down”). (R) indicates that the reference will be reset to
zero when a Stop command is given. The rate of change of the
reference signal is controlled by Parameter 22.04 ACCEL TIME 2.
DI3U,4D
Same as above, except that the speed reference is not reset to zero on
a Stop command or when power is switched off. When the ACS 600 is
started, the motor will ramp up at the selected acceleration rate to the
stored reference.
DI5U,6D
Same as above, except that the digital inputs in use are DI5 and DI6.
COMM. REF
The reference is given through fieldbus reference REF1. See
Appendix C – Fieldbus Control.
COMMREF+AI1; COMMREF*AI1;
The reference is given through fieldbus reference REF1. The analogue
input signal 1 is combined to the fieldbus reference (sum or
multiplication). See Appendix C – Fieldbus Control for more
information.
EXT REF MAXIMUM
EXT REF MINIMUM
0
- EXT REF MINIMUM
- EXT REF MAXIMUM
1050 REF [V]
AI MINIMUM = 0 V
AI MAXIMUM = 10 V
SPEEDout
Chapter 6 – Parameters
6-8 Firmware Manual
FAST COMM
As with the selection COMM. REF, the reference is given through
fieldbus reference REF1. See Appendix C – Fieldbus Control. The
FAST COMM differs from the COMM. REF as follows:
• shorter communication cycle time when transferring the reference to
the core motor control program (6 ms -> 2ms)
• the direction cannot be controlled through interfaces defined
byParameters 10.01 EXT1 STRT/STP/DIR or 10.02 EXT2
STRT/STP/DIR, nor from the control panel.
• Group 25 Critical Speeds is not effective
Note: If any of the following selections is true, the selection FAST
COMM is not effective. Instead, the operation is according to selection
COMM. REF.
• 99.02 APPLICATION MACRO is PID
• 99.04 MOTOR CTRL MODE is SCALAR
• 40.14 TRIM MODE is PROPORTIONAL or DIRECT
COMMREF+AI5; COMMREF*AI5
The reference is given through fieldbus reference REF1. The analogue
input signal AI5 is combined to the fieldbus reference (sum or
multiplication). See Appendix C – Fieldbus Control for more
information. For the connection of analogue input AI5, see Group 98
Option Modules.
AI5; AI6; AI5/JOYST; AI6/JOYST; AI5+AI6; AI5-AI6; AI5*AI6;
MIN(AI5,6); MAX(AI5,6)
For the function description, see the corresponding selection described
for AI1 and AI2 above. For the connection of analogue inputs AI5 and
AI6, see Group 98 Option Modules.
DI11U,12D(R);DI11U,12D
For the function description, see the corresponding selection described
for DI3 and DI4 above. For the connection of digital inputs DI11 and
DI12, see Group 98 Option Modules.
11.04 EXT REF1
MINIMUM
This parameter sets the minimum speed reference in rpm. The value
corresponds to the minimum of the analogue input signal connected to
REF1 (value of Parameter 11.03 EXT REF1 SELECT (O) is AI1, AI2 or
AI3). See Figure 6-3. In the SCALAR control mode (see 99.04 MOTOR
CTRL MODE), this parameter is given in Hz.
Note: If the reference is given through fieldbus, the scaling differs from
that of an analogue signal. See Appendix C – Fieldbus Control for
more information.
Chapter 6 – Parameters
Firmware Manual 6-9
11.05 EXT REF1
MAXIMUM
This parameter sets the maximum speed reference in rpm. The value
corresponds to the maximum of the analogue input signal connected to
REF1 (value of Parameter 11.03 EXT REF1 SELECT (O) is AI1, AI2 or
AI3). See Figure 6-3. In the SCALAR control mode (see Parameter
99.04 MOTOR CTRL MODE), this parameter is given in Hz.
Note: If the reference is given through fieldbus, the scaling differs from
that of an analogue signal. See Appendix C – Fieldbus Control for
more information.
11.06 EXT REF2
SELECT (O)
This parameter selects the signal source for External reference 2. The
alternatives are the same as with External reference 1.
11.07 EXT REF2
MINIMUM
This parameter sets the minimum reference in percent. The value
corresponds to the minimum of the analogue input signal connected to
REF2 (value of 11.06 EXT REF2 SELECT (O) is AI1, AI2 or AI3). See
Figure 6-3.
• If the Factory, Hand/Auto or Sequential Control macro is selected,
this parameter sets the minimum speed reference. The value is
given as a percentage of the maximum speed defined with
Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if
the absolute value of the minimum limit is greater than the maximum
limit.
• If the Torque Control macro is selected, this parameter sets the
minimum torque reference. The value is given as a percentage of
the nominal torque.
• If the PID Control macro is selected, this parameter sets the
minimum process reference. The value is given as a percentage of
the maximum process quantity.
In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL
MODE), this value is given as a percentage of the maximum frequency
defined with Parameter 20.08 MAXIMUM FREQ, or 20.07 MINIMUM
FREQ if the absolute value of the minimum limit is greater than the
maximum limit.
Note: If the reference is given through fieldbus, the scaling differs from
that of an analogue signal. See Appendix C – Fieldbus Control for
more information.
11.08 EXT REF2
MAXIMUM
This parameter sets the maximum reference in percent. The value
corresponds to the maximum of the analogue signal connected to
REF2 (value of 11.06 EXT REF2 SELECT (O) is AI1, AI2 or AI3). See
Figure 6-3.
• If the Factory, Hand/Auto or Sequential Control macro is selected,
this parameter sets the maximum speed reference. The value is
given as a percentage of the maximum speed defined with
Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if
the absolute value of the minimum limit is greater than the maximum
limit.
Chapter 6 – Parameters
6-10 Firmware Manual
• If the Torque Control macro is selected, this parameter sets the
maximum torque reference. The value is given as a percentage of
the nominal torque.
• If the PID Control macro is selected, this parameter sets the
maximum process reference. The value is given as a percentage of
the maximum process quantity.
In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL
MODE), this value is given as a percentage of the maximum frequency
defined with Parameter 20.08 MAXIMUM FREQ, or 20.07 MINIMUM
FREQ if the absolute value of the minimum limit is greater than the
maximum limit.
Note: If the reference is given through fieldbus, the scaling differs from
that of an analogue signal. See Appendix C – Fieldbus Control for
more information.
Figure 6-3 Setting EXT REF MINIMUM and MAXIMUM. The range of the analogue input signal is set
by Parameter 13.02 MAXIMUM AI1, 13.07 MAXIMUM AI2, 13.12 MAXIMUM AI3 and Parameter
13.01 MINIMUM AI1, 13.06 MINIMUM AI2, 13.11 MINIMUM AI3, depending on the analogue input
used.
10 V
20 mA
0/2 V
0/4 mA
The range of
analogue
input
MAXIMUM AI
MINIMUM AI
18000 rpm
1500 rpm
0 rpm
18000 rpm
0 rpm
11.05 EXT
REF1 MAXIMUM
11.04 EXT
REF1 MINIMUM
500 %
100 %
0 %
100 %
0 %
11.08 EXT
REF2 MAXIMUM
11.07 EXT
REF2 MINIMUM
The range of ex-
ternal reference 1
The range of ex-
ternal reference 2
Chapter 6 – Parameters
Firmware Manual 6-11
Group 12 Constant
Speeds
These parameter values can be altered with the ACS 600 running,
except those marked with (O). The Range/Unit column in Table 6-3
below shows the allowable parameter values. The text following the
table explains the parameters in detail.
Table 6-3 Group 12.
If a constant speed is activated, the absolute value of the speed is read
from parameter group 12. The sign of speed no. 15 is considered when
used as a Fault Speed (see Parameters 30.01 AI<MIN FUNCTION and
30.02 PANEL LOSS).
In External Control, when External Control Location EXT 1 is selected,
constant speeds override other speed references. Constant speed
selections are ignored if the torque reference or process PID reference
is followed (see the Torque Control and PID Control Macros).
In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL
MODE), six constant frequencies can be set with Parameters 12.02 to
12.06 and 12.15. By default, the parameter values are set to zero Hz.
Parameter Range/Unit Description
1 CONST SPEED SEL
(O)
NOT SEL; Digital Inputs Constant speed
selection
2 CONST SPEED 1 0 ... 18000 rpm Constant speed 1
3 CONST SPEED 2 0 ... 18000 rpm Constant speed 2
4 CONST SPEED 3 0 ... 18000 rpm Constant speed 3
5 CONST SPEED 4 0 ... 18000 rpm Constant speed 4
6 CONST SPEED 5 0 ... 18000 rpm Constant speed 5
7 CONST SPEED 6 0 ... 18000 rpm Constant speed 6
8 CONST SPEED 7 0 ... 18000 rpm Constant speed 7
9 CONST SPEED 8 0 ... 18000 rpm Constant speed 8
10 CONST SPEED 9 0 ... 18000 rpm Constant speed 9
11 CONST SPEED 10 0 ... 18000 rpm Constant speed 10
12 CONST SPEED 11 0 ... 18000 rpm Constant speed 11
13 CONST SPEED 12 0 ... 18000 rpm Constant speed 12
14 CONST SPEED 13 0 ... 18000 rpm Constant speed 13
15 CONST SPEED 14 0 ... 18000 rpm Constant speed 14
16 CONST SPEED 15 -18000 ... 18000 rpm Constant speed 15/
Fault speed
Chapter 6 – Parameters
6-12 Firmware Manual
12.01 CONST SPEED
SEL
This parameter defines which digital inputs are used to select Constant
Speeds.
NOT SEL
Constant speed function disabled.
DI1(SPEED1); DI2(SPEED2); DI3(SPEED3); DI4(SPEED4);
DI5(SPEED5); DI6(SPEED6)
Constant Speeds 1-6 selected with digital inputs DI1-DI6. 24 V DC =
Constant Speed activated.
DI1,2
Three Constant Speeds (1 ... 3) are selected with two digital inputs.
Table 6-4 Constant Speed selection with digital inputs DI1,2.
DI3,4
Three Constant Speeds (1 ... 3) are selected with two digital inputs as
in DI1,2.
DI5,6
Three Constant Speeds (1 ... 3) are selected with two digital inputs as
in DI1,2.
DI1,2,3
Seven Constant Speeds (1 ... 7) are selected with three digital inputs.
Table 6-5 Constant Speed selection with digital inputs DI1,2,3.
DI3,4,5
Refer to DI1,2,3.
DI1 DI2 Function
0 0 No Constant Speed
1 0 Constant Speed 1
0 1 Constant Speed 2
1 1 Constant Speed 3
DI1 DI2 DI3 Function
0 0 0 No Const. Speed
1 0 0 Constant Speed 1
0 1 0 Constant Speed 2
1 1 0 Constant Speed 3
0 0 1 Constant Speed 4
1 0 1 Constant Speed 5
0 1 1 Constant Speed 6
1 1 1 Constant Speed 7
Chapter 6 – Parameters
Firmware Manual 6-13
DI4,5,6
Refer to DI1,2,3.
DI3,4,5,6
15 Constant Speeds (1 ... 15) are selected with four digital inputs.
Table 6-6 Constant Speed selection with digital inputs DI3,4,5,6.
DI7(SPEED1); DI8 (SPEED2); DI9(SPEED3); DI10 (SPEED4);
DI11(SPEED5); DI12 (SPEED6); DI7,8; DI9,10; DI11,12
For the connection of digital inputs DI7 to DI12, see Group 98 Option
Modules. For the function descriptions, see the corresponding
selections implemented using DI1 to DI6.
DI3 DI4 DI5 DI6 Function
0 0 0 0 No Const. Speed
1 0 0 0 Constant Speed 1
0 1 0 0 Constant Speed 2
1 1 0 0 Constant Speed 3
0 0 1 0 Constant Speed 4
1 0 1 0 Constant Speed 5
0 1 1 0 Constant Speed 6
1 1 1 0 Constant Speed 7
0 0 0 1 Constant Speed 8
1 0 0 1 Constant Speed 9
0 1 0 1 Constant Speed 10
1 1 0 1 Constant Speed 11
0 0 1 1 Constant Speed 12
1 0 1 1 Constant Speed 13
0 1 1 1 Constant Speed 14
1 1 1 1 Constant Speed 15
Chapter 6 – Parameters
6-14 Firmware Manual
Group 13 Analogue
Inputs
These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-7 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-7 Group 13.
Parameter Range/Unit Description
1 MINIMUM AI1 0 V; 2 V; TUNED
VALUE; TUNE
Minimum value of AI1. Value to
correspond to minimum
reference.
2 MAXIMUM AI1 10 V; TUNED
VALUE; TUNE
Maximum value of AI1. Value to
correspond to maximum
reference.
3 SCALE AI1 0 ... 100.0 % Scaling factor for AI1.
4 FILTER AI1 0 ... 10 s Filter time constant for AI1.
5 INVERT AI1 NO; YES Analogue input signal 1 inversion.
6 MINIMUM AI2 0 mA; 4 mA;
TUNED VALUE;
TUNE
Minimum value of AI2. Value to
correspond to minimum
reference.
7 MAXIMUM AI2 20 mA; TUNED
VALUE; TUNE
Maximum value of AI2. Value to
correspond to maximum
reference.
8 SCALE AI2 See the corresponding parameters for AI1.
9 FILTER AI2
10 INVERT AI2
11 MINIMUM AI3
12 MAXIMUM AI3
13 SCALE AI3
14 FILTER AI3
15 INVERT AI3
16 MINIMUM AI5
17 MAXIMUM AI5
18 SCALE AI5
19 FILTER AI5
20 INVERT AI5
21 MINIMUM AI6
22 MAXIMUM AI6
23 SCALE AI6
24 FILTER AI6
25 INVERT AI6
Chapter 6 – Parameters
Firmware Manual 6-15
13.01 MINIMUM AI1 0 V; 2 V; TUNED VALUE; TUNE
This parameter sets the minimum value of the signal to be applied to
AI1. If AI1 is selected as the signal source for external reference 1 (Par.
11.03) or external reference 2 (Par. 11.06), this value will correspond to
the reference defined by Parameter 11.04 EXT REF1 MINIMUM or
11.07 EXT REF2 MINIMUM. Typical minimum values are 0 V or 2 V.
To tune the minimum value according to the analogue input signal,
press the ENTER key, select TUNE, apply the minimum analogue input
signal and press ENTER again. The value is set as the minimum. The
readable range in tuning is 0 V to 10 V. The text TUNED VALUE is
displayed after the TUNE operation.
The ACS 600 has a “living zero” function which allows the protection
and supervision circuitry to detect a loss of control signal. To enable
this feature, the minimum input signal must be set higher than 0.5 V
and Parameter 30.01 AI<MIN FUNCTION must be set accordingly.
13.02 MAXIMUM AI1 10 V; TUNED VALUE; TUNE
This parameter sets the maximum value of the signal to be applied to
AI1. If AI1 is selected as the signal source for external reference 1 (Par.
11.03) or external reference 2 (Par. 11.06), this value will correspond to
the reference defined by Parameter 11.05 EXT REF1 MAXIMUM or
11.08 EXT REF2 MAXIMUM. A typical maximum value is 10 V.
To tune the maximum value according to the analogue input signal,
press the ENTER key, select TUNE, apply the maximum analogue
input signal and press ENTER again. The value is set as the maximum.
The readable range in tuning is 0 V to 10 V. The text TUNED VALUE is
displayed after TUNE operation.
13.03 SCALE AI1 Scaling factor for analogue input AI1 signal. See Figure 6-5.
13.04 FILTER AI1 Filter time constant for analogue input AI1. As the analogue input value
changes, 63 % of the change takes place within the time specified by
this parameter.
Note: Even if you select 0 s as the minimum value, the signal is still
filtered with a time constant of 10 ms due to the signal interface
hardware. This cannot be changed by any parameters.
Chapter 6 – Parameters
6-16 Firmware Manual
Figure 6-4 Filter time constant for analogue input AI1.
13.05 INVERT AI1 NO; YES
If this parameter is set to YES, the maximum value of the analogue
input signal corresponds to minimum reference and the minimum value
of the analogue input signal corresponds to maximum reference.
13.06 MINIMUM AI2 0 mA; 4 mA; TUNED VALUE; TUNE
This parameter sets the minimum value of the signal to be applied to
analogue input AI2. If AI2 is selected as the signal source for external
reference 1 (Par. 11.03) or external reference 2 (Par. 11.06), this value
will correspond to the reference set by Parameter 11.04 EXT REF1
MINIMUM or 11.07 EXT REF2 MINIMUM. Typical minimum values are
0 mA or 4 mA.
To tune the minimum value according to the analogue input signal,
press the ENTER key, select TUNE, apply the minimum analogue input
signal and press ENTER again. The value is set as the minimum. The
readable range in tuning is 0 mA to 20 mA. The text TUNED VALUE is
displayed after the TUNE operation.
The ACS 600 has a “living zero” function which allows the protection
and supervision circuitry to detect a loss of signal. To enable this
feature, the minimum input signal must be greater than 1 mA.
13.07 MAXIMUM AI2 20 mA; TUNED VALUE; TUNE
This parameter sets the maximum value of the signal to be applied to
AI2. If AI2 is selected as the signal source for external reference 1
(Parameter 11.03 EXT REF1 SELECT (O)) or external reference 2
(Parameter 11.06 EXT REF2 SELECT (O)), this value will correspond
to the reference defined by Parameter 11.05 EXT REF1 MAXIMUM or
11.08 EXT REF2 MAXIMUM. A typical maximum value is 20 mA.
To tune the maximum value according to the analogue input signal,
press the ENTER key, select TUNE, apply the maximum analogue
input signal and press ENTER again. The values is set as the
63
[%]
100
Time constant
t
Filtered Signal
Unfiltered Signal
Chapter 6 – Parameters
Firmware Manual 6-17
maximum. The readable range in tuning is 0 mA to 20 mA. The text
TUNED VALUE is displayed after TUNE operation.
13.08 SCALE AI2 Refer to Parameter 13.03 SCALE AI1.
13.09 FILTER AI2 Refer to Parameter 13.04 FILTER AI1.
13.10 INVERT AI2 Refer to Parameter 13.05 INVERT AI1.
13.11 MINIMUM AI3 Refer to Parameter 13.06 MINIMUM AI2.
13.12 MAXIMUM AI3 Refer to Parameter 13.07 MAXIMUM AI2.
13.13 SCALE AI3 Refer to Parameter 13.03 SCALE AI1.
13.14 FILTER AI3 Refer to Parameter 13.04 FILTER AI1.
13.15 INVERT AI3 Refer to Parameter 13.05 INVERT AI1.
13.16 MINIMUM AI5 Refer to Parameter 13.06 MINIMUM AI2.
13.17 MAXIMUM AI5 Refer to Parameter 13.07 MAXIMUM AI2.
13.18 SCALE AI5 Refer to Parameter 13.03 SCALE AI1.
13.19 FILTER AI5 Refer to Parameter 13.04 FILTER AI1.
13.20 INVERT AI5 Refer to Parameter 13.05 INVERT AI1.
13.21 MINIMUM AI6 Refer to Parameter 13.06 MINIMUM AI2.
13.22 MAXIMUM AI6 Refer to Parameter 13.07 MAXIMUM AI2.
13.23 SCALE AI6 Refer to Parameter 13.03 SCALE AI1.
13.24 FILTER AI6 Refer to Parameter 13.04 FILTER AI1.
13.25 INVERT AI6 Refer to Parameter 13.05 INVERT AI1.
Figure 6-5 Example of scaling of analogue inputs. External reference 1
has been selected by Parameter 11.03 EXT REF1 SELECT (O) as AI1
+ AI3 and the maximum value for it (1500 rpm) by Parameter 11.05
EXT REF1 MAXIMUM. The scale for analogue input AI1 is set to 100 %
by Parameter 13.03 SCALE AI1. The scale for analogue input AI3 is set
to 10 % by Parameter 13.13 SCALE AI3.
60 %
40 %
150 rpm1500 rpm10 V
SCALE AI1
100 %
SCALE AI3
10 %
0 V 0 mA
20 mA EXT REF1 MAXIMUM
1500 rpm
EXT REF1
600 rpm
90 rpm
690 rpm
AI1 + AI3 =
0 rpm
Chapter 6 – Parameters
6-18 Firmware Manual
Group 14 Relay Outputs These parameter values can only be altered when the ACS 600 is
stopped. The text following Table 6-8 below explains the parameters in
detail.
Table 6-8 Group 14.
14.01 RELAY RO1
OUTPUT
This parameter allows you to select which information is indicated with
relay output 1.
NOT USED
READY
The ACS 600 is ready to function. The relay is energised unless no run
enable signal is present or a fault exists.
RUNNING
The ACS 600 has been started, run enable signal is active, and no
active faults exist.
FAULT
A fault has occurred. See Chapter 7 – Fault Tracing for more details.
FAULT (-1)
Relay energised when power is applied, and de-energised upon a fault
trip.
FAULT(RST)
The ACS 600 is in a fault condition, but will reset after the programmed
autoreset delay (refer to Parameter 31.03 DELAY TIME).
Parameter Range/Unit Description
1 RELAY RO1 OUTPUT Refer to the text
below for the
available
selections.
Relay output 1 content.
2 RELAY RO2 OUTPUT Relay output 2 content.
3 RELAY RO3 OUTPUT Relay output 3 content.
4 RO1 TON DELAY 0.0 to 3600.0 s Operation delay of the relay
5 RO1 TOFF DELAY 0.0 to 3600.0 s Release delay of the relay
6 RO2 TON DELAY 0.0 to 3600.0 s Operation delay of the relay
7 RO2 TOFF DELAY 0.0 to 3600.0 s Release delay of the relay
8 RO3 TON DELAY 0.0 to 3600.0 s Operation delay of the relay
9 RO3 TOFF DELAY 0.0 to 3600.0 s Release delay of the relay
10 NDIO MOD1 RO1 READY;
RUNNING;
FAULT;
WARNING;
REF 2 SEL;
AT SPEED;
POINTER1 (or
POINTER2 or
POINTER3)
Drive status indicated by a relay
output of the optional Digital I/O
Extension Module (NDIO).11 NDIO MOD1 RO2
12 NDIO MOD2 RO1
13 NDIO MOD2 RO2
14 NDIO MOD3 RO1
15 NDIO MOD3 RO2
Chapter 6 – Parameters
Firmware Manual 6-19
STALL WARN
Stall alarm has been activated (refer to Parameter 30.10 STALL
FUNCTION).
STALL FLT
Stall protection has tripped (refer to Parameter 30.10 STALL
FUNCTION).
MOT TEMP WRN
Motor temperature has exceeded the warning level.
MOT TEMP FLT
Motor thermal protection has tripped.
ACS TEMP WRN
The ACS 600 temperature has exceeded the warning level 115 °C
(239 °F).
ACS TEMP FLT
The ACS 600 overheat protection has tripped. The tripping level is
125 °C (257 °F).
FAULT/WARN
Any fault or warning has occurred.
WARNING
Any warning has occurred.
REVERSED
Motor rotates in reverse direction.
EXT CTRL
External control is selected.
REF 2 SEL
Reference 2 is selected.
CONST SPEED
A Constant Speed (1 ... 15) is selected.
DC OVERVOLT
The intermediate circuit DC voltage has exceeded the overvoltage limit.
DC UNDERVOL
The intermediate circuit DC voltage has fallen below the undervoltage
limit.
SPEED 1 LIM
Output speed has exceeded or fallen below the supervision limit 1.
Refer to Parameter 32.01 SPEED1 FUNCTION and Parameter 32.02
SPEED1 LIMIT.
SPEED 2 LIM
Output speed has exceeded or fallen below the supervision limit 2.
Refer to Parameter 32.03 SPEED2 FUNCTION and Parameter 32.04
SPEED2 LIMIT.
Chapter 6 – Parameters
6-20 Firmware Manual
CURRENT LIM
Motor current has exceeded or fallen below the set current supervision
limit. Refer to Parameter 32.05 CURRENT FUNCTION and Parameter
32.06 CURRENT LIMIT.
REF 1 LIM
Reference 1 has exceeded or fallen below the set supervision limit.
Refer to Parameter 32.11 REF1 FUNCTION and Parameter 32.12
REF1 LIMIT.
REF 2 LIM
Reference 2 has exceeded or fallen below the set supervision limit.
Refer to Parameter 32.13 REF2 FUNCTION and Parameter 32.14
REF2 LIMIT.
TORQUE 1 LIM
The motor torque has exceeded or fallen below the set supervision
limit. Refer to Parameter 32.07 TORQUE1 FUNCTION and Parameter
32.08 TORQUE1 LIMIT.
TORQUE 2 LIM
The motor torque has exceeded or fallen below the set supervision
limit. Refer to Parameter 32.09 TORQUE2 FUNCTION and Parameter
32.10 TORQUE2 LIMIT.
STARTED
The ACS 600 has received a Start command.
LOSS OF REF
The reference has been lost.
AT SPEED
The actual value has reached the reference value. The speed error is
max. 10 % of the nominal speed in the speed control mode.
ACT1 LIM
PID controller actual value 1 has exceeded or fallen below the set
supervision limit. Refer to Parameter 32.15 ACT1 FUNCTION and
Parameter 32.16 ACT1 LIMIT.
ACT2 LIM
PID controller actual value 2 has exceeded or fallen below the set
supervision limit. Refer to Parameter 32.17 ACT2 FUNCTION and
Parameter 32.18 ACT2 LIMIT.
COMM. MODULE
The relay is controlled by fieldbus reference REF3. See Appendix C –
Fieldbus Control.
POINTER1
The relay output is controlled by a status bit selected using Parameters
45.01 POINTER1 GRP+IND and 45.02 POINTER1 BIT.
BRAKE CTRL
The relay output is controlled by a brake control function. See Group 42
Brake Control.
Chapter 6 – Parameters
Firmware Manual 6-21
14.02 RELAY RO2
OUTPUT
Refer to Parameter 14.01 RELAY RO1 OUTPUT. Difference:
• POINTER1 is replaced with POINTER2.
The relay is controlled by a status bit selected using Parameters
45.03 POINTER2 GRP+IND and 45.04 POINTER2 BIT.
14.03 RELAY RO3
OUTPUT
Refer to Parameter 14.01 RELAY RO1 OUTPUT. Differences:
• ACT 1 LIM and ACT 2 LIM indications cannot be selected for RO3.
• POINTER1 is replaced with POINTER3.
The relay is controlled by a status bit selected using Parameters
45.05 POINTER3 GRP+IND and 45.06 POINTER3 BIT.
• MAGN READY can be selected for RO3 only.
The motor is magnetised and ready to give nominal torque (nominal
magnetising of the motor has been reached).
• USER 2 SEL can be selected for RO3 only.
The User Macro 2 has been loaded.
14.04 RO1 TON DELAY Sets an operation delay for relay output RO1.
0.0 s to 3600.0 s
Default value is 0.0 s.
14.05 RO1 TOFF DELAY Sets the release delay for relay output RO1. See Parameter 14.04 RO1
TON DELAY for more information.
14.06 RO2 TON DELAY Sets the operation delay for relay output RO2. See Parameter 14.04
RO1 TON DELAY for more information.
14.07 RO2 TOFF DELAY Sets the release delay for relay output RO2. See Parameter 14.04 RO1
TON DELAY for more information.
14.08 RO3 TON DELAY Sets the operation delay for relay output RO3. See Parameter 14.04
RO1 TON DELAY for more information.
14.09 RO3 TOFF DELAY Sets the release delay for relay output RO3. See Parameter 14.04 RO1
TON DELAY for more information.
“1”
“0”
“1”
“0”
time
tOn tOff tOn tOff
tOn Operation delay for relay output RO1 (14.04 RO1 TON DELAY)
tOff Release delay for relay output RO1 (14.05 RO1 TOFF DELAY)
Drive status
Relay RO1 status
Chapter 6 – Parameters
6-22 Firmware Manual
14.10 NDIO MOD1 RO1 Selects the drive status that is indicated by relay output RO1 of the
optional Digital I/O Extension Module no. 1 (see Parameter 98.03 DI/O
EXT MODULE 1).
READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED
READY is the default value. See Parameter 14.01 RELAY RO1
OUTPUT for more information on the selections.
POINTER1
The relay output is controlled by a status bit selected using Parameters
45.01 POINTER1 GRP+IND and 45.02 POINTER1 BIT.
14.11 NDIO MOD1 RO2 Selects the drive status that is indicated by relay output RO2 of the
optional Digital I/O Extension Module no. 1 (see Parameter 98.03 DI/O
EXT MODULE 1).
READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED
RUNNING is the default value. See Parameter 14.01 RELAY RO1
OUTPUT for more information on the selections.
POINTER2
The relay is controlled by a status bit selected using Parameters 45.03
POINTER2 GRP+IND and 45.04 POINTER2 BIT.
14.12 NDIO MOD2 RO1 Selects the drive status that is indicated by relay output RO1 of the
optional Digital I/O Extension Module no. 2 (see Parameter 98.04 DI/O
EXT MODULE 2).
READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED
FAULT is the default value. See Parameter 14.01 RELAY RO1
OUTPUT for more information on the selections.
POINTER3
The relay is controlled by a status bit selected using Parameters 45.05
POINTER3 GRP+IND and 45.06 POINTER3 BIT.
14.13 NDIO MOD2 RO2 Selects the drive status that is indicated by relay output RO2 of the
optional Digital I/O Extension Module no. 2 (see Parameter 98.04 DI/O
EXT MODULE 2).
READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED
WARNING is the default value. See Parameter 14.01 RELAY RO1
OUTPUT for more information on the selections.
POINTER4
The relay is controlled by a status bit selected using Parameters 45.07
POINTER4 GRP+IND and 45.08 POINTER4 BIT.
14.14 NDIO MOD3 RO1 Selects the drive status that is indicated by relay output RO1 of the
optional Digital I/O Extension Module no. 3 (see Parameter 98.05 DI/O
EXT MODULE 3).
READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED
REF 2 SEL is the default value. See Parameter 14.01 RELAY RO1
OUTPUT for more information on the selections.
Chapter 6 – Parameters
Firmware Manual 6-23
POINTER5
The relay is controlled by a status bit selected using Parameters 45.09
POINTER5 GRP+IND and 45.10 POINTER5 BIT.
14.15 NDIO MOD3 RO2 Selects the drive status that is indicated by relay output RO2 of the
optional Digital I/O Extension Module no. 3 (see Parameter 98.05 DI/O
EXT MODULE 3).
READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED
AT SPEED is the default value. See Parameter 14.01 RELAY RO1
OUTPUT for more information on the selections.
POINTER6
The relay is controlled by a status bit selected using Parameters 45.11
POINTER6 GRP+IND and 45.12 POINTER6 BIT.
Chapter 6 – Parameters
6-24 Firmware Manual
Group 15 Analogue
Outputs
These parameter values can be altered with the ACS 600 running,
except those marked with (O). The Range/Unit column in Table 6-9
below shows the allowable parameter values. The text following the
table explains the parameters in detail.
Table 6-9 Group 15.
15.01 ANALOGUE
OUTPUT1 (O)
This parameter allows you to select which output signal is connected to
analogue output AO1 (current signal). The following list shows the full
scale value with Parameters 15.05 SCALE AO1 and 15.10 SCALE AO2
set to 100 %.
NOT USED
P SPEED
Value of a process quantity derived from the motor speed. Refer to
Group 34 Process Variable for scaling and unit selection (%; m/s; rpm).
The updating interval is 100 ms.
SPEED
Motor speed. 20 mA = motor nominal speed. The updating interval is
24 ms.
Parameter Range/Unit Description
1 ANALOGUE OUTPUT 1
(O)
Refer to the text
below for the
available
selections.
Analogue output 1 content.
2 INVERT AO1 NO; YES Analogue output signal 1
inversion.
3 MINIMUM AO1 0 mA; 4 mA Analogue output signal 1
minimum.
4 FILTER AO1 0.00 ... 10.00 s Filter time constant for AO1.
5 SCALE AO1 10 ... 1000 % Analogue output signal 1
scaling factor.
6 ANALOGUE OUTPUT 2
(O)
Refer to the text
below for the
available
selections.
Analogue output 2 content.
7 INVERT AO2 NO; YES Analogue output signal 2
inversion.
8 MINIMUM AO2 0 mA; 4 mA Analogue output signal 2
minimum.
9 FILTER AO2 0.00 ... 10.00 s Filter time constant for AO2.
10 SCALE AO2 10 ... 1000 % Analogue output signal 2
scaling factor.
Chapter 6 – Parameters
Firmware Manual 6-25
FREQUENCY
Output frequency. 20 mA = motor nominal frequency. The updating
interval is 24 ms.
CURRENT
Output current. 20 mA = motor nominal current. The updating interval
is 24 ms.
TORQUE
Motor torque. 20 mA = 100 % of motor nominal rating. The updating
interval is 24 ms.
POWER
Motor power. 20 mA = 100 % of motor nominal rating. The updating
interval is 100 ms.
DC BUS VOLT
DC bus voltage. 20 mA = 100 % of the reference value.
The reference value is 540 V d.c. ( =1.35 · 400 V) for the ACS 600 with
380 ... 415 V a.c. mains voltage rating and 675 V d.c. (1.35 · 500 V) for
the ACS 600 with 380 ... 500 V a.c. mains voltage rating. The updating
interval is 24 ms.
OUTPUT VOLT
Motor voltage. 20 mA = motor rated voltage. The updating interval is
100 ms.
APPL OUTPUT
The reference which is given as output from the application. For
example, if the PID Control macro is in use, this is the output of the
process PID controller. The updating interval is 24 ms.
REFERENCE
Active reference that the ACS 600 is currently following. 20 mA =
100 % of the active reference. The updating interval is 24 ms.
CONTROL DEV
The difference between the reference and the actual value of the
Process PID Controller. 0/4 mA = -100 %, 10/12 mA = 0 %, 20 mA =
100 %. The updating interval is 24 ms.
ACTUAL 1
Actual value 1 of the process PID controller. 20 mA = value of
Parameter 40.10 ACT1 MAXIMUM. The updating interval is 24 ms.
ACTUAL 2
Actual value 2 of the process PID controller. 20 mA = value of
Parameter 40.12 ACT2 MAXIMUM. The updating interval is 24 ms.
COMM. MODULE
The value is read from fieldbus reference REF4. See Appendix C –
Fieldbus Control.
M1 TEMP MEAS
Analogue output is a current source in a motor temperature measuring
circuit. Depending on the sensor type, the output is 9.1 mA (Pt 100) or
Chapter 6 – Parameters
6-26 Firmware Manual
1.6 mA (PTC). For more information, see Parameter 35.01 MOT1
TEMP AI1 SEL.
If this value is selected, the settings of Parameters 15.02 INVERT AO1
to 15.05 SCALE AO1 are not effective.
15.02 INVERT AO1 If you select YES, the analogue output AO1 signal is inverted.
15.03 MINIMUM AO1 The minimum value of the analogue output signal can be set to either
0 mA or 4 mA.
15.04 FILTER AO1 Filter time constant for analogue output AO1.
As the analogue output value changes, 63 % of the change takes place
within the time period specified by this parameter (See Figure 6-4).
Note: Even if you select 0 s as the minimum value, the signal is still
filtered with a time constant of 10 ms due to the signal interface
hardware. This cannot be changed by any parameters.
15.05 SCALE AO1 This parameter is the scaling factor for the analogue output AO1 signal.
If the selected value is 100 %, the nominal value of the output signal
corresponds to 20 mA. If the maximum is less than full scale, increase
the value of this parameter.
Example: The nominal motor current is 7.5 A and the measured
maximum current at maximum load is 5 A. The motor current 0 to 5 A is
read as 0 to 20 mA analogue signal through AO1.
1. AO1 is set to CURRENT with Parameter 15.01 ANALOGUE
OUTPUT1 (O).
2. AO1 minimum is set to 0 mA with Parameter 15.03 MINIMUM
AO1.
3. The measured maximum motor current is scaled to correspond to
20 mA analogue output signal: The reference value of the output
signal CURRENT is the motor nominal current i.e. 7.5 A (see
Parameter 15.01 ANALOGUE OUTPUT1 (O)). With 100 %
scaling, the reference value corresponds to full scale output signal
20 mA. To make the measured maximum motor current
correspond to 20 mA, it should be scaled equal to the reference
value before it is converted to analogue output signal.
Thus the scaling factor is set to 150 %.
15.06 ANALOGUE
OUTPUT2 (O)
Refer to Parameter 15.01 ANALOGUE OUTPUT1 (O).
Exceptions:
• If COMM. MODULE is selected, the value is read from fieldbus
reference REF 5. See Appendix C – Fieldbus Control.
• Selection M1 TEMP MEAS is not available.
15.07 INVERT AO2 Refer to Parameter 15.02 INVERT AO1.
k · 5 A = 7.5 A => k = 1.5 = 150 %
Chapter 6 – Parameters
Firmware Manual 6-27
15.08 MINIMUM AO2 Refer to Parameter 15.03 MINIMUM AO1.
15.09 FILTER AO2 Refer to Parameter 15.04 FILTER AO1.
15.10 SCALE AO2 Refer to Parameter 15.05 SCALE AO1.
Chapter 6 – Parameters
6-28 Firmware Manual
Group 16 System Ctr
Inputs
These parameter values can only be altered with the ACS 600 stopped.
The Range/Unit column in Table 6-10 below shows the allowable
parameter values. The text following the table explains the parameters
in detail.
Table 6-10 Group 16.
16.01 RUN ENABLE This parameter selects the source of the run enable signal.
Indication of missing Run Enable signal is shown on the first row of the
Control Panel display (see Chapter 2 – Overview of ACS 600
Programming and the CDP 312 Control Panel).
YES
Run enable signal is active. The ACS 600 is ready to start without an
external run enable signal.
DI1 ... DI12
To activate the Run Enable signal, the selected digital input must be
connected to +24 V DC. If the voltage drops to 0 V DC, the ACS 600
will stop and will not start until the run enable signal resumes. The drive
stop mode is selected with Parameter 21.07 RUN ENABLE FUNC.
For the connection of DI7 to DI12 see Group 98 Option Modules.
COMM. MODULE
The signal is given through Fieldbus Control Word. See Appendix C –
Fieldbus Control.
16.02 PARAMETER
LOCK
This parameter selects the state of the Parameter Lock. With
Parameter Lock you can inhibit unauthorised parameter changes.
OPEN
Parameter Lock is open. Parameters can be altered.
Parameter Range/Unit Description
1 RUN ENABLE YES; DI1; ...; DI12;
COMM. MODULE
Run enable input.
2 PARAMETER LOCK OPEN; LOCKED; Parameter lock input.
3 PASS CODE 0 ... 30000 Parameter lock pass code.
4 FAULT RESET SEL NOT SEL;
DI1; ... ;DI6;
ON STOP;
COMM. MODULE;
DI7; ... ; DI12
Fault reset input.
5 USER MACRO IO CHG NOT SEL;
DI1; ... ; DI12
Restores parameters to
user macro setting values.
6 LOCAL LOCK OFF; ON Disables local control
(Panel)
7 PARAM SAVE SAVE..; DONE Parameter saving to the
permanent memory
Chapter 6 – Parameters
Firmware Manual 6-29
LOCKED
Parameter Lock is closed from the Control Panel. Parameters cannot
be altered. The Parameter Lock can be opened only by entering the
valid code at Parameter 16.03 PASS CODE.
16.03 PASS CODE This parameter selects the Pass Code for the Parameter Lock. The
default value of this parameter is 0. In order to open the Parameter
Lock change the value to 358. After the Parameter Lock is opened the
value is automatically changed back to 0.
16.04 FAULT RESET SEL NOT SEL
If you select NOT SEL, fault reset is executed from the Control Panel
keypad only.
DI1 ... DI12
If a digital input is selected, fault reset is executed through the digital
input, or from the Control Panel:
• Control Panel is in remote mode: Reset is activated by a rising
(positive) edge of the digital input signal i.e. by closing the normally
open contact connecting 24 VDC to the digital input terminal.
• Control Panel is in local mode: Reset is activated by the Control
Panel reset key.
For the connection of DI7 to DI12, see Group 98 Option Modules.
ON STOP
Fault reset is executed along with the stop signal received through a
digital input. Reset can be given from the Control Panel also.
COMM. MODULE
The signal is given through fieldbus Control Word. See Appendix C –
Fieldbus Control. Reset can be given from the Control Panel also.
16.05 USER MACRO IO
CHG
NOT SEL; DI1 ... DI12
This parameter enables the selection of the desired User Macro via a
digital input in the following way:
When the state of the specified digital input changes from high to low
User Macro 1 is loaded. When the state of the specified digital input
changes from low to high User Macro 2 is loaded.
The User Macro used can be changed via a digital input only when the
drive is stopped. During the change of the Macro the drive will not start.
The value of this parameter is not included in the User Macro. The
setting once made remains despite of the User Macro change.
User Macro 2 selection can be supervised via relay output 3. See
Parameter 14.03 RELAY RO3 OUTPUT for more information.
Note: Always redo the User Macro save by Parameter 99.02
APPLICATION MACRO after changing parameter settings or
reperforming the motor identification. If Parameter 16.05 USER
Chapter 6 – Parameters
6-30 Firmware Manual
MACRO IO CHG is pointing to digital input, the last settings saved by
the user are loaded into use whenever the power is switched off and on
again, or macro is changed. Any unsaved changes will be lost.
For the connection of DI7 to DI12, see Group 98 Option Modules.
16.06 LOCAL LOCK OFF
No local lock in use.
ON
Disables entering to local control mode (LOC/REM key of the Panel).
WARNING: Before activating this function it must be ensured that the
Control Panel is not needed for stopping the drive.
16.07 PARAM SAVE SAVE..; DONE
Selection SAVE saves parameter values to the permanent memory.
Note: A new parameter value of a standard macro is saved
automatically when changed from the Panel but not when altered
through a fieldbus connection.
Chapter 6 – Parameters
Firmware Manual 6-31
Group 20 Limits These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-11 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-11 Group 20.
Parameter Range/Unit Description
1 MINIMUM SPEED -18000/(number of pole
pairs)... 20.02
MAXIMUM SPEED
Operating range minimum
speed. Cannot be used in
the SCALAR mode.
2 MAXIMUM SPEED 20.01 MINIMUM
SPEED ...
18000/(number of pole
pairs)
Operating range maxi-
mum speed. Cannot be
used in the SCALAR
mode.
3 MAXIMUM CURRENT 0 % Ihd ... 200 % Ihd Maximum output current.
4 MAXIMUM TORQUE 0.0 % ... 600.0 % Maximum torque. Cannot
be used in the SCALAR
mode.
5 OVERVOLTAGE CTRL YES; NO DC overvoltage controller
6 UNDERVOLTAGE CTRL YES; NO DC undervoltage control-
ler
7 MINIMUM FREQ -300 Hz ... 50 Hz Operating range mini-
mum frequency. Visible in
the SCALAR mode only.
8 MAXIMUM FREQ -50 ... 300 Hz Operating range maxi-
mum frequency. Visible in
the SCALAR mode only.
9 MIN TORQ SELECTOR -MAX TORQ; SET MIN
TORQ
Minimum torque limit
selector. Cannot be used
in the SCALAR mode.
10 SET MIN TORQUE -600.0 % ... 0.0 % Minimum torque value,
when Parameter 20.09
MIN TORQ SELECTOR is
SET MIN TORQ. Cannot
be used in the SCALAR
mode.
11 P MOTORING LIMIT 0%...600% Limit for the maximum
power from inverter to
motor
12 P GENERATING LIMIT -600% .. 0% Limit for the maximum
power from motor to
inverter
Chapter 6 – Parameters
6-32 Firmware Manual
20.01 MINIMUM SPEED Represents the minimum speed. The default value depends on the
number of motor pole pairs and it is either -750, -1000, -1500 or -3000.
When the value is positive the motor will not run in the reverse
direction.
This limit cannot be set in the SCALAR control mode.
Note: The speed limits in Group 20 Limits are linked to the setting of
99.08 MOTOR NOM SPEED. If value of Parameter 99.08 MOTOR
NOM SPEED is changed, the speed limit settings change automatically
as well.
20.02 MAXIMUM SPEED Represents the maximum speed. The default value depends on the
selected motor and it is either 750, 1000, 1500 or 3000.
This limit cannot be set in the SCALAR control mode.
Note: The speed limits in Group 20 Limits are linked to the setting of
99.08 MOTOR NOM SPEED. If value of Parameter 99.08 MOTOR
NOM SPEED is changed, the speed limit settings change automatically
as well.
20.03 MAXIMUM
CURRENT
The maximum output current that the ACS 600 will supply to the motor.
The default value is 200 % I2hd e.g. 200 percentage of the heavy-duty
use output current of the ACS 600.
20.04 MAXIMUM
TORQUE
This setting defines the momentarily allowed maximum torque of the
motor in the forward direction. The motor control software of the
ACS 600 limits the setting range of the maximum torque according to
the inverter and motor data. The default value is 300 % of the nominal
torque of the motor.
This limit cannot be set in the SCALAR control mode.
20.05 OVERVOLTAGE
CTRL
Selection NO deactivates the overvoltage controller.
Fast braking of a high inertia load causes the DC bus voltage to rise to
the overvoltage control limit. To prevent the DC voltage from exceeding
the limit, the overvoltage controller automatically decreases the braking
torque.
CAUTION! If a braking chopper and a braking resistor are connected to
the ACS 600, this parameter value must be set to OFF to ensure
proper operation of the chopper.
20.06 UNDERVOLTAGE
CTRL
Selection NO deactivates the undervoltage controller.
If the DC bus voltage drops due to loss of input power, the
undervoltage controller will decrease the motor speed in order to keep
the DC bus voltage above the lower limit. By decreasing the motor
speed, the inertia of the load will cause regeneration back into the ACS
600, keeping the DC bus charged, and preventing an undervoltage trip.
Chapter 6 – Parameters
Firmware Manual 6-33
This will increase power loss ride through on systems with a high
inertia, such as a centrifuge or fan.
20.07 MINIMUM FREQ This limit can be set in the SCALAR control mode only. When the value
is positive the motor will not run in the reverse direction.
20.08 MAXIMUM FREQ This limit can be set in the SCALAR control mode only.
20.09 MIN TORQ
SELECTOR
Parameter defines the allowed minimum torque i.e. the allowed torque
in reverse (negative) rotation direction.
This parameter cannot be set in the SCALAR control mode.
-MAX TORQ
Minimum torque limit is equal to the inverted maximum limit (20.04
MAXIMUM TORQUE).
SET MIN TORQ
Minimum torque limit is defined with Parameter 20.10 SET MIN
TORQUE.
20.10 SET MIN TORQUE Parameter defines the allowed minimum torque of the motor when
Parameter 20.09 MIN TORQ SELECTOR is set to value SET MIN
TORQ.
This parameter cannot be set in the SCALAR control mode.
-600 % ... 0%
Minimum torque limit in percent of the nominal motor torque. Default
value is -300 %.
20.11 P MOTORING
LIMIT
Parameter defines the allowed maximum power fed by the inverter to
the motor.
0% ... 600%
Maximum motoring power limit in percent of the motor nominal power.
Default value is 300%.
20.12 P GENERATING
LIMIT
Parameter defines the allowed maximum power fed by the motor to the
inverter.
-600% ... 0%
Maximum generating power limit in percent of the motor nominal
power. Default value is -300%.
Chapter 6 – Parameters
6-34 Firmware Manual
Group 21 Start/Stop The parameter values marked with (O) cannot be altered with the
ACS 600 running. The Range/Unit column in Table 6-12 below shows
the allowable parameter values. The text following the table explains
the parameters in detail.
Table 6-12 Group 21.
21.01 START FUNCTION
(O)
AUTOMATIC
Automatic start is the default start function. This selection guarantees
optimal motor start in most cases. It includes the flying start (starting to
a rotating machine) and the automatic restart (stopped motor can be
restarted immediately without waiting the motor flux to die away)
functions.
The ACS 600 motor control identifies the flux as well as the mechanical
state of the motor and starts the motor instantly under all conditions.
AUTOMATIC is always to be selected in the scalar control mode (see
Parameter 99.04 MOTOR CTRL MODE) although no flying start or
automatic restart is possible by default in scalar control. The flying start
feature needs to be activated separately with Parameter 21.08
SCALAR FLY START.
DC MAGN
DC magnetising should be selected if high breakaway torque is
required. The ACS 600 pre-magnetises the motor before the start. The
pre-magnetising time is determined automatically, being typically
200 ms to 2 s depending on the motor size. This selection guarantees
the highest possible break-away torque.
The starting to a rotating machine is not possible when DC
magnetising is selected. DC magnetising cannot be selected in the
scalar control mode (see Parameter 99.04 MOTOR CTRL MODE).
Parameter Range/Unit Description
1 START FUNCTION
(O)
AUTO; DC MAGN;
CNST DC MAGN
Start function selection.
2 CONST MAGN TIME
(O)
30.0 ms ...
10000.0 ms
Time for pre–magnetising.
3 STOP FUNCTION COAST; RAMP Stop function selection.
4 DC HOLD NO; YES Enable DC Hold.
5 DC HOLD SPEED (O) 0 rpm ... 3000 rpm Speed for DC Hold.
6 DC HOLD CURR (O) 0 % ... 100 % Current for DC Hold.
07 RUN ENABLE FUNC RAMP STOP;
COAST STOP;
OFF2 STOP; OFF3
STOP
Drive stop mode for the run
enable function
8 SCALAR FLY START NO; YES Activation of the flying start
feature in scalar control mode.
Chapter 6 – Parameters
Firmware Manual 6-35
CNST DC MAGN
Constant DC magnetising should be selected instead of DC
magnetising if constant pre-magnetising time is required (e.g. if the
motor start must be simultaneous with a mechanical brake release).
This selection also guarantees the highest possible break-away torque
when the pre-magnetising time is set long enough. The pre-
magnetising time is defined by Parameter 21.02 CONST MAGN TIME
(O).
WARNING! The drive will start after the set magnetising time has
passed although the motor magnetisation is not completed. In
applications where a full breakaway torque is essential, ensure always
that the constant magnetising time is long enough to allow generation
of full magnetisation and torque.
The starting to a rotating machine is not possible when DC
magnetising is selected. DC magnetising cannot be selected in the
scalar control mode (see Parameter 99.04 MOTOR CTRL MODE.
21.02 CONST MAGN
TIME (O)
Defines the magnetising time in the constant magnetising mode. After
the start command the ACS 600 automatically pre-magnetises the
motor the set time.
To ensure full magnetising, set the value the same as or higher than
the rotor time constant. If not known, use the rule-of-thumb value given
in table below:
21.03 STOP FUNCTION COAST
The ACS 600 stops supplying voltage immediately after a Stop
command is received and the motor coasts to a stop.
RAMP
Ramp deceleration, as defined by the active deceleration time,
Parameter 22.03 DECEL TIME 1 or Parameter 22.05 DECEL TIME 2.
Warning: If the brake control function is on, the application program
uses ramp stop in spite of the selection COAST (see Group 42 Brake
Control
21.04 DC HOLD If this parameter is set to YES, the DC Hold feature is enabled.
Motor Rated Power Constant Magnetising Time
< 10 kW > 100 to 200 ms
10 to 200 kW > 200 to 1000 ms
1200 to 1000 kW > 1000 to 2000 ms
Chapter 6 – Parameters
6-36 Firmware Manual
DC Hold is not possible in the SCALAR control mode.
Figure 6-6 DC Hold.
When both reference and speed drop below Parameter 21.05 DC
HOLD SPEED (O), the ACS 600 will stop generating sinusoidal current
and inject DC into the motor. The current value is the current set by
Parameter 21.06 DC HOLD CURR (O). When the reference speed
rises above 21.05 DC HOLD SPEED (O), the DC will be removed and
normal ACS 600 function resumed.
DC Hold has no effect if the Start signal is deactivated.
Note: Injecting DC current into the motor causes the motor to heat up.
In applications where long DC Hold times are required, externally
ventilated motors should be used. If the DC Hold period is long, the DC
Hold cannot prevent the motor shaft from rotating if a constant load is
applied to the motor.
21.05 DC HOLD SPEED
(O)
Sets the speed limit for DC Hold.
21.06 DC HOLD CURR
(O)
Sets the current applied to the motor when DC Hold is activated.
21.07 RUN ENABLE
FUNC
Parameter selects which stop mode is applied when the run enable
signal is switched off. The run enable signal is put into use by
Parameter 16.01 RUN ENABLE.
The setting overrides the normal stop mode setting (Parameter 21.03
STOP FUNCTION) when the run enable signal is switched off.
WARNING! The drive will restart after the run enable signal restores (if
the START signal is on).
DC HOLD SPEED
t
t
SPEEDmotor
Ref.
DC Hold
Chapter 6 – Parameters
Firmware Manual 6-37
Warning: If the brake control function is on, the application program
uses ramp stop in spite of the selection COAST STOP (see Group 42
Brake Control).
RAMP STOP
This is the default value. The application program stops the drive along
the deceleration ramp defined by Parameters in Group 22 Accel/Decel.
COAST STOP
The application program stops the drive by cutting off the motor power
supply (the inverter IGBTs are blocked). The motor rotates freely to
zero speed.
OFF2 STOP
The application program stops the drive by cutting off the motor power
supply (the inverter IGBTs are blocked). The motor rotates freely to
zero speed.
The drive will restart only when the run enable signal is on and the
START signal is switched on (progam receives a rising edge of the
START signal).
OFF3 STOP
The application program stops the drive along the deceleration ramp
defined by Parameter 22.07 EM STOP RAMP TIME.
The drive will restart only when the run enable is on and the START
signal is switched on (progam receives a rising edge of the START
signal).
21.08 SCALAR FLY
START
This Parameter activates the flying start feature in the scalar control
mode. See Parameters 21.01 START FUNCTION (O) and 99.04
MOTOR CTRL MODE.
NO
Flying start feature is not active. This is the default setting.
YES
Flying start feature is active.
Chapter 6 – Parameters
6-38 Firmware Manual
Group 22 Accel/Decel These parameter values can be altered with the ACS 600 running,
except those marked with (O). The Range/Unit column in Table 6-13
below shows the allowable parameter values. The text following the
table explains the parameters in detail.
Table 6-13 Group 22.
22.01 ACC/DEC 1/2 SEL
(O)
This parameter selects the Acceleration/Deceleration Ramp pair that is
used. The selection can be performed through digital inputs DI1 to
DI12. 0 V DC = Acceleration ramp 1 and Deceleration ramp 1 are used;
24 V DC = Acceleration ramp 2 and Deceleration ramp 2 are used.
For the connection of DI7 to DI12, see Group 98 Option Modules.
22.02 ACCEL TIME 1 The time required for the speed to change from 0 to the maximum
speed. The maximum speed is defined with Parameter 20.02
MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of
the minimum limit is greater than the maximum limit.
If the reference signal changes at a rate slower than the acceleration
time, the motor speed will follow the reference signal. If the reference
signal changes faster than the acceleration time, the rate at which the
motor speeds up will be limited by this parameter.
If acceleration time is set too short, the ACS 600 will automatically
prolong the acceleration not to exceed the maximum current limit
(Parameter 20.03 MAXIMUM CURRENT).
22.03 DECEL TIME 1 The time required for the speed to change from maximum to zero. The
maximum speed is defined with Parameter 20.02 MAXIMUM SPEED,
or 20.01 MINIMUM SPEED, if the absolute value of the minimum limit
is greater than the maximum limit.
Parameter Range/Unit Description
1 ACC/DEC 1/2 SEL (O) ACC/DEC 1;
ACC/DEC 2;
DI1 ... DI12
Acceleration/Deceleration ramp
selection.
2 ACCEL TIME 1 0.00 ...
1800.00 s
Time for speed 0 to max. speed
(Acceleration ramp 1).
3 DECEL TIME 1 0.00 ...
1800.00 s
Time for max. speed to 0 speed
(Deceleration ramp 1).
4 ACCEL TIME 2 0.00 ...
1800.00 s
Time for speed 0 to max. speed
(Acceleration ramp 2).
5 DECEL TIME 2 0.00 ...
1800.00 s
Time for speed max. to 0 speed
(Deceleration ramp 2).
6 ACC/DEC RAMP SHPE 0 ... 1000.00 s Accel./Decel. ramp shape time.
7 EM STOP RAMP TIME 0.00 ...
2000.00 s
Emergency Stop ramp time.
Chapter 6 – Parameters
Firmware Manual 6-39
If the reference signal changes at a rate slower than the deceleration
time, the motor speed will follow the reference signal. If the reference
signal changes faster than the deceleration time, the rate at which the
motor slows down will be limited by this parameter.
If deceleration time is set too short, the ACS 600 will automatically
prolong the deceleration not to exceed the DC bus overvoltage limit. If
there is any doubt about the deceleration time being too short, ensure
that the DC overvoltage control is on (Parameter 20.05
OVERVOLTAGE CTRL).
If short deceleration time is needed for the high inertia application, the
ACS 600 should be equipped with a braking chopper and a braking
resistor. The excess energy generated during the braking is led by the
chopper to the resistor and dissipated to prevent a DC voltage rise in
the intermediate circuit. The chopper and the resistor are available for
all ACS 600 types as optional add-on kits.
22.04 ACCEL TIME 2 Refer to Parameter 22.02 ACCEL TIME 1.
22.05 DECEL TIME 2 Refer to Parameter 22.03 DECEL TIME 1.
22.06 ACC/DEC
RAMP SHPE
This parameter allows you to select the shape of the
acceleration/deceleration ramp.
0 s
Linear ramp. Suitable for drives requiring steady acceleration or
deceleration and for slow ramps.
0.100 ... 1000.00 s
S-curve ramp. S-curve ramps are ideal for conveyors carrying fragile
loads, or other applications where a smooth transition is required when
changing from one speed to another. The S curve consists of
symmetrical curves at both ends of the ramp and a linear part in
between.
Figure 6-7 Acceleration and deceleration ramp shapes.
Linear ramp
ACC/DEC RAMP SHPE = 0 s
S-curve ramp
ACC/DEC RAMP SHPE = x s
x s
As a rule of thumb, a suitable relation
between the ramp shape time and the
acceleration ramp time is 1/5. Examples are
given below.
Acc/Dec Ramp
Time
(Par. 22.02 to 05)
Ramp Shape
Time (Par. 22.06)
1 s 0.2 s
5 s 1 s
15 s 3 s
Chapter 6 – Parameters
6-40 Firmware Manual
22.07 EM STOP
RAMP TIME
This parameter defines the time inside which the drive is stopped upon
an Emergency Stop command. The command can be given through
fieldbus or the NDIO module Emergency Stop option. For more
information on the Emergency Stop option consult the local ABB
representative.
0.00 ... 2000.00 s
Chapter 6 – Parameters
Firmware Manual 6-41
Group 23 Speed Ctrl These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-14 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
These parameters are not visible in the SCALAR control mode.
Table 6-14 Group 23.
It is possible to tune the PID algorithm based speed controller of the
ACS 600 by setting Parameters 1 to 5 in this group or by selecting the
Autotune run by Parameter 6. The Motor ID Run automatically tunes
the speed controller. In most cases there is no need to tune it
separately.
The values of these parameters define how the output of the Speed
Controller changes when there is a difference (error value) between the
actual speed and the reference. Figure 6-8 displays typical step
responses of the Speed Controller.
Step responses can be seen by monitoring Actual Signal 1.02 SPEED.
Note: The Standard Motor ID Run (refer to Chapter 3 – Start-up Data)
updates the values of Parameters 23.01, 23.02 and 23.04.
The dynamic performance of the speed control at low speeds can be
improved by increasing the relative gain and decreasing the integration
time.
Speed controller output is the reference for the torque controller. The
torque reference is limited by Parameter 20.04 MAXIMUM TORQUE.
Parameter Range/Unit Description
1 GAIN 0.0 ... 200.0 Gain for speed controller.
2 INTEGRATION TIME 0.01 s ... 999.97 s Integration time for speed
controller.
3 DERIVATION TIME 0.0 ... 9999.8 ms Derivation time for speed
controller.
4 ACC
COMPENSATION
0.00 s ... 999.98 s Derivation time used in
compensation of acceleration.
5 SLIP GAIN 0.0 % ... 400.0 % Gain for the slip of the motor.
6 AUTOTUNE RUN NO; YES Autotuning of the speed
controller.
Chapter 6 – Parameters
6-42 Firmware Manual
Figure 6-8 Step responses of the Speed Controller with different
settings. 1 to 10 % reference step is used.
Figure 6-9 Speed controller, a simplified block diagram.
23.01 GAIN Relative gain for the speed controller. If you select 1, a 10 % change in
error value (e.g. reference - actual value) causes the speed controller
output to change 10 % of the nominal torque.
Note: Great gain may cause speed oscillation.
A : Undercompensated: 23.02 INTEGRATION TIME too short and 23.01 GAIN too low
B : Normally tuned, autotuning
C : Normally tuned, manual tuning. Better dynamic performance than with B
D : Overcompensated: 23.02 INTEGRATION TIME too short and 23.01 GAIN too high
Speed
t
CB DA
Step height
Derivative
Proportional,
Integral
Derivative
Acceleration
Compensation
Torque
reference
Speed
reference
Calculated
Actual Speed
Error
value-
+
+
+
+
Chapter 6 – Parameters
Firmware Manual 6-43
Figure 6-10 Speed Controller Output after an error step when the error
remains constant.
23.02 INTEGRATION
TIME
Integration time defines the rate at which the controller output changes
when the error value is constant. The shorter the integration time, the
faster the continuous error value is corrected. Too short integration time
makes the control unstable.
Figure 6-11 Speed Controller Output after an error step when the error
remains constant.
23.03 DERIVATION TIME Derivative action boosts the controller output if the error value changes.
The longer the derivation time, the more the speed controller output is
boosted during the change. The derivation makes the control more
responsive for the disturbances. If derivation time is set to zero, the
controller works as a PI controller, otherwise as a PID controller.
Gain = Kp = 1
TI = Integration time = 0
TD= Derivation time = 0
Controller
Error Value
Controller Output
t
%
e = Error value
Output = Kp · e
TI
Controller Output
t
%
Gain = Kp = 1
TI = Integration time > 0
TD= Derivation time = 0
Kp · e e = Error value
Kp · e
Chapter 6 – Parameters
6-44 Firmware Manual
Figure 6-12 Speed Controller Output after an error step when the error
remains constant.
Note: Changing this parameter is recommended only if a pulse
encoder is used.
23.04 ACC
COMPENSATION
Derivation time for compensation of acceleration. In order to
compensate inertia during acceleration the derivative of the reference
is added to the output of the speed controller. The principle of a
derivative action is described at 23.03 DERIVATION TIME above.
As a general rule, set this parameter to a value from 50 to 100 % of the
sum of the mechanical time constants of the motor and the driven
machine.
Figure 6-13 Speed responses when a high inertia load is accelerated
along a ramp.
Note: AUTOTUNE RUN initialises this parameter to 50 % of
mechanical time constant.
23.05 SLIP GAIN Defines the gain for the slip. 100 % means full slip compensation; 0 %
means no slip compensation. The default value is 100 %. Other values
can be used if static speed error is detected despite of the full slip
compensation.
Example: 1000 rpm constant speed reference is given to the drive.
Despite of the full slip compensation (SLIP GAIN = 100 %) a manual
TI
Kp · e
Error Value
Controller Output
t
%
Gain = Kp = 1
TI = Integration time > 0
TD= Derivation time > 0
Ts= Sample time period = 2 ms
,e = Error value change between
two samples
e = Error value
Kp · TD ·
,e
Ts Kp · e
Speed reference
Actual speed
No Acceleration Compensation Acceleration Compensation
tt
% %
Chapter 6 – Parameters
Firmware Manual 6-45
tachometer measurement from the motor axis gives speed value 998
rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To
compensate the error, the slip gain should be increased. At 106 % gain
value no static speed error exists.
23.06 AUTOTUNE RUN The speed controller of the ACS 600 can be tuned automatically by
performing the Autotune Run. The mechanical inertia of the load is
taken into consideration in GAIN, INTEGRATION, DERIVATION and
ACC COMPENSATION parameters. The system is tuned to be
undercompensated rather than overcompensated.
To perform the Autotune Run:
• Run the motor at a constant speed of 20 to 70 % of the rated speed.
• Change Parameter 23.06 AUTOTUNE RUN to YES.
After the Autotune Run is performed, this parameter value
automatically reverts to NO.
Note: Autotune Run can be performed only while the ACS 600 is
running. The motor load must be connected to the motor. The best
result is achieved when the motor is run up to 20 ... 40 % of the rated
speed before starting the Autotune Run.
CAUTION! The motor will be accelerated by 10 % of the rated speed
with 10 ... 20 % torque step without any ramp during this procedure.
MAKE SURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE
PERFORMING THE AUTOTUNE RUN!
Chapter 6 – Parameters
6-46 Firmware Manual
Group 24 Torque Ctrl This group is visible only if the Torque Control Macro is selected. It is
invisible in the SCALAR control mode.
These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-15 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-15 Group 24.
24.01 TORQ RAMP UP Defines the time required for the reference to increase from zero to the
rated torque.
24.02 TORQ RAMP
DOWN
Defines the time required for the reference to decrease from the rated
torque to zero.
Parameter Range/Unit Description
1 TORQ RAMP UP 0.00 s ... 120.00 s Time for reference from 0 to
the rated torque.
2 TORQ RAMP DOWN 0.00 s ... 120.00 s Time for reference from the
rated torque to 0.
Chapter 6 – Parameters
Firmware Manual 6-47
Group 25 Critical
Speeds
These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-16 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
In the SCALAR control mode the critical speed ranges are set as Hz.
Note: In the PID Control macro (see Parameter 99.02 APPLICATION
MACRO), Critical Speeds are not in use.
Table 6-16 Group 25.
Note: Using the critical speed lockout function in a closed loop
application will cause the system to oscillate if the required output
speed is within the critical speed band.
Note: The value of the low speed cannot be higher than the high speed
of the same band.
In some mechanical systems, certain speed ranges can cause
resonance problems. With this Parameter Group, it is possible to set up
to three different speed ranges that the ACS 600 will skip over. It is not
required that Parameter 25.04 CRIT SPEED 2 LOW is higher than
Parameter 25.03 CRIT SPEED 1 HIGH, as long as the LOW parameter
of any one set is lower than the HIGH parameter of the same set. Sets
may overlap, but the skip will be from the lower LOW value to the higher
HIGH value.
To activate the Critical Speed settings, set Parameter 25.01 CRIT
SPEED SELECT to ON.
Note: Set unused Critical Speeds to 0 rpm.
Parameter Range/Unit Description
1 CRIT SPEED SELECT OFF; ON Critical speed jump over logic.
2 CRIT SPEED 1 LOW 0 ... 18000 rpm Critical speed 1 start.
3 CRIT SPEED 1 HIGH 0 ... 18000 rpm Critical speed 1 end.
4 CRIT SPEED 2 LOW 0 ... 18000 rpm Critical speed 2 start.
5 CRIT SPEED 2 HIGH 0 ... 18000 rpm Critical speed 2 end.
6 CRIT SPEED 3 LOW 0 ... 18000 rpm Critical speed 3 start.
7 CRIT SPEED 3 HIGH 0 ... 18000 rpm Critical speed 3 end.
Chapter 6 – Parameters
6-48 Firmware Manual
Example: A fan system has bad vibration from 540 rpm to 690 rpm
and from 1380 rpm to 1560 rpm. Set the parameters as follows:
2 CRIT SPEED 1 LOW 540 rpm
3 CRIT SPEED 1 HIGH 690 rpm
4 CRIT SPEED 2 LOW 1380 rpm
5 CRIT SPEED 2 HIGH 1560 rpm
If, due to bearing wear, another resonance occurs at 1020 ... 1080 rpm,
the critical speed table can be added to as follows:
6 CRIT SPEED 3 LOW 1020 rpm
7 CRIT SPEED 3 HIGH 1080 rpm
Figure 6-14 Example of critical speed settings in a fan system suffering
vibration problems in the speed ranges 540 ... 690 rpm and 1380 ...
1560 rpm.
s1 Low s1 High s2 Low s2 High SPEEDref
540 690 1380 1560 [rpm]
540
690
1380
1560
[rpm]
SPEEDmotor
Chapter 6 – Parameters
Firmware Manual 6-49
Group 26 Motor Control These parameter values can only be altered with the ACS 600 stopped.
The Range/Unit column in Table 6-17 below shows the allowable
parameter values. The text following the table explains the parameters
in detail.
Table 6-17 Group 26.
26.01 FLUX
OPTIMIZATION
The total energy consumption and noise can be reduced by changing
the magnitude of the flux depending on the actual load. Flux
optimization should be activated in drives that usually operate below
nominal load.
Flux optimization cannot be selected in the scalar control mode (see
Parameter 99.04 MOTOR CTRL MODE).
26.02 FLUX BRAKING The ACS 600 can provide faster deceleration by raising the level of
magnetisation in the motor when needed, instead of limiting the
deceleration ramp. By increasing the flux in the motor, the energy of the
mechanical system is changed to thermal energy in the motor.
Parameter Range/Unit Description
1 FLUX OPTIMIZATION NO; YES Selection of the flux optimization
function.
2 FLUX BRAKING NO; YES Selection of the flux braking
function.
3 IR COMPENSATION 0 % ... 30 % Compensation voltage level.
5 HEX FIELD WEAKEN NO; YES Activates the motor flux control
based on a hexagonal flux
pattern.
Chapter 6 – Parameters
6-50 Firmware Manual
Figure 6-15 Motor braking torque in percent of the rated torque as
function of output frequency.
Flux braking cannot be selected in the scalar control mode (see
Parameter 99.04 MOTOR CTRL MODE).
26.03 IR
COMPENSATION
This parameter is adjustable in the SCALAR control mode only.
This parameter sets the extra relative voltage level that is given to the
motor at zero speed. The range is 0 ... 30 % of motor nominal voltage.
IR compensation increases the breakaway torque.
Figure 6-16 IR Compensation is implemented by applying extra voltage
to the motor. UN is the nominal voltage of the motor.
120
80
40
0
5 10 20 30 40 50
1
2
34
5
120
80
40
0
5 10 20 30 40 50
1
2
3
4
5
f (Hz)
Braking Torque (%)
f (Hz)
Flux Braking
No Flux Braking
1
2
3
4
5
2.2 kW
15 kW
37 kW
75 kW
250 kW
Rated Motor Power
UN
U (%)
f (Hz)Field weakening point
No compensation
IR Compensation
Chapter 6 – Parameters
Firmware Manual 6-51
26.05 HEX FIELD
WEAKEN
This parameter selects whether motor flux is controlled along a circular
or a hexagonal pattern in the field weakening area of the frequency
range.
NO
ACS 600 controls the motor flux insuch a way that the rotating flux
vector follows a circular pattern. This is the default value and ideal for
most applications. However, when operated in the field weakening
range, it is not possible to reach 100% output voltage. The peak load
capacity of the drive is lower than with the full voltage.
YES
Motor flux is controlled along a circular pattern below the field
weakening point (FWP, typically 50 or 60 Hz), and along a hexagonal
pattern in the field weakening range. The applied pattern is changed
gradually as the frequency increases from 100% to 120% of the FWP.
Using the hexagonal flux pattern, the maximum output voltage can be
reached; The peak load capacity is higher than with the circular flux
pattern but the continuous load capacity is lower in the frequency range
of FWP to 1.6 x FWP, due to increased losses.
Chapter 6 – Parameters
6-52 Firmware Manual
Group 30 Fault
Functions
These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-18 shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-18 Group 30.
Parameter Range/Unit Description
1 AI<MIN FUNCTION FAULT; NO;
CONST SP 15; LAST SPEED
Operation in case of AI <Minimum fault.
2 PANEL LOSS FAULT;
CONST SP 15; LAST SPEED
Operation in case the Control Panel selected as
active control location for the ACS 600 stops
communicating.
3 EXTERNAL FAULT NOT SEL; DI1-DI12 External fault input.
4 MOTOR THERM PROT FAULT; WARNING; NO Operation in case of overtemperature.
5 MOT THERM P MODE DTC; USER MODE; THERMISTOR Motor thermal protection mode selection.
6 MOTOR THERM TIME 256.0 ... 9999.8 s Time for 63 % temperature rise.
7 MOTOR LOAD CURVE 50.0 ... 150.0 % Motor current maximum limit.
8 ZERO SPEED LOAD 25.0 ... 150.0 % Motor load curve point at zero speed.
9 BREAK POINT 1.0 ... 300.0 Hz Break point of motor load curve.
10 STALL FUNCTION FAULT; WARNING; NO Operation in case of motor stall.
11 STALL FREQ HI 0.5 ... 50 Hz Frequency limit for stall protection logic.
12 STALL TIME 10.00 ... 400.00 s Time for stall protection logic.
13 UNDERLOAD FUNC NO; WARNING; FAULT Operation in case of underload fault.
14 UNDERLOAD TIME 0.0 ... 600.0 s Time limit for underload logic.
15 UNDERLOAD CURVE 1 ... 5 Torque limit for underload logic.
16 MOTOR PHASE
LOSS
NO; FAULT Operation in case motor phase is lost.
17 EARTH FAULT WARNING; FAULT Operation in case of earth fault.
18 COMM FAULT FUNC FAULT; NO;
CONST SP 15;
LAST SPEED
Operation of the drive in case of the Main or
Auxiliary Reference Data Set loss.
19 MAIN REF DS T-OUT 0.1 s ... 60 s Time delay for the Main Data Set supervision
function. See Parameter 30.18 COMM FAULT
FUNC.
20 COMM FAULT RO/AO ZERO; LAST VALUE Operation of the relay output/analogue output
in case of the Auxiliary Reference Data Set
loss.
21 AUX DS T-OUT 0.1 ... 60.0 s Time delay for the Auxiliary Data Set
supervision function. See Parameter 30.18
COMM FAULT FUNC.
22 IO CONF FUNC NO; WARNING Operation in case of an improper use of the
optional I/O.
Chapter 6 – Parameters
Firmware Manual 6-53
30.01 AI<MIN FUNCTION This parameter allows the selection of operation in case the analogue
input signal drops below the minimum limit, provided the minimum is
set at 0.5 V / 1 mA or above (“living zero”).
CAUTION: If you select CONST SP 15 or LAST SPEED, make sure
that it is safe to continue operation in case analogue input signal is lost.
FAULT
Fault indication is displayed and the motor coasts to stop.
NO
No activity wanted.
CONST SP 15
Warning indication is displayed and the speed is set according to
Parameter 12.16 CONST SPEED 15.
LAST SPEED
Warning indication is displayed and the speed is set to the level the
ACS 600 was last operating at. This value is determined by the
average speed over the last 10 seconds.
30.02 PANEL LOSS Defines the operation of the ACS 600 if the Control Panel selected as
the control location for the ACS 600 stops communicating.
CAUTION: If you select CONST SP 15 or LAST SPEED, make sure
that it is safe to continue operation in case communication with the
Control Panel fails.
FAULT
Fault indication is displayed (if there are any Control Panels
communicating on the link) and the ACS 600 stops according to the
setting of Parameter 21.03 STOP FUNCTION.
CONST SP 15
Warning indication is displayed (if there are any Control Panels
communicating on the link) and the speed is set according to
Parameter 12.16 CONST SPEED 15.
LAST SPEED
Warning indication on display (if there are any Control Panels
communicating on the link) and the speed is set to the level the
ACS 600 was last operating at. This value is determined by the
average speed over the last 10 seconds.
30.03 EXTERNAL FAULT NOT SEL
DI1-DI12
This selection defines the digital input used for an external fault signal.
If an external fault occurs, i.e. digital input drops to 0 VDC, the ACS 600
Chapter 6 – Parameters
6-54 Firmware Manual
is stopped and the motor coasts to stop. A fault message is displayed
on the Control Panel.
For the connection of DI7 to DI12, see Group 98 Option Modules.
30.04 MOTOR THERM
PROT
This parameter defines the operation of the motor thermal protection
function which protects the motor from overheating.
FAULT
Displays a warning indication at the warning level. Displays a fault
indication and stops the ACS 600 when the motor temperature reaches
the 100 % level.
WARNING
Warning indication is displayed when the motor temperature reaches
the warning level (95 % of the nominal value).
NO
No activity wanted.
30.05 MOT THERM P
MODE
Selects the thermal protection mode. The motor protection is made by
means of the thermal model or thermistor measurement.
The ACS 600 calculates the temperature of the motor using the
following assumptions:
• The motor is in ambient temperature (30 °C) when power is applied
to the ACS 600.
• Motor heating is calculated assuming a load curve (Figure 6-19).
The motor will heat above nominal temperature if it operates in the
region above the curve, and cool if it operates below the curve. The
rate of heating and cooling is set by MOTOR THERM TIME.
CAUTION: Motor thermal protection will not protect the motor if the
cooling of the motor is reduced due to dust and dirt.
DTC
The DTC (Direct Torque Control) load curve is used for calculating
heating of the motor. Motor thermal time is approximated for standard
self-ventilated squirrel-cage motors as a function of the current of the
motor and the number of pole pairs.
It is possible to scale the DTC load curve with Parameter 30.07
MOTOR LOAD CURVE if the motor is used in conditions other than
described above. Parameters 30.06 MOTOR THERM TIME, 30.08
ZERO SPEED LOAD and 30.09 BREAK POINT cannot be set.
Note: Automatically calculated model (DTC) cannot be applied when
99.06 MOTOR NOM CURRENT > 800 A.
USER MODE
In this mode the user can define the operation of thermal protection by
Chapter 6 – Parameters
Firmware Manual 6-55
setting Parameters 30.06 MOTOR THERM TIME, 30.08 ZERO SPEED
LOAD and 30.09 BREAK POINT.
THERMISTOR
Motor thermal protection is activated with an I/O signal based on a
motor thermistor.
This mode requires a motor thermistor or break contact of a thermistor
relay connected between digital input DI6 and +24 V d.c. If direct
thermistor connection is used, digital input DI6 supervises the
overtemperature as follows:
When overtemperature is detected, the drive stops if the Parameter
30.04 MOTOR THERM PROT is set to FAULT.
WARNING! According to IEC 664, the connection of the thermistor to
the digital input 6 of ACS 600 requires double or reinforced insulation
between motor live parts and the thermistor. Reinforced insulation
entails a clearance and creeping distance of 8 mm (400/500 VAC
equipment). If the thermistor assembly does not fulfil the requirement,
the other I/O terminals of ACS 600 must be protected against contact,
or a thermistor relay must be used to isolate the thermistor from the
digital input.
WARNING! In standard application macros, digital input 6 is selected
as the source for constant speed selection, Start/Stop or Run Enable
signal. Change these settings before selecting THERMISTOR for
Parameter 30.05 MOT THERM P MODE. In other words, ensure that
digital input 6 is not selected as signal source by any other parameter
than 30.05 MOT THERM P MODE.
Thermistor resistance DI6 Status Temperature
0 ... 1.5 kohm “1” Normal
4 kohm or higher “0” Overtemperature
Chapter 6 – Parameters
6-56 Firmware Manual
Figure 6-17 Thermistor connection. Alternative 2: At the motor end the cable shield should be earthed
through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.
30.06 MOTOR THERM
TIME
This is the time within which the motor temperature reaches 63 % of
the final temperature rise. Figure 6-18 shows Motor Thermal Time
definition. If the DTC mode is selected for motor thermal protection,
motor thermal time can be read from this parameter. This parameter
can be set only if Parameter 30.05 MOT THERM P MODE is set to
USER MODE.
If thermal protection according to UL requirements for NEMA class
motors is desired, use this rule of thumb - Motor Thermal Time equals
35 times t6 (t6 in seconds is the time that the motor can safely operate
at six times its rated current, given by the motor manufacturer). The
thermal time for a Class 10 trip curve is 350 s, for a Class 20 trip curve
700 s and for a Class 30 trip curve 1050 s.
Figure 6-18 Motor Thermal Time.
Motor
T 10 nF
Motor
T
Thermistor
relay
6 18 DI6
7 19 +24 V d.c.
Alternative 1 Alternative 2
X22:NIOCboard
(ACS601/604/607)
X2:Terminalblock
(optionalforACS607)
6 18 DI6
7 19 +24 V d.c.
X22:NIOCboard
(ACS601/604/607)
X2:Terminalblock
(optionalforACS607)
Motor
Load
100 %
Temp.
Rise
63 %
Motor Therm Time
t
t
Chapter 6 – Parameters
Firmware Manual 6-57
30.07 MOTOR LOAD
CURVE
The Motor Load Curve sets the maximum allowable operating load of
the motor. When set to 100 %, the maximum allowable load is equal to
the value of Start-up Data Parameter 99.06 MOTOR NOM CURRENT.
The load curve level should be adjusted if the ambient temperature
differs from the nominal value.
Figure 6-19 Motor Load Curve.
30.08 ZERO SPEED
LOAD
This parameter defines the maximum allowable current at zero speed
to define the Motor Load Curve.
30.09 BREAK POINT This parameter defines the point at which the motor load curve begins
to decrease from the maximum value set by Parameter 30.07 MOTOR
LOAD CURVE to the Parameter 30.08 ZERO SPEED LOAD. Refer to
Figure 6-19 for an example of motor load curve.
30.10 STALL FUNCTION This parameter defines the operation of the stall protection. The
protection is activated if the following conditions are valid at a time
longer than the period set by Parameter 30.12 STALL TIME.
• The motor torque is close to the internal momentary changing limit
of the motor control software that prevents the motor and the
inverter from overheating or the motor from pulling out.
• The output frequency is below the level set by Parameter 30.11
STALL FREQ HI.
FAULT
When the protection is activated the ACS 600 stops and a fault
indication is displayed.
WARNING
A warning indication is displayed. The indication disappears in half of
the time set by Parameter 30.12 STALL TIME.
NO
No activity is wanted.
50
100
150
30.08 ZERO SPEED LOAD
30.07 MOTOR LOAD CURVE
30.09 BREAK POINT
99.06 MOTOR NOM CURRENT
Speed
( % )
Chapter 6 – Parameters
6-58 Firmware Manual
Figure 6-20 Stall protection. T is motor torque.
30.11 STALL FREQ HI This parameter sets the frequency value for the stall function.
30.12 STALL TIME This parameter sets the time value for the stall function.
30.13 UNDERLOAD
FUNC
Removal of motor load may indicate a process malfunction. The
protection is activated if:
• The motor torque drops below the load curve selected by Parameter
30.15 UNDERLOAD CURVE.
• This condition has lasted longer than the time set by Parameter
30.14 UNDERLOAD TIME.
• Output frequency is higher than 10 % of the nominal frequency of
the motor.
The protection function assumes that the drive is equipped with a
motor of the rated power.
Select NO; WARNING; FAULT according to the activity you prefer. With
selection FAULT the ACS 600 stops the motor and displays a fault
message.
30.14 UNDERLOAD
TIME
Time limit for underload logic.
30.15 UNDERLOAD
CURVE
This parameter provides five selectable curves shown in Figure 6-21. If
the load drops below the set curve for longer than the time set by
Parameter 30.14 UNDERLOAD TIME, the underload protection is
activated. Curves 1 ... 3 reach maximum at the motor rated frequency
set by Parameter 99.07 MOTOR NOM FREQUENCY.
T
Stall torque limit
Stall region
ƒStall Frequency
(Parameter 30.11)
Chapter 6 – Parameters
Firmware Manual 6-59
Figure 6-21 Underload curve types. TM nominal torque of the motor, ƒN
nominal frequency of the motor.
30.16 MOTOR PHASE
LOSS
This parameter defines the operation when one or more motor phases
are lost.
FAULT
Fault indication is displayed and the ACS 600 stops.
NO
No activity wanted.
30.17 EARTH FAULT This parameter defines the operation when an earth fault is detected in
the motor or the motor cable.
FAULT
Fault indication is displayed and the ACS 600 stops.
WARNING
A warning indication is displayed. Ther drive continues to operate.
30.18 COMM FAULT
FUNC
This parameter defines the operation on a fieldbus communication
loss, i.e. when the drive fails to receive the Main Reference Data Set or
the Auxiliary Reference Data Set. See Appendix C – Fieldbus Control.
The delay times for the supervision function are defined by Parameter
30.19 MAIN REF DS T-OUT for the Main Reference Data Set, and
Parameter 30.21 AUX DS T-OUT for the Auxiliary Reference Data Set.
CAUTION: If you select CONST SP 15 or LAST SPEED, make sure
that it is safe to continue operation in case communication with the
communication module fails.
100
80
60
40
20
0
2.4 * ƒN
3
2
1 5
4
TM
70 %
50 %
30 %
ƒN
(%)
Chapter 6 – Parameters
6-60 Firmware Manual
FAULT
A fault indication is given and the ACS 600 stops according to the
setting of Parameter 21.03 STOP FUNCTION.
NO
No activity wanted.
CONST SP 15
A warning indication is given and the speed is set according to
Parameter 12.16 CONST SPEED 15.
LAST SPEED
A warning indication is given and the speed is set to the level the
ACS 600 was last operating at. This value is determined by the
average speed over the last 10 seconds.
30.19 MAIN REF DS
T-OUT
Time delay for the Main Reference Data Set supervision function. See
Parameter 30.18 COMM FAULT FUNC.
Default value is 1 s.
0.1 ... 60.0 s
30.20 COMM FAULT
RO/AO
This parameter defines the operation of the fieldbus controlled relay
output and analogue output in a communication loss. See Parameter
Group 14 Relay Outputs, Group 15 Analogue Outputs and
Appendix C – Fieldbus Control. Default value is ZERO.
The delay time for the supervision function is equal to value of
Parameter 30.21 AUX DS T-OUT.
ZERO
Relay output is de-energised. Analogue output is set to zero.
LAST
Relay output keeps the last state before the communication loss.
Analogue output gives the last value before the communication loss.
WARNING After the communication recovers, the update of the relay
and analogue outputs starts immediately without the fault message
resetting.
30.21 AUX DS T-OUT Time delay for the Auxiliary Reference Data Set supervision function.
See Parameter 30.18 COMM FAULT FUNC. The drive automatically
activates the supervision function 60 seconds after power switch-on if
the Auxiliary Reference Data Set is in use i.e. Parameter 90.01 AUX
DS REF3, 90.02 AUX DS REF4 or 90.03 AUX DS REF5 has a value
other than zero.
The application program also applies this delay time to the function
defined with Parameter 30.20 COMM FAULT RO/AO.
Default value is 1 s.
0.1 ... 60.0 s
Chapter 6 – Parameters
Firmware Manual 6-61
30.22 IO CONF FUNC Operation in case of improper use of the inputs/outputs of the optional
I/O extension modules in the ACS 600 application program.
NO
No indication of improper use of the optional I/O.
WARNING
This is the default value. The application program generates a warning
“IO CONF” if an optional input or output channel has been selected as
a signal interface, but the communication to the appropriate analogue
or digital I/O extension module has not been set up accordingly in
Group 98 Option Modules.
Example: The application program generates a warning if Parameter
16.01 RUN ENABLE is set to DI7 but:
• 98.03 DI/O EXT MODULE 1 is set to NO, or
• 98.09 NDIO1 DI FUNC is set to REPL DI1,2
Chapter 6 – Parameters
6-62 Firmware Manual
Group 31 Automatic
Reset
These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-19 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-19 Group 31.
The Automatic fault reset system resets the faults selected with
Parameters 31.04 OVERCURRENT, 31.05 OVERVOLTAGE, 31.06
UNDERVOLTAGE and 31.07 AI SIGNAL<MIN.
31.01 NUMBER OF
TRIALS
Sets the number of allowed autoresets within a certain time. The time
is defined with Parameter 31.02 TRIAL TIME. The ACS 600 prevents
additional autoresets and remains stopped until a successful reset is
performed from the Control Panel or through a digital input.
31.02 TRIAL TIME The time within which a limited number of fault autoresets is allowed.
The allowed number of faults per this time period is given with
Parameter 31.01 NUMBER OF TRIALS.
31.03 DELAY TIME This parameter sets the time that the ACS 600 will wait after a fault
occurs before attempting to reset. If set to zero, the ACS 600 will reset
immediately. If set to a value higher than zero, the drive will wait before
resetting.
31.04 OVERCURRENT If YES is selected, the fault (motor overcurrent) is reset automatically
after the delay set by Parameter 31.03 DELAY TIME and the ACS 600
resumes normal operation.
31.05 OVERVOLTAGE If YES is selected, the fault (DC bus overvoltage) is reset automatically
after the delay set by Parameter 31.03 DELAY TIME and the ACS 600
resumes normal operation.
Parameter Range/Unit Description
1 NUMBER OF TRIALS 0 ... 5 Number of faults limit for
Autoreset logic.
2 TRIAL TIME 1.0 ... 180.0 s Time limit for Autoreset logic.
3 DELAY TIME 0.0 ... 3.0 s Time delay between the fault and
the reset attempt.
4 OVERCURRENT NO; YES Enable automatic fault reset.
5 OVERVOLTAGE NO; YES Enable automatic fault reset.
6 UNDERVOLTAGE NO; YES Enable automatic fault reset.
7 AI SIGNAL<MIN NO; YES Enable automatic fault reset.
Chapter 6 – Parameters
Firmware Manual 6-63
31.06 UNDERVOLTAGE If YES is selected, the fault (DC bus undervoltage) is reset
automatically after the delay set by Parameter 31.03 DELAY TIME and
the ACS 600 resumes normal operation.
31.07 AI SIGNAL<MIN If YES is selected, the fault (analogue input signal under minimum
level) is reset automatically after the delay set by Parameter 31.03
DELAY TIME.
WARNING! If Parameter 31.07 AI SIGNAL<MIN is enabled, the drive
may restart even after a long stop when the analogue input signal is
restored. Ensure that the use of this feature will not cause physical
injury and/or damage equipment.
Chapter 6 – Parameters
6-64 Firmware Manual
Group 32 Supervision These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-20 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-20 Group 32.
*)
These parameters are significant only if the PID Control Macro is selected.
32.01 SPEED1
FUNCTION
This parameter allows you to activate a speed supervision function.
Relay outputs selected with Parameters 14.01 RELAY RO1 OUTPUT,
14.02 RELAY RO2 OUTPUT and 14.03 RELAY RO3 OUTPUT are
used to indicate if the speed drops below (LOW LIMIT) or exceeds
(HIGH LIMIT) the supervision limit.
Parameter Range/Unit Description
1 SPEED1
FUNCTION
NO; LOW LIMIT; HIGH
LIMIT; ABS LOW LIMIT
Speed 1 supervision.
2 SPEED1 LIMIT - 18000 ... 18000 rpm Speed 1 supervision limit.
3 SPEED2
FUNCTION
NO; LOW LIMIT; HIGH
LIMIT; ABS LOW LIMIT
Speed 2 supervision.
4 SPEED2 LIMIT - 18000 ... 18000 rpm Speed 2 supervision limit.
5 CURRENT
FUNCTION
NO; LOW LIMIT; HIGH
LIMIT
Motor current supervision.
6 CURRENT LIMIT 0 ... 1000 A Motor current supervision limit.
7 TORQUE 1
FUNCTION
NO; LOW LIMIT; HIGH
LIMIT
Motor torque supervision.
8 TORQUE 1 LIMIT -400 %... 400 % Motor torque supervision limit.
9 TORQUE 2
FUNCTION
NO; LOW LIMIT; HIGH
LIMIT
Motor torque supervision.
10 TORQUE 2 LIMIT -400 %... 400 % Motor torque supervision limit.
11 REF1 FUNCTION NO; LOW LIMIT; HIGH
LIMIT
Reference 1 supervision.
12 REF1 LIMIT 0 ... 18000 rpm Reference 1 supervision limit.
13 REF2 FUNCTION NO; LOW LIMIT; HIGH
LIMIT
Reference 2 supervision.
14 REF2 LIMIT 0 ... 500 % Reference 2 supervision limit.
15 ACT1
FUNCTION*)
NO; LOW LIMIT; HIGH
LIMIT
Actual 1 supervision.
16 ACT1 LIMIT*)
0 ... 200 % Actual 1 supervision limit.
17 ACT2
FUNCTION*)
NO; LOW LIMIT; HIGH
LIMIT
Actual 2 supervision.
18 ACT2 LIMIT*)
0 ... 200 % Actual 2 supervision limit.
Chapter 6 – Parameters
Firmware Manual 6-65
NO
Supervision not used.
LOW LIMIT
Supervision will be activated if value is below the limit set.
HIGH LIMIT
Supervision will be activated if value is above the limit set.
ABS LOW LIMIT
Supervision will be activated if value is below the set limit. Limit is
supervised in both rotating directions, forward and reverse (see the
shaded area on the left).
32.02 SPEED1 LIMIT Speed supervision limit adjustable from -18000 rpm to 18000 rpm.
32.03 SPEED2
FUNCTION
Refer to Parameter 32.01 SPEED1 FUNCTION.
32.04 SPEED2 LIMIT Speed supervision limit adjustable from -18000 rpm to 18000 rpm.
32.05 CURRENT
FUNCTION
Motor current supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION excluding ABS LOW LIMIT.
32.06 CURRENT LIMIT Motor current supervision limit. Setting in actual amperes, adjustable
between 0 A ... 1000 A.
32.07 TORQUE1
FUNCTION
Motor torque supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION excluding ABS LOW LIMIT.
32.08 TORQUE1 LIMIT Motor torque supervision limit. Setting in -400 % ... 400 % of the
nominal torque of the motor.
32.09 TORQUE2
FUNCTION
Motor torque supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION excluding ABS LOW LIMIT.
32.10 TORQUE2 LIMIT Motor torque supervision limit. Setting in -400 % ... 400 % of nominal
torque of the motor.
32.11 REF1 FUNCTION Reference 1 supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION excluding ABS LOW LIMIT.
32.12 REF1 LIMIT Reference 1 supervision limit adjustable from 0 to 18000 rpm.
32.13 REF2 FUNCTION Reference 2 supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION excluding ABS LOW LIMIT.
32.14 REF2 LIMIT Reference 2 supervision limit adjustable from 0 to 200 %.
32.15 ACT1 FUNCTION Actual value 1 supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION, except that relay output RO3 cannot be used
and excluding ABS LOW LIMIT.
32.16 ACT1 LIMIT Actual value 1 supervision limit adjustable from 0 to 200 %.
ABS LOW LIMIT
-ABS LOW LIMIT
speed/rpm
0
Chapter 6 – Parameters
6-66 Firmware Manual
32.17 ACT2 FUNCTION Actual value 2 supervision. Same options as with Parameter 32.01
SPEED1 FUNCTION, except that relay output RO3 cannot be used
and excluding ABS LOW LIMIT.
32.18 ACT2 LIMIT Actual value 2 supervision limit adjustable from 0 to 200 %.
Group 33 Information These parameter values cannot be altered. The Range/Unit column in
Table 6-21 below shows the parameter values. The text following the
table explains the parameters in detail.
Table 6-21 Group 33.
33.01 SOFTWARE
VERSION
This parameter displays the type, and the version of the firmware
package loaded into the ACS 600.
33.02 APPL SW
VERSION
This parameter displays the type, and the version of the application
program of your ACS 600.
33.03 TEST DATE This parameter displays the test date of your ACS 600.
Parameter Range/Unit Description
1 SOFTWARE
VERSION
xxxxxxxx Version of the software package.
2 APPL SW VERSION xxxxxxxx Version of the application
software.
3 TEST DATE DDMMYY Test date (Day, Month, Year).
ASxxxxyx
Product Family
A = ACS 600
Product
S = ACS 600 Standard
Firmware Version
5xyx = Version 5.xyx
ASAxxxyx
Product Family
A = ACS 600
Product
S = ACS 600 Standard
Firmware Type
A = Application Program
Firmware Version
5xyx = Version 5.xyx
Chapter 6 – Parameters
Firmware Manual 6-67
Group 34 Process
Variable
These parameter values can be altered with the ACS 600 running. The
Range/Unit column in Table 6-22 below shows the allowable parameter
values. The text following the table explains the parameters in detail.
Table 6-22 Group 34.
Function Description:
Process Variable
Definition
The block diagram below illustrates the use of the parameters that
define actual signal 1.01 PROCESS VARIABLE
34.01 SCALE This parameter scales the selected ACS 600 variable into a desired
process variable. Default value is 100.00. See section Function
Description: Process Variable Definition above.
34.02 P VAR UNIT This parameter selects the unit for the process variable. See section
Function Description: Process Variable Definition above.
NO
No unit is selected.
Parameter Range/Unit Description
1 SCALE 0.00 ... 100000.00 Scaling factor for the process
variable
2 P VAR UNIT NO; rpm; ... ; FPM Unit of the process variable
3 SELECT P VAR 0 to 9999 Selects the ACS 600 variable
to be scaled into a process
variable
4 MOTOR SP FILT TIM 0 to 20000 ms Filter time for actual speed
5 TORQ ACT FILT TIM 0. to 20000 ms Filter time for actual torque
6 RESET RUN TIME NO; YES Reset for the counter 1.43
MOTOR RUN TIME
1.01 PROCESS VARIABLE34.01 SCALE
NO
FPM
Unit for value
1.01 PROCESS VARIABLE
34.03
Select
34.02
Select
PARAMETER
00.00
99.99
TABLE
• • •
Mul.
Chapter 6 – Parameters
6-68 Firmware Manual
rpm; %;m/s; A; V; Hz; s; h; kh; C; lft (labels per foot); mA; mV; kW;
W; kWh; F; hp; MWh; m3h (m3
/h); l/s (dm3
/s); bar; kPa; GPM
(gallons per minute); PSI (pounds per square inch); CFM (cubic feet
per minute); ft; MGD (millions of gallons per day); iHg (inches of
mercury); FPM (feet per minute)
Possible choices for the unit. The default value is %.
34.03 SELECT P VAR This parameter selects the ACS 600 variable that is scaled into a
desired process variable. Default value is 142 (i.e. Actual Signal 1.42
PROCESS SPEED REL). See section Function Description: Process
Variable Definition above.
34.04 MOTOR SP FILTER
TIM
Sets a filter time for actual speed signal. Has an effect on:
• 1.02 SPEED
• speed read through an analogue output
• 32.01 SPEED1 FUNCTION and 32.03 SPEED2 FUNCTION
0 to 20000 ms
Default value is 500 ms
34.05 TORQ ACT FILT
TIM
Sets a filter time for actual torque signal. Has an effect on:
• 1.05 TORQUE
• torque read through an analogue output
• 32.07 TORQUE1 FUNCTION and 32.09 TORQUE2 FUNCTION
0 to 20000 ms
Default value is 100 ms
34.06 RESET RUN TIME Selecting YES resets the counter 1.43 MOTOR RUN TIME.
NO; YES
Chapter 6 – Parameters
Firmware Manual 6-69
Group 35 Mot Temp
Meas
The parameters of the motor temperature measurement function are
included in this group.
The table below lists the parameters. The detailed parameter
descriptions are given after two application examples.
Table 6-23 Group 35.
Parameter Range/Unit Description
1 MOT1 TEMP AI1 SEL NOT IN USE;
1XPT100; 2XPT100,
3XPT100, 1..3 PTC
Motor 1 temperature sensor
type.
2 MOT 1 TEMP ALM L -10 to 5000 °C / ohm Alarm limit for motor 1
temperature measurement.
3 MOT 1 TEMP FLT L -10 to 5000 °C / ohm Fault limit for motor 1
temperature measurement.
4 MOT2 TEMP AI2 SEL NOT IN USE;
1XPT100; 2XPT100,
3XPT100, 1..3 PTC
Motor 2 temperature sensor
type.
5 MOT 2 TEMP ALM L -10 to 5000 °C / ohm Alarm limit for motor 2
temperature measurement.
6 MOT 2 TEMP FLT L -10 to 5000 °C / ohm Fault limit for motor 2
temperature measurement.
7 MOT MOD
COMPENSAT
NO; YES Motor model temperature
compensation by measured
value.
Chapter 6 – Parameters
6-70 Firmware Manual
Application Example:
Temperature
Measurement through the
NIOC Board
The figure below shows the temperature measurement of one motor
using the Standard I/O Board, NIOC.
WARNING! According to IEC 664, the connection of the motor
temperature sensor to the Standard IO Board, NIOC, requires double
or reinforced insulation between motor live parts and the sensor.
Reinforced insulation entails a clearance and creeping distance of
8 mm (400/500 VAC equipment). If the assembly does not fulfil the
requirement:
• The NIOC terminals must be protected against contact and they
may not be connected to other equipment.
Or
• The temperature sensor must be isolated from the NIOC board
terminals.
Motor
T
10 nF
3 AI1+
4 AI1-
9 AO1+
10 AO1-
Motor
T
3 AI1+
4 AI1-
9 AO1+
10 AO1-
TT
One sensor
Three sensors
Parameter Settings
15.01 ANALOGUE OUTPUT1 (O) M1 TEMP MEAS
35.01 MOT1 TEMP AI1 SEL To be set according to the
type and number of sensors
35.02 MOT 1 TEMP ALM L Alarm limit for motor 1
35.03 MOT 1 TEMP FLT L Fault limit for motor 1
98.12 AI/O MOTOR TEMP NO
Note: Parameters 13.01 MINIMUM AI1 to 13.05 INVERT AI1 and
15.02 INVERT AO1 to 15.05 SCALE AO1 are not effective.
Actual values
1.35 MOTOR 1 TEMP, 3.08 ALARM WORD 1, 3.12 FAULT
WORD 3, 3.16 ALARM WORD 3
Warnings (See Chapter 7 – Fault Tracing and Group 3 Actual
Signals)
MOTOR 1 TEMP, MOTOR 2 TEMP, T MEAS ALM
Faults (See Chapter 7 – Fault Tracing and Group 3 Actual Signals)
MOTOR 1 TEMP, MOTOR 2 TEMP
Other
At the motor end the cable shield should be earthed through a
10 nF capacitor. If this is not possible, the shield is to be left
unconnected.
NIOC board
NIOC board
10 nF
Chapter 6 – Parameters
Firmware Manual 6-71
Application Example:
Temperature
Measurement through the
NAIO Module
The figure below shows the temperature measurement of one motor
through an optional Analogue I/O Extension Module, NAIO.
WARNING! According to IEC 664, the connection of the motor
temperature sensor to NAIO module requires double or reinforced
insulation between motor live parts and sensor. Reinforced insulation
entails a clearance and creeping distance of 8 mm (400/500 VAC
equipment). If the assembly does not fulfil the requirement:
• The NAIO terminals must be protected against contact and they
may not be connected to other equipment. The NAIO module power
supply output must also have isolation level of 2.5 kV (note that the
NIOC board does not fulfil this requirement).
Or
• The temperature sensor must be isolated from the NAIO module
terminals.
Motor
T
Motor
TTT
One sensor
Three sensors
Parameter Settings
35.01 MOT1 TEMP AI1 SEL To be set according to the
type and number of
sensors
35.02 MOT 1 TEMP ALM L Alarm limit for motor 1
35.03 MOT 1 TEMP FLT L Fault limit for motor 1
98.12 AI/O MOTOR TEMP UNIPOLAR
Actual values
1.35 MOTOR 1 TEMP, 3.08 ALARM WORD 1, 3.12 FAULT
WORD 3, 3.16 ALARM WORD 3
Warnings (See Chapter 7 – Fault Tracing and Group 3 Actual
Signals)
MOTOR 1 TEMP, MOTOR 2 TEMP, T MEAS ALM
Faults (See Chapter 7 – Fault Tracing and Group 3 Actual Signals)
MOTOR 1 TEMP, MOTOR 2 TEMP
Other
At the motor end, the cable shield should be earthed through a
10 nF capacitor. If this is not possible, the shield is to be left
unconnected.
The NAIO module must also be connected to a power supply. See
the module manual.
AI1+
AI1-
AO1+
AO1-
NAIO module
AI1+
AI1-
AO1+
AO1-
NAIO module
10 nF
10 nF
Chapter 6 – Parameters
6-72 Firmware Manual
35.01 MOT1 TEMP AI1
SEL
The Parameter activates the motor 1 temperature measurement
function, and selects the sensor type. See the following subsections
above:
• Application Example: Temperature Measurement through the NIOC
Board
• Application Example: Temperature Measurement through the NAIO
Module
NOT IN USE
Motor 1 temperature is not measured. This is the default setting.
1xPT100; 2xPT100; 3xPT100
Motor 1 temperature is measured using one to three Pt 100 sensors.
The analogue output AO1 feeds a constant current through the sensor.
The resistance of the sensor increases linearly as the motor
temperature rises, as does the voltage over the sensor. The
temperature measurement function reads the voltage through an
analogue input AI1 and converts it into degrees centigrade.
1..3 PTC
Motor 1 temperature is supervised by one to three PTC sensors.
The analogue output AO1 feeds a constant current through the
sensor(s). The resistance of the sensor increases sharply as the motor
temperature rises over the PTC reference temperature (Tref), as does
the voltage over the resistor. The temperature measurement function
reads the voltage through the analogue input AI1 and converts it into
ohms.
The figure below shows typical PTC sensor resistance values as a
function of the motor operating temperature.
35.02 MOT 1 TEMP
ALM L
Sets the alarm limit for the motor 1 temperature measurement. The
alarm indication is given when the limit is exceeded.
-10 to 5000 °C
Alarm limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1xPT100;
2xPT100; 3xPT100. Default value is 110 °C.
100
550
1330
4000
Ohm
T
Temperature Resistance
Normal 0 to 1.5 k ohm
Overtemperature > 4 kohm
Chapter 6 – Parameters
Firmware Manual 6-73
-10 to 5000 ohm
Alarm limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1..3 PTC.
Default value is 110 ohm.
35.03 MOT 1 TEMP FLT L Sets the fault trip limit for the motor 1 temperature measurement. The
fault indication is given when the limit is exceeded.
-10 to 5000 °C
Fault trip limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1xPT100;
2xPT100; 3xPT100. Default value is 130 °C.
-10 to 5000 ohm
Fault trip limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1..3 PTC.
Default value is 130 ohm.
35.04 MOT2 TEMP
AI2 SEL
The parameter activates the motor 2 temperature measurement
function, and selects the sensor type. See the subsection Application
Example: Temperature Measurement through the NAIO Module above.
Note: Two motors can be protected only by using an optional Analogue
Extension Module, NAIO. If Parameter 98.12 AI/O MOTOR TEMP is
set, the NAIO module is taken into use, and it is also used in the motor
1 temperature measurement (the Standard I/O Board, NIOC, is not in
use).
NOT IN USE
Motor 2 temperature is not measured. This is the default setting.
1xPT100; 2xPT100; 3xPT100
Motor 2 temperature is measured using one to three Pt 100 sensors.
See 35.01 MOT1 TEMP AI1 SEL
1..3 PTC
Motor 2 temperature is supervised by one to three PTC sensors. See
35.01 MOT1 TEMP AI1 SEL
35.05 MOT 2 TEMP
ALM L
Sets the alarm limit for the motor 2 temperature measurement function.
The alarm indication is given when the limit is exceeded.
-10 to 5000 °C
Alarm limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1xPT100;
2xPT100; 3xPT100. Default value is 110 °C.
-10 to 5000 ohm
Alarm limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1..3 PTC.
Default value is 110 ohm.
35.06 MOT 2 TEMP FLT L Sets the fault trip limit for the motor 2 temperature measurement
function. The fault indication is given when the limit is exceeded.
-10 to 5000 °C
Fault limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1xPT100;
2xPT100; 3xPT100. Default value is 110 °C.
Chapter 6 – Parameters
6-74 Firmware Manual
-10 to 5000 ohm
Fault limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1..3 PTC.
Default value is 110 ohm.
35.07 MOT MOD
COMPENSATION
Parameter selects whether the measured motor 1 temperature is used
in the motor model compensation.
NO
Measured motor 1 temperature is not used.
YES
Measured motor 1 temperature is used in motor model compensation.
Note: Selection is possible only when Pt 100 sensor(s) is used.
Chapter 6 – Parameters
Firmware Manual 6-75
Group 40 PID Control The parameter group includes parameters for three functions:
• process PID control (in use only when Parameter 99.02
APPLICATION MACRO is PID CTRL).
• speed or torque reference trimming (in use only when Parameter
99.02 APPLICATION MACRO is not PID CTRL).
• sleep function for the process PID control (in use only when
Parameter 99.02 APPLICATION MACRO is PID CTRL).
Table 6-24 below shows the parameters.The functions are described
on the following pages. The text following the function descriptions
explains the parameters in detail. The parameter values can be altered
with the ACS 600 running.
Table 6-24 Group 40.
Parameter Range/Unit Description
1 PID GAIN 0.1 ... 100 PID Controller Gain
selection.
2 PID INTEG TIME 0.02 ... 320.00 s PID Controller I-time
selection.
3 PID DERIV TIME 0.00 ... 10.00 s PID Controller D-time
selection.
4 PID DERIV FILTER 0.04 ... 10.00 s Time constant for the filter
of the D-term.
5 ERROR VALUE INV NO; YES PID Controller error value
inversion.
6 ACTUAL VALUE
SEL
ACT1; ACT1 - ACT2;
ACT1 + ACT2;
ACT1 * ACT2;
ACT1/ACT2;
MIN(A1,A2);
MAX(A1,A2);
sqrt(A1 - A2); sqA1 +
sqA2
PID Controller actual signal
selection.
7 ACTUAL1 INPUT SEL AI1; AI2; AI3; AI5; AI6;
CURRENT; TORQUE;
POWER
Actual 1 signal input
selection.
8 ACTUAL2 INPUT SEL AI1; AI2; AI3; AI5; AI6;
CURRENT; TORQUE;
POWER
Actual 2 signal input
selection.
9 ACT1 MINIMUM -1000 ... 1000 % Minimum scaling factor of
the Actual 1.
10 ACT1 MAXIMUM -1000 ... 1000 % Maximum scaling factor of
the Actual 1.
11 ACT2 MINIMUM -1000 ... 1000 % Minimum scaling factor of
the Actual 2.
Chapter 6 – Parameters
6-76 Firmware Manual
1)
Not visible with 99.02 APPLICATION MACRO = PID CTRL, 2)
Visible only when
99.02 APPLICATION MACRO = T CTRL, 3)
Visible only when 99.02 APPLICATION
MACRO = PID CTRL.
12 ACT2 MAXIMUM -1000 ... 1000 % Maximum scaling factor of
the Actual 2
13 PID INTEGRATION ON; OFF On/Off switch for the PID
control block integrator
14 TRIM MODE1)
OFF;PROPORTIONAL;
DIRECT
Enables/disbles trim
function and selects
between direct and
proportional trimming
15 TRIM REF SEL1)
AI1; AI2; AI3; AI5; AI6;
PAR 40.16
Selects the signal source
for the trim reference
16 TRIM REFERENCE1)
-100.0% to 100.0% Fixed trim reference value
(for 40.15 TRIM REF SEL)
17 TRIM RANGE
ADJUST1)
-100.0% to 100.0% Multiplier for the PID control
block output. Used in the
trim function
18 TRIM
SELECTION1,2)
SPEED TRIM;
TORQUE TRIM
Selects between speed and
torque reference trimming
19 ACTUAL FILT TIME 0.04 s to 10.00s Filter time for the actual
signals connected to the
PID control block
20 SLEEP
SELECTION3)
OFF; INTERNAL; DI1;
DI2; DI3; DI4; DI5; DI6;
DI7; DI8; DI9; DI10;
DI11; DI12
Sleep function conrol
21 SLEEP LEVEL3)
0.0 to 7200.0 rpm Sleep activation speed
22 SLEEP DELAY3)
0.0 s to 3600.0 s Sleep activation delay
23 WAKE UP LEVEL3)
0.0 % to 100.0 % Sleep deactivation level
(actual value in the process
PID ctrl)
24 WAKE UP DELAY3)
0.0 s to 3600.0 s Sleep deactivation delay
Parameter Range/Unit Description
Chapter 6 – Parameters
Firmware Manual 6-77
Function Description:
Process PID Control
The process PID control adjusts the drive speed in order to keep the
measured prosess quantity (actual value) at the desired level
(reference).
The block diagram below on the right illustrates the process PID
control. The minimum and maximum values of the PID controller output
are the same as Parameter 20.01 MINIMUM SPEED and 20.02
MAXIMUM SPEED (or 20.07 MINIMUM FREQ and 20.08 MAXIMUM
FREQ).
The figure on the left shows an application example: The process PID
controller adjusts the speed of a pressure boost pump according to the
measured pressure and the set pressure reference.
A C T P A R F U N C D R I V E
E N T E R
L O C
R E M
R E S E T R E F
A C S 6 0 0
0 . . . 1 0 b a r
4 . . . 2 0 m A
3
3
2
PID
ref
k
ti
td
i
dFiltT
errVInv
rInt
oh1
ol1
Actual Values
40.05
40.12
AI1
AI2
AI3
AI5
AI6
IMOT
40.19
Filter
%ref
40.01
40.02
40.03
40.04
40.05
40.13
PIDmax
PIDmin
Switch
Speed
reference
Frequency
reference
99.04 = 0
(DTC)
Example: Pressure boost pump
.
..
PID Control Block Diagram
Chapter 6 – Parameters
6-78 Firmware Manual
Function Description:
Reference Trimming
In trimming, the drive external %-reference (External reference 2) is
corrected. The block diagram below illustrates the function.
40.14
Select
%ref
1
Mul.
Mul.
Add
%ref
The drive reference before trimming
%ref’
The drive reference after trimming
max. speed
= 20.02 MAXIMUM SPEED (or 20.01 MINIMUM SPEED if the absolute value is
greater)
max freq
= 20.08 MAXIMUM FREQ (or 20.07 MINIMUM FREQ if the absolute value is greater)
max. torq
= 20.04 MAXIMUM TORQUE (or 20.10 SET MIN TORQUE if the absolute value is
greater)
%ref
%ref’
DIRECT (3)
PROPOR. (2)
OFF (1)
max.speed
Switch
max.freq
99.04 (DTC)
40.17
PID
tref
k
ti
td
i
dFiltT
errVInv
rInt
oh1
ol1
Actual Values
40.05
40.07
AI1
AI2
AI3
AI5
AI6
IMOT
40.19
Filter
40.15
Select
AI1
AI2
...
40.16
40.01
40.02
40.03
40.04
40.05
40.13
PIDmax
PIDmin
.
.
.
40.18
Select
max.torque
Chapter 6 – Parameters
Firmware Manual 6-79
Example: A speed controlled conveyor line where the line tension also
needs to be considered: The drive is speed controlled. In addition, the
line tension is monitored. If the measured tension increases too much
(above the tension setpoint) the speed is slightly decreased, and vice
versa. To accomplish the desired speed correction, the user:
• activates the trimming function and connects the tension setpoint
and the measured tension to the trimming function
• tunes the trimming to a suitable level
Drive rollers (pull)
Tension measurement
Speed controlled conveyor line
PID
Add
Tension
measurement
Speed reference
Tension
setpoint
Trimmed
speed reference
Speed reference trimming
Chapter 6 – Parameters
6-80 Firmware Manual
Function Description:
Sleeping
The block diagram below illustrates the sleep function enable/disable
logic. The sleep function can be put into use only when Parameter
99.02 APPLICATION MACRO is PID CTRL.
The time sceme below visualises the operation of the sleep function.
1)
“1” = Switch
to sleep mode
40.20
Select
Compare
1<2
Or
<1
40.22
Delay
t
1
240.21
Mot.speed
0
DI1
And
&%refActive
PIDCtrlActive
modulating
Set/Reset
S
R
S/R
Compare
1<2
1
240.23
0
INTERNAL
DI1
40.24
Delay
t
Or
<1
StartRq
03.02 (B1)
03.02 (B2)
1)
01.34
INTERNAL
..
.
40.20
Select
..
.
Mot.speed: Actual speed of the motor
%refActive: The % reference is in use (instead of the rpm (speed) reference)
PIDCtrlActive: 99.02 APPLICATION MACRO is PID CTRL
modulating: The inverter IGBT control is operating
Actual Value
Wake-up level
Parameter 42.23
Motor Speed
Sleep level
Par. 40.21
Time
Time
STARTSTOP
t<td td
td = Sleep delay, Parameter 40.22
Control Panel
SLEEP MODE
Application example: Sleep function
and a PID controlled pressure boost
pump (see also the subsection Function
Description: Process PID Control above)
The water consumption falls at night. As a
concequence, the PID process controller
decreases the motor speed. However, due
to natural losses in the pipes and the low
efficiency of the centrifugal pump at low
speed, the motor does not stop but keeps
rotating. The sleep function detects the
slow rotating, and stops the unnecessary
pumping after the sleep delay has passed.
The drive shifts into sleep mode, still moni-
toring the pressure: The pumping restarts
when the pressure falls under the allowed
minimum level and the wake-up delay has
passed.
twd
twd = Wake-up delay, Parameter 40.24
Chapter 6 – Parameters
Firmware Manual 6-81
40.01 PID GAIN This parameter defines the gain of the PID Controller. The setting
range is 0.1 ... 100. If you select 1, a 10 % change in error value
causes the PID Controller output to change by 10 %. If the 20.02
MAXIMUM SPEED is set to 1500 rpm, the actual speed reference is
changed by 150 rpm.
Table 6-25 below lists a few examples of gain settings, and the resulting
speed change to a 10 % change in error value and a 50 % change in
error value.
Table 6-25 Gain Settings (MAXIMUM SPEED is 1500 rpm).
40.02 PID INTEG TIME Defines the time in which the maximum output is achieved if a constant
error value exists and the gain is 1. Integration time 1 s denotes that a
100 % change is achieved in 1 s.
Figure 6-22 PID Controller Gain, I-Time, and Error Value.
PID Gain
Speed Change for a
10 % Change in
Error
Speed Change for a 50 % Change
in Error
0.5 75 rpm 375 rpm
1.0 150 rpm 750 rpm
3.0 450 rpm 1500 rpm (limited by parameter
20.02 MAXIMUM SPEED)
Process Error Value
PID Controller Output
Gain
Gain
PID Integration Time
t
Chapter 6 – Parameters
6-82 Firmware Manual
40.03 PID DERIV TIME Derivative is calculated according to two consecutive error values (EK-1
and EK) according to the following formula:
PID DERIV TIME · (EK - EK-1)/TS, in which TS = 12 ms sample time.
For example, if there is a 10 % step in error value, the output of the PID
Controller is increased by:
PID DERIV TIME · 10 % / TS.
The derivative is filtered with a 1-pole filter. The time constant of the
filter is defined by Parameter 40.04 PID DERIV FILTER.
40.04 PID DERIV FILTER Time constant of the 1-pole filter.
40.05 ERROR VALUE
INV
This parameter allows you to invert the Error Value (and thus the
operation of the PID Controller). Normally, a decrease in Actual Signal
(feedback) causes an increase in drive speed. If a decrease in Actual is
desired to cause a decrease in speed, set Error Value Invert to YES.
40.06 ACTUAL VALUE
SEL
ACT1; ACT1 - ACT2; ACT1 + ACT2; ACT1 * ACT2; ACT1/ACT2;
MIN(A1,A2) ; MAX(A1,A2); sqrt(A1-A2); sqA1 + sqA2
Actual signal source for the PID Process Controller is selected by this
parameter. The choice ACT1 sets one of the analogue inputs AI1, AI2
or AI3 as actual signal for the PID Controller. The setting of Parameter
40.07 ACTUAL 1 INPUT SEL determines the analogue inputs used.
The setting of Parameter 40.08 ACTUAL 2 INPUT SEL determines the
value of ACT2 which is used in selecting the Actual Value for the PID
Controller together with ACT1. ACT1 and ACT2 are combined by
subtraction, addition, multiplication or other functions as listed above.
In the list of parameter value choices A1 denotes ACT1 and A2
denotes ACT2. MIN(A1,A2) sets the parameter value to either ACT1 or
ACT2, depending which one has the smallest value. sqrt(A1 - A2) sets
the parameter value to square root of (ACT1 - ACT2). sqA1+sqA2 sets
the parameter value to square root of ACT1 plus square root of ACT2.
Use the sqrt(A1 - A2) or sqA1+sqA2 function if the PID Controller
controls flow with a pressure transducer measuring the pressure
difference over a flow meter.
40.07 ACTUAL 1 INPUT
SEL
This parameter selects one of the analogue inputs as actual signal 1
e.g. ACT1 used in Parameter 40.06 ACTUAL VALUE SEL.
AI1; AI2; AI3; AI5; AI6; CURRENT; TORQUE; POWER
For connection of AI5 to AI6, see Group 98 Option Modules.
40.08 ACTUAL 2 INPUT
SEL
This parameter selects one of the analogue inputs as actual signal 2
e.g. ACT2 used in Parameter 40.06 ACTUAL VALUE SEL.
AI1; AI2; AI3; AI5; AI6; CURRENT; TORQUE; POWER
For connection of AI5 to AI6, see Group 98 Option Modules.
40.09 ACT1 MINIMUM Minimum value for Actual Value 1. Defined as % of the difference
between the maximum and minimum values of the selected analogue
input. The setting range is -1000 to +1000 %. Refer to Parameter
Chapter 6 – Parameters
Firmware Manual 6-83
Group 13 Analogue Inputs for analogue input minimum and maximum
settings.
The value of this parameter can be calculated using the formula below.
The minimum of the actual value refers to the minimum of the span of
the actual value.
For example: The pressure of a pipe system is to be controlled
between 0 and 10 bar. The pressure transducer has an output span
from 4 to 8 V for pressure between 0 and 10 bar. The minimum output
voltage of the transducer is 2 V and the maximum 10 V, so the
minimum and the maximum of the analogue input is set to 2 V and 10
V. ACTUAL 1 MINIMUM is calculated as follows:
40.10 ACT1 MAXIMUM Maximum value for the Actual Value 1. Defined as % of the difference
between the maximum and minimum values of the selected analogue
input. The setting range is -1000 to +1000 %. Refer to Parameter
Group 13 Analogue Inputs for analogue input minimum and maximum
settings.
The value of this parameter can be calculated using the formula below.
The maximum of the actual value refers to the maximum of the span of
the actual value
Refer to the description of the example at Parameter 40.09 ACT1
MINIMUM.
ACTUAL 1 MAXIMUM in this case is:
Figure 6-23 below shows three examples of actual value scaling.
ACTUAL 1
Minimum of
actual value (V or mA) - MINIMUM AI (1, 2 or 3)
MAXIMUM AI (1, 2 or 3) - MINIMUM AI (1, 2 or 3)MINIMUM = · 100 %
ACTUAL 1 4 V - 2 V
10 V - 2 V
MINIMUM = · 100 % = 25 %
ACTUAL 1
Maximum of
actual value (V or mA) - MINIMUM AI (1, 2 or 3)
MAXIMUM AI (1, 2 or 3) - MINIMUM AI (1, 2 or 3)MAXIMUM = · 100 %
ACTUAL 1 8 V - 2 V
10 V - 2 V
MAXIMUM = · 100 % = 75 %
Chapter 6 – Parameters
6-84 Firmware Manual
Figure 6-23 Actual Value Scaling.
40.11 ACT2 MINIMUM Refer to Parameter 40.09 ACT1 MINIMUM.
40.12 ACT2 MAXIMUM Refer to Parameter 40.10 ACT1 MAXIMUM.
40.13 PID INTEGRATION On/Off switch for the PID control block integrator.
ON
Integration is in use. This is the default value.
OFF
Integration is not used.
40.14 TRIM MODE Activates the trim function and selects between direct and proportional
trimming. Not visible with 99.02 APPLICATION MACRO = PID CTRL.
See subsection Function Description: Reference Trimming.
OFF
Trim function is not in use. This is the default value.
PROPORTIONAL
Trim function is in use. The trimming factor is relative to the external %-
reference (EXT2).
DIRECT
Trim function is in use. The trimming factor is relative to a fixed limit
used in the reference control loop (speed, frequency or torque).
40.15 TRIM REF SEL Selects the signal source for the trim reference. Not visible with 99.02
APPLICATION MACRO = PID CTRL. See subsection Function
Description: Reference Trimming above.
10 V(100 %)
8 V(75 %)
4 V(25 %)
2 V(0 %)
0 V 0 %
100 %
Actual Scaled Actual
10 V(100 %)
8 V(80 %)
4 V(40 %)
0 V(0 %) 0 %
100 %
Actual Scaled Actual
100 %
60 %
20 %
0 % 0 %
100 %
Actual Scaled Actual
Minimum AI
Actual 1 Maximum 75 %
Actual 1 Minimum
Actual 1 Maximum = 20 %
Actual 1 Minimum = 60 %
2 V/4 mA
25 %
Minimum AI: 0 V/0 mAI
Actual 1 Maximum 80 %
Actual 1 Minimum 40 %
Chapter 6 – Parameters
Firmware Manual 6-85
AI1; AI2; AI3; AI5; AI6;
Analogue signal AI1 (to AI6) is used as the trim reference. AI1 is the
default value. For the connection of AI5 to AI6, see Group 98 Option
Modules.
PAR 40.16
Value of Parameter 40.16 TRIM REFERENCE is used as the trim
reference.
40.16 TRIM
REFERENCE
Fixed trim reference value for the selector 40.15 TRIM REF SEL. Not
visible with 99.02 APPLICATION MACRO = PID CTRL. See subsection
Function Description: Reference Trimming above.
-100.0% to 100.0%
0.0% is the default value.
40.17 TRIM RANGE
ADJUST
Multiplier for the PID control block output. Used in the trim function. Not
visible with 99.02 APPLICATION MACRO = PID CTRL. See subsection
Function Description: Reference Trimming above.
-100.0% to 100.0%
0.0% is the default value.
40.18 TRIM SELECTION Selects whether the trimming is used for correcting the speed or torque
reference. Visible only when 99.02 APPLICATION MACRO = T CTRL.
See subsection Function Description: Reference Trimming above.
SPEED TRIM
Trimming is used for speed reference correction. This is the default
value.
TORQUE TRIM
Trimming is used for torque reference correction.
40.19 ACTUAL FILT TIME Filter time for the actual signals connected to the PID control block.
See subsection Function Description: Process PID Control above.
0.04 s to 10.00 s
Trimreference
-minAI1 minAI1 maxAI1-maxAI1
Analogue Input Signal
Legend
AI5 and negative signal range (i.e
bipolar signal) can be used only with
an optional I/O extension module.
minAI5 = 13.16 MINIMUM AI5
maxAI5 = 13.17 MAXIMUM AI5
scaleAI = 13.18 SCALE AI5
scaleAI1
-scaleAI1
Example: AI5 as a trim reference
Chapter 6 – Parameters
6-86 Firmware Manual
40.20 SLEEP
SELECTION
Sets the sleep activation criteria. See subsection Function Description:
Sleeping above. Visible only with 99.02 APPLICATION MACRO = PID
CTRL.
OFF
The sleep function is not active. This is the default value.
INTERNAL
The Sleep function is activated and deactivated as defined with
Parameters 40.21 SLEEP LEVEL, and 40.23 WAKE UP LEVEL.
DI1; …; DI12
Digital input must be on (“1”) to enter the sleep mode. The sleep delay,
set with Parameter 40.22 SLEEP DELAY, is in effect. For connection of
DI7 to DI12, see Group 98 Option Modules.
40.21 SLEEP LEVEL Sets the speed limit for the sleep function. See subsection Function
Description: Sleeping above.Visible only with 99.02 APPLICATION
MACRO = PID CTRL.
0.0 to 7200.0 rpm
The default value is 0.0 rpm. When the motor speed falls below the
sleep level, the sleep delay counter is started. When the motor speed
exceeds the sleep level the sleep delay counter is reset.
40.22 SLEEP DELAY Sets the delay for the sleep function. See the figures in subsection
Function Description: Sleeping above. Visible only with 99.02
APPLICATION MACRO = PID CTRL.
0.0 s to 3600.0 s
The default value is 0.0 s. If the motor speed is below a set level (40.21
SLEEP LEVEL) longer than the sleep delay, the ACS 600 is stopped,
and the control panel shows the warning message “SLEEP MODE”.
40.23 WAKE UP LEVEL Sets the process actual value limit for the sleep function. See the
figures in subsection Function Description: Sleeping above. Visible
only with 99.02 APPLICATION MACRO = PID CTRL.
0.0% to 100.0%
The default value is 0.0%. When the process actual value falls below
the limit, the wake-up counter starts. The wake-up level is defined in
percents of the used process reference value.
40.24 WAKE UP DELAY Sets the wake-up delay for the sleep function. See subsection Function
Description: Reference Trimming above. Visible only with 99.02
APPLICATION MACRO = PID CTRL.
0.0 s to 3600.0 s
The default value is 0.0 s. The drive wakes up if the process actual
value is below a set level (40.23 WAKE UP LEVEL) longer than the
wake-up delay.
Chapter 6 – Parameters
Firmware Manual 6-87
Group 42 Brake Control Group 42 includes parameters for the brake control function. The
function operates on a 100 ms time level.
The mechanical brake is used for holding the motor and driven
machinery at zero speed when the drive is stopped, or when the drive
is not powered.
Table 6-26 Group 42.
Parameter Range/Unit Description
1 BRAKE CTRL OFF; ON Brake control function on/off
2 BRAKE
ACKNOWLEDGE
OFF; DI5; DI6; DI11; DI12 Interface for the brake
acknowledge signal
3 BRAKE OPEN
DELAY
0.0 to 5.0 s Brake open delay
4 BRAKE CLOSE
DELAY
0.0 to 60.0 s Brake close delay
5 ABS BRAKE CLS
SPD
0 to 1000 rpm Absolute brake close speed
6 BRAKE FAULT
FUNC
FAULT; WARNING Brake fault function
7 STRT TORQ REF
SEL
NO; AI1; AI2; AI3; AI5;
AI6; PAR 42.08
Starting torque signal
source
8 START TORQ REF -300 to 300% Starting torque setting
Chapter 6 – Parameters
6-88 Firmware Manual
Brake Control Function
Description
The figure below shows a brake control application example.
WARNING! Make sure the machinery into which the ACS 600 with
brake control function is integrated fulfils the personnel safety
regulations. Note that the frequency converter (a Complete Drive
Module or a Basic Drive Module, as defined in IEC 61800-2), is not
considered as a safety device mentioned in the European Machinery
Directive and related harmonised standards. Thus the personnel safety
of the complete machinery must not be based on a specific frequency
converter feature (such as the brake control function), but it has to be
implemented as defined in the application specific regulations.
Summary
- brake on/off control through relay output RO1
- brake supervision through digital input DI5 (optional)
- fixed starting torque at brake release
- emergency brake switch in the brake control circuit
Parameter Settings
14.01 RELAY RO1 OUTPUT BRAKE CTRL
42.01 BRAKE CTRL ON
42.02 BRAKE
ACKNOWLEDGE
DI5
42.03 BRAKE OPEN DELAY Brake specific
42.04 BRAKE CLOSE DELAY Brake specific
42.05 ABS BRAKE CLS SPD Application specific
42.06 BRAKE FAULT FUNC FAULT
42.07 STRT TORQ REF SEL Par 42.08
42.08 START TORQ REF 100%
Actual values
3.12 FAULT WORD 3, 3.16 ALARM WORD 3
Fault / Warning messages (SeeChapter 7 – Fault Tracing)
BRAKE ACKN
X25
X22
1 RO1
2 RO1
3 RO1
5 DI5
7 +24 VDC
Motor
M
Wirings
230 VAC
ACS 600
NIOC board 1)
Mechanical brake
Brake control
hardware
Emergency
brake
Chapter 6 – Parameters
Firmware Manual 6-89
The time scheme below illustrates the operation of the brake control
function. See also the state machine on the following page.
Ts Start torque at brake release: See 42.07 STRT TORQ REF SEL and 42.08 START
TORQ REF.
tod Brake open delay: See 42.03 BRAKE OPEN DELAY.
ncs Brake close speed: See 42.05 ABS BRAKE CLS SPD.
tcd Brake close delay: See 42.04 BRAKE CLOSE DELAY.
Start command
Inverter
modulating
Motor
magnetised
Open brake
command
Actual motor
speed
Torque reference
time
tod
tcd
ncs
Ts
Speed reference
Chapter 6 – Parameters
6-90 Firmware Manual
The figure below is the state machine for the brake control function.
RFG INPUT
TO ZERO
CLOSE
BRAKE
BRAKE
ACK FAULT
OPEN
BRAKE
From any state
“1”/“1”/“1”
“0”/“1”/“1”
“1”/“1”/“1”
“1”/“1”/“0”
“0”/“0”/“1”
1)
2)
RELEASE RFG
INPUT
3)
4)
7)
8)
10)
11)
12)
13)
5)
NO
MODULATION “0”/“0”/“1”
9)
6)
A
A
Brake control function state
- NN: State name
- X/Y/Z: State outputs/operations
X = “1” Open the brake. The relay output set to brake on/off control energises.
Y = “1” Forced start. The function keeps the internal Start on until the brake is closed in spite of the
status of the external Start signal.
Z = “1” Ramp in zero. Forces the used speed reference to zero along a ramp.
NN
X/Y/Z
State change conditions
1) Brake control active ”0” -> ”1” OR Inverter is modulating =”0”
2) Motor magnetised = “1” AND Drive running = “1”
3) Brake acknowlegement = “1” AND Brake open delay passed AND Start = “1”
4) Start = “0”
5) Start = “0”
6) Start = “1”
7) Actual motor speed < Brake close speed AND Start = “0”
8) Start = “1”
9) Brake acknowledgement = “0” AND Brake close delay passed =”1” AND Start = “0”
Only if Parameter 42.02 BRAKE ACKNOWLEDGE OFF:
10) Brake acknowledgement = “0” AND Brake open delay passed =”1”
11) Brake acknowledgement = “0”
12) Brake acknowledgement = “0”
13) Brake acknowledgement = “1” AND Brake close delay passed =”1”
=
RFG = Ramp Function
Generator. Used in the
reference handling in the
speed control loop.
(rising edge)
Chapter 6 – Parameters
Firmware Manual 6-91
42.01 BRAKE CTRL Activates the brake control function.
OFF
Off is the default value: Brake control function is not in use.
ON
Brake control function is on.
42.02 BRAKE
ACKNOWLEDGE
Activates the external brake on/off supervision and selects the source
for the signal. The use of the external on/off supervision signal is
optional.
OFF
External brake on/off supervision is not in use. This is the default value.
DI5
Brake on/off supervision is in use. Digital input DI5 is the signal source.
DI5 = “1”: Brake is open. DI5 = “0”: Brake is closed. The connection is
shown in the subsection Brake Control Function Description above.
DI6; DI11; DI12
See DI5. For connection of DI11 and DI12, see Group 98 Option
Modules.
42.03 BRAKE OPEN
DELAY
See the operation diagrams in subsection Brake Control Function
Description above: The delay counter starts after the motor is
magnetised. The brake control function simultaneously energises the
ACS 600 relay output, and the brake starts opening. During the delay,
the drive rises the motor torque to level required at the brake release (=
Parameters 42.07 STRT TORQ REF SEL and 42.08 START TORQ
REF).
0.0 to 5.0 s
The default value is zero. Set the delay the same as the mechanical
opening delay of the brake given by the brake manufacturer.
42.04 BRAKE CLOSE
DELAY
See the operation diagrams in subsection Brake Control Function
Description above: The delay counter starts when the motor actual
speed has fallen below the set level after the drive has received the
stop command (= Parameter 42.05 ABS BRAKE CLS SPD).
Simultaneously with the counter start, the brake control function de-
energises the relay output, and the brake starts closing. During the
delay, the brake function keeps the motor live preventing the motor
speed from falling below zero.
0.0 to 60.0 s
The default value is zero. Set the delay the same as the mechanical
make up time of the brake (= operating delay when closing) given by
the brake manufacturer.
42.05 ABS BRAKE CLS
SPD
See Parameter 42.04 BRAKE CLOSE DELAY and the operation
diagrams in subsection Brake Control Function Description above.
Note: This is an absolute value.
Chapter 6 – Parameters
6-92 Firmware Manual
0 to 1000 rpm
Default value is 100 rpm.
42.06 BRAKE FAULT
FUNC
Defines how the drive reacts in case the status of the external brake
acknowledge signal does not meet the status expected by the brake
control function. See the state machine in subsection Brake Control
Function Description above.
FAULT
Brake control function generates a fault. The drive trips and a fault
message is shown on the control panel display. The fault is also saved
in the event log.
WARNING
Brake control function generates a warning. The drive continues
operation and a warning message is shown on the control panel
display. The warning is also saved in the event log.
42.07 STRT TORQ REF
SEL
Selects the source for the motor starting torque reference. See the
operation diagrams in subsection Brake Control Function Description
above.
NO
No source for the starting torque. This is the default value.
AI1; AI2; AI3; AI5; AI6
Starting torque reference is given through an analogue input. For the
connection of AI5 and AI6, see Group 98 Option Modules.
PAR 42.08
Starting torque reference is given by Parameter 42.08 START TORQ
REF.
42.08 START TORQ REF Sets the motor starting torque at brake release in percent of the motor
nominal torque. See the operation diagrams in subsection Brake
Control Function Description above.
-300 to 300 %
Default value is 0.
Chapter 6 – Parameters
Firmware Manual 6-93
Group 45 Function
Selection
Group 45 includes parameters for six pointers. The user can select any
drive status information for a pointer and direct the value to a relay
output.
Table 6-27 Group 45.
The figure below shows how to indicate drive status “READY TO
OPERATE” through the relay output RO1.
Parameter Range/Value Description
45.01 POINTER1 GRP+IND -9999 to 9999 Index selector for pointer 1
45.02 POINTER1 BIT 0 to 15 Bit selector for pointer 1
45.03 POINTER2 GRP+IND -9999 to 9999 Index selector for pointer 2
45.04 POINTER2 BIT 0 to 15 Bit selector for pointer 2
45.05 POINTER3 GRP+IND -9999 to 9999 Index selector for pointer 3
45.06 POINTER3 BIT 0 to 15 Bit selector for pointer 3
45.07 POINTER4 GRP+IND -9999 to 9999 Index selector for pointer 4
45.08 POINTER4 BIT 0 to 15 Bit selector for pointer 4
45.09 POINTER5 GRP+IND -9999 to 9999 Index selector for pointer 5
45.10 POINTER5 BIT 0 to 15 Bit selector for pointer 5
45.11 POINTER6 GRP+IND -9999 to 9999 Index selector for pointer 6
45.12 POINTER6 BIT 0 to 15 Bit selector for pointer 6
14.01
0000
9999
Select
MAIN CTRL WORD3.01
MAIN STATUS WORD3.02
B0
READY TO OPERATEB1
...B2
...AUX STATUS WORD3.03
3.02 MAIN STATUS WORD
NOT USED
COMM. MODULE
POINTER1
(POINTER1)
Relay output
RO1
.
..
.
..
(0302)
(1)
45.02
Select
45.01
Select
.
..
.
..
Chapter 6 – Parameters
6-94 Firmware Manual
45.01 POINTER1
GRP+IND
Parameter index selector for pointer 1. See the figure above.
-9999 to 9999
Default value is 0000. The negative range is reserved for the signal
inversion.
Example (see the figure above): If 45.01 POINTER1 GRP+IND has
the value -0302, the output of selector 45.02 POINTER1 BIT is
inverted. In other words, the pointer output has value “0” when status
bit B1 “READY TO OPERATE” has the value “1” and vice versa.
45.02 POINTER1 BIT Bit selector for the pointer 1. See the figure above.
0 to 15
Default value is 0 (bit no. 0).
45.03 POINTER2
GRP+IND
See Parameter 45.01 POINTER1 GRP+IND.
45.04 POINTER2 BIT See Parameter 45.02 POINTER1 BIT.
45.05 POINTER3
GRP+IND
See Parameter 45.01 POINTER1 GRP+IND.
45.06 POINTER3 BIT See Parameter 45.02 POINTER1 BIT.
45.07 POINTER4
GRP+IND
See Parameter 45.01 POINTER1 GRP+IND.
45.08 POINTER4 BIT See Parameter 45.02 POINTER1 BIT.
45.09 POINTER5
GRP+IND
See Parameter 45.01 POINTER1 GRP+IND.
45.10 POINTER5 BIT See Parameter 45.02 POINTER1 BIT.
45.11 POINTER6
GRP+IND
See Parameter 45.01 POINTER1 GRP+IND.
45.12 POINTER6 BIT See Parameter 45.02 POINTER1 BIT.
Chapter 6 – Parameters
Firmware Manual 6-95
Group 50 Encoder
Module
These parameters are visible, and need to be adjusted, only when a
pulse encoder module (optional) is installed and activated with
Parameter 98.01 ENCODER MODULE.
The parameters in Group 50 define the encoder signal decoding and
the operation of the ACS 600 in encoder or NTAC module fault
conditions.
These parameter settings will remain the same even though the
application macro is changed.
Table 6-28 Group 50 parameters.
50.01 PULSE NR This parameter states the number of the encoder pulses per one
revolution.
50.02 SPEED
MEAS MODE
This parameter defines how the encoder pulses are calculated.
A -
- B DIR
Ch A: positive edges calculated for speed.
Ch B: direction.
A -
-
-
Ch A: positive and negative edges calculated for speed.
Ch B: not used.
A -
-
- B DIR
Ch A: positive and negative edges are calculated for speed.
Ch B: direction.
Parameter Range Description
50.01 PULSE NR 0 ... 29999 Number of encoder pulses per
revolution.
50.02 SPEED MEAS
MODE
A -
-
B DIR ; A-
-
- ;
A -
-
- B DIR ; A -
-
- B -
-
-
Calculation of encoder pulses.
50.03 ENCODER
FAULT
WARNING; FAULT Operation of the ACS 600 if an
encoder failure or encoder
communication failure is
detected.
50.04 ENCODER
DELAY
5 ... 50000 ms Delay for the encoder
supervision function (See
Parameter 50.03 ENCODER
FAULT)
50.05 ENCODER
CHANNEL
CHANNEL1,
CHANNEL 2
Channel from which the
Standard Application Program
reads the signals of the Pulse
Encoder Module (NTAC).
50.06 SPEED FB SEL INTERNAL;
ENCODER
Selects the speed feedback
value used in the control; Speed
estimate or measured speed.
Chapter 6 – Parameters
6-96 Firmware Manual
A -
-
- B -
-
-
All edges of the signals are calculated.
50.03 ENCODER FAULT This parameter defines the operation of the ACS 600 if a failure is
detected in communication between the pulse encoder and the Pulse
Encoder Interface Module (NTAC) or in between the NTAC module and
the ACS 600.
Encoder supervision function activates if either of the following
conditions is valid:
1. There is a 20 % difference between the estimated speed and the
measured speed received from the encoder.
2. No pulses are received from the encoder within defined time (see
Parameter 50.04 ENCODER DELAY), and the motor torque is at
the allowed maximum value.
WARNING
Warning indication is generated.
FAULT
Fault indication is generated and the ACS 600 stops the motor.
50.04 ENCODER DELAY This is the time delay for the encoder supervision function (See
Parameter 50.03 ENCODER FAULT).
50.05 ENCODER
CHANNEL
This parameter defines the fibre optic channel of the control board from
which the Standard Application Program reads the signals coming from
the Pulse Encoder Interface Module (NTAC).
CHANNEL 2
Pulse Encoder Module (NTAC) signals are read from channel 2 (CH2).
This is the default value. It can be used in most cases.
CHANNEL 1
Pulse Encoder Module (NTAC) signals are read from channel 1 (CH1).
The Pulse Encoder Module (NTAC) must be connected to CH1 instead
of CH2 in applications where CH2 is reserved by a Master station (e.g.
a Master/Follower application). This parameter value must be changed
accordingly. See also Parameter 70.03 CH1 BAUDRATE.
50.06 SPEED FB SEL This parameter defines the speed feedback value used in control.
INTERNAL
Calculated speed estimate is used as the speed feedback.
ENCODER
Actual speed measured with an encoder is used as the speed
feedback.
Chapter 6 – Parameters
Firmware Manual 6-97
Group 51
Communication Module
These parameters are visible, and need to be adjusted, only when a
fieldbus adapter module (optional) is installed and activated with
Parameter 98.02 COMM. MODULE LINK. For details on the
parameters, refer to the manual of the fieldbus module.
These parameter settings will remain the same even though the macro
is changed.
Group 52 Standard
Modbus
These parameters define the basic settings for the Standard Modbus
Link. See Appendix C – Fieldbus Control.
Table 6-29 Group 52 parameters.
Parameter Range Description
52.01 STATION
NUMBER
1 to 247 Device address. Two units with
the same addresses are not
allowed on-line. Default value
is 1.
52.02 BAUDRATE 600; 1200; 2400;
4800; 9600
Transfer rate of the link in bit/s.
Default value is 9600.
52.03 PARITY NONE1STOPBIT;
NONE2STOPBIT;
ODD; EVEN
Usage of parity bit(s). Default
value is ODD.
Chapter 6 – Parameters
6-98 Firmware Manual
Group 60
MASTER/FOLLOWER
The Master/Follower group includes parameters needed when the
system is run by several ACS 600 drives and the motor shafts are
coupled to each other via gearing, chain, belt etc.
This section contains a brief introductory to Master/Follower application
and the parameter descriptions. For more information see the separate
Master/Follower Application Guide (EN code: 58962180).
Table 6-30 Group 60 parameters.
Parameter Range Description
60.01 MASTER LINK
MODE
NOT IN USE;
MASTER;
FOLLOWER
Sets the Master/Follower
communication mode for the
station
60.02 TORQUE
SELECTOR
SPEED;TORQUE;
MINIMUM;
MAXIMUM; ADD;
ZERO
Follower torque reference
selector
60.03 WINDOW SEL
ON
NO; YES Window function activation
60.04 WINDOW
WIDTH POS
0 to 1500 Window limit for the positive
speed error
60.05 WINDOW
WIDTH NEG
0 to 1500 Window limit for the negative
speed error
60.06 DROOP RATE 0 to 100% Droop rate as a percent of the
maximum speed
60.07 MASTER
SIGNAL 2
0000 to 9999 Addres from which Master
reads Reference 1
60.08 MASTER
SIGNAL 3
0000 to 9999 Addres from which Master
reads Reference 2
Chapter 6 – Parameters
Firmware Manual 6-99
Function Description:
Master/Follower
The figures below illustrate the Master/Follower function in brief.
In Master/Follower communication, the Master station cyclically sends
a message to the Follower stations. The message is read by all on-line
Follower stations through channel CH2. The drive behaviour depends
on the settings of Group 60 Parameters and Parameters 10.01 EXT1
STRT/STP/DIR, 10.02 EXT2 STRT/STP/DIR, 11.03 EXT REF1
SELECT, 11.06 EXT REF2 SELECT, 16.01 RUN ENABLE and 16.04
FAULT RESET SEL.
Mains
Supply
33
Solidly coupled motor shafts:
• Speed-Controlled Master
• Follower Follows the Torque Reference
of the Master
External Control
Signals
Mains
Supply
3
n3
22 Master/Follower
Link
Follower Fault
Supervision
3
22 Master/Follower
Link
Follower Fault
Supervision
3 3
External Control
Signals
Mains
Supply 3
n
Flexibly coupled motor shafts:
• Speed-Controlled Master
• Follower Follows the Speed Reference
of the Master
Mains
Supply
ACS 600
ACS 600
ACS 600
ACS 600
M/F Application, Overview
PID–
+
–
+
0
1
2
0
3
4
5
SPEED REF = Speed Reference
TORQ REF 1 = Torque Reference
TORQ REF 2 = Speed Controller Output
TORQ REF 3 = Internal Torque Reference
EXT1 = External control location 1
EXT2 = External control location 2
See Parameter 11.02 EXT1/EXT2 SELECT (O)
EXT2
EXT1
SPEED
TORQUE
MIN
MAX
ADD
2.102.09
TORQ REF 3
TORQUE
TORQ REF 1
TORQ REF 2
DROOP
2.02
SPEED REF 3
ACTUAL SPEED
60.02 TORQUE
SELECTOR
SPEED CONTROLLERWINDOW CONTROL
REFERENCE
CHAIN
RATE
M/F Application, Functions for the Speed and Torque Control Loop Tuning
• Torque selector
• Window control
• Drooping
The functions are typically applied in the Follower station when selecting and processing
the reference(s) received from the Master.
Chapter 6 – Parameters
6-100 Firmware Manual
The Follower drive is torque-controlled. Parameter 11.02
EXT1/EXT2 SELECT is set to EXT2 and 60.02 TORQUE SELEC-
TOR to ADD.
1. Normal operating range. Window Control keeps the speed con-
troller input zero. The Follower is controlled by torque reference of
the Master.
2. Load loss occurs. Follower actual speed starts to rise.
3. The speed increases until the absolute value of the negative
speed error exceeds WINDOW WIDTH NEG. Window Control con-
nects the value outside the window to the speed controller. Negative
speed controller output value is produced and added to torque ref-
erence received from the Master. Internal torque reference is
restricted to stop the speed increase.
Speed Reference
Internal Torque Reference
Load
torque
%
Time
Actual Speed
60.05 WINDOW
WIDTH NEG
1. 2.
3.
Example 2: Window Control On
in a Load Loss Condition
60.05 WINDOW WIDTH NEG
60.04 WINDOW WIDTH POS
Speed Reference
Actual Speed
Speed Controller Output
Internal Torque Reference =
Torque Reference + Speed Controller Output
Time
The Follower drive is torque-controlled. Parameter 11.02
EXT1/EXT2 SELECT is set to EXT2 and 60.02 TORQUE SELEC-
TOR to TORQUE.
1. Normal operating range. The Follower is controlled by torque
reference of the Master.
2. Load loss occurs. Follower actual speed starts to rise.
3. The speed increases until the maximum speed limit of the ACS
600 is reached (Parameter 20.02 MAXIMUM SPEED). Internal
torque reference is restricted to stop the speed increase.
Speed Reference
Internal Torque Reference
Load
torque
%
Time
Actual Speed
1. 2.
3.
Example 1: Window Control Off
in a Load Loss Condition
G = Speed controller gain
e = Value connected to speed
controller
e
G·e
Torque Reference
20.02 SPEED MAXIMUM
Torque Reference Torque Reference
M/F Application, Window Control
Chapter 6 – Parameters
Firmware Manual 6-101
60.01 MASTER LINK
MODE
This parameter determines the role of the drive on the Master/Follower
link.
NOT IN USE
The Master/Follower link is not active. This the default value.
MASTER
The drive acts as the Master station.
FOLLOWER
The drive acts as a Follower station.
60.02 TORQUE
SELECTOR
Selects the reference used in motor torque control. Typically, the value
needs to be changed only in the Follower station(s). See subsection
Function Description: Master/Follower above.
The parameter is visible only when Parameter 99.02 APPLICATION
MACRO is T CTRL. External control location 2 (EXT2) must be active
to enable torque selector.
SPEED
The follower speed controller output is used as a reference for motor
torque control. The drive is speed controlled.
SPEED can be used both in the Follower and the Master if
• the motor shafts of the Master and Follower are connected flexibly.
(A slight speed difference between the Master and the Follower is
possible/allowed.)
• drooping is used (see Parameter 60.06 DROOP RATE).
TORQUE
This is the default value. The drive is torque-controlled.
The selection is used in the Follower(s) when the motor shafts of the
Master and Follower are coupled solidly to each other by gearing, a
chain or other means of mechanical power transmission and no speed
difference between the drives is allowed or possible.
Chapter 6 – Parameters
6-102 Firmware Manual
Note: If TORQUE is selected, the ACS 600 does not restrict the speed
variation as long as the speed is within the limits defined with
Parameters 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED.
More definite speed supervision is often needed. In those cases, the
selection ADD should be used instead of TORQUE.
MINIMUM
The torque selector compares the torque reference and the speed
controller output, the smaller of which is used as the reference for the
motor torque control. MINIMUM is selected in special cases only.
MAXIMUM
The torque selector compares the torque reference and the speed
controller output, the greater of which is used as the reference for the
motor torque control. MAXIMUM is selected in special cases only.
ADD
The torque selector adds the speed controller output to the torque
reference. The drive is torque controlled in the normal operating range.
The selection ADD, together with the window control, forms a speed
supervision function for a torque controlled Follower drive as follows:
• In the normal operating range, the Follower follows the torque
reference of the Master (TORQ REF 1).
• Window control keeps the speed controller input and output at zero
as long as the speed error (speed reference - actual speed) remains
within the parameter-set window.
• If the speed error moves out of the window, window control connects
the error to the speed controller. The speed controller output
increases or decreases the internal torque reference, stopping the
change of the actual speed.
ZERO
This selection forces the output of the torque selector to zero.
Chapter 6 – Parameters
Firmware Manual 6-103
60.03 WINDOW SEL ON The window control is visualised in the subsection Function
Description: Master/Follower above. Window control, together with
selection ADD at Parameter 60.02 TORQUE SELECTOR, forms a
speed supervision function for a torque controlled drive.
The parameter is visible only when Parameter 99.02 APPLICATION
MACRO is T CTRL. External control location 2 (EXT2) must be active
to enable window control.
NO
Window control is off. This is the default value.
YES
Window control is on. Selection YES is used only when Parameter
60.02 TORQUE SELECTOR is ADD. Window control supervises the
speed error value (Speed Reference - Actual Speed). In the normal
operating range, window control keeps the speed controller input at
zero. The speed controller is evoked only if:
• the speed error exceeds the value of Parameter 60.04 WINDOW
WIDTH POS or
• the absolute value of the negative speed error exceeds the value of
Parameter 60.05 WINDOW WIDTH NEG.
When the speed error moves outside the window, the exceeding part of
the error value is connected to the speed controller. The speed
controller produces a reference term relative to the input and gain of
the speed controller (Parameter 23.01 GAIN) which the torque selector
adds to torque reference. The result is used as the internal torque
reference for the ACS 600.
Example: In a load loss condition, the internal torque reference of the
drive is decreased to prevent an excessive rise of the motor speed. If
window control were inactivated, the motor speed would rise until a
speed limit of the ACS 600 were reached. (Parameters 20.01
MINIMUM SPEED and 20.02 MAXIMUM SPEED define the speed
limits.)
60.04 WINDOW WIDTH
POS
See Parameter 60.03 WINDOW SEL ON. The parameter is visible only
when Parameter 99.02 APPLICATION MACRO is T CTRL.
0 to 1500 rpm
The default value is 0.
60.05 WINDOW WIDTH
NEG
See Parameter 60.03 WINDOW SEL ON. The parameter is visible only
when Parameter 99.02 APPLICATION MACRO is T CTRL.
0 to 1500 rpm
The default value is 0.
60.06 DROOP RATE This parameter value needs to be changed only if both the Master and
the Follower are speed-controlled:
• External control location 1 (EXT1) is selected (see Parameter
11.02 EXT 1/EXT 2 SELECT, or
Chapter 6 – Parameters
6-104 Firmware Manual
• External control location 2 (EXT2) is selected (see Parameter
11.02 EXT 1/EXT 2 SELECT) and Parameter
60.02 TORQUE SELECTOR is set to SPEED.
The default value is 0%.
The drooping prevents conflict between the Master and Follower by
allowing a slight speed difference between them.
The correct droop rate for a process mut be found out case by case in
practice. The droop rate needs to be set both for the Master and the
Follower.
The droop rate is set in % of the motor nominal speed. The actual
speed decrease at a certain operating point depends on the droop rate
setting and the drive load ( = torque reference / speed controller
output). The drooping slightly decreases the drive speed as the drive
load increases At 100% speed controller output, drooping is at its
nominal level, i.e. equal to the value of the DROOP RATE. The
drooping effect decreases linearly to zero along with the decreasing
load.
60.07 MASTER
SIGNAL 2
This parameter selects the signal that is sent by the Master to the
Follower(s) as Reference 1 (speed reference). See the separate
Master/Follower Application Guide (English code: 58962180).
The format is as follows: (x)xyy, where (x)x = Actual Signal or
Parameter Group, yy = Actual Signal or Parameter Index.
The default value is 202, which denotes Actual Signal Group 2,
Index 02, i.e. 2.02 SPEED REF 3.
60.08 MASTER
SIGNAL 3
This parameter selects the signal that is sent by the Master to the
Follower(s) as Reference 2 (torque reference). See the separate
Master/Follower Application Guide (EN code: 58962180).
The format is as follows: (x)xyy, where (x)x = Actual Signal or
Parameter Group, yy = Actual Signal or Parameter Index.
The default value is 213, which denotes Actual Signal Group 2,
Index 13, i.e. 2.13 TORQ REF USED.
Motor
Speed
% of
nominal
Drooping
No Drooping
Speed Controller
100%
} Par. 60.06 DROOP RATE
Output /%
Speed Decrease =
Speed Controller Output · Drooping · Max. Speed
Calculation Example:
DROOP RATE is 1%, Speed Controller output is
50%, maximum speed of the drive is 1500 rpm.
Speed decrease = 0.01 · 0.50 · 1500 rpm = 7.5 rpm
Drive load
100%
Chapter 6 – Parameters
Firmware Manual 6-105
Group 70 DDCS Control The ACS 600 can communicate with external equipment via a DDCS
protocol serial communication channels. The parameters in Group 70
set the ACS 600 node addresses for the DDCS channels.
These parameter values need to be adjusted only in certain special
cases, examples of which are given in the table below.
Table 6-31 Group 70 parameters.
Parameter Range Description
70.01 CHANNEL 0 ADDR 1 ... 125 Node address for CH0. There must not
be two nodes with the same address
on-line. The setting needs to be
changed when a master station is
connected to CH0 and it does not
automatically change the address of the
slave. Examples of such masters are an
ABB Advant Controller AC 70 or
another ACS 600.
70.02 CHANNEL 3 ADDR 1 ... 254 Node address for CH3. There must not
be two nodes with the same address
on-line. Typically the setting needs to be
changed when ACS 600 is connected to
a ring which consists of several
ACS 600s and a PC with the
DriveWindow® program running.
70.03 CH1 BAUDRATE 8; 4; 2; 1
MBITS
The communication speed of the fibre
optic channel 1. Typically the setting
needs to be changed only if the Pulse
Encoder Module (NTAC) is connected to
CH1 instead of CH2. Then the speed
must be changed to 4 Mbits. See also
Parameter 50.05 ENCODER
CHANNEL.
Chapter 6 – Parameters
6-106 Firmware Manual
Group 90 D SET REC
ADDR
These parameters are visible, and can be adjusted, only when a
fieldbus communication is activated with Parameter 98.02 COMM.
MODULE LINK.
Table 6-32 Group 90 parameters.
Group 92 D SET TR
ADDR
These parameters are visible, and can be adjusted, only when a
fieldbus communication is activated with Parameter 98.02 COMM.
MODULE LINK
Table 6-33 Group 92 parameters.
Parameter Range Description
90.01 AUX DS REF3 0 ... 8999 These parameters enable parameter
adjustment through the fieldbus
reference. See Appendix C – Fieldbus
Control.
90.02 AUX DS REF4 0 ... 8999
90.03 AUX DS REF5 0 ... 8999
90.04 MAIN DS
SOURCE
1 ... 255 Defines the data set number from which
the drive reads the Control Word,
Reference REF1 and Reference REF2.
See Appendix C – Fieldbus Control.
90.05 AUX DS SRCE 1 ... 255 Defines the data set number from which
the drive reads the References REF3,
REF4 and REF5. See Appendix C –
Fieldbus Control.
Parameter Range Description
92.01 MAIN DS STATUS
WORD
302 (fixed,
not visible)
These parameters define the Main and
Auxiliary Actual signal data sets, sent by
the ACS 600 to the fieldbus master
station. See Appendix C – Fieldbus
Control.
92.02 MAIN DS ACT1 0 ... 9999
92.03 MAIN DS ACT2 0 ... 9999
92.04 AUX DS ACT3 0 ... 9999
92.05 AUX DS ACT4 0 ... 9999
92.06 AUX DS ACT5 0 ... 9999
Chapter 6 – Parameters
Firmware Manual 6-107
Group 96 EXTERNAL
AO
These parameters are visible, and can be adjusted, only when the
optional Analogue Extension Module (NAIO) is installed and activated
by setting Parameter 98.06 AI/O EXT MODULE to UNIPOLAR
PRGUNIP AO PROG, BIP AO PROG, UNIP AIO PROG or BIP AIO
PROG. The parameters define the content and handling of the
analogue output signals of the module.
The Range/Unit column in the table below shows the parameters. The
text following the table explains the parameters in detail.
Table 6-34 Group 96 parameters.
96.01 EXT AO1 This parameter allows you to select which signal is connected to
analogue output AO1 of the analogue extension module. The
alternative settings are the same as for the standard analogue outputs.
See Parameter 15.01 ANALOGUE OUTPUT1 (O).
96.02 INVERT EXT AO1 If you select YES, the Extension module analogue output AO1 signal is
inverted.
Parameter Range/Unit Description
1 EXT AO1 Refer to the text
below for the
available
selections.
Content of the extension
module analogue output 1.
2 INVERT EXT AO1 NO; YES Extension module analogue
output signal 1 inversion.
3 MINIMUM EXT AO1 0 mA; 4 mA;
10 mA; 12 mA
Extension module analogue
output signal 1 minimum.
4 FILTER EXT AO1 0.00 ... 10.00 s Filter time constant for
extension module AO1.
5 SCALE EXT AO1 10 ... 1000 % Extension module analogue
output signal 1 scaling factor.
6 EXT AO2 Refer to the text
below for the
available
selections.
Extension module analogue
output 2 content.
7 INVERT EXT AO2 NO; YES Extension module analogue
output signal 2 inversion.
8 MINIMUM EXT AO2 0 mA; 4 mA;
10 mA; 12 mA
Extension module analogue
output signal 2 minimum.
9 FILTER EXT AO2 0.00 ... 10.00 s Filter time constant for
extension module AO2.
10 SCALE EXT AO2 10 ... 1000 % Extension module analogue
output signal 2 scaling factor.
Chapter 6 – Parameters
6-108 Firmware Manual
96.03 MINIMUM EXT
AO1
The minimum value of the Extension module analogue output signal
can be set to either 0 mA, 4 mA,10 mA or 12 mA. Actually, the setting
10 mA or 12 mA does not set the AO1 minimum but fixes 10/12 mA to
actual signal value zero. See the figure below.
Example: Motor speed is read through the analogue output.
• Motor nominal speed is 1000 rpm (Parameter 99.08 MOTOR NOM
SPEED).
• 96.02 INVERT EXT AO1 is NO
• 96.05 SCALE EXT AO1 is 100 %
The analogue output value as a function of speed is shown below.
96.04 FILTER EXT AO1 Filter time constant for Extension module analogue output AO1. See
Parameter 15.04 FILTER AO1.
96.05 SCALE EXT AO1 This parameter is the scaling factor for the Extension module analogue
output AO1 signal. See Parameter 15.05 SCALE AO1.
96.06 EXT AO2 See Parameter 96.01 EXT AO1.
96.07 INVERT EXT AO2 See Parameter 96.02 INVERT EXT AO1.
96.08 MINIMUM EXT
AO2
See Parameter 96.03 MINIMUM EXT AO1.
96.09 FILTER EXT AO2 See Parameter 96.04 FILTER EXT AO1.
96.10 SCALE EXT AO2 See Parameter 96.05 SCALE EXT AO1.
-1000
Analogue output
1000
mA
20
0-500 500
Speed/rpm
10
12
4
1
2
3
4
0 mA
4 mA
10 mA
12 mA
Analogue output
signal minimum
1
2
3
4
1
2
Chapter 6 – Parameters
Firmware Manual 6-109
Group 98 Option
Modules
The parameters of this group are set if an option module is installed or
external serial communication is in use. For more information on option
modules refer to the option module manuals.
These parameter values cannot be altered with the ACS 600 running.
These parameter settings will remain the same even though the
application macro is changed.
Table 6-35 Group 98 parameters.
98.01 ENCODER
MODULE
Set to YES if pulse encoder module (optional) is installed. Set the
module node number to 16 (for directions see module manual). See
also Parameter Group 50.
Parameter Range Description
98.01 ENCODER MODULE NO; YES Pulse encoder option module
selection. See also
Parameter Group 50 Encoder
Module.
98.02 COMM. MODULE
LINK
NO; FIELDBUS;
ADVANT:
STD MODBUS;
CUSTOMISED
Option module selection.
See also Group 51
Communication Module.
98.03 DI/O EXT MODULE 1 NO; YES Option module selection.
98.04 DI/O EXT MODULE 2 NO; YES Option module selection.
98.05 DI/O EXT MODULE 3 NO; YES Option module selection.
98.06 AI/O EXT MODULE NO;
UNIPAIO PRG;
BIP AIO PRG;
UNIPOLAR;
BIPOLAR;
UNIP AO PRG;
BIP AO PRG
Option module selection.
98.07 COMM PROFILE ABB DRIVES;
CSA2.8/3.0
Communication profile
selection
98.08 NIOC-01 BOARD NO; YES Enable/disable the NIOC
board supervision function
98.09 NDIO1 DI FUNC DI7,8; REPL
DI1,2
Selects the use of the NDIO
module no. 1 input channels
98.10 NDIO2 DI FUNC DI9.10; REPL
DI1,2
Selects the use of the NDIO
module no. 2 input channels
98.11 NDIO3 DI FUNC DI11,12; REPL
DI1,2
Selects the use of the NDIO
module no. 3 input channels
98.12 AI/O MOTOR TEMP NO; UNIPOLAR NAIO module setting for
motor temperature measuring
Chapter 6 – Parameters
6-110 Firmware Manual
98.02 COMM. MODULE
LINK
This parameter selects the external serial communication interface.
See Appendix C – Fieldbus Control.
NO
No external serial communication in use.
FIELDBUS
ACS 600 communicates with a communication module (e.g. fieldbus
adapter) via CH0 Fieldbus Adapter link. See also Parameter Group 51
Communication Module.
ADVANT
ACS 600 communicates with an ABB Advant OCS system via CH0
Fieldbus Adapter link. See also Parameter Group 70 DDCS Control.
STD MODBUS
ACS 600 communicates with a Modbus controller via the Standard
Modbus link. See also Parameter Group 52 Standard Modbus.
CUSTOMISED
ACS 600 can be controlled via two serial communication interfaces
simultaneously. The control sources must be defined by the user with
Parameter 90.04 MAIN DS SOURCE and 90.05 AUX DS SRCE.
98.03 DI/O EXT
MODULE 1
Set to YES if external digital input/output module 1 (NDIO; optional) is
installed. Set the module node number to 2 (for directions see module
manual).
NO
Communication between ACS 600 and the NDIO module 1 inactive.
This is the default value.
YES
Communication between ACS 600 and the NDIO module 1 active.
• Parameter 98.09 NDIO1 DI FUNC further defines the use of the
digital inputs in the application program.
• Parameters 14.10 NDIO MOD1 RO1 and 14.11 NDIO MOD1 RO2
select the drive states that are indicated through the relay outputs.
98.04 DI/O EXT
MODULE 2
Set to YES if a second NDIO module (digital input/output module 2) is
installed. Set the module node number to 3 (for directions see module
manual).
NO
Communication between ACS 600 and the NDIO module 2 inactive.
This is the default value.
YES
Communication between ACS 600 and the NDIO module 2 active.
• Parameter 98.10 NDIO2 DI FUNC further defines the use of the
digital inputs in the application program.
• Parameters 14.12 NDIO MOD2 RO1 and 14.13 NDIO MOD2 RO2
select the drive states that are indicated through the relay outputs.
Chapter 6 – Parameters
Firmware Manual 6-111
98.05 DI/O EXT
MODULE 3
Set to YES if a third NDIO module (digital input/output module 3) is
installed. Set the module node number to 4 (for directions see module
manual).
NO
No communication between drive and NDIO module 3. This is the
default value.
YES
Communication between drive and NDIO module 3 active.
• Parameter 98.11 NDIO3 DI FUNC further defines the use of the
digital inputs in the application program.
• Parameters 14.14 NDIO MOD3 RO1 and 14.15 NDIO MOD3 RO2
select the drive states that are indicated through the relay outputs.
98.06 AI/O EXT MODULE Parameter activates the communication to an optional analogue
input/output extension module, NAIO.
Note: Before setting the ACS 600 parameters, ensure the NAIO
module hardware settings (DIP switches) are OK:
• The NAIO module node number is set to 5.
• The input signal type selections matches the actual signals (mA/V).
• For type NAIO-03 module the operation mode selection matches the
applied input signals (unipolar/bipolar).
For directions see Installation and Start-up Guide for NTAC-0x/NDIO-
0x/NAIO-0x Modules (EN code: 3AFY 58919730).
For information on the NAIO module with the ACS 600 Standard
Application Program, see also Appendix D – Analogue Extension
Module NAIO.
NO
No communication between the drive and the NAIO module. This is the
default value.
Chapter 6 – Parameters
6-112 Firmware Manual
UNIP AIO PROG
Unipolar NAIO module inputs: Total number of I/Os in the application
program is increased. The application program handles the analogue
I/O’s as follows:
• Input type: 0 to 20 mA (0 to 10 V)
• Total no. of inputs: 5
• Total no. of outputs:4
• Input terminals:
• Output terminals:
BIP AIO PROG
Bipolar NAIO module inputs: Total number of I/Os in the application
program is increased. The application program handles the analogue
I/O’s as follows:
• Input type: -20 to 20 mA (-10 to 10 V)
• Total no. of inputs: See selection UNIP AIO PROG
• Total no. of outputs:See selection UNIP AIO PROG
• Input terminals: See selection UNIP AIO PROG
• Output terminals: See selection UNIP AIO PROG
Input name in the
application program
Physical input terminal
AI1 AI1 on NIOC
AI2 AI2 on NIOC
AI3 AI3 on NIOC
AI1/JOYST AI1 on NIOC
AI2/JOYST AI2 on NIOC
AI5 AI1 on NAIO
AI6 AI2 on NAIO
AI5/JOYST AI1 on NAIO
AI5/JOYST AI2 on NAIO
Output value selector in
the application program
Physical output terminal
15.01 ANALOGUE
OUTPUT1 (O)
AO1 on NIOC
15.06 ANALOGUE
OUTPUT2 (O)
AO2 on NIOC
96.01 EXT AO1 AO1 on NAIO
96.06 EXT AO2 AO2 on NAIO
Chapter 6 – Parameters
Firmware Manual 6-113
UNIPOLAR
Unipolar NAIO module inputs: Total number of I/Os in the application
program is not increased. The application program handles the
analogue I/O’s as follows:
• Input type: 0 to 20 mA (0 to 10 V)
• Total no. of inputs: 3
• Total no. of outputs: 2
• Input terminals:
• Output terminals:
BIPOLAR
Bipolar NAIO module inputs: Total number of I/Os in the application
program is not increased. The application program handles the
analogue I/O’s as follows:
• Input type: -20 to 20 mA (-10 to 10 V)
• Total no. of inputs: See selection UNIPOLAR
• Total no. of outputs: See selection UNIPOLAR
• Input terminals: See selection UNIPOLAR
• Output terminals See selection UNIPOLAR
Input name in the
application program
Physical input terminal
AI1 AI1 on NIOC
AI2 AI1 on NAIO
AI3 AI2 on NAIO
AI1/JOYST AI2 on NAIO
AI2/JOYST AI1 on NAIO
AI5 AI1 on NAIO
AI6 AI2 on NAIO
AI5/JOYST AI1 on NAIO
AI6/JOYST AI2 on NAIO
Output value selector in
the application program
Physical output terminal
15.01 ANALOGUE
OUTPUT1 (O)
AO1 on NIOC and AO1 on
NAIO
15.06 ANALOGUE
OUTPUT2 (O)
AO2 on NIOC and AO2 on
NAIO
Chapter 6 – Parameters
6-114 Firmware Manual
UNIP AO PROG
Unipolar NAIO-module inputs: Total number of outputs in the
application program is increased. The application program handles the
analogue I/O’s as follows:
• Input type: 0 to 20 mA (0 to 10 V)
• Total no. of inputs: 3
• Total no. of outputs:4
• Input terminals:
• Output terminals:
BIP AO PROG
Bipolar NAIO-module inputs: Total number of outputs in the application
program is increased. The application program handles the analogue
I/O’s as follows:
• Input type: -20 to 20 mA (-10 to 10 V)
• Total no. of inputs: See selection UNIP AO PRG
• Total no. of outputs:See selection UNIP AO PRG
• Input terminals: See selection UNIP AO PRG
• Output terminals See selection UNIP AO PRG
98.07 COMM PROFILE This parameter is visible only when a fieldbus communication is
activated with Parameter 98.02 COMM. MODULE LINK.
This parameter defines the profile on which the communication with the
fieldbus or another ACS 600 is based.
Input name in the
application program
Physical input terminal
AI1 AI1 on NIOC
AI2 AI1 on NAIO
AI3 AI2 on NAIO
AI1/JOYST AI2 on NAIO
AI2/JOYST AI1 on NAIO
AI5 AI1 on NAIO
AI6 AI2 on NAIO
AI5/JOYST AI1 on NAIO
AI6/JOYST AI2 on NAIO
Output value selector in
the application program
Physical output terminal
15.01 ANALOGUE
OUTPUT1 (O)
AO1 on NIOC
15.06 ANALOGUE
OUTPUT2 (O)
AO2 on NIOC
96.01 EXT AO1 AO1 on NAIO
96.06 EXT AO2 AO2 on NAIO
Chapter 6 – Parameters
Firmware Manual 6-115
ABB DRIVES
The default profile in ACS 600 application program version 5.0 and
later.
CSA 2.8/3.0
Communication profile used in ACS 600 application program versions
2.8x and 3.x.
98.08 NIOC-01 BOARD The parameter enables or disables the communication supervision of
the Standard I/O Board (NIOC).
NO
The communication to the NIOC board is not supervised.
YES
The communication to the NIOC board is supervised. This is the
default value. The application program checks the communication to
the NIOC board cyclically. If the communication fails, the program
generates a warning “IO COMM”.
98.09 NDIO1 DI FUNC The parameter selects the use of the inputs of the Digital I/O Extension
Module (NDIO) no. 1. See Parameter 98.03 DI/O EXT MODULE 1.
DI7,8
The DI1 and DI2 of the NDIO module extend the number of input
channels. The NDIO inputs are named DI7 and DI8 in the ACS 600
application program.
REPL DI1,2
The DI1 and DI2 of the NDIO module replace the standard input
channels DI1 and DI2 on the NIOC board. The NDIO inputs are named
DI1 and DI2 in the ACS 600 application program. This is the default
value.
98.10 NDIO2 DI FUNC The parameter selects the use of the inputs of the Digital I/O Extension
Module (NDIO) no. 2. See Parameter 98.04 DI/O EXT MODULE 2.
DI9,10
The DI1 and DI2 of the NDIO module extend the total number of digital
inputs. The NDIO inputs are named DI9 and DI10 in the ACS 600
application program.
REPL DI3,4
The DI1 and DI2 of the NDIO module replace the standard input
channels DI3 and DI4. The NDIO inputs are named DI3 and DI4 in the
ACS 600 application program. This is the default value.
98.11 NDIO3 DI FUNC The parameter selects the use of the inputs of the Digital I/O Extension
Module (NDIO) no. 3. See Parameter 98.05 DI/O EXT MODULE 3.
DI11,12
The DI1 and DI2 of the NDIO module extend the total number of digital
inputs. The NDIO inputs are named DI11 and DI12 in the ACS 600
application program.
Chapter 6 – Parameters
6-116 Firmware Manual
REPL DI5,6
The DI1 and DI2 of the NDIO module replace the standard input
channels DI5 and DI6. The NDIO inputs are named DI5 and DI6 in the
ACS 600 application program. This is the default value.
98.12 AI/O MOTOR
TEMP
The parameter sets an optional Analogue I/O Extension Module
(NAIO) an interface for motor temperature measurement. For more
information on the temperature measurement function and connections
see, Parameter Group 35 Mot Temp Meas.
Note: Before setting the ACS 600 parameters, ensure the NAIO
module hardware settings (DIP switches) are apprpopriate for the
motor temperature measurement:
• The NAIO module node number is 9.
• The input signal type selections are the following:
• for one Pt 100 sensor measurement, set the range to 0 - 2 V.
• for two to three Pt 100 sensors or one to three PTC sensors, set
the range to 0 - 10 V.
• For type NAIO-03 module, the operation mode selection is unipolar.
For directions see Installation and Start-up Guide for NTAC-0x/NDIO-
0x/NAIO-0x Modules (Eglish code: 3AFY 58919730).
NO
The NAIO module is not used in the motor temperature measurement.
UNIPOLAR
The NAIO module is used in the motor temperature measurement. The
use of the analogue inputs (AI) and outputs (AO) of the NAIO module is
shown in the table below.
Motor 1 temperature measurement
AO1 AO1 feeds a constant current to the motor 1 temperature sensor. The
current value depends on the setting of Parameter 35.01 MOT1 TEMP AI1
SEL:
- AO1 is 9.1 mA with selections 1xPT100; 2xPT100; 3xPT100
- AO1 is 1.6 mA with selection 1..3 PTC
AI1 AI1 measures voltage over the motor 1 temperature sensor.
Motor 2 temperature measurement
AO2 AO2 feeds a constant current to the motor 2 temperature sensor. The
current value depends on the setting of Parameter 35.04 MOT2 TEMP
AI2 SEL:
- AO2 is 9.1 mA. with selections 1xPT100; 2xPT100; 3xPT100,
- AO2 is 1.6 mA. with selection 1..3 PTC
AI2 AI2 measures voltage over the motor 2 temperature sensor.
Firmware Manual 7-1
Chapter 7 – Fault Tracing
WARNING! All electrical installation and maintenance work described
in this chapter should only be undertaken by a qualified electrician. The
Safety Instructions on the first pages of this manual and the
appropriate hardware manual must be followed.
Fault Tracing The ACS 600 is equipped with advanced protection features that
continuously guard the unit against damage and down time due to
incorrect operating conditions and electrical and mechanical
malfunctions.
This chapter explains the ACS 600 fault tracing procedure with the
Control Panel.
All Warning and Fault messages are presented in tables below with
information on the cause and remedy for each case. Most Warning and
Fault conditions can be identified and cured with that information. If not,
contact an ABB service representative.
CAUTION! Do not attempt any measurement, parts replacement or
other service procedure not described in this manual. Such action will
void guarantee, endanger correct operation, and increase downtime
and expense.
The Warning message disappears when any of the Control Panel keys
are pressed. The Warning will reappear in one minute if conditions
remain unchanged. If the frequency converter is operated with the
Control Panel detached, the red LED in the Control Panel mounting
platform indicates Fault condition.
For setting of programmable warning and fault messages and
functions, refer to Chapter 6 – Parameters.
Fault Resetting An active fault can be reset either by pressing the keypad RESET key,
by digital input or fieldbus, or switching the supply voltage off for a
while. When the fault has been removed, the motor can be started.
WARNING! If an external source for start command is selected and it is
ON, the ACS 600 (with Standard Application Program) will start
immediately after fault reset. (If the fault has not been removed, the
ACS 600 will trip again.)
Chapter 7 – Fault Tracing
7-2 Firmware Manual
Fault History When a Fault is detected, it is stored in the Fault History. The last
Faults and Warnings are stored with the time the Fault was detected.
WARNING! After a fault reset, the drive will start if the start signal is on.
Before the reset, switch off the external start signal or ensure that it is
safe to start.
The Fault History can be viewed by pressing or in the Actual
Signal Display Mode. The Fault History can then be scrolled with
and . To exit the Fault History press or . The Fault History
can be cleared by pressing the RESET key.
Fault and Warning
Messages
The Tables below show the warning and fault messages.
Table 7-1 The Warning Messages generated by the drive firmware.
WARNING CAUSE WHAT TO DO
ACS 600 TEMP The ACS 600 internal temperature is excessive.
A warning is given if inverter module temperature
exceeds 115 °C.
Check ambient conditions.
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
Check motor power against unit power.
AI < MIN FUNC
(programmable
Fault Function 30.01)
An analogue control signal is below minimum
allowed value. This can be caused by incorrect
signal level or a failure in the control wiring.
Check for proper analogue control signal levels.
Check the control wiring.
Check AI < MIN FUNC Fault Function
parameters.
PANEL LOSS
(programmable
Fault Function 30.02)
A Control Panel selected as active control
location for the ACS 600 has ceased
communicating.
Check the Panel is connected to the right
connector (see the appropriate hardware
manual).
Check Control Panel connector.
Replace Control Panel in the mounting platform.
Check PANEL LOSS Fault Function parameters.
MOTOR TEMP
(programmable
Fault Function 30.04
... 30.10)
Motor temperature is too high (or appears to be
too high). This can be caused by excessive load,
insufficient motor power, inadequate cooling or
incorrect start-up data.
Check motor ratings, load and cooling.
Check start-up data.
Check MOTOR TEMP Fault Function
parameters.
THERMISTOR
(programmable
Fault Function 30.04
... 30.05)
Motor thermal protection mode selected as
THERMISTOR and the temperature is excessive.
Check motor ratings and load.
Check start-up data.
Check thermistor connections for digital input DI6
of NIOC board.
MOTOR STALL
(programmable
Fault Function 30.10)
Motor is operating in the stall region. This can be
caused by excessive load or insufficient motor
power.
Check motor load and the ACS 600 ratings.
Check MOTOR STALL Fault Function
parameters.
Chapter 7 – Fault Tracing
Firmware Manual 7-3
COMM MODULE
(programmable
Fault Function)
Cyclical communication between ACS 600 and
fieldbus/ACS 600 Master is lost.
Check the status of fieldbus communication. See
Appendix C – Fieldbus Control, or the
appropriate fieldbus adapter manual.
Check the parameter settings:
- Group 51 (for CH0 fieldbus adapter), or
- Group 52 (for Standard Modbus Link)
Check cable connections.
Check if the bus master is not communicating or
configured.
UNDERLOAD
(programmable
Fault Function 30.13)
Motor load is too low. This can be caused by a
release mechanism in the driven equipment.
Check for a problem in the driven equipment.
Check UNDERLOAD Fault Function parameters.
ENCODER ERR Communication fault between the pulse encoder
and the NTAC module or between the NTAC
module and the ACS 600.
Check the pulse encoder and its wiring, the NTAC
module, Parameter Group 50 settings and the
fibre optic connections on NAMC channel CH1.
ID N CHANGED The ID number of the drive has been changed
from 1 in Drive Selection Mode (the change is not
shown on the display).
To change the ID number back to 1 go to Drive
Selection Mode by pressing DRIVE. Press
ENTER. Set the ID number to 1. Press ENTER.
MACRO CHANGE Macro is restoring or user Macro is being saved. Please wait.
ID MAGN REQ Motor identification is required. This warning
belongs to the normal start-up procedure. The
drive expects the user to select how the motor
identification is to be performed: By ID
magnetisation or by ID Run.
To start the ID magnetisation:
Press the Start key.
To start the ID Run procedure:
Select the Identification Run type (See Parameter
99.10 MOTOR ID RUN).
ID MAGN Motor identification magnetisation is on. This
warning belongs to the normal start-up
procedure.
Wait until the drive indicates that motor
identification is completed.
ID DONE The ACS 600 has performed the motor
identification magnetisation and is ready for
operation. This warning belongs to the normal
start-up procedure.
Continue drive operation.
ID RUN SEL Motor Identification Run is selected, and the drive
is ready to start the ID Run. This warning belongs
to the ID Run procedure.
Press Start key to start the Identification Run.
MOTOR STARTS Motor Identification Run starts. This warning
belongs to the IR Run procedure.
Wait until the drive indicates that motor
identification is completed.
ID RUN Motor Identification Run is on. Wait until the drive indicates that Identification
Run is completed.
ID DONE The ACS 600 has performed the Identification
Run and is ready for operation. This warning
belongs to the ID Run procedure.
Continue drive operation.
ENCODER A<>B The pulse encoder phasing is wrong: Phase A is
connected to the terminal of phase B and vice
versa.
Interchange the connection of pulse encoder
phases A and B.
WARNING CAUSE WHAT TO DO
Chapter 7 – Fault Tracing
7-4 Firmware Manual
MOTOR 1 TEMP Measured motor temperature has exceeded the
alarm limit set by Parameter 35.02 MOT 1 TEMP
ALM L.
Check that the value of the alarm limit is OK.
Check that the actual number of the sensors
corresponds to the parameter set value.
Let the motor cool down. Ensure proper motor
cooling: Check the cooling fan, clean the cooling
surfaces, etc.
MOTOR 2 TEMP Measured motor temperature has exceeded the
alarm limit set by Parameter 35.05 MOT 2 TEMP
ALM L.
Check that the value of the alarm limit is OK.
Check that the actual number of the sensors
corresponds to the parameter set value.
Let the motor cool down. Ensure proper motor
cooling: Check the cooling fan, clean the cooling
surfaces, etc.
T MEAS ALM Motor temperature measurement is out of the
acceptable range.
Check the connections of the motor temperature
measurement circuit. See Group 35 Mot Temp
Meas for the circuit diagram.
BRAKE ACKN Unexpected state of the brake acknowledge
signal.
See Group 42 Brake Control. Check the
connection of the brake acknowledgement signal.
IO CONF An input or output of an optional I/O extension
module has been selected as a signal interface in
the application program but the communication to
the appropriate I/O extension module has not
been set accordingly.
Check the fault function description (Parameter
30.22 IO CONF FUNC) and Group 98 Option
Modules. Correct the settings where necessary.
SLEEP MODE The sleep function has entered the sleeping
mode.
See Group 40 PID Control.
WARNING CAUSE WHAT TO DO
Chapter 7 – Fault Tracing
Firmware Manual 7-5
Table 7-2 The Warning Messages generated by the Control Panel firmware.
WARNING CAUSE WHAT TO DO
WRITE ACCESS
DENIED
PARAMETER
SETTING NOT
POSSIBLE
Certain parameters do not allow changes while
motor is running. If tried, no change is accepted,
and a warning is displayed.
Stop the motor then change the parameter value.
Parameter Lock is on. Open the parameter Lock (see Parameter 16.02
PARAMETER LOCK).
DOWNLOAD FAILED Download function of the panel has failed. No
data has been copied from the Panel to the
ACS 600.
Make sure the Panel is in local mode.
Retry (there might be interference on the link).
Contact an ABB representative.
UPLOAD FAILED Upload function of the panel has failed. No data
has been copied from the ACS 600 to the Panel.
Retry (there might be interference on the link).
Contact an ABB representative.
NOT UPLOADED
DOWNLOADING
NOT POSSIBLE
No upload function has been performed. Perform the Upload function before downloading.
See Chapter 2 – Overview of ACS 600
Programming and the CDP 312 Control Panel.
DRIVE
INCOMPATIBLE
DOWNLOADING
NOT POSSIBLE
Program versions in the Panel and in the
ACS 600 do not match. It is not possible to copy
data from Panel to the ACS 600.
Check the program versions (see Parameter
Group 33 Information).
DRIVE IS RUNNING
DOWNLOADING
NOT POSSIBLE
Downloading is not possible while the motor is
running.
Stop the motor. Perform the downloading.
NO FREE ID
NUMBERS ID
NUMBER SETTING
NOT POSSIBLE
The Panel Link already includes 31 stations. Disconnect another station from the link to free
an ID number.
NO
COMMUNICATION
(X)
There is a cabling problem or a hardware
malfunction on the Panel Link.
Check the Panel Link connections.
Press the RESET key. The panel reset may take
up to half a minute, please wait.
(4) = Panel type is not compatible with the
version of the drive application program.
CDP 312 Panel does not communicate with
Standard Application Program (ACS) version 3.x
or earlier. The CDP 311 Panel does not
communicate with Standard Application Program
(ACS) version 5.x or later.
Check the Panel type and the version of the drive
application program. The Panel type is printed on
the cover of the Panel. The application program
version is stored in Parameter 33.02 APPL SW
VERSION.
Chapter 7 – Fault Tracing
7-6 Firmware Manual
Table 7-3 The Fault Messages generated by the drive firmware.
FAULT CAUSE WHAT TO DO
TEMP The internal temperature is excessive. The trip
level of inverter module temperature is 125 °C.
Check ambient conditions.
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
Check motor power against unit power.
OVERCURRENT*)
Output current is excessive. The software
overcurrent trip limit is 3.5 · I2hd.
Check motor load.
Check acceleration time.
Check motor and motor cable (including
phasing).
Check there are no power factor correction
capacitors or surge absorbers in the motor cable.
Check encoder cable (including phasing).
SHORT CIRC*)
There is a short-circuit in the motor cable(s) or
motor.
Check the motor and motor cable.
Check there are no power factor correction
capacitors or surge absorbers in the motor cable.
The output bridge of the converter unit is faulty. Consult an ABB representative.
PPCC LINK*)
The fibre optic link to the NINT board is faulty. Check the fibre optic cables connected to the
power plates.
DC OVERVOLT Intermediate circuit DC voltage is excessive. DC
overvoltage trip limit is 1.3 · U1max, where U1max
is the maximum value of the mains voltage range.
For 400 V units, U1max is 415 V. For 500 V units,
U1max is 500 V. The actual voltage in the
intermediate circuit corresponding to the mains
voltage trip level is 728 V d.c. for 400 V units and
877 V d.c. for 500 V units.
Check that the overvoltage controller is on
(Parameter 20.05).
Check mains for static or transient overvoltage.
Check Braking Chopper and Resistor (if used).
Check deceleration time.
Use Coasting To Stop function (if applicable).
Retrofit the frequency converter with a Braking
Chopper and a Braking Resistor.
SUPPLY PHASE Intermediate circuit DC voltage is oscillating. This
can be caused by a missing mains phase, a
blown fuse or a rectifier bridge internal fault.
A trip occurs when the DC voltage ripple is 13 per
cent of the DC voltage.
Check mains fuses.
Check for mains supply imbalance.
DC UNDERVOLT Intermediate circuit DC voltage is not sufficient.
This can be caused by a missing mains phase, a
blown fuse or a rectifier bridge internal fault.
DC undervoltage trip limit is 0.65 · U1min, where
U1min is the minimum value of the mains voltage
range. For 400 V and 500 V units, U1min is 380 V.
The actual voltage in the intermediate circuit
corresponding to the mains voltage trip level is
334 V d.c.
Check mains supply and fuses.
Chapter 7 – Fault Tracing
Firmware Manual 7-7
OVERFREQ Motor is turning faster than the highest allowed
speed. This can be caused by an incorrectly set
minimum/maximum speed, insufficient braking
torque or changes in the load when using torque
reference.
The trip level is 40 Hz over the operating range
absolute maximum speed limit (Direct Torque
Control mode active) or frequency limit (Scalar
Control active). The operating range limits are set
by Parameters 20.01 and 20.02 (DTC mode
active) or 20.07 and 20.08 (Scalar Control
active).
Check minimum/maximum speed settings.
Check adequacy of motor braking torque.
Check applicability of torque control.
Check the need for a Braking Chopper and
Resistor(s).
START INHIBIT Optional start inhibit hardware logic is activated. Check the start inhibit circuit (NGPS board).
EARTH FAULT*)
(programmable Fault
Function 30.17
The load on the incoming mains system is out of
balance. This can be caused by a fault in the
motor, motor cable or an internal malfunction.
Check motor.
Check motor cable.
Check there are no power factor correction
capacitors or surge absorbers in the motor cable.
AI < MIN FUNC
(programmable
Fault Function 30.01)
An analogue control signal is below minimum
allowed value. This can be caused by incorrect
signal level or a failure in the control wiring.
Check for proper analogue control signal levels.
Check the control wiring.
Check AI < MIN FUNC Fault Function
parameters.
PANEL LOSS
(programmable
Fault Function 30.02)
A Control Panel or Drives Window selected as
active control location for the ACS 600 has
ceased communicating.
Check the Panel is connected to the right
connector (see the appropriate hardware
manual).
Check Control Panel connector.
Re-insert Control Panel in the mounting platform.
Check PANEL LOSS Fault Function parameters.
Check DrivesWindow connection.
EXTERNAL FLT
(programmable
Fault Function 30.03)
There is a fault in one of the external devices.
(This information is configured through one of the
programmable digital inputs.)
Check external devices for faults.
Check Parameter 30.03 EXTERNAL FAULT.
MOTOR TEMP
(programmable
Fault Function 30.04
... 30.09)
Motor temperature is too high (or appears to be
too high). This can be caused by excessive load,
insufficient motor power, inadequate cooling or
incorrect start-up data.
Check motor ratings and load.
Check start-up data.
Check MOTOR TEMP Fault Function
parameters.
THERMISTOR
(programmable
Fault Function 30.04
... 30.05)
Motor thermal protection mode selected as
THERMISTOR and the temperature is excessive.
Check motor ratings and load.
Check start-up data.
Check thermistor connections for digital input
DI6.
Check thermistor cabling.
I/O COMM A communication error has occurred on the
NAMC board, channel CH1.
Electromagnetic interference.
There is an internal fault on the NIOC board.
Check the connections of the fibre optic cables
on NAMC channel CH1.
Check all I/O modules (if present) connected to
channel CH1.
Check for proper earthing of the equipment.
Check for highly emissive components nearby.
Replace the NIOC board.
FAULT CAUSE WHAT TO DO
Chapter 7 – Fault Tracing
7-8 Firmware Manual
AMBIENT TEMP I/O Control board temperature is lower than
-guatda.com/cmx.p5...0 °C or exceeds +73...82 °C.
Check air flow and fan operation.
USER MACRO There is no User Macro saved or the file is
defective.
Create the User Macro again.
MOTOR STALL
(programmable
Fault Function 30.10
... 30.12)
Motor is operating in the stall region. This can be
caused by excessive load or insufficient motor
power.
Check motor load and the ACS 600 ratings.
Check MOTOR STALL Fault Function
parameters.
NO MOT DATA Motor data is not given or motor data does not
match with inverter data.
Check the motor data given by Parameters
99.04... 99.09.
UNDERLOAD
(programmable
Fault Function 30.13
... 30.15)
Motor load is too low. This can be caused by a
release mechanism in the driven equipment.
Check for a problem in the driven equipment.
Check UNDERLOAD Fault Function parameters.
ID RUN FAIL The Motor ID Run is not completed successfully. Check the maximum speed (Parameter 20.02). It
should be at least 80 % of the nominal speed of
the motor (Parameter 99.08).
MOTOR PHASE
(programmable
Fault Function 30.16
(ACC: 30.10))
One of the motor phases is lost. This can be
caused by a fault in the motor, the motor cable, a
thermal relay (if used) or an internal fault.
Check motor and motor cable.
Check thermal relay (if used).
Check MOTOR PHASE Fault Function
parameters. Disable this protection.
COMM MODULE
(programmable
Fault Function)
Cyclical communication with ACS 600 and
fieldbus/ACS 600 Master is lost.
Check the status of fieldbus communication. See
Appendix C – Fieldbus Control, or the
appropriate fieldbus adapter manual.
Check the parameter settings:
- Group 51 (for CH0 fieldbus adapter), or
- Group 52 (for Standard Modbus Link)
Check cable connections.
Check if the bus master is not communicating or
configured.
LINE CONV Fault on the line side converter. Shift the Panel from the motor side converter
control board to the line side converter control
board.
See the line side converter manual for the fault
description.
SC (INU 1)*)
SC (INU 2)
SC (INU 3)
SC (INU 4)
Short circuit in inverter unit consisting of several
parallel inverter modules. Number refers to the
faulty inverter module number.
Check the motor and motor cable.
Check the power semiconductors (IGBT power
plates) of the inverter module. (INU 1 stands for
inverter module 1 etc.).
NINT board fibre optic connection fault in inverter
unit consisting of several parallel inverter
modules. Number refers to the inverter module
number.
Check the connection from the inverter module
Main Circuit Interface Board, NINT to the PPCC
Branching Unit, NPBU. (inverter module 1 is
connected to NPBU CH1 etc.)
CURR MEAS Current transformer failure in output current
measurent circuit.
Check the current tranformers connected to Main
Circuit Interface Board, NINT.
FAULT CAUSE WHAT TO DO
Chapter 7 – Fault Tracing
Firmware Manual 7-9
.
*)
More detailed information on the high power units with parallel inverters is given in fault word 3.12
INT FAULT INFO (see Appendix C – Fieldbus Control).
ENCODER ERR Communication fault between the pulse encoder
and the NTAC module or between the NTAC
module and the ACS 600.
Check the pulse encoder and its wiring, the NTAC
module, Parameter Group 50 settings and the
fibre optic connections on NAMC channel CH1.
ENCODER A<>B The pulse encoder phasing is wrong: Phase A is
connected to the terminal of phase B and vice
versa.
Interchange the connection of pulse encoder
phases A and B.
MOTOR 1 TEMP Measured motor temperature has exceeded the
fault limit set by Parameter 35.03 MOT 1 TEMP
FLT L.
Check that the value of the fault limit is ok. Let the
motor cool down. Ensure proper motor cooling:
Check the cooling fan, clean the cooling surfaces,
etc.
MOTOR 2 TEMP Measured motor temperature has exceeded the
fault limit set by Parameter 35.06 MOT 2 TEMP
FLT L.
Check that the value of the fault limit is ok. Let the
motor cool down. Ensure proper motor cooling:
Check the cooling fan, clean the cooling surfaces,
etc.
THERMAL MODE The motor thermal protection mode is set to DTC
for a high-power motor.
See Parameter 30.05 MOT THERM P MODE.
BRAKE ACKN Unexpected state of the brake acknowledge
signal.
See Group 42 Brake Control. Check the
connection of the brake acknowledgement signal.
IO CONF An input or output of an optional I/O extension
module has been selected as a signal interface in
the application program but the communication to
the appropriate I/O extension module has not
been set accordingly.
Check the fault function description (Parameter
30.22 IO CONF FUNC) and Group 98 Option
Modules. Correct the settings where necessary.
FAULT CAUSE WHAT TO DO
Chapter 7 – Fault Tracing
7-10 Firmware Manual
Firmware Manual A-1
Appendix A – Complete Parameter Settings
The tables in this Appendix list all the actual signals and parameters
with their alternative settings of the ACS 600.
The numbers in brackets () in the Range/Unit and Alternative Settings
columns show the numerical equivalents for fieldbus use.
Note for Interbus-S (NIBA-01 module) Users: The Parameter Index
equals ((Drive Parameter No.) • 100 + 12288) converted to
hexadecimal. Example: the index for drive parameter 13.09 is
1309 + 12288 = 13597 = 351Dh.
Table A-1 Group 1 Actual Signals.
No. Signal Short name
Range/Unit
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
1.01 PROCESS VARIABLE PROC VAR NO; rpm; %; m/s; A; V; Hz; s; h; kh;
C; lft; mA; mV; kW; W; kWh; F; hp;
MWh; m3h; l/s; bar; kPa; GPM; PSI;
CFM; ft; MGD; iHg; FPM
1 40101 1 = 1
1.02 SPEED SPEED rpm 2 40102 -20000 = -100 %
20000 = 100 %
of motor absolute max. speed
1.03 FREQUENCY FREQ Hz 3 40103 -100 = -1 Hz
100 = 1 Hz
1.04 CURRENT CURRENT A 4 40104 10 = 1 A
1.05 TORQUE TORQUE % 5 40105 -10000 = -100 %
10000 = 100 %
of motor nominal torque
1.06 POWER POWER % 6 40106 0 = 0 %
1000 = 100 %
of motor nominal power
1.07 DC BUS VOLTAGE V DC BUS V V 7 40107 1 = 1 V
1.08 MAINS VOLTAGE MAINS V V 8 40108 1 = 1 V
1.09 OUTPUT VOLTAGE OUT VOLT V 9 40109 1 = 1 V
1.10 ACS 600 TEMP ACS TEMP C 10 40110 1 = 1 °C
1.11 EXTERNAL REF 1 EXT REF1 rpm 11 40111 1 = 1 rpm
1.12 EXTERNAL REF 2 EXT REF2 % 12 40112 0 = 0 %
10000 = 100 %
of motor max. speed / nominal
torque / max. process reference
(depending on the ACS 600
macro selected)
1.13 CTRL LOCATION CTRL LOC (1,2) LOCAL; (3) EXT1; (4) EXT2 13 40113 (see Range/Unit)
1.14 OP HOUR COUNTER OP HOURS h 14 40114 1 = 1 h
1.15 KILOWATT HOURS KW HOURS kWh 15 40115 1 = 100 kWh
1.16 APPL BLOCK OUTPUT APPL OUT % 16 40116 0 = 0 %
10000 = 100 %
1.17 DI6-1 STATUS DI6-1 17 40117
1.18 AI1 [V] AI1 [V] V 18 40118 1 = 0.001 V
1.19 AI2 [mA] AI2 [mA] mA 19 40119 1 =0.001 mA
Appendix A – Complete Parameter Settings
A-2 Firmware Manual
Table A-2 Group 2 Actual Signals for speed and torque reference monitoring.
1.20 AI3 [mA] AI3 [mA] mA 20 40120 1 = 0.001 mA
1.21 RO3-1 STATUS RO3-1 21 40121
1.22 AO1 [mA] AO1 [mA] mA 22 40122 1 =0.001 mA
1.23 AO2 [mA] AO2 [mA] mA 23 40123 1 = 0.001 mA
1.24 ACTUAL VALUE 1 ACT VAL1 % 24 40124 0 = 0 %
10000 = 100 %
1.25 ACTUAL VALUE 2 ACT VAL2 % 25 40125 0 = 0 %
10000 = 100 %
1.26 CONTROL DEVIATION CONT DEV % 26 40126 -10000 = -100 %
10000 = 100 %
1.27 APPLICATION MACRO MACRO (1) FACTORY; (2) HAND/AUTO;
(3) PID.CTRL; (4) T-CTRL;
(5) SEQ CTRL; (6) USER 1 LOAD;
(7) USER 2 LOAD
27 40127 (see Range/Unit)
1.28 EXT AO1 [mA] EXT AO1 mA 28 40128 1 = 0.001 mA
1.29 EXT AO2 [mA] EXT AO2 mA 29 40129 1 = 0.001 mA
1.30 PP 1 TEMP PP 1 TEM °C 30 40130 1 = 1 °C
1.31 PP 2 TEMP PP 2 TEM °C 31 40131 1 = 1 °C
1.32 PP 3 TEMP PP 3 TEM °C 32 40132 1 = 1 °C
1.33 PP 4 TEMP PP 4 TEM °C 33 40133 1 = 1 °C
1.34 ACTUAL VALUE ACT V % 34 40134 0 = 0 %
10000 = 100 %
1.35 MOTOR 1 TEMP M 1 TEMP °C 35 40135 1 = 1 °C
1.36 MOTOR 2 TEMP M 2 TEMP °C 36 40136 1 = 1 °C
1.37 MOTOR TEMP EST MOTOR TE °C 37 40137 1 = 1 °C
1.38 AI5 [mA] AI5 [mA] mA 38 40138 1 = 0.001 mA
1.39 AI6 [mA] AI6 [mA] mA 39 40139 1 = 0.001 mA
1.40 DI7-12 STATUS DI7..12 40 40140
1.41 EXT RO STATUS EXT RO 41 40141
1.42 PROCESS SPEED REL P SPEED % 42 40142 1 = 1
1.43 MOTOR RUN TIME MOTOR
RUN TIME
h 43 40143 1 = 10 h
No. Signal Short name
Range/Unit
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
2.01 SPEED REF 2 S REF 2 rpm 51 40201 0 = 0 %
20000 = 100 %
of motor absolute max. speed2.02 SPEED REF 3 S REF 3 rpm 52 40202
2.09 TORQ REF 2 T REF 2 % 59 40209 0 = 0 %
10000 = 100 %
of motor nominal torque2.10 TORQ REF 3 T REF 3 % 60 40210
2.13 TORQ USED REF T USED R % 63 40213
2.17 SPEED ESTIMATED SPEED ES rpm 67 40217 0 = 0 %
20000 = 100 %
of motor absolute max. speed
2.18 SPEED MEASURED SPEED ME rpm 68 40218 0 = 0 %
20000 = 100 %
of motor absolute max. speed
No. Signal Short name
Range/Unit
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
Firmware Manual A-3
Table A-3 Group 3 Actual Signals for fieldbus communication (each signal is a 16-bit data word).
No. Signal Short name
Range/Unit
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
3.01 MAIN CTRL WORD MAIN CW 0 ... 65535 (Decimal) 76 40301
The contents of these data words
are detailed in Appendix C –
Fieldbus Control.
For the contents of Actual Signal
3.11, see the Master/Follower
Application Guide (3AFY 58962180
[English])
3.02 MAIN STATUS WORD MAIN SW 0 ... 65535 (Decimal) 77 40302
3.03 AUX STATUS WORD AUX SW 0 ... 65535 (Decimal) 78 40303
3.04 LIMIT WORD 1 LIMIT W1 0 ... 65535 (Decimal) 79 40304
3.05 FAULT WORD 1 FAULT W1 0 ... 65535 (Decimal) 80 40305
3.06 FAULT WORD 2 FAULT W2 0 ... 65535 (Decimal) 81 40306
3.07 SYSTEM FAULT SYS FLT 0 ... 65535 (Decimal) 82 40307
3.08 ALARM WORD 1 ALARM W 1 0 ... 65535 (Decimal) 83 40308
3.09 ALARM WORD 2 ALARM W 2 0 ... 65535 (Decimal) 84 40309
3.11 FOLLOWER MCW FOLL MCW 0 ... 65535 (Decimal) 86 40311
3.12 INT FAULT INFO INT FAUL 0 ... 65535 (Decimal) 87 40312
3.13 AUX STATUS WORD 3 AUX SW 3 0 ... 65535 (Decimal) 88 40313
3.14 AUX STATUS WORD 4 AUX SW 4 0 ... 65535 (Decimal) 89 40314
3.15 FAULT WORD 3 FAULT W3 0 ... 65535 (Decimal) 90 40315
3.16 ALARM WORD 3 ALARM W3 0 ... 65535 (Decimal) 91 40316
Appendix A – Complete Parameter Settings
A-4 Firmware Manual
Table A-4 Parameter Settings.
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
99 START-UP DATA
99.01 LANGUAGE (0) ENGLISH; (1) ENGLISH(AM); (2) DEUTSCH;
(3) ITALIANO; (4) ESPANOL; (5) PORTUGUES;
(6) NEDERLANDS; (7) FRANCAIS; (8) DANSK;
(9) SUOMI; (10) SVENSKA
1926 49901 (see Alternative Settings)
99.02 APPLICATION MACRO (1) FACTORY; (2) HAND/AUTO; (3) PID CTRL; (4) T CTRL;
(5) SEQ CTRL; (6) USER 1 LOAD; (7) USER 1 SAVE;
(8) USER 2 LOAD; (9) USER 2 SAVE
1927 49902 (see Alternative Settings)
99.03 APPLIC RESTORE (0) NO; (1) YES 1928 49903 (see Alternative Settings)
99.04 MOTOR CTRL MODE (0) DTC; (1) SCALAR 1929 49904 (see Alternative Settings)
99.05 MOTOR NOM VOLTAGE 1/2 · UN of ACS 600 ... 2 · UN of ACS 600 (printed on the motor
nameplate)
1930 49905 1 = 1 V
99.06 MOTOR NOM CURRENT 1/6 · I2hd of ACS 600 ... 2 · I2hd of ACS 600 (printed on the motor
nameplate)
1931 49906 1 = 0.1 A
99.07 MOTOR NOM FREQ 8 Hz ... 300 Hz (printed on the motor nameplate) 1932 49907 1 = 0.01 Hz
99.08 MOTOR NOM SPEED 1 rpm ... 18000 rpm (printed on the motor nameplate) 1933 49908 1 = 1 rpm
99.09 MOTOR NOM POWER 0 kW ... 9000 kW (printed on the motor nameplate) 1934 49909 1 = 0.1 kW
99.10 MOTOR ID RUN (1) NO; (2) STANDARD; (3) REDUCED 1935 49910 (see Alternative Settings)
10 START/STOP/DIR
10.01 EXT1 STRT/STP/DIR (1) NOT SEL; (2) DI1; (3) DI1,2; (4) DI1P,2P; (5) DI1P,2P,3;
(6) DI1P,2P,3P; (7) DI6; (8) DI6,5; (9) KEYPAD;
(10) COMM. MODULE; (11) DI7; (12) DI7,8; (13) DI7P,8P;
(14) DI7P,8P,9; (15) DI7P,8P,9P
101 41001 (see Alternative Settings)
10.02 EXT2 STRT/STP/DIR (1) NOT SEL; (2) DI1; (3) DI1,2; (4) DI1P,2P; (5) DI1P,2P,3;
(6) DI1P,2P,3P; (7) DI6; (8) DI6,5; (9) KEYPAD;
(10) COMM. MODULE; (11) DI7; (12) DI7,8; (13) DI7P,8P;
(14) DI7P,8P,9; (15) DI7P,8P,9P
102 41002 (see Alternative Settings)
10.03 DIRECTION (1) FORWARD; (2) REVERSE; (3) REQUEST 103 41003 (see Alternative Settings)
11 REFERENCE SELECT
11.01 KEYPAD REF SEL (1) REF1(rpm); (2) REF2(%) 126 41101 (see Alternative Settings)
11.02 EXT1/EXT2 SELECT (1) DI1; (2) DI2; (3) DI3; (4) DI4; (5) DI5; (6) DI6; (7) EXT1;
(8) EXT2; (9) COMM. MODULE; (10) DI7; (11) DI8; (12) DI9;
(13) DI10; (14) DI11; (15) DI12;
127 41102 (see Alternative Settings)
11.03 EXT REF1 SELECT (1) KEYPAD; (2) AI1; (3) AI2; (4) AI3; (5) AI1/JOYST;
(6) AI2/JOYST; (7) AI1+AI3; (8) AI2+AI3; (9) AI1-AI3;
(10) AI2-AI3; (11) AI1*AI3; (12) AI2*AI3; (13) MIN(AI1,AI3);
(14) MIN(AI2,AI3); (15) MAX(AI1,AI3); (16) MAX(AI2,AI3);
(17) DI3U,4D(R); (18) DI3U,4D; (19) DI5U,6D;
(20) COMM. REF; (21) COMMREF+AI1; (22) COMMREF*AI1;
(23) FAST COMM; (24) COMMREF+AI5; (25) COMMREF*AI5;
(26) AI5; (27) AI6; (28) AI5/JOYST; (29) AI6/JOYST; (30)
AI5+AI6; (31) AI5-AI6; (32) AI5*AI6; (33) MIN(AI5,6); (34)
MAX(AI5,6); (35) DI11U,12D(R); (36) DI11U,12D
128 41103 (see Alternative Settings)
11.04 EXT REF1 MINIMUM 0 ... 18000 rpm 129 41104 1 = 1 rpm
11.05 EXT REF1 MAXIMUM 0 ... 18000 rpm 130 41105 1 = 1 rpm
11.06 EXT REF2 SELECT (1) KEYPAD; (2) AI1; (3) AI2; (4) AI3; (5) AI1/JOYST;
(6) AI2/JOYST; (7) AI1+AI3; (8) AI2+AI3; (9) AI1-AI3;
(10) AI2-AI3; (11) AI1*AI3; (12) AI2*AI3; (13) MIN(AI1,AI3);
(14) MIN(AI2,AI3); (15) MAX(AI1,AI3); (16) MAX(AI2,AI3);
(17) DI3U,4D(R); (18) DI3U,4D; (19) DI5U,6D;
(20) COMM. REF; (21) COMMREF+AI1; (22) COMMREF*AI1;
(23) FAST COMM; (24) COMMREF+AI5; (25) COMMREF*AI5;
(26) AI5; (27) AI6; (28) AI5/JOYST; (29) AI6/JOYST; (30)
AI5+AI6; (31) AI5-AI6; (32) AI5*AI6; (33) MIN(AI5,6); (34)
MAX(AI5,6); (35) DI11U,12D(R); (36) DI11U,12D
131 41106 (see Alternative Settings)
Appendix A – Complete Parameter Settings
Firmware Manual A-5
11.07 EXT REF2 MINIMUM 0 % ... 100 % 132 41107 0 = 0 %
10000 = 100 %
11.08 EXT REF2 MAXIMUM 0 % ... 500 % 133 41108 0 = 0 %
5000 = 500 %
12 CONSTANT SPEEDS
12.01 CONST SPEED SEL (1) NOT SEL; (2) DI1 (SPEED1); (3) DI2 (SPEED2);
(4) DI3 (SPEED3); (5) DI4 (SPEED4); (6) DI5 (SPEED5);
(7) DI6 (SPEED6); (8) DI1,2; (9) DI3,4; (10) DI5,6;
(11) DI1,2,3; (12) DI3,4,5; (13) DI4,5,6; (14) DI3,4,5,6; (15)
DI7(SPEED1); (16) DI8 (SPEED2); (17) DI9(SPEED3); (18)
DI10 (SPEED4); (19) DI11(SPEED5); (20) DI12 (SPEED6);
(21) DI7,8; (22) DI9,10; (23) DI11,12
151 41201 (see Alternative Settings)
12.02 CONST SPEED 1 0 ... 18000 rpm 152 41202 1 = 1 rpm
12.03 CONST SPEED 2 0 ... 18000 rpm 153 41203
12.04 CONST SPEED 3 0 ... 18000 rpm 154 41204
12.05 CONST SPEED 4 0 ... 18000 rpm 155 41205
12.06 CONST SPEED 5 0 ... 18000 rpm 156 41206
12.07 CONST SPEED 6 0 ... 18000 rpm 157 41207
12.08 CONST SPEED 7 0 ... 18000 rpm 158 41208
12.09 CONST SPEED 8 0 ... 18000 rpm 159 41209
12.10 CONST SPEED 9 0 ... 18000 rpm 160 41210
12.11 CONST SPEED 10 0 ... 18000 rpm 161 41211
12.12 CONST SPEED 11 0 ... 18000 rpm 162 41212
12.13 CONST SPEED 12 0 ... 18000 rpm 163 41213
12.14 CONST SPEED 13 0 ... 18000 rpm 164 41214
12.15 CONST SPEED 14 0 ... 18000 rpm 165 41215
12.16 CONST SPEED 15 -18000 ... 18000 rpm 166 41216
13 ANALOGUE INPUTS
13.01 MINIMUM AI1 (1) 0 V; (2) 2 V; (3) TUNED VALUE; (4) TUNE 176 41301 (see Alternative Settings)
13.02 MAXIMUM AI1 (1) 10 V; (2) TUNED VALUE; (3) TUNE 177 41302 (see Alternative Settings)
13.03 SCALE AI1 0 ... 100 % 178 41303 0 = 0 %
10000 = 100 %
13.04 FILTER AI1 0.00 s ... 10.00 s 179 41304 0 = 0 s
1000 = 10 s
13.05 INVERT AI1 (0) NO; (65535) YES 180 41305 (see Alternative Settings)
13.06 MINIMUM AI2 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 181 41306 (see Alternative Settings)
13.07 MAXIMUM AI2 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 182 41307 (see Alternative Settings)
13.08 SCALE AI2 0 ... 100 % 183 41308 0 = 0 %
10000 = 100 %
13.09 FILTER AI2 0.00 s ... 10.00 s 184 41309 0 = 0 s
1000 = 10 s
13.10 INVERT AI2 (0) NO; (65535) YES 185 41310 (see Alternative Settings)
13.11 MINIMUM AI3 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 186 41311 (see Alternative Settings)
13.12 MAXIMUM AI3 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 187 41312 (see Alternative Settings)
13.13 SCALE AI3 0 ... 100 % 188 41313 0 = 0 %
10000 = 100 %
13.14 FILTER AI3 0.00 s ... 10.00 s 189 41314 0 = 0 s
1000 = 10 s
13.15 INVERT AI3 (0) NO; (65535) YES 190 41315 (see Alternative Settings)
13.16 MINIMUM AI5 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 191 41316 (see Alternative Settings)
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
A-6 Firmware Manual
13.17 MAXIMUM AI5 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 192 41317 (see Alternative Settings)
13.18 SCALE AI5 0 ... 100 % 193 41318 0 = 0 %
10000 = 100 %
13.19 FILTER AI5 0.00 s ... 10.00 s 194 41319 0 = 0 s
1000 = 10 s
13.20 INVERT AI5 (0) NO; (65535) YES 195 41320 (see Alternative Settings)
13.21 MINIMUM AI6 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 196 41321 (see Alternative Settings)
13.22 MAXIMUM AI6 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 197 41322 (see Alternative Settings)
13.23 SCALE AI6 0 ... 100 % 198 41323 0 = 0 %
10000 = 100 %
13.24 FILTER AI6 0.00 s ... 10.00 s 199 41324 0 = 0 s
1000 = 10 s
13.25 INVERT AI6 (0) NO; (65535) YES 200 41325 (see Alternative Settings)
14 RELAY OUTPUTS
14.01 RELAY RO1 OUTPUT Relay outputs 1, 2 & 3: (1) NOT USED; (2) READY;
(3) RUNNING; (4) FAULT; (5) FAULT(-1); (6) FAULT(RST);
(7) STALL WARN; (8) STALL FLT; (9) MOT TEMP WRN;
(10) MOT TEMP FLT; (11) ACS TEMP WRN;
(12) ACS TEMP FLT; (13) FAULT/WARN; (14) WARNING;
(15) REVERSED; (16) EXT CTRL; (17) REF 2 SEL;
(18) CONST SPEED; (19) DC OVERVOLT;
(20) DC UNDERVOL; (21) SPEED 1 LIM; (22) SPEED 2 LIM;
(23) CURRENT LIM; (24) REF 1 LIM; (25) REF 2 LIM;
(26) TORQUE 1 LIM; (27) TORQUE 2 LIM; (28) STARTED;
(29) LOSS OF REF; (30) AT SPEED; (33) COMM MODULE;
(34) POINTERx; (35) BRAKE CTRL
Relay output 1 & 2: (31) ACT 1 LIM; (32) ACT 2 LIM
Relay output 3: (31) MAGN READY; (32) USER 2 SEL
201 41401 (see Alternative Settings)
14.02 RELAY RO2 OUTPUT 202 41402
14.03 RELAY RO3 OUTPUT 203 41403
14.04 RO1 TON DELAY 0.0 to 3600.0 s 204 41404 10 = 1 s
14.05 RO1 TOFF DELAY 0.0 to 3600.0 s 205 41405 10 = 1 s
14.06 RO2 TON DELAY 0.0 to 3600.0 s 206 41406 10 = 1 s
14.07 RO2 TOFF DELAY 0.0 to 3600.0 s 207 41407 10 = 1 s
14.08 RO3 TON DELAY 0.0 to 3600.0 s 208 41408 10 = 1 s
14.09 RO3 TOFF DELAY 0.0 to 3600.0 s 209 41409 10 = 1 s
14.10 NDIO MOD1 RO1 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2
SEL; (6) AT SPEED; (7) POINTER1
210 41410 (see Alternative Settings)
14.11 NDIO MOD1 RO2 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2
SEL; (6) AT SPEED; (7) POINTER2
211 41411 (see Alternative Settings)
14.12 NDIO MOD2 RO1 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2
SEL; (6) AT SPEED; (7) POINTER3
212 41412 (see Alternative Settings)
14.13 NDIO MOD2 RO2 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2
SEL; (6) AT SPEED; (7) POINTER4
213 41413 (see Alternative Settings)
14.14 NDIO MOD3 RO1 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2
SEL; (6) AT SPEED; (7) POINTER5
214 41414 (see Alternative Settings)
14.15 NDIO MOD3 RO2 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2
SEL; (6) AT SPEED; (7) POINTER6
215 41415 (see Alternative Settings)
15 ANALOGUE OUTPUTS
15.01 ANALOGUE OUTPUT1 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY;
(5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT;
(9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE;
(12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2;
(15) COMM. MODULE; (16) M1 TEMP MEAS
226 41501 (see Alternative Settings)
15.02 INVERT AO1 (0) NO; (65535) YES 227 41502 (see Alternative Settings)
15.03 MINIMUM AO1 (1) 0 mA; (2) 4 mA 228 41503 (see Alternative Settings)
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
Firmware Manual A-7
15.04 FILTER AO1 0.00 s ... 10.00 s 229 41504 0 = 0 s
1000 = 10 s
15.05 SCALE AO1 10 % ... 1000 % 230 41505 100 = 10 %
10000 = 1000 %
15.06 ANALOGUE OUTPUT2 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY;
(5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT;
(9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE;
(12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2;
(15) COMM. MODULE
231 41506 (see Alternative Settings)
15.07 INVERT AO2 (0) NO; (65535) YES 232 41507 (see Alternative Settings)
15.08 MINIMUM AO2 (1) 0 mA; (2) 4 mA 233 41508 (see Alternative Settings)
15.09 FILTER AO2 0.00 s ... 10.00 s 234 41509 0 = 0 s
1000 = 10 s
15.10 SCALE AO2 10 % ... 1000 % 235 41510 100 = 10 %
10000 = 1000 %
16 SYSTEM CTR INPUTS
16.01 RUN ENABLE (1) YES; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5; (7) DI6;
(8) COMM. MODULE; (9) DI7; (10) DI8; (11) DI9; (12) DI10;
(13) DI11; (14) DI12
251 41601 (see Alternative Settings)
16.02 PARAMETER LOCK (0) OPEN; (65535) LOCKED 252 41602 (see Alternative Settings)
16.03 PASS CODE 0 ... 30000 253 41603 1 = 1
16.04 FAULT RESET SEL (1) NOT SEL; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5;
(7) DI6; (8) ON STOP; (9) COMM. MODULE; (10) DI7; (11) DI8;
(12) DI9; (13) DI10; (14) DI11; (15) DI12
254 41604 (see Alternative Settings)
16.05 USER MACRO IO CHG (1) NOT SEL; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5;
(7) DI6; (8) DI7; (9) DI8; (10) DI9; (11) DI10; (12) DI11;
(13) DI12
255 41605 (see Alternative Settings)
16.06 LOCAL LOCK (0) OFF; (65535) ON 256 41606 (see Alternative Settings)
16.07 PARAM SAVE (0) DONE; (1) SAVE.. 257 41607 (see Alternative Settings)
20 LIMITS
20.01 MINIMUM SPEED -18000/(number of pole pairs) rpm ... 20.2 MAXIMUM SPEED 351 42001 1 = 1 rpm
20.02 MAXIMUM SPEED 20.1 MINIMUM SPEED ... 18000/(number of pole pairs) rpm 352 42002 1 = 1 rpm
20.03 MAXIMUM CURRENT 0.0 % Ihd ... 200.0 % Ihd 353 42003 0 = 0 %
20000 = 200 %
20.04 MAXIMUM TORQUE 0.0 % ... 600.0 % 354 42004 100 = 1 %
20.05 OVERVOLTAGE CTRL (0) NO; (65535) YES 355 42005 (see Alternative Settings)
20.06 UNDERVOLTAGE CTRL (0) NO; (65535) YES 356 42006 (see Alternative Settings)
20.07 MINIMUM FREQ -300.00 Hz ... 50 Hz (visible only when the SCALAR motor
control mode is selected)
357 42007 -30000 = -300 Hz
5000 = 50 Hz
20.08 MAXIMUM FREQ -50 Hz ... 300.00 Hz (visible only when the SCALAR motor
control mode is selected)
358 42008 -5000 = -50 Hz
30000 = 300 Hz
20.09 MIN TORQ SELECTOR (0) -MAX TORQ; (65535) SET MIN TORQ 359 42009 (see Alternative Settings)
20.10 SET MIN TORQUE -600.0 % ... 0.0 % 360 42010 100 = 1%
20.11 P MOTORING LIMIT 0% ... 600% 361 42011 100 = 1%
20.12 P GENERATING LIMIT -600% ... 0% 362 42012 100 = 1%
21 START/STOP
21.01 START FUNCTION (1) AUTO; (2) DC MAGN; (3) CNST DC MAGN 376 42101 (see Alternative Settings)
21.02 CONST MAGN TIME 30.0 ms ... 10000.0 ms 377 42102 1 = 1 ms
21.03 STOP FUNCTION (1) COAST; (2) RAMP 378 42103 (see Alternative Settings)
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
A-8 Firmware Manual
21.04 DC HOLD (0) NO; (65535) YES 379 42104 (see Alternative Settings)
21.05 DC HOLD SPEED 0 rpm ... 3000 rpm 380 42105 1 = 1 rpm
21.06 DC HOLD CURR 0 % ... 100 % 381 42106 1 = 1 %
21.07 RUN ENABLE FUNC (1) RAMP STOP; (2) COAST STOP; (3) OFF2 STOP; (4) OFF3
STOP
382 42107 (see Alternative Settings)
21.08 SCALAR FLY START (0) NO; (1) YES 383 42108
22 ACCEL/DECEL
22.01 ACC/DEC 1/2 SEL (1) ACC/DEC 1; (2) ACC/DEC 2; (3) DI1; (4) DI2; (5) DI3; (6)
DI4; (7) DI5; (8) DI6; (9) DI7; (10) DI8; (11) DI9; (12) DI10; (13)
DI11; (14) DI12
401 42201 (see Alternative Settings)
22.02 ACCEL TIME 1 0.00 s ... 1800.00 s 402 42202 0 = 0 s
18000 = 1800 s
22.03 DECEL TIME 1 0.00 s ... 1800.00 s 403 42203
22.04 ACCEL TIME 2 0.00 s ... 1800.00 s 404 42204
22.05 DECEL TIME 2 0.00 s ... 1800.00 s 405 42205
22.06 ACC/DEC RAMP SHPE 0.00 s ... 1000.00 s 406 42206 100 = 1 s
22.07 EM STOP RAMP TIME 0.00 s ... 2000.00 s 407 42207 100 = 1 s
23 SPEED CTRL Visible only with 99.04 MOTOR CTRL MODE = DTC
23.01 GAIN 0.0 ... 200.0 426 42301 0 = 0
10000 = 100
23.02 INTEGRATION TIME 0.01 s ... 999.97 s 427 42302 1000 = 1 s
23.03 DERIVATION TIME 0.0 ms ... 9999.8 ms 428 42303 1 = 1 ms
23.04 ACC COMPENSATION 0.00 s ... 999.98 s 429 42304 0 = 0 s
1 = 0.1 s
23.05 SLIP GAIN 0.0 % ... 400.0 % 430 42305 1 = 1 %
23.06 AUTOTUNE RUN (0) NO; (65535) YES 431 42306 (see Alternative Settings)
24 TORQUE CTRL (Visible with 99.02 APPLICATION MACRO = T CTRL)
24.01 TORQ RAMP UP 0.00 s ... 120.00 s 451 42401 0 = 0 s
100 = 1 s
24.02 TORQ RAMP DOWN 0.00 s ... 120.00 s 452 42402
25 CRITICAL SPEEDS
25.01 CRIT SPEED SELECT (0) OFF; (65535) ON 476 42501 (see Alternative Settings)
25.02 CRIT SPEED 1 LOW 0 rpm ... 18000 rpm 477 42502 1 = 1 rpm
25.03 CRIT SPEED 1 HIGH 0 rpm ... 18000 rpm 478 42503
25.04 CRIT SPEED 2 LOW 0 rpm ... 18000 rpm 479 42504
25.05 CRIT SPEED 2 HIGH 0 rpm ... 18000 rpm 480 42505
25.06 CRIT SPEED 3 LOW 0 rpm ... 18000 rpm 481 42506
25.07 CRIT SPEED 3 HIGH 0 rpm ... 18000 rpm 482 42507
26 MOTOR CONTROL
26.01 FLUX OPTIMIZATION (0) NO; (65535) YES 501 42601 (see Alternative Settings)
26.02 FLUX BRAKING (0) NO; (65535) YES 502 42602 (see Alternative Settings)
26.03 IR COMPENSATION 0 % ... 30 % (visible only with 99.04 MOTOR CTRL MODE set
to SCALAR)
503 42603 100 = 1 %
26.05 HEX FIELD WEAKEN (0) NO; (1) YES 504 42605
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
Firmware Manual A-9
30 FAULT FUNCTIONS
30.01 AI<MIN FUNCTION (1) FAULT; (2) NO; (3) CONST SP 15; (4) LAST SPEED 601 43001 (see Alternative Settings)
30.02 PANEL LOSS (1) FAULT; (2) CONST SP 15; (3) LAST SPEED 602 43002 (see Alternative Settings)
30.03 EXTERNAL FAULT (1) NOT SEL; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5; (7) DI6;
(8) DI7; (9) DI8; (10) DI9; (11) DI10; (12) DI11; (13) DI12
603 43003 (see Alternative Settings)
30.04 MOTOR THERM PROT (1) FAULT; (2) WARNING; (3) NO 604 43004 (see Alternative Settings)
30.05 MOT THERM P MODE (1) DTC; (2) USER MODE; (3) THERMISTOR 605 43005 (see Alternative Settings)
30.06 MOTOR THERM TIME 256.0 s ... 9999.8 s 606 43006 1 = 1 s
30.07 MOTOR LOAD CURVE 50.0 % ... 150.0 % 607 43007 1 = 1 %
30.08 ZERO SPEED LOAD 25.0 % ... 150.0 % 608 43008 1 = 1 %
30.09 BREAK POINT 1.0 Hz ... 300.0 Hz 609 43009 100 = 1 Hz
30000 = 300 Hz
30.10 STALL FUNCTION (1) FAULT; (2) WARNING; (3) NO 610 43010 (see Alternative Settings)
30.11 STALL FREQ HI 0.5 Hz ... 50.0 Hz 611 43011 50 = 0.5 Hz
5000 = 50 Hz
30.12 STALL TIME 10.00 s ... 400.00 s 612 43012 1 = 1 s
30.13 UNDERLOAD FUNC (1) NO; (2) WARNING; (3) FAULT 613 43013 (see Alternative Settings)
30.14 UNDERLOAD TIME 0 s ... 600 s 614 43014 1 = 1 s
30.15 UNDERLOAD CURVE 1 ... 5 615 43015 (see Alternative Settings)
30.16 MOTOR PHASE LOSS (0) NO; (65535) FAULT 616 43016 (see Alternative Settings)
30.17 EARTH FAULT (0) WARNING; (65535) FAULT 617 43017 (see Alternative Settings)
30.18 COMM FAULT FUNC (1) FAULT; (2) NO; (3) CONST SP 15; (4) LAST SPEED 618 43018 (see Alternative Settings)
30.19 MAIN ERF DS T-OUT 0.1 s ... 60.0 s 619 43019 10 = 0.1 s
6000 = 60 s
30.20 COMM FAULT RO/AO (0) ZER0; (65535) LAST VALUE 620 43020 (see Alternative Settings)
30.21 AUX DS T-OUT 0.1 s ... 60.0 s 621 43021 10 = 0.1 s
6000 = 60 s
30.22 IO CONF FUNC (1) NO; (2) WARNING 622 43022 (see Alternative Settings)
31 AUTOMATIC RESET
31.01 NUMBER OF TRIALS 0 ... 5 626 43101
31.02 TRIAL TIME 1.0 s ... 180.0 s 627 43102 100 = 1 s
18000 = 180 s
31.03 DELAY TIME 0.0 s ... 3.0 s 628 43103 0 = 0 s
300 = 3 s
31.04 OVERCURRENT (0) NO; (65535) YES 629 43104 (see Alternative Settings)
31.05 OVERVOLTAGE (0) NO; (65535) YES 630 43105 (see Alternative Settings)
31.06 UNDERVOLTAGE (0) NO; (65535) YES 631 43106 (see Alternative Settings)
31.07 AI SIGNAL<MIN (0) NO; (65535) YES 632 43107 (see Alternative Settings)
32 SUPERVISION
32.01 SPEED1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT; (4) ABS LOW LIMIT 651 43201 (see Alternative Settings)
32.02 SPEED1 LIMIT - 18000 rpm ... 18000 rpm 652 43202 1 = 1 rpm
32.03 SPEED2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT; (4) ABS LOW LIMIT 653 43203 (see Alternative Settings)
32.04 SPEED2 LIMIT - 18000 rpm ... 18000 rpm 654 43204 1 = 1 rpm
32.05 CURRENT FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 655 43205 (see Alternative Settings)
32.06 CURRENT LIMIT 0 ... 1000 A 656 43206 1 = 1 A
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
A-10 Firmware Manual
32.07 TORQUE 1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 657 43207 (see Alternative Settings)
32.08 TORQUE 1 LIMIT -400 % ... 400 % 658 43208 10 = 1 %
32.09 TORQUE 2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 659 43209 (see Alternative Settings)
32.10 TORQUE 2 LIMIT -400 % ... 400 % 660 43210 10 = 1 %
32.11 REF1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 661 43211 (see Alternative Settings)
32.12 REF1 LIMIT 0 rpm ... 18000 rpm 662 43212 1 = 1 rpm
32.13 REF2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 663 43213 (see Alternative Settings)
32.14 REF2 LIMIT 0 % ... 500 % 664 43214 10 = 1 %
32.15 ACT1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 665 43215 (see Alternative Settings)
32.16 ACT1 LIMIT 0 % ... 200 % 666 43216 0 = 0 %
10 = 1 %
32.17 ACT2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 667 43217 (see Alternative Settings)
32.18 ACT2 LIMIT 0 % ... 200 % 668 43218 0 = 0 %
10 = 1%
33 INFORMATION
33.01 SOFTWARE VERSION (Version of the ACS 600 software) 676 43301
33.02 APPL SW VERSION (Version of the ACS 600 software) 677 43302
33.03 TEST DATE (Date Tested) 678 43303
34 PROCESS VARIABLE
34.01 SCALE 0.00 ... 100000.00 701 43401 1 = 1
34.02 P VAR UNIT (1) NO; (2) rpm; (3) %; (4) m/s; (5) A; (6) V; (7) Hz; (8) s; (9) h;
(10) kh; (11) C; (12) lft; (13) mA; (14) mV; (15) kW; (16) W; (17)
kWh; (18) F; (19) hp; (20) MWh; (21) m3h; (22) l/s; (23) bar;
(24) kPa; (25) GPM; (26) PSI; (27) CFM; (28) ft; (29) MGD ;
(30) iHg; (31) FPM;
702 43402 (see Alternative Settings)
34.03 SELECT P VAR 0 to 9999 703 43403
34.04 MOTOR SP FILT TIM 0 to 20000 ms 704 43404 1 = 1
34.05 TORQ ACT FILT TIM 0. to 20000 ms 705 43405 1 = 1
34.06 RESET RUN TIME (0) NO; (65535) YES 706 43406 (see Alternative Settings)
35 MOT TEMP MEAS
35.01 MOT 1 TEMP AI1 SEL (1) NOT IN USE; (2) 1XPT100; (3) 2XPT100, (4) 3XPT100,
(5) 1..3 PTC
726 43501 (see Alternative Settings)
35.02 MOT 1 TEMP ALM L -10 to 5000 ohm/°C (PTC/Pt100) 727 43502 1 = 1
35.03 MOT 1 TEMP FLT L -10 to 5000 ohm/°C (PTC/Pt100) 728 43503 1 = 1
35.04 MOT 2 TEMP AI2 SEL (1) NOT IN USE; (2) 1XPT100; (3) 2XPT100; (4) 3XPT100;
(5) 1..3 PTC
729 43504 (see Alternative Settings)
35.05 MOT 2 TEMP ALM L -10 ... 180°C (Pt 100) or 0 ... 5000 ohm (PTC) 730 43505 1 = 1
35.06 MOT 2 TEMP FLT L -10 ... 180°C (Pt 100) or 0 ... 5000 ohm (PTC) 731 43506 1 = 1
35.07 MOT MOD COMPENSAT (1) NO; (0) YES 732 43507 (see Alternative Settings)
40 PID CONTROL (40.14 TRIM MODE to 40.18 TRIM SELECTION: not visible
with 99.02 APPLICATION MACRO = PID CTRL, 40.18 TRIM
SELECTION: visible only when 99.02 APPLICATION MACRO =
T CTRL, 40.20 SLEEP SELECTION to 40.24 WAKE UP
DELAY: visible only when 99.02 APPLICATION MACRO = PID
CTRL)
40.01 PID GAIN 0.1 ... 100.0 851 44001 10 = 0.1
10000 = 100
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
Firmware Manual A-11
40.02 PID INTEG TIME 0.02 s ... 320.00 s 852 44002 2 = 0.02 s
32000 = 320 s
40.03 PID DERIV TIME 0.00 s ... 10.00 s 853 44003 0 = 0 s
1000 = 10 s
40.04 PID DERIV FILTER 0.04 s ... 10.00 s 854 44004 4 = 0.04 s
1000 = 10 s
40.05 ERROR VALUE INV (0) NO; (65535) YES 855 44005 (see Alternative Settings)
40.06 ACTUAL VALUE SEL (1) ACT1; (2) ACT1 - ACT2; (3) ACT1 + ACT2;
(4) ACT1 * ACT2; (5) ACT1/ACT2; (6) MIN(A1,A2);
(7) MAX(A1,A2); (8) sqrt(A1 - A2); (9) sqA1 + sqA2
856 44006 (see Alternative Settings)
40.07 ACTUAL1 INPUT SEL (1) AI1; (2) AI2; (3) AI3; (4) AI5; (5) AI6; (6) CURRENT;
(7) TORQUE; (8) POWER
857 44007 (see Alternative Settings)
40.08 ACTUAL2 INPUT SEL (1) AI1; (2) AI2; (3) AI3; (4) AI5; (5) AI6; (6) CURRENT;
(7) TORQUE; (8) POWER
858 44008 (see Alternative Settings)
40.09 ACT1 MINIMUM -1000 % ... 1000 % 859 44009 -10000 = -1000 %
10000 = 1000 %
40.10 ACT1 MAXIMUM -1000 % ... 1000 % 860 44010
40.11 ACT2 MINIMUM -1000 % ... 1000 % 861 44011
40.12 ACT2 MAXIMUM -1000 % ... 1000 % 862 44012
40.13 PID INTEGRATION (1) OFF; (2) ON 863 44013 (see Alternative Settings)
40.14 TRIM MODE (1) OFF; (2) PROPORTIONAL; (3) DIRECT 864 44014 (see Alternative Settings)
40.15 TRIM REF SEL (1) AI1; (2) AI2; (3) AI3; (4) AI5; (5) AI6; (6) PAR 40.16 865 44015 (see Alternative Settings)
40.16 TRIM REFERENCE -100.0% to 100.0% 866 44016 100 = 1%
40.17 TRIM RANGE ADJUST -100.0% to 100.0% 867 44017 100 = 1%
40.18 TRIM SELECTION (1) SPEED TRIM; (2) TORQUE TRIM 868 44018 (see Alternative Settings)
40.19 ACTUAL FILT TIME 0.04 s to 10.00s 869 44019 100 = 1 s
40.20 SLEEP SELECTION (1) OFF; (2) INTERNAL; (3) DI1; (4) DI2; (5) DI3; (6) DI4;
(7) DI5; (8) DI6; (9) DI7; (10) DI8; (11) DI9; (12) DI10;
(13) DI11; (14) DI12
870 44020 (see Alternative Settings)
40.21 SLEEP LEVEL 0.0 to 7200.0 rpm 871 44021 1 = 1 rpm
40.22 SLEEP DELAY 0.0 s to 3600.0 s 872 44022 10 = 1 s
40.23 WAKE UP LEVEL 0.0 % to 100.0 % 873 44023 100 = 1%
40.24 WAKE UP DELAY 0.0 s to 3600.0 s 874 44024 10 = 1 s
42 BRAKE CONTROL (Not accessible from Profibus)
42.01 BRAKE CTRL (1) OFF; (2) ON - 44201 (see Alternative Settings)
42.02 BRAKE
ACKNOWLEDGE
(1) OFF; (2) DI5; (3) DI6; (4) DI11; (5) DI12 - 44202 (see Alternative Settings)
42.03 BRAKE OPEN DELAY 0.0 to 5.0 s - 44203 100 = 1 s
42.04 BRAKE CLOSE DELAY 0.0 to 60.0 s - 44204 100 = 1 s
42.05 ABS BRAKE CLS SPD 0 to 1000 rpm - 44205 100 = 1 rpm
42.06 BRAKE FAULT FUNC (1) FAULT; (2) WARNING - 44206 (see Alternative Settings)
42.07 START TORQ REF SEL (1) NO; (2) AI1; (3) AI2; (4) AI3; (5) AI5; (6) AI6; (7) PAR 42.08 - 44207 (see Alternative Settings)
42.08 START TORQ REF -300 to 300% - 44208 100 = 1%
Group 45 FUNCTION
SELECTION
(Not accessible from Profibus)
45.01 POINTER1 GRP+IND -9999 to 9999 - 1 = 1
45.02 POINTER1 BIT 0 to 15 - 1 = 1
45.03 POINTER2 GRP+IND -9999 to 9999 - 1 = 1
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
A-12 Firmware Manual
45.04 POINTER2 BIT 0 to 15 - 1 = 1
45.05 POINTER3 GRP+IND -9999 to 9999 - 1 = 1
45.06 POINTER3 BIT 0 to 15 - 1 = 1
45.07 POINTER4 GRP+IND -9999 to 9999 - 1 = 1
45.08 POINTER4 BIT 0 to 15 - 1 = 1
45.09 POINTER5 GRP+IND -9999 to 9999 - 1 = 1
45.10 POINTER5 BIT 0 to 15 - 1 = 1
45.11 POINTER6 GRP+IND -9999 to 9999 - 1 = 1
45.12 POINTER6 BIT 0 to 15 - 1 = 1
50 ENCODER MODULE (Visible with 98.01 ENCODER MODULE set.)
50.01 PULSE NR 0 ... 29999 1001 45001 1 = 1 ppr
50.02 SPEED MEAS MODE (1) A -
-
B DIR ; (2) A-
-
- ; (3) A -
-
- B DIR ; (4) A -
-
- B -
-
- 1002 45002 (see Alternative Settings)
50.03 ENCODER FAULT (0) WARNING; (65535) FAULT 1003 45003 (see Alternative Settings)
50.04 ENCODER DELAY 5 ms... 50000 ms 1004 45004 1 = 1 ms
50.05 ENCODER CHANNEL (1) CHANNEL1; (2) CHANNEL 2 1005 45005 (see Alternative Settings)
50.06 SPEED FB SEL (0) INTERAL; (65535) ENCODER 1006 45006 (see Alternative Settings)
51 COMMUNICATION
MODULE
(Visible with 98.02 COMM. MODULE LINK set. See module
manual.)
1026 ... 45101
...
52 STANDARD MODBUS
52.01 STATION NUMBER 1 to 247 1051 45201 (see Alternative Settings)
52.02 BAUDRATE (1) 600; (2) 1200; (3) 2400; (4) 4800; (5) 9600; (6) 19200 1052 45202 (see Alternative Settings)
52.03 PARITY (1) NONE1STOPBIT; (2) NONE2STOPBIT; (3) ODD; (4) EVEN 1053 45203 (see Alternative Settings)
60 MASTER/FOLLOWER
60.01 MASTER LINK MODE (1) NOT IN USE; (2) MASTER; (3) FOLLOWER 1195 46001 (see Alternative Settings)
60.02 TORQUE SELECTOR (1) SPEED; (2) TORQUE; (3) MINIMUM; (4) MAXIMUM;
(5) ADD; (6) ZERO (Visible if 99.02 APPLICATION MACRO is
T CTRL)
1196 46002
60.03 WINDOW SEL ON (0) NO; (65535) YES (Visible if 99.02 APPLICATION MACRO is
T CTRL)
1167 46003 (see Alternative Settings)
60.04 WINDOW WIDTH POS 0 to 1500 (Visible if 99.02 APPLICATION MACRO is T CTRL) 1198 46004 20000 = 1500
60.05 WINDOW WIDTH NEG 0 to 1500 (Visible if 99.02 APPLICATION MACRO is T CTRL) 1199 46005 20000 = 1500
60.06 DROOP RATE 0 to 100% 1200 46006 10 = 1%
60.07 MASTER SIGNAL 2 0000 to 9999 1201 46007 1 = 1
60.08 MASTER SIGNAL 3 0000 to 9999 1202 46008 1 = 1
70 DDCS CONTROL
70.01 CHANNEL 0 ADDR 1 ... 125 1375 47001 (see Alternative Settings)
70.02 CHANNEL 3 ADDR 1 ... 254 1376 47002 (see Alternative Settings)
70.03 CH1 BAUDRATE (0) 8Mbits; (1) 4 Mbits; (2) 2 Mbits; (3) 1 Mbits 1377 47003 (see Alternative Settings)
90 D SET REC ADDR
90.01 AUX DS REF3 0 ... 8999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1735 49001 (see Alternative Settings)
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
Firmware Manual A-13
90.02 AUX DS REF4 0 ... 8999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1736 49002 (see Alternative Settings)
90.03 AUX DS REF5 0 ... 8999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1737 49003 (see Alternative Settings)
90.04 MAIN DS SOURCE 1 ... 255 1738 49004 (see Alternative Settings)
90.05 AUX DS SOURCE 1 ... 255 1739 49005 (see Alternative Settings)
92 D SET TR ADDR
92.01 MAIN DS STATUS
WORD
Fixed to 302 (MAIN STATUS WORD), not visible 1771 49201 (see Alternative Settings)
92.02 MAIN DS ACT1 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1772 49202 (see Alternative Settings)
92.03 MAIN DS ACT2 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1773 49203 (see Alternative Settings)
92.04 AUX DS ACT3 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1774 49204 (see Alternative Settings)
92.05 AUX DS ACT4 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1775 49205 (see Alternative Settings)
92.06 AUX DS ACT5 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group,
YY = Parameter Index)
1776 49206 (see Alternative Settings)
96 EXTERNAL AO (Visible with 98.06 AI/O EXT MODULE set to UNIPOLAR PRG
or BIPOLAR PRG)
96.01 EXT AO1 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY;
(5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT;
(9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE;
(12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2;
(15) COMM. MODULE
1843 49601 (see Alternative Settings)
96.02 INVERT EXT AO1 (0) NO; (65535) YES 1844 49602 (see Alternative Settings)
96.03 MINIMUM EXT AO1 (1) 0 mA; (2) 4 mA; (3) 10mA 1845 49603 (see Alternative Settings)
96.04 FILTER EXT AO1 0.00 s ... 10.00 s 1846 49604 0 = 0 s
1000 = 10 s
96.05 SCALE EXT AO1 10 % ... 1000 % 1847 49605 100 = 10 %
10000 = 1000 %
96.06 EXT AO2 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY;
(5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT;
(9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE;
(12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2;
(15) COMM. MODULE
1848 49606 (see Alternative Settings)
96.07 INVERT EXT AO2 (0) NO; (65535) YES 1849 49607 (see Alternative Settings)
96.08 MINIMUM EXT AO2 (1) 0 mA; (2) 4 mA; (3) 10mA 1850 49608 (see Alternative Settings)
96.09 FILTER EXT AO2 0.00 s ... 10.00 s 1851 49609 0 = 0 s
1000 = 10 s
96.10 SCALE EXT AO2 10 % ... 1000 % 1852 49610 100 = 10 %
10000 = 1000 %
98 OPTION MODULES
98.01 ENCODER MODULE (0) NO; (65535) YES 1901 49801 (see Alternative Settings)
98.02 COMM. MODULE LINK (1) NO; (2) FIELDBUS; (3) ADVANT; (4) STD MODBUS;
(5) CUSTOMISED
1902 49802 (see Alternative Settings)
98.03 DI/O EXT MODULE 1 (0) NO; (65535) YES 1903 49803 (see Alternative Settings)
98.04 DI/O EXT MODULE 2 (0) NO; (65535) YES 1904 49804 (see Alternative Settings)
98.05 DI/O EXT MODULE 3 (0) NO; (65535) YES 1905 49805 (see Alternative Settings)
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Appendix A – Complete Parameter Settings
A-14 Firmware Manual
98.06 AI/O EXT MODULE (1) NO; (2) UNIPOLAR; (3) BIPOLAR; (4)UNIP AO PRG;
(5) BIP AO PRG; (6)UNIP AIO PRG; (7) BIP AIO PRG
1906 49806 (see Alternative Settings)
98.07 COMM PROFILE (0) ABB DRIVES; (65535) CSA2.8/3.0 (visible only when
Parameter 98.02 COMM. MODULE LINK is activated)
1907 49807 (see Alternative Settings)
98.08 NIOC-01 BOARD (1) NO; (2) YES 1908 49808 (see Alternative Settings)
98.09 NDIO1 DI FUNC (1) DI7,8; (2) REPL DI1,2 1909 49809 (see Alternative Settings)
98.10 NDIO2 DI FUNC (1) DI9.10; (2) REPL DI3,4 1910 49810 (see Alternative Settings)
98.11 NDIO3 DI FUNC (1) DI11,12; (2) REPL DI3,4 1911 49811 (see Alternative Settings)
98.12 AI/O MOTOR TEMP (1) NO; (2) UNIPOLAR 1912 49812 (see Alternative Settings)
Parameter
Alternative Settings
( ) Fieldbus Equivalent
PROFIBUS
Par.No.
(Add4000in
FMSMode)
Modbus/
ModbusPlus
Par.No.
Scaling for Fieldbus
Firmware Manual B-1
Appendix B – Default Settings of Application Macros
The table in this appendix lists all the default parameter settings of all
the ACS 600 Application Macros. Use this table as reference when you
are selecting and customizing macros for your ACS 600 application.
Table B-1 Default parameter settings of ACS 600 Application Macros.
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
ACTUAL SIGNALS (THREE DEFAULT SIGNALS IN THE ACTUAL SIGNAL DISPLAY MODE OF THE CONTROL PANEL)
FREQ FREQ SPEED SPEED FREQ
CURRENT CURRENT ACT VAL1 TORQUE CURRENT
POWER CTRL LOC CONT DEV CTRL LOC POWER
99 START-UP DATA
99.01 LANGUAGE ENGLISH ENGLISH ENGLISH ENGLISH ENGLISH
99.02 APPLICATION MACRO FACTORY HAND/AUTO PID-CTRL T CTRL SEQ CTRL
99.03 APPLIC RESTORE NO NO NO NO NO
99.04 MOTOR CTRL MODE DTC DTC DTC DTC DTC
99.05 MOTOR NOM VOLTAGE 0 V 0 V 0 V 0 V 0 V
99.06 MOTOR NOM CURRENT 0.0 A 0.0 A 0.0 A 0.0 A 0.0 A
99.07 MOTOR NOM FREQ 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz
99.08 MOTOR NOM SPEED 1 rpm 1 rpm 1 rpm 1 rpm 1 rpm
99.09 MOTOR NOM POWER 0.0 kW 0.0 kW 0.0 kW 0.0 kW 0.0 kW
99.10 MOTOR ID RUN NO NO NO NO NO
10 START/STOP/DIR
10.01 EXT1 STRT/STP/DIR DI1,2 DI1,2 DI1 DI1,2 DI1,2
10.02 EXT2 STRT/STP/DIR NOT SEL DI6,5 DI6 DI1,2 NOT SEL
10.03 DIRECTION FORWARD REQUEST FORWARD REQUEST REQUEST
11 REFERENCE SELECT
11.01 KEYPAD REF SEL REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm)
11.02 EXT1/EXT2 SELECT EXT1 DI3 DI3 DI3 EXT1
11.03 EXT REF1 SELECT AI1 AI1 AI1 AI1 AI1
11.04 EXT REF1 MINIMUM 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
11.05 EXT REF1 MAXIMUM 1500 rpm 1500 rpm 1500 rpm 1500 rpm 1500 rpm
11.06 EXT REF2 SELECT KEYPAD AI2 AI1 AI2 AI1
11.07 EXT REF2 MINIMUM 0 % 0 % 0 % 0 % 0 %
11.08 EXT REF2 MAXIMUM 100 % 100 % 100 % 100 % 100 %
Appendix B – Default Settings of Application Macros
B-2 Firmware Manual
12 CONSTANT SPEEDS
12.01 CONST SPEED SEL DI5,6 DI4(SPEED4) DI4(SPEED4) DI4(SPEED4) DI4,5,6
12.02 CONST SPEED 1 300 rpm 300 rpm 300 rpm 300 rpm 300 rpm
12.03 CONST SPEED 2 600 rpm 600 rpm 600 rpm 600 rpm 600 rpm
12.04 CONST SPEED 3 900 rpm 900 rpm 900 rpm 900 rpm 900 rpm
12.05 CONST SPEED 4 300 rpm 300 rpm 300 rpm 300 rpm 1200 rpm
12.06 CONST SPEED 5 0 rpm 0 rpm 0 rpm 0 rpm 1500 rpm
12.07 CONST SPEED 6 0 rpm 0 rpm 0 rpm 0 rpm 2400 rpm
12.08 CONST SPEED 7 0 rpm 0 rpm 0 rpm 0 rpm 3000 rpm
12.09 CONST SPEED 8 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.10 CONST SPEED 9 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.11 CONST SPEED 10 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.12 CONST SPEED 11 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.13 CONST SPEED 12 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.14 CONST SPEED 13 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.15 CONST SPEED 14 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
12.16 CONST SPEED 15 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
13 ANALOGUE INPUTS
13.01 MINIMUM AI1 0 V 0 V 0 V 0 V 0 V
13.02 MAXIMUM AI1 10 V 10 V 10 V 10 V 10 V
13.03 SCALE AI1 100 % 100 % 100 % 100 % 100 %
13.04 FILTER AI1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s
13.05 INVERT AI1 NO NO NO NO NO
13.06 MINIMUM AI2 0 mA 0 mA 0 mA 0 mA 0 mA
13.07 MAXIMUM AI2 20 mA 20 mA 20 mA 20 mA 20 mA
13.08 SCALE AI2 100 % 100 % 100 % 100 % 100 %
13.09 FILTER AI2 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s
13.10 INVERT AI2 NO NO NO NO NO
13.11 MINIMUM AI3 0 mA 0 mA 0 mA 0 mA 0 mA
13.12 MAXIMUM AI3 20 mA 20 mA 20 mA 20 mA 20 mA
13.13 SCALE AI3 100 % 100 % 100 % 100 % 100 %
13.14 FILTER AI3 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s
13.15 INVERT AI3 NO NO NO NO NO
14 RELAY OUTPUTS
14.01 RELAY RO1 OUTPUT READY READY READY READY READY
14.02 RELAY RO2 OUTPUT RUNNING RUNNING RUNNING RUNNING RUNNING
14.03 RELAY RO3 OUTPUT FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1)
14.04 RO1 TON DELAY 0.0s 0.0s 0.0s 0.0s 0.0s
14.05 RO1 TOFF DELAY 0.0s 0.0s 0.0s 0.0s 0.0s
14.06 RO2 TON DELAY 0.0s 0.0s 0.0s 0.0s 0.0s
14.07 RO2 TOFF DELAY 0.0s 0.0s 0.0s 0.0s 0.0s
14.08 RO3 TON DELAY 0.0s 0.0s 0.0s 0.0s 0.0s
14.09 RO3 TOFF DELAY 0.0s 0.0s 0.0s 0.0s 0.0s
14.10 NDIO MOD1 RO1 READY READY READY READY READY
14.11 NDIO MOD1 RO2 RUNNING RUNNING RUNNING RUNNING RUNNING
14.12 NDIO MOD2 RO1 FAULT FAULT FAULT FAULT FAULT
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Appendix B – Default Settings of Application Macros
Firmware Manual B-3
14.13 NDIO MOD2 RO2 WARNING WARNING WARNING WARNING WARNING
14.14 NDIO MOD3 RO1 REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL
14.15 NDIO MOD3 RO2 AT SPEED AT SPEED AT SPEED AT SPEED AT SPEED
15 ANALOGUE OUTPUTS
15.01 ANALOGUE OUTPUT 1 SPEED SPEED SPEED SPEED SPEED
15.02 INVERT AO1 NO NO NO NO NO
15.03 MINIMUM AO1 0 mA 0 mA 0 mA 0 mA 0 mA
15.04 FILTER AO1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s
15.05 SCALE AO1 100 % 100 % 100 % 100 % 100 %
15.06 ANALOGUE OUTPUT 2 CURRENT CURRENT CURRENT CURRENT CURRENT
15.07 INVERT AO2 NO NO NO NO NO
15.08 MINIMUM AO2 0 mA 0 mA 0 mA 0 mA 0 mA
15.09 FILTER ON AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s
15.10 SCALE AO2 100 % 100 % 100 % 100 % 100 %
16 SYSTEM CONTR INPUTS
16.01 RUN ENABLE YES YES DI5 DI6 YES
16.02 PARAMETER LOCK OPEN OPEN OPEN OPEN OPEN
16.03 PASS CODE 0 0 0 0 0
16.04 FAULT RESET SEL NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL
16.05 USER MACRO IO CHG NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL
16.06 LOCAL LOCK OFF OFF OFF OFF OFF
16.07 PARAM SAVE DONE DONE DONE DONE DONE
20 LIMITS
20.01 MINIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated)
20.02 MAXIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated)
20.03 MAXIMUM CURRENT 200.0 % Ihd 200.0 % Ihd 200.0 % Ihd 200.0 % Ihd 200.0 % Ihd
20.04 MAXIMUM TORQUE 300.0 % 300.0 % 300.0 % 300.0 % 300.0 %
20.05 OVERVOLTAGE CTRL YES YES YES YES YES
20.06 UNDERVOLTAGE CTRL YES YES YES YES YES
20.07 MINIMUM FREQ - 50 Hz - 50 Hz - 50 Hz - 50 Hz - 50 Hz
20.08 MAXIMUM FREQ 50 Hz 50 Hz 50 Hz 50 Hz 50 Hz
20.09 MIN TORQ SELECTOR -MAX TORQ -MAX TORQ -MAX TORQ -MAX TORQ -MAX TORQ
20.10 SET MIN TORQUE -300.0 % -300.0 % -300.0 % -300.0 % -300.0 %
20.11 P MOTORING LIMIT 300% 300% 300% 300% 300%
20.12 P GENERATING LIMIT -300% -300% -300% -300% -300%
21 START/STOP
21.01 START FUNCTION AUTO AUTO AUTO AUTO AUTO
21.02 CONST MAGN TIME 500.0 ms 500.0 ms 500.0 ms 500.0 ms 500.0 ms
21.03 STOP FUNCTION COAST COAST COAST COAST RAMP
21.04 DC HOLD NO NO NO NO NO
21.05 DC HOLD SPEED 5 rpm 5 rpm 5 rpm 5 rpm 5 rpm
21.06 DC HOLD CURR 30. 0 % 30. 0 % 30. 0 % 30. 0 % 30. 0 %
21.07 RUN ENABLE FUNC RAMP STOP RAMP STOP RAMP STOP RAMP STOP RAMP STOP
21.08 SCALAR FLY START NO NO NO NO NO
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Appendix B – Default Settings of Application Macros
B-4 Firmware Manual
22 ACCEL/DECEL
22.01 ACC/DEC 1/2 SEL DI4 ACC/DEC 1 ACC/DEC 1 DI5 DI3
22.02 ACCELER TIME 1 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s
22.03 DECELER TIME 1 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s
22.04 ACCELER TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s
22.05 DECELER TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s
22.06 ACC/DEC RAMP SHPE 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s
22.07 EM STOP RAMP TIME 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s
23 SPEED CTRL
23.01 GAIN 10.0 10.0 10.0 10.0 10.0
23.02 INTEGRATION TIME 2.50 s 2.50 s 2.50 s 2.50 s 2.50 s
23.03 DERIVATION TIME 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms
23.04 ACC COMPENSATION 0.00 s 0.00 s 0.00 s 0.00 s 0.12 s
23.05 SLIP GAIN 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
23.06 AUTOTUNE RUN NO NO NO NO NO
24 TORQUE CTRL
24.01 TORQ RAMP UP 0.00 s
24.02 TORQ RAMP DOWN 0.00 s
25 CRITICAL SPEEDS
25.01 CRIT SPEED SELECT OFF OFF - OFF OFF
25.02 CRIT SPEED 1 LOW 0 rpm 0 rpm - 0 rpm 0 rpm
25.03 CRIT SPEED 1 HIGH 0 rpm 0 rpm - 0 rpm 0 rpm
25.04 CRIT SPEED 2 LOW 0 rpm 0 rpm - 0 rpm 0 rpm
25.05 CRIT SPEED 2 HIGH 0 rpm 0 rpm - 0 rpm 0 rpm
25.06 CRIT SPEED 3 LOW 0 rpm 0 rpm - 0 rpm 0 rpm
25.07 CRIT SPEED 3 HIGH 0 rpm 0 rpm - 0 rpm 0 rpm
26 MOTOR CONTROL
26.01 FLUX OPTIMIZATION NO NO NO NO NO
26.02 FLUX BRAKING YES YES YES YES YES
26.03 IR COMPENSATION 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
26.05 HEX FIELD WEAKEN OFF OFF OFF OFF OFF
30 FAULT FUNCTIONS
30.01 AI<MIN FUNCTION FAULT FAULT FAULT FAULT FAULT
30.02 PANEL LOSS FAULT FAULT FAULT FAULT FAULT
30.03 EXTERNAL FAULT NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL
30.04 MOT THERM PROT NO NO NO NO NO
30.05 MOTOR THERM P MODE DTC1) DTC1) DTC1) DTC1) DTC1)
30.06 MOTOR THERM TIME (calculated) (calculated) (calculated) (calculated) (calculated)
30.07 MOTOR LOAD CURVE 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
30.08 ZERO SPEED LOAD 74.0 % 74.0 % 74.0 % 74.0 % 74.0 %
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Appendix B – Default Settings of Application Macros
Firmware Manual B-5
30.09 BREAK POINT 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz
30.10 STALL FUNCTION FAULT FAULT FAULT FAULT FAULT
30.11 STALL FREQ HI 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz
30.12 STALL TIME 20.00 s 20.00 s 20.00 s 20.00 s 20.00 s
30.13 UNDERLOAD FUNC NO NO NO NO NO
30.14 UNDERLOAD TIME 600.0 s 600.0 s 600.0 s 600.0 s 600.0 s
30.15 UNDERLOAD CURVE 1 1 1 1 1
30.16 MOTOR PHASE LOSS NO NO NO NO NO
30.17 EARTH FAULT FAULT FAULT FAULT FAULT FAULT
30.18 COMM FAULT FUNC FAULT FAULT FAULT FAULT FAULT
30.19 MAIN REF DS T-OUT 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s
30.20 COMM FAULT RO/AO ZERO ZERO ZERO ZERO ZERO
30.21 AUX DS T-OUT 3.0 s 3.0 s 3.0 s 3.0 s 3.0 s
30.22 IO CONF FUNC WARNING WARNING WARNING WARNING WARNING
31 AUTOMATIC RESET
31.01 NUMBER OF TRIALS 0 0 0 0 0
31.02 TRIAL TIME 30.0 s 30.0 s 30.0 s 30.0 s 30.0 s
31.03 DELAY TIME 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
31.04 OVERCURRENT NO NO NO NO NO
31.05 OVERVOLTAGE NO NO NO NO NO
31.06 UNDERVOLTAGE NO NO NO NO NO
31.07 AI SIGNAL<MIN NO NO NO NO NO
32 SUPERVISION
32.01 SPEED1 FUNCTION NO NO NO NO NO
32.02 SPEED1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
32.03 SPEED2 FUNCTION NO NO NO NO NO
32.04 SPEED2 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
32.05 CURRENT FUNCTION NO NO NO NO NO
32.06 CURRENT LIMIT 0 A 0 A 0 A 0 A 0 A
32.07 TORQUE 1 FUNCTION NO NO NO NO NO
32.08 TORQUE 1 LIMIT 0 % 0 % 0 % 0 % 0 %
32.09 TORQUE 2 FUNCTION NO NO NO NO NO
32.10 TORQUE 2 LIMIT 0 % 0 % 0 % 0 % 0 %
32.11 REF1 FUNCTION NO NO NO NO NO
32.12 REF1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm
32.13 REF2 FUNCTION NO NO NO NO NO
32.14 REF2 LIMIT 0 % 0 % 0 % 0 % 0 %
32.15 ACT1 FUNCTION NO NO NO NO NO
32.16 ACT1 LIMIT 0 % 0 % 0 % 0 % 0 %
32.17 ACT2 FUNCTION NO NO NO NO NO
32.18 ACT2 LIMIT 0 % 0 % 0 % 0 % 0 %
33 INFORMATION
33.01 SOFTWARE VERSION (Version) (Version) (Version) (Version) (Version)
33.02 APPL SW VERSION (Version) (Version) (Version) (Version) (Version)
33.03 TEST DATE (Date) (Date) (Date) (Date) (Date)
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Appendix B – Default Settings of Application Macros
B-6 Firmware Manual
34 PROCESS VARIABLE
34.01 SCALE 100.00 100.00 100.00 100.00 100.00
34.02 P VAR UNIT % % % % %
34.03 SELECT P VAR 142 142 142 142 142
34.04 MOTOR SP FILT TIM 500 ms 500 ms 500 ms 500 ms 500 ms
34.05 TORQ ACT FILT TIM 100 ms 100 ms 100 ms 100 ms 100 ms
34.06 RESET RUN TIME NO NO NO NO NO
35 MOT TEMP MEAS
35.01 MOT 1 TEMP AI1 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE
35.02 MOT 1 TEMP ALM L 110 110 110 110 110
35.03 MOT 1 TEMP FLT L 130 130 130 130 130
35.04 MOT 2 TEMP AI2 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE
35.05 MOT 2 TEMP ALM L 110 110 110 110 110
35.06 MOT 2 TEMP FLT L 130 130 130 130 130
35.07 MOT MOD COMPENSAT YES YES YES YES YES
40 PID CONTROL
40.01 PID GAIN 1.0 1.0 1.0 1.0 1.0
40.02 PID INTEG TIME 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s
40.03 PID DERIV TIME 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s
40.04 PID DERIV FILTER 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s
40.05 ERROR VALUE INV NO NO NO NO NO
40.06 ACTUAL VALUE SEL ACT1 ACT1 ACT1 ACT1 ACT1
40.07 ACTUAL1 INPUT SEL AI2 AI2 AI2 AI2 AI2
40.08 ACTUAL2 INPUT SEL AI2 AI2 AI2 AI2 AI2
40.09 ACT1 MINIMUM 0 % 0 % 0 % 0 % 0 %
40.10 ACT1 MAXIMUM 100 % 100 % 100 % 100 % 100 %
40.11 ACT2 MINIMUM 0 % 0 % 0 % 0 % 0 %
40.12 ACT2 MAXIMUM 100 % 100 % 100 % 100 % 100 %
40.13 PID INTEGRATION ON ON ON ON ON
40.14 TRIM MODE OFF OFF OFF OFF
40.15 TRIM REF SEL AI1 AI1 AI1 AI1
40.16 TRIM REFERENCE 0.0% 0.0% 0.0% 0.0%
40.17 TRIM RANGE ADJUST 0.0% 0.0% 0.0% 0.0%
40.18 TRIM SELECTION SPEED TRIM
40.19 ACTUAL FILT TIME 0.04 s 0.04 s 0.04 s 0.04 s 0.04 s
40.20 SLEEP SELECTION OFF
40.21 SLEEP LEVEL 0.0 rpm
40.22 SLEEP DELAY 0.0 s
40.23 WAKE UP LEVEL 0.0 %
40.24 WAKE UP DELAY 0.0 s
42 BRAKE CONTROL
42.01 BRAKE CTRL OFF OFF OFF OFF OFF
42.02 BRAKE ACKNOWLEDGE OFF OFF OFF OFF OFF
42.03 BRAKE OPEN DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Appendix B – Default Settings of Application Macros
Firmware Manual B-7
42.04 BRAKE CLOSE DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
42.05 ABS BRAKE CLS SPD 100 rpm 100 rpm 100 rpm 100 rpm 100 rpm
42.06 BRAKE FAULT FUNC FAULT FAULT FAULT FAULT FAULT
42.07 START TORQ REF SEL NO NO NO NO NO
42.08 START TORQ REF 0% 0% 0% 0% 0%
50 ENCODER MODULE
50.01 PULSE NR 2048 2048 2048 2048 2048
50.02 SPEED MEAS MODE A -
-
- B -
-
- A -
-
- B -
-
- A -
-
- B -
-
- A -
-
- B -
-
- A -
-
- B -
-
-
50.03 ENCODER FAULT WARNING WARNING WARNING WARNING WARNING
50.04 ENCODER DELAY 1000 1000 1000 1000 1000
50.05 ENCODER CHANNEL CHANNEL 2 CHANNEL 2 CHANNEL 2 CHANNEL 2 CHANNEL 2
50.06 SPEED FB SEL INTERNAL INTERNAL INTERNAL INTERNAL INTERNAL
51 COMMUNICATION MODULE
52 STANDARD MODBUS
52.01 STATION NUMBER 1 1 1 1 1
52.02 BAUDRATE 9600 9600 9600 9600 9600
52.03 PARITY ODD ODD ODD ODD ODD
60 MASTER/FOLLOWER
60.01 MASTER LINK MODE NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE
60.02 TORQUE SELECTOR not visible not visible not visible TORQUE not visible
60.03 WINDOW SEL ON not visible not visible not visible NO not visible
60.04 WINDOW WIDTH POS not visible not visible not visible 0 not visible
60.05 WINDOW WIDTH NEG not visible not visible not visible 0 not visible
60.06 DROOP RATE 0 to 100% 0% 0% 0% 0%
60.07 MASTER SIGNAL 2 0000 to 9999 202 202 202 202
60.08 MASTER SIGNAL 3 0000 to 9999 213 213 213 213
70 DDCS CONTROL
70.01 CHANNEL 0 ADDR 1 1 1 1 1
70.02 CHANNEL 3 ADDR 1 1 1 1 1
70.03 CH1 BAUDRATE 2 Mbits 2 Mbits 2 Mbits 2 Mbits 2 Mbits
90 D SET REC ADDR
90.01 AUX DS REF3 0 0 0 0 0
90.02 AUX DS REF4 0 0 0 0 0
90.03 AUX DS REF5 0 0 0 0 0
90.04 MAIN DS SOURCE 1 1 1 1 1
90.05 AUX DS SOURCE 3 3 3 3 3
92 D SET TR ADDR
92.01 MAIN STATUS WORD 302 302 302 302 302 FIXED
92.02 MAIN DS ACT1 102 102 102 102 102
92.03 MAIN DS ACT2 105 105 105 105 105
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Appendix B – Default Settings of Application Macros
B-8 Firmware Manual
1)
Parameter 30.05 MOTOR THERM P MODE: For units ACx 607-0400-3, -0490-3 -0490-6 and above,
the default setting is USER MODE.
92.04 AUX DS ACT3 305 305 305 305 305
92.05 AUX DS ACT4 308 308 308 308 308
92.06 AUX DS ACT5 306 306 306 306 306
96 EXTERNAL AO
96.01 EXT AO1 SPEED SPEED SPEED SPEED SPEED
96.02 INVERT EXT AO1 NO NO NO NO NO
96.03 MINIMUM EXT AO1 0 mA 0 mA 0 mA 0 mA 0 mA
96.04 FILTER EXT AO1 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s
96.05 SCALE EXT AO1 100 % 100 % 100 % 100 % 100 %
96.06 EXT AO2 CURRENT CURRENT CURRENT CURRENT CURRENT
96.07 INVERT EXT AO2 NO NO NO NO NO
96.08 MINIMUM EXT AO2 0 mA 0 mA 0 mA 0 mA 0 mA
96.09 FILTER EXT AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s
96.10 SCALE EXT AO2 100 % 100 % 100 % 100 % 100 %
98 OPTION MODULES
98.01 ENCODER MODULE NO NO NO NO NO
98.02 COMM. MODULE LINK NO NO NO NO NO
98.03 DI/O EXT MODULE 1 NO NO NO NO NO
98.04 DI/O EXT MODULE 2 NO NO NO NO NO
98.05 DI/O EXT MODULE 3 NO NO NO NO NO
98.06 AI/O EXT MODULE NO NO NO NO NO
98.07 COMM PROFILE ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES
98.08 NIOC-01 BOARD YES YES YES YES YES
98.09 NDIO1 DI FUNC DI7,8 DI7,8 DI7,8 DI7,8 DI7,8
98.10 NDIO2 DI FUNC DI9.10 DI9.10 DI9.10 DI9.10 DI9.10
98.11 NDIO3 DI FUNC DI11,12 DI11,12 DI11,12 DI11,12 DI11,12
98.12 AI/O MOTOR TEMP NO NO NO NO NO
Parameter Factory Hand/Auto PID Control
Torque
Control
Sequential
Control
Custom
Setting
Firmware Manual C-1
Appendix C – Fieldbus Control
Overview The ACS 600 can be connected to an external control system – usually
a fieldbus – via an adapter module (connected to fibre optic channel
CH0 on the NDCO board) and/or a Modbus-protocol RS-485
connection (on the NIOC-01 board).
Figure C-1 Fieldbus control.
The drive can be set to receive all of its control information from one
fieldbus channel, or the control can be distributed between the two
fieldbus channels and other available sources, e.g. digital and
analogue inputs.
Fieldbus Adapter
Fieldbus
Other
devices
Fieldbus
Controller
CH0
(DDCS)
NBCI
Standard Modbus Link
(Modbus RTU)
RS-485
NPCU
RS-232
RS-485
Galvanically unisolated
e.g. PC Serial Port
Signal Source
Selection Name:
COMM.MODULE
Control Word (CW)
References (REF1…REF5)
Data Flow
Status Word (SW)
Actual Values (ACT1…ACT5)
Parameter R/W Requests/Responses
Fieldbus Control
or COMM. REF
Appendix C – Fieldbus Control
C-2 Firmware Manual
Control via NDCO
Board Channel CH0
The DDCS-protocol fibre optic channel CH0, located on the NDCO
add-on communication board, is used for connecting the ACS 600 to a
fieldbus adapter module. (The NDCO board may be ordered factory-
installed or as an add-on kit. It is also installed at the factory if required
by another option.)
Channel CH0 is also used for connecting the ACS 600 to an Advant
control system. From the drive’s point of view, Advant connection is
similar to a fieldbus adapter connection.
Fieldbus Adapter
Communication Set-up
Before configuring the ACS 600 for fieldbus control, the adapter
module must be mechanically and electrically installed according to the
instructions given in the Hardware Manual of the drive and the module
manual.
The communication between the ACS 600 and the fieldbus adapter
module is then activated by setting Parameter 98.02 COMM. MODULE
LINK. After the communication is initialised, the configuration
parameters of the module become available in the drive at Parameter
Group 51. These parameters are specific to the module used; see its
manual for information on the available settings.
Table C-1 Communication set-up parameters for channel CH0 (for Fieldbus Adapter connection).
After the parameters in Group 51 have been set, the drive control
parameters (shown in Table C-4) must be checked and adjusted where
necessary.
Parameter Alternative Settings
Setting for
Control through CH0
Function/Information
COMMUNICATION INITIALISATION
98.02 COMM. MODULE
LINK
NO; FIELDBUS; ADVANT;
STD MODBUS;
CUSTOMISED
FIELDBUS Initialises communication between drive (fibre
optic channel CH0) and fieldbus adapter module.
Activates module parameters (Group 51).
98.07 COMM PROFILE ABB DRIVES;
CSA 2.8/3.0
ABB DRIVES Selects the communication profile used by the
drive. Affects both fieldbus channels (fibre optic
channel CH0 and Standard Modbus Link). See
section Communication Profiles later in this
Appendix.
ADAPTER MODULE CONFIGURATION (Module-specific; see module manual.)
51.01 (FIELDBUS
PARAMETER 1)
–
• • • • • • • • • • • •
51.15 (FIELDBUS
PARAMETER 15)
–
Appendix C – Fieldbus Control
Firmware Manual C-3
AF 100 Connection The connection of an ACS 600 to an AF (Advant Fieldbus) 100 bus is
similar to other fieldbusses, with the exception that one of the AF 100
interfaces listed below is substituted for the fieldbus adapter. As
opposed to other fieldbusses, Parameter Group 51 contains no
adjustable parameters. The drive (channel CH0) is connected to the
AF 100 interface using fibre optic cables. The following is a list of
suitable interfaces:
• CI810A Fieldbus Communication Interface (FCI)
TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port
Interface required
• Advant Controller 70 (AC 70)
TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port
Interface required
• Advant Controller 80 (AC 80)
Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd)
Optical ModuleBus Port Interface required
DriveBus connection: Connectible to NAMC-11 Board with
NDCO-01 Communication Option.
One of the above interfaces may already be present on the AF 100 bus.
If not, an Advant Fieldbus 100 Adapter kit (NAFA-01) is separately
available, containing the CI810A Fieldbus Communication Interface,
TB810 and TB811 Optical ModuleBus Port Interfaces, and a TC505
Trunk Tap. (More information on these components is available from
the S800 I/O User’s Guide, 3BSE 008 878 [ABB Industrial Systems,
Västerås, Sweden]).
Optical Component Types The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd
optical components, while the TB810 has 10 MBd components. All
optical components on a fibre optic link must be of the same type since
5 MBd components do not communicate with 10 MBd components.
The choice between TB810 and TB811 depends on the equipment it is
connected to.
The TB811 (5 MBd) should be used when connecting to a drive with
the following equipment:
• NAMC-03 Board (not used with Std. Application Program 5.2 or
later versions)
• NAMC-11/51 Board with NDCO-02 Communication Option
• NAMC-11/51 Board with NDCO-03 Communication Option
• NAMC-22 Board.
The TB810 (10 MBd) should be used when connecting to the following
equipment:
• NAMC-11/51 Board with NDCO-01 Communication Option
• NAMC-21 Board
• NDBU-85/95 DDCS Branching Units.
Appendix C – Fieldbus Control
C-4 Firmware Manual
Communication Set-up The communication between the ACS 600 and the AF 100 interface is
activated by setting Parameter 98.02 COMM. MODULE LINK to
ADVANT.
Table C-2 Communication set-up parameters for channel CH0 (For AF 100 connection).
After the communication activation parameters have been set, the
AF 100 interface must be programmed according to its documentation,
and the drive control parameters (shown in Table C-4) checked and
adjusted where necessary.
In an Optical ModuleBus connection, the value for drive Parameter
70.01 CH0 NODE ADDRESS is calculated from the value of the
POSITION terminal in the appropriate database element (for the
AC 80, DRISTD) as follows:
1. Multiply the hundreds of the value of POSITION by 16.
2. Add the tens and ones of the value of POSITION to the result.
For example, if the POSITION terminal of the DRISTD database
element has the value of 110 (the tenth drive on the Optical ModuleBus
ring), Parameter 70.01 must be set to 16 × 1 + 10 = 26.
In an AC 80 DriveBus connection, the drives are addressed 1 to 12.
The drive address (set with Parameter 70.01) is related to the value of
the DRNR terminal of the ACSRX PC element.
Parameter Alternative Settings
Setting for
Control through CH0
Function/Information
COMMUNICATION INITIALISATION
98.02 COMM. MODULE
LINK
NO; FIELDBUS; ADVANT;
STD MODBUS,
CUSTOMISED
ADVANT Initialises communication between drive (fibre
optic channel CH0) and AF 100 interface. The
transmission speed is 4 Mbit/s.
98.07 COMM PROFILE ABB DRIVES;
CSA 2.8/3.0
ABB DRIVES Selects the communication profile used by the
drive. Affects both fieldbus channels (fibre optic
channel CH0 and Standard Modbus Link). See
section Communication Profiles later in this
Appendix.
Appendix C – Fieldbus Control
Firmware Manual C-5
Control through the
Standard Modbus
Link
The modular jacks (X28 and X29) on the ACS 600 NIOC-01 board form
the Standard Modbus Link. The Link can be used for external control
by a Modbus RTU-protocol controller. The controller can be connected
either directly or using an NBCI Panel Bus Connection Interface
module to obtain galvanic isolation and parallel or long-distance
connection of several drives.
An RS-232 port (e.g. a serial port of a PC) can be connected to the
Standard Modbus Link through an NPCU-01 PC Connection Unit,
which provides galvanic isolation and RS-232/RS-485 conversion.
(However, the DriveWindow Light PC tool can only be connected to the
Control Panel connector on the NAMC board.)
Communication Set-up The communication through the Standard Modbus Link is initialised by
setting Parameter 98.02 COMM. MODULE LINK to STD MODBUS.
Then, the communication parameters in Group 52 must be adjusted.
See the following table.
Table C-3 Communication set-up parameters for the Standard Modbus Link.
After the parameters in Group 52 have been set, the drive control
parameters (shown in Table C-4) should be checked and adjusted
where necessary.
Parameter Alternative Settings
Setting for Control
through the Standard
Modbus Link
Function/Information
COMMUNICATION INITIALISATION
98.02 COMM. MODULE
LINK
NO; FIELDBUS; ADVANT;
STD MODBUS;
CUSTOMISED
STD MODBUS Initialises communication between drive
(Standard Modbus Link) and Modbus-protocol
controller. Activates communication parameters
in Group 52.
98.07 COMM PROFILE ABB DRIVES;
CSA 2.8/3.0
ABB DRIVES Selects the communication profile used by the
drive. Affects both fieldbus channels (fibre optic
channel CH0 and Standard Modbus Link). See
section Communication Profiles later in this
Appendix.
COMMUNICATION PARAMETERS
52.01 STATION
NUMBER
1 to 247 – Specifies the station number of the drive on the
Standard Modbus link.
52.02 BAUDRATE 600; 1200; 2400; 4800;
9600
– Communication speed for the Standard
Modbus Link.
52.03 PARITY ODD; EVEN;
NONE1STOPBIT;
NONE2STOPBIT
– Parity setting for the Standard Modbus Link.
Appendix C – Fieldbus Control
C-6 Firmware Manual
Drive Control
Parameters
After the desired fieldbus channels have been set up, the drive control
parameters listed below in Table C-4 below should be checked and
adjusted where necessary.
The Setting for Fieldbus Control column gives the value to use when
either fieldbus channel (CH0 or Standard Modbus Link) is the desired
source or destination for that particular signal. The Function/
Information column gives a description of the parameter.
The fieldbus signal routes and message composition are explained
later in this Appendix under The Fieldbus Control Interface. Further
information on the alternative parameter settings is also given in
Chapter 6.
Table C-4 Drive control parameters to be checked and adjusted for fieldbus control.
Parameter
Setting for
Fieldbus Control
Function/Information
CONTROL COMMAND SOURCE SELECTION
10.01 EXT1
STRT/STP/DIR
COMM.MODULE
Enables the fieldbus Control Word (except bit 11) when
EXT1 is selected as control location.
10.02 EXT2
STRT/STP/DIR
Enables the fieldbus Control Word (except bit 11) when
EXT2 is selected as control location.
10.03 DIRECTION REQUEST Enables rotation direction control as defined by
Parameters 10.01 and 10.02.
11.02 EXT1/EXT2
SELECT
COMM.MODULE Enables EXT1/EXT2 selection by fieldbus Control Word
bit 11 EXT CTRL LOC.
11.03 EXT REF1
SELECT
COMM.REF,
FAST COMM,
COMM.REF+AI1,
COMM.REF+AI5,
COMM.REF*AI1 or
COMM.REF*AI5
Fieldbus reference REF1 is used when EXT1 is selected
as control location.
See section References below for information on the
alternative settings.
11.06 EXT REF2
SELECT
Fieldbus reference REF2 is used when EXT2 is selected
as control location.
See section References below for information on the
alternative settings.
OUTPUT SIGNAL SOURCE SELECTION
14.01 RELAY RO1
OUTPUT
COMM.MODULE
Enables Relay output RO1 control by fieldbus reference
REF3 bit 13.
14.02 RELAY RO2
OUTPUT
Enables Relay output RO2 control by fieldbus reference
REF3 bit 14.
14.03 RELAY RO3
OUTPUT
Enables Relay output RO3 control by fieldbus reference
REF3 bit 15.
15.01 ANALOGUE
OUTPUT1
Directs the contents of fieldbus reference REF4 to
Analogue output AO1.
Scaling: 20000 = 20 mA
15.06 ANALOGUE
OUTPUT2
Directs the contents of fieldbus reference REF5 to
Analogue output AO2.
Scaling: 20000 = 20 mA.
Appendix C – Fieldbus Control
Firmware Manual C-7
SYSTEM CONTROL INPUTS
16.01 RUN
ENABLE
COMM.MODULE
Enables the control of the Run Enable signal through
fieldbus Control Word bit 3.
16.04 FAULT
RESET SEL
Enables fault reset through fieldbus Control Word bit 7.
16.07 PARAM
SAVE
Saves parameter value changes (incl. those made
through fieldbus control) to permanent memory. See
Chapter 6 – Parameters.
COMMUNICATION FAULT FUNCTIONS
30.18 COMM
FAULT FUNC
–
Determines drive action in case fieldbus communication
is lost.
Note: The communication loss detection is based on
monitoring of received Main and Auxiliary data sets
(whose sources are selected with Parameters 90.04 and
90.05).
30.19 MAIN REF
DS T-OUT
Defines the time between Main Reference data set loss
detection and the action selected with Parameter 30.18.
30.20 COMM FLT
RO/AO
Determines the position in which Relay outputs RO1 to
RO3 and Analogue outputs AO1 and AO2 are left upon
Auxiliary Reference data set loss.
30.21 AUX REF
DS T-OUT
Defines the time between Auxiliary Reference data set
loss detection and the action selected with Parameter
30.18.
Note: This supervision function is disabled if Pars. 90.01,
90.02 and 90.03 are set to 0.
FIELDBUS REFERENCE TARGET SELECTION (Not visible when 98.02 is set to NO.)
90.01 AUX DS
REF3
–
Defines the drive parameter into which the value of
fieldbus reference REF3 is written.
Format: xxyy, where xx = Parameter Group (10 to 89),
yy = Parameter Index. E.g. 3001 = Parameter 30.01.
90.02 AUX DS
REF4
Defines the drive parameter into which the value of
fieldbus reference REF4 is written.
Format: see Parameter 90.01.
90.03 AUX DS
REF5
Defines the drive parameter into which the value of
fieldbus reference REF5 is written.
Format: see Parameter 90.01.
90.04 MAIN DS
SOURCE
1 or 81 If 98.02 COMM. MODULE LINK is CUSTOMISED this
parameter selects the fieldbus channel from which the
drive reads the Main Reference data set (comprising the
fieldbus Control Word, fieldbus reference REF1, and
fieldbus reference REF2).
90.05 AUX DS
SRCE
3 or 83 If 98.02 COMM. MODULE LINK is CUSTOMISED this
parameter selects the fieldbus channel from which the
drive reads the Auxiliary Reference data set (comprising
fieldbus references REF3, REF4 and REF5).
Parameter
Setting for
Fieldbus Control
Function/Information
Appendix C – Fieldbus Control
C-8 Firmware Manual
ACTUAL SIGNAL SELECTION FOR FIELDBUS (Not visible when 98.02 is set to NO.)
92.01 MAIN DS
STATUS WORD
302 (Fixed) The Status Word is transmitted to as the first word of the
Main Actual Signal data set.
92.02 MAIN DS
ACT1
–
Selects the Actual signal or Parameter value to be
transmitted as the second word (ACT1) of the Main
Actual Signal data set.
Format: (x)xyy, where (x)x = Actual Signal Group or
Parameter Group, yy = Actual Signal or Parameter Index.
E.g. 103 = Actual Signal 1.03 FREQUENCY; 2202 =
Parameter 22.02 ACCEL TIME 1.
92.03 MAIN DS
ACT2
Selects the Actual signal or Parameter value to be
transmitted as the third word (ACT2) of the Main Actual
Signal data set.
Format: see Parameter 92.02.
92.04 AUX DS
ACT3
Selects the Actual signal or Parameter value to be
transmitted as the first word (ACT3) of the Auxiliary
Actual Signal data set.
Format: see Parameter 92.02.
92.05 AUX DS
ACT4
Selects the Actual signal or Parameter value to be
transmitted as the second word (ACT4) of the Auxiliary
Actual Signal data set.
Format: see Parameter 92.02.
92.06 AUX DS
ACT5
Selects the Actual signal or Parameter value to be
transmitted as the third word (ACT5) of the Auxiliary
Actual Signal data set.
Format: see Parameter 92.02.
Parameter
Setting for
Fieldbus Control
Function/Information
Appendix C – Fieldbus Control
Firmware Manual C-9
The Fieldbus Control
Interface
The communication between a fieldbus system and the ACS 600
employs data sets. One data set consists of three 16-bit words. The
ACS 600 Standard Application Program supports the use of four data
sets, two in each direction. The ACS 600 has a memory location for two
control and two status data sets for each fieldbus channel (the fibre
optic channel CH0 and the Standard Modbus Link), totalling 4 input
and 4 output memory locations. Two out of the four input data sets are
selected with Parameter 98.02 COMM. MODULE LINK, 90.04 MAIN
REF DS SOURCE and 90.05 AUX REF DS SOURCE. The selected
data sets form the Main Reference data set and the Auxiliary
Reference data set which are used to control the drive.
The status information transmitted by the drive is selected with
Parameters 92.01 to 92.03 (the Main Actual Signal data set), and the
92.04 to 92.06 (the Auxiliary Actual Signal data set).
The update time for the Main Reference and Main Actual Signal data
sets is 12 milliseconds; for the Auxiliary Reference and Auxiliary Actual
Signals, it is 100 milliseconds.
Figure C-2 and Figure C-3 demonstrate the routes of input and output
signals for fieldbus control.
The Control Word and
the Status Word
The Control Word (CW) is the principal means for controlling the drive
from a fieldbus system. It is effective when the current control location
(EXT1 or EXT2, see Parameters 10.01 and 10.02) is set to COMM.
MODULE.
The Control Word (detailed in Table C-5) is sent by the fieldbus
controller to the drive. The drive switches between its states (shown in
Figure C-4) according to the bit-coded instructions of the Control Word.
The Status Word (SW) is a word containing status information, sent by
the drive to the fieldbus controller. The composition of the Status Word
is explained in Table C-6.
References References (REF) are 16-bit words comprising a sign bit and a 15-bit
integer. A negative reference (indicating reversed direction of rotation)
is formed by calculating the two’s complement from the corresponding
positive reference value if the value of Parameter 10.01 EXT1 STRT/
STP/DIR or 10.02 EXT2 STRT/STP/DIR is COMM. MODULE.
Fieldbus Reference
Selection and Correction
Fieldbus reference (called COMMREF in signal selection contexts) is
selected by setting a Reference selection parameter – 11.03 EXT
REF1 SELECT or 11.06 EXT REF2 SELECT – to COMM.REF,
FAST COMM, COMM.REF+AI1, COMM.REF*AI1, COMM.REF+AI5,
or COMM.REF*AI5. The latter four selections enable correction of the
fieldbus reference using analogue inputs as shown below. (An optional
NAIO-03 Analogue I/O Extension Module is required for use of
Analogue input AI5).
Appendix C – Fieldbus Control
C-10 Firmware Manual
COMM.REF
The fieldbus reference is forwarded as such without correction.
FAST COMM
The fieldbus reference is forwarded as such without correction. The
reference is read every 2 milliseconds if either of the following
conditions is met:
• Control location is EXT1, Par. 99.04 MOTOR CTRL MODE is DTC,
and Par. 40.14 TRIM MODE is OFF
• Control location is EXT2, Par. 99.04 MOTOR CTRL MODE is DTC,
Par. 40.14 TRIM MODE is OFF, and a torque reference is used.
In any other event, the fieldbus reference is read every 6 milliseconds.
Note: The FAST COMM selection disables the critical speed function.
COMM.REF+AI1; COMM.REF+AI5; COMM.REF*AI1;
COMM.REF*AI5
These selections enable the correction of the fieldbus reference as
follows:
Parameter Setting Effect of AI1/AI5 Input Voltage on Fieldbus Reference
COMMREF+AI1
COMMREF+AI5
COMMREF*AI1
COMMREF*AI5
(100 + 0.5 × [Par. 13.03])%
100%
0 AI1/AI5 Input
Fieldbus Reference
Correction Coefficient
(100 – 0.5 × [Par. 13.03])%
5 V 10 V
Voltage
100%
0 AI1/AI5 Input
Fieldbus Reference
Correction Coefficient
0%
50%
5 V 10 V
Voltage
Appendix C – Fieldbus Control
Firmware Manual C-11
Fieldbus Reference
Scaling
Corrected (if correction is applied; see above) fieldbus references
REF1 and REF2 are scaled as shown in the table below.
Ref. No.
Application
Macro Used
(Par. 99.02)
Reference
Type
Range Scaling Notes
REF1 (any) Speed or
Frequency
-32765 ... 32765 -20000 = -[Par. 11.05]
0 = 0
20000 = [Par. 11.05]
Not limited by Pars. 11.04/11.05.
Final reference limited by 20.01/20.02
[speed] or 20.07/20.08 [frequency].
REF2 FACTORY,
HAND/AUTO,or
SEQ CTRL
Speed or
Frequency
-32765 ... 32765 -20000 = -[Par. 11.08]
0 = 0
20000 = [Par. 11.08]
Not limited by Pars. 11.07/11.08.
Final reference limited by 20.01/20.02
[speed] or 20.07/20.08 [frequency].
T CTRL or
M/F (optional)
Torque -32765 ... 32765 -10000 = -[Par. 11.08]
0 = 0
10000 = [Par. 11.08]
Not limited by Pars. 11.07/11.08.
Final reference limited by Par. 20.04.
PID CTRL PID Reference -32765 ... 32765 -10000 = -[Par. 11.08]
0 = 0
10000 = [Par. 11.08]
Not limited by Pars. 11.07/11.08.
Appendix C – Fieldbus Control
C-12 Firmware Manual
How Direction of
Rotation Is Determined
in Fieldbus Control
The control of rotation direction is configured for each control location
(EXT1 and EXT2) using the parameters in Group 10. Fieldbus
references are bipolar, ie. they can be negative or positive. The
following diagrams illustrate how Group 10 parameters and the sign of
the fieldbus reference interact.
The diagrams below show the relation between the fieldbus reference
and the resultant REF1/REF2 when
– Parameter 10.01/10.02 EXTx STRT/STP/DIR = COMM. MODULE,
OR
– Parameter 11.03/11.06 EXT REFx SELECT is set to FAST COMM.
Par. 10.03 DIRECTION =
FORWARD
Par. 10.03 DIRECTION =
REVERSE
Par. 10.03 DIRECTION =
REQUEST
*10000 if Reference Type is Torque or PID
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000*
20000*
Ref. 1/2
Resultant
REF1/2
32767
Appendix C – Fieldbus Control
Firmware Manual C-13
The following diagrams show the relation between the fieldbus
reference and the resultant REF1/REF2 when
– Par. 10.01/10.02 EXTx STRT/STP/DIR is not set to COMM.MODULE
AND
– Par. 11.03/11.06 EXT REFx SELECT is not set to FAST COMM.
Direction received from source defined by Par.
10.01/10.02 EXTx STRT/STP/DIR = FORWARD
Direction received from source defined by Par.
10.01/10.02 EXTx STRT/STP/DIR = REVERSE
Par. 10.03 DIRECTION =
FORWARD
Par. 10.03 DIRECTION =
REVERSE
Par. 10.03 DIRECTION =
REQUEST
*10000 if Reference Type is Torque or PID
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Fieldbus
-32767
[11.05/11.08]
–[11.05/11.08]
-20000* 20000*
Ref. 1/2
Resultant
REF1/2
32767
Appendix C – Fieldbus Control
C-14 Firmware Manual
Actual Values Actual Values (ACT) are 16-bit words containing information on
selected operations of the drive. The functions to be monitored are
selected with the parameters in Group 92. The scaling of the integers
sent to the master as Actual Values depends on the selected function;
please refer to the Scaling for Fieldbus column in the tables of
Appendix A.
The contents of Group 3 Actual Signals are presented in this Appendix
from Table C-7 onwards. (The Control and Status Words are also
available as Actual Signals 3.01 and 3.02 respectively.)
Modbus Addressing In the Modbus controller memory, the Control Word, the Status Word,
the references, and the actual values are mapped as follows:
More information on Modbus communication is available from the
separate publication NMBA-01 Installation and Start-up Guide (3AFY
58919772 [English]; available from ABB Industry Oy, Helsinki, Finland)
and the Modicon website http:www.modicon.com.
Address Contents Address Contents
40001 Control Word 40004 Status Word
40002 REF1 40005 ACT1
40003 REF2 40006 ACT2
40007 REF3 40010 ACT3
40008 REF4 40011 ACT4
40009 REF5 40012 ACT5
AppendixC–FieldbusControl
FirmwareManualC-15
FigureC-2Controldatainputfromfieldbus.
Standard
CH0
DATA
DS 1
DS 2
DS 3
DS 4
• • •
DS 81
DS 82
DS 83
DS 84
MAIN
DATA SET
REFERENCE
AUXILIARY
REFERENCE
FIELDBUS
PARAMETER
10.01
10.02
• • •
89.99
TABLE
(Fieldbus
Adapter)
Modbus
Link
30.20 COMM FLT RO/AO
30.21 AUX REF DS T-OUT
90.01
90.02
90.03
• • •
• • •
30.18 COMM FAULT FUNC
Bits
13…15
CONTROL WORD
REFERENCE REF1
REFERENCE REF2
See Control Source
Selection Diagrams
in Chapter 4
Analogue Output
AO1 (see 15.01)
Analogue Output
AO2 (see 15.06)
CW
REF1
REF2
REF3
REF4
REF5
CW
REF1
REF2
REF3
REF4
REF5
40001
40002
40003
40007
40008
40009
Modbus
Controller
SET
TABLE
NO
FIELD-
ADVANT
STD
CUSTOM-
BUS
MODBUS
ISED
98.02
NO
FIELD-
ADVANT
STD
CUSTOM-
BUS
MODBUS
ISED
98.02
CW
REF1
REF2
REF3
REF4
REF5
DATA SET
Relay Outputs
(see 14.01…14.03)
90.04
1
•
•
•
255
30.18 COMM FAULT FUNC
30.19 MAIN REF DS T-OUT
90.05
1
•
•
•
255
AppendixC–FieldbusControl
C-16FirmwareManual
FigureC-3Actualvalueselectionforfieldbus.
ACTUAL SIGNAL/
1.01
1.02
• • •
3.99
• • •
PARAMETER
TABLE
10.01
• • •
99.99
92.01*
92.02 STATUS WORD*
ACT1
ACT2
MAIN
DATA SET
ACTUAL SIGNAL
ACT3
ACT4
ACT5
AUXILIARY
DATA SET
ACTUAL SIGNAL
DATA SET
DS 1
DS 2
DS 3
DS 4
• • •
DS 81
DS 82
DS 83
DS 84
TABLE
• • •
Standard
CH0
(Fieldbus
Adapter)
Modbus
Link
92.03
92.04
92.05
92.06
SW
ACT1
ACT2
ACT3
ACT4
ACT5
SW
ACT1
ACT2
ACT3
ACT4
ACT5
*Par. 92.01 is fixed to 3.02 MAIN STATUS WORD.
40004
40005
40006
40010
40011
40012
Modbus
Controller
Appendix C – Fieldbus Control
Firmware Manual C-17
Communication
Profiles
Standard Application Program 5.0 (or later) supports the ABB Drives
communication profile, which standardises the control interface (such
as the Control and Status Words) among ABB drives. The ABB Drives
profile derives from the PROFIBUS control interface and provides a
variety of control and diagnostic functions (see Table C-5, Table C-6
and Figure C-4).
In order to retain backward compatibility with Standard Application
Program versions 2.8 and 3.0, a communication profile suitable for
these versions (CSA 2.8/3.0) can be selected with Parameter 98.07
COMM INTERFACE. This eliminates the need for reprogramming the
PLC when ACS 600 drives with program versions 2.8 or 3.0 are
replaced.
The Control and Status Words for the CSA 2.8/3.0 communication
profile are detailed in Table C-19 and Table C-20 respectively.
Note: The communication profile selector parameter 98.07 COMM
PROFILE affects both the optical CH0 and the Standard Modbus
channels.
Appendix C – Fieldbus Control
C-18 Firmware Manual
Table C-5 The Control Word (Actual Signal 3.01) for the ABB Drives Communication Profile. The
upper case boldface text refers to the states shown in Figure C-4.
Bit Name Value Enter STATE/Description
0 ON 1 Enter READY TO OPERATE.
OFF1 0 Emergency OFF, stop within time defined by Par. 22.07 EM STOP RAMP TIME. Enter OFF1
ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.
1 OFF2 1 Continue operation (OFF2 inactive).
0 Emergency OFF, coast to stop.
Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.
2 OFF3 1 Continue operation (OFF3 inactive).
0 Emergency stop, stop within time defined by Par. 22.07 EM STOP RAMP TIME. Enter OFF3
ACTIVE; proceed to SWITCH-ON INHIBITED.
Warning: Ensure motor and driven machine can be stopped using this stop mode.
3 START 1 Enter OPERATION ENABLED. (Note: The Run enable signal must be active; see Parameter
16.01. If Par. 16.01 is set to COMM. MODULE, this bit also activates the Run enable signal.)
0 Inhibit operation. Enter OPERATION INHIBITED.
4 RAMP_OUT_
ZERO
1 Normal operation.
Enter RAMP FUNCTION GENERATOR: OUTPUT ENABLED.
0 Force Ramp Function Generator output to zero.
Drive ramps to stop (current and DC voltage limits in force).
5 RAMP_HOLD 1 Enable ramp function.
Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED.
0 Halt ramping (Ramp Function Generator output held).
6 RAMP_IN_
ZERO
1 Normal operation. Enter OPERATING.
0 Force Ramp Function Generator input to zero.
7 RESET 0 Þ 1 Fault reset if an active fault exists. Enter SWITCH-ON INHIBITED.
0 Continue normal operation.
8 INCHING_1 1 Not in use.
1 Þ 0 Not in use.
9 INCHING_2 1 Not in use.
1 Þ 0 Not in use.
10 REMOTE_CMD 1 Fieldbus control enabled.
0 Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference.
Control Word = 0 and Reference = 0: Fieldbus control enabled.
Reference and deceleration/acceleration ramp are locked.
11 EXT CTRL LOC 1 Select External Control Location 2 (EXT2). Effective if Par. 11.02 is set to COMM.MODULE.
0 Select External Control Location 1 (EXT1). Effective if Par. 11.02 is set to COMM.MODULE.
12 to 15 Reserved
Appendix C – Fieldbus Control
Firmware Manual C-19
Table C-6 The Status Word (Actual Signal 3.02) for the ABB Drives Communication Profile. The
upper case boldface text refers to the states shown in Figure C-4.
Bit Name Value STATE/Description
0 RDY_ON 1 READY TO SWITCH ON.
0 NOT READY TO SWITCH ON.
1 RDY_RUN 1 READY TO OPERATE.
0 OFF1 ACTIVE.
2 RDY_REF 1 OPERATION ENABLED.
0 OPERATION INHIBITED.
3 TRIPPED 1 FAULT.
0 No fault.
4 OFF_2_STA 1 OFF2 inactive.
0 OFF2 ACTIVE.
5 OFF_3_STA 1 OFF3 inactive.
0 OFF3 ACTIVE.
6 SWC_ON_INHIB 1 SWITCH-ON INHIBITED.
0
7 ALARM 1 Warning/Alarm.
0 No Warning/Alarm.
8 AT_SETPOINT 1 OPERATING. Actual value equals reference value (= is within tolerance limits).
0 Actual value differs from reference value (= is outside tolerance limits).
9 REMOTE 1 Drive control location: REMOTE (EXT1 or EXT2).
0 Drive control location: LOCAL.
10 ABOVE_LIMIT 1 Actual frequency or speed value equals or is greater than supervision limit (Par. 32.02).
Valid in both rotation directions regardless of value of Par. 32.02.
0 Actual frequency or speed value is within supervision limit.
11 EXT CTRL LOC 1 External Control Location 2 (EXT2) selected.
0 External Control Location 1 (EXT1) selected.
12 EXT RUN ENABLE 1 External Run Enable signal received.
0 No External Run Enable received.
13 to 14 Reserved
15 1 Communication error detected by fieldbus adapter module (on fibre optic channel CH0).
0 Fieldbus adapter (CH0) communication OK.
Appendix C – Fieldbus Control
C-20 Firmware Manual
Figure C-4 The ACS 600 State Machine for the Standard Application Program (ABB Drives
Communication Profile), effective under fieldbus control.
MAINS OFF
Power ON (CW Bit0=0)
SWITCH-ON
INHIBITED (SW Bit6=1)
NOT READY
TO SWITCH ON (SW Bit0=0)
READY TO
SWITCH ON
from any state
(CW=xxxx x1xx xxxx x110)
ACS 600
Std. Application
State Machine
READY TO
OPERATE (SW Bit1=1)
n(f)=0 / I=0
OPERATION
INHIBITED (SW Bit2=0)
A B C D
(CW Bit3=0)
operation
inhibited
OFF1 (CW Bit0=0)
OFF1
ACTIVE (SW Bit1=0)
(SW Bit0=1)
(CW Bit3=1
and
SW Bit12=1)
C D
(CW Bit5=0)
OPERATION
ENABLED (SW Bit2=1)
(SW Bit5=0)
from any state from any state
Emergency Stop
OFF3 (CW Bit2=0)
n(f)=0 / I=0
OFF3
ACTIVE
Emergency OFF
OFF2 (CW Bit1=0)
(SW Bit4=0)
OFF2
ACTIVE
RFG: OUTPUT
ENABLED
RFG: ACCELERATOR
ENABLED
OPERATING
B
B C D
(CW Bit4=0)
(CW=xxxx x1xx xxx1 1111)
(CW=xxxx x1xx xx11 1111)
D
(CW Bit6=0)
A
C
(CW=xxxx x1xx x111 1111)
CW = Control Word
SW = Status Word
n = Speed
I = Input Current
(SW Bit8=1)
RFG = Ramp Function Generator
f = Frequency
D
from any state
Fault
(SW Bit3=1)
FAULT
(CW Bit7=1)
(CW=xxxx x1xx xxxx x111)
(CW=xxxx x1xx xxxx 1111
and SW Bit12=1)
Appendix C – Fieldbus Control
Firmware Manual C-21
Table C-7 The Auxiliary Status Word (Actual Signal 3.03).
Table C-8 Limit Word 1 (Actual Signal 3.04).
Bit Name Description
0 Reserved
1 OUT OF WINDOW Speed difference is out of the window (in speed control)*.
2 Reserved
3 MAGNETIZED Flux has been formed in the motor.
4 Reserved
5 SYNC RDY Position counter synchronised.
6 1 START NOT DONE Drive has not been started after changing the motor parameters in Group 99.
7 IDENTIF RUN DONE Motor ID Run successfully completed.
8 START INHIBITION Prevention of unexpected start-up active.
9 LIMITING Control at a limit. See Actual Signal 3.04 LIMIT WORD 1 below.
10 TORQ CONTROL Torque reference is followed*.
11 ZERO SPEED Absolute value of motor actual speed is below zero speed limit (4% of
synchronous speed).
12 INTERNAL SPEED FB Internal speed feedback followed.
13 M/F COMM ERR Master/Follower link (on CH2) communication error*.
14 Reserved
15 Reserved
*See Master/Follower Application Guide (3AFY 58962180 [English]).
Bit Name Active Limit
0 TORQ MOTOR LIM Pull-out limit.
1 SPD_TOR_MIN_LIM Speed control torque min. limit.
2 SPD_TOR_MAX_LIM Speed control torque max. limit.
3 TORQ_USER_CUR_LIM User-defined current limit.
4 TORQ_INV_CUR_LIM Internal current limit.
5 TORQ_MIN_LIM Any torque min. limit.
6 TORQ_MAX_LIM Any torque max. limit.
7 TREF_TORQ_MIN_LIM Torque reference min. limit.
8 TREF_TORQ_MAX_LIM Torque reference max. limit.
9 FLUX_MIN_LIM Flux reference min. limit.
10 FREQ_MIN_LIMIT Speed/Frequency min. limit.
11 FREQ_MAX_LIMIT Speed/Frequency max. limit.
12 DC_UNDERVOLT DC undervoltage limit.
13 DC_OVERVOLT DC overvoltage limit.
14 TORQUE LIMIT Any torque limit.
15 FREQ_LIMIT Any speed/frequency limit.
Appendix C – Fieldbus Control
C-22 Firmware Manual
Table C-9 Fault Word 1 (Actual Signal 3.05).
Table C-10 Fault Word 2 (Actual Signal 3.06).
Bit Name Description
0 SHORT CIRC
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
1 OVERCURRENT
2 DC OVERVOLT
3 ACx 600 TEMP
4 EARTH FAULT
5 THERMISTOR
6 MOTOR TEMP
7 SYSTEM_FAULT A fault is indicated by the System Fault Word
(Actual Signal 3.07).
8 UNDERLOAD For the possible causes and remedies, see
Chapter 7 – Fault Tracing.9 OVERFREQ
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved
Bit Name Description
0 SUPPLY PHASE
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
1 NO MOT DATA
2 DC UNDERVOLT
3 Reserved
4 RUN DISABLED
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
5 ENCODER FLT
6 I/O COMM
7 AMBIENT TEMP
8 EXTERNAL FLT
9 OVER SWFREQ Switching overfrequency fault.
10 AI < MIN FUNC
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
11 PPCC LINK
12 COMM MODULE
13 PANEL LOSS
14 MOTOR STALL
15 MOTOR PHASE
Appendix C – Fieldbus Control
Firmware Manual C-23
Table C-11 The System Fault Word (Actual Signal 3.07).
Table C-12 Alarm Word 1 (Actual Signal 3.08).
Bit Name Description
0 FLT (F1_7) Factory default parameter file error.
1 USER MACRO User Macro file error.
2 FLT (F1_4) FPROM operating error.
3 FLT (F1_5) FPROM data error.
4 FLT (F2_12) Internal time level 2 overflow.
5 FLT (F2_13) Internal time level 3 overflow.
6 FLT (F2_14) Internal time level 4 overflow.
7 FLT (F2_15) Internal time level 5 overflow.
8 FLT (F2_16) State machine overflow.
9 FLT (F2_17) Application program execution error.
10 FLT (F2_18) Application program execution error.
11 FLT (F2_19) Illegal instruction.
12 FLT (F2_3) Register stack overflow.
13 FLT (F2_1) System stack overflow.
14 FLT (F2_0) System stack underflow.
15 Reserved
Bit Name Description
0 START INHIBIT For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
1 Reserved
2 Reserved
3 MOTOR TEMP
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
4 ACx 600 TEMP
5 ENCODER ERR
6 T MEAS ALM
7 Reserved
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 COMM MODULE
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
13 THERMISTOR
14 EARTH FAULT
15 Reserved
Appendix C – Fieldbus Control
C-24 Firmware Manual
Table C-13 Alarm Word 2 (Actual Signal 3.09).
Bit Name Description
0 Reserved
1 UNDERLOAD For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
2 Reserved
3 DC UNDERVOLT
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
4 DC OVERVOLT
5 OVERCURRENT
6 OVERFREQ
7 ALM (A_16) Error in restoring POWERFAIL.DDF.
8 ALM (A_17) Error in restoring POWERDOWN.DDF.
9 MOTOR STALL For the possible causes and remedies, see
Chapter 7 – Fault Tracing.10 AI < MIN FUNC
11 Reserved
12 Reserved
13 PANEL LOSS For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
14 Reserved
15 Reserved
Appendix C – Fieldbus Control
Firmware Manual C-25
Table C-14 The NINT Fault Info Word (Actual Signal 3.12). The Word includes information on the
location of faults PPCC LINK, OVERCURRENT, EARTH FAULT and SHORT CIRCUIT (see
Table C-9 Fault Word 1, Table C-10 Fault Word 2, and Chapter 7 – Fault Tracing).
* In use only with parallel inverters. NINT 0 is connected to NPBU CH1, NINT 1 to CH2 etc.
Bit Name Description
0 NINT 1 FLT NINT 1 board fault*
1 NINT 2 FLT NINT 2 board fault *
2 NINT 3 FLT NINT 3 board fault *
3 NINT 4 FLT NINT 4 board fault *
4 NPBU FLT NPBU board fault *
5 - Not in use
6 U-PH SC U Phase U upper-leg IGBT(s) short circuit
7 U-PH SC L Phase U lower-leg IGBT(s) short circuit
8 V-PH SC U Phase V upper-leg IGBT(s) short circuit
9 V-PH SC L Phase V lower-leg IGBT(s) short circuit
10 W-PH SC U Phase W upper-leg IGBT(s) short circuit
11 W-PH SC L Phase W lower-leg IGBT(s) short circuit
12 ... 15 Not in use
U V W
NINT
Upper-leg IGBTs
Lower-leg IGBTs
Inverter Block Diagram
U V W
NINT
U V W
NINT
U V W
NINT
...
NPBU
1 2 3
Inverter Unit Block Diagram (two to four parallel Inverters)
CH1 CH2
CH3
NAMC
NAMC
NAMC Application and Motor Control Board
NINT Main Circuit Interface Board
NPBU PPCS Link Branching Unit
Appendix C – Fieldbus Control
C-26 Firmware Manual
Table C-15 Auxiliary Status Word 3 (Actual Signal 3.13)
Table C-16 Auxiliary Status Word 4 (Actual Signal 3.14)
Bit Name Description
0 REVERSED Motor rotates in reverse direction.
1 EXT CTRL External control is selected.
2 REF 2 SEL Reference 2 is selected.
3 CONST SPEED A Constant Speed (1…15) is selected.
4 STARTED The ACS 600 has received a Start command.
5 USER 2 SEL User Macro 2 has been loaded.
6 OPEN BRAKE The Open Brake command is ON. See Group 42 BRAKE CONTROL.
7 LOSS OF REF The reference has been lost.
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved
Bit Name Description
0 SPEED 1 LIM Output speed has exceeded or fallen below supervision limit 1. See Group 32 SUPERVISION.
1 SPEED 2 LIM Output speed has exceeded or fallen below supervision limit 2. See Group 32 SUPERVISION.
2 CURRENT LIM Motor current has exceeded or fallen below set supervision limit. See Group 32 SUPERVISION.
3 REF 1 LIM Reference 1 has exceeded or fallen below the set supervision limit. See Group 32 SUPERVISION.
4 REF 2 LIM Reference 2 has exceeded or fallen below the set supervision limit. See Group 32 SUPERVISION.
5 TORQUE 1 LIM The motor torque has exceeded or fallen below the TORQUE1 supervision limit. See Group 32
SUPERVISION.
6 TORQUE 2 LIM The motor torque has exceeded or fallen below the TORQUE2 supervision limit. See Group 32
SUPERVISION.
7 ACT 1 LIM PID controller actual value 1 has exceeded or fallen below the set supervision limit. See Group 32
SUPERVISION.
8 ACT 2 LIM PID controller actual value 2 has exceeded or fallen below the set supervision limit. See Group 32
SUPERVISION.
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved
Appendix C – Fieldbus Control
Firmware Manual C-27
Table C-17 Fault Word 4 (Actual Signal 3.15)
Table C-18 Alarm Word 4 (Actual Signal 3.16)
Bit Name Description
0 Reserved
1 MOTOR 1 TEMP
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
2 MOTOR 2 TEMP
3 BRAKE ACKN
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved
Bit Name Description
0 Reserved
1 MOTOR 1 TEMP
For the possible causes and remedies, see
Chapter 7 – Fault Tracing.
2 MOTOR 2 TEMP
3 BRAKE ACKN
4 SLEEP MODE
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved
Appendix C – Fieldbus Control
C-28 Firmware Manual
Table C-19 Control Word for the CSA 2.8/3.0 Communication Profile.
Table C-20 Status Word for the CSA 2.8/3.0 Communication Profile.
Bit Name Description
0 Reserved
1 ENABLE 1 = Enabled
0 = Coast to stop
2 Reserved
3 START/STOP 0®1 = Start
0 = Stop according to Parameter 21.03 STOP FUNCTION.
4 Reserved
5 CNTRL_MODE 1 = Select control mode 2
0 = Select control mode 1
6 Reserved
7 Reserved
8 RESET_FAULT 0®1 = Reset drive fault
9…15 Reserved
Bit Name Description
0 READY 1 = Ready to start
0 = Initialising, or initialisation error
1 ENABLE 1 = Enabled
0 = Coast to stop
2 Reserved
3 RUNNING 1 = Running with selected reference
0 = Stopped
4 Reserved
5 REMOTE 1 = Drive in Remote Mode
0 = Drive in Local Mode
6 Reserved
7 AT_SETPOINT 1 = Drive at reference
0 = Drive not at reference
8 FAULTED 1 = A fault is active
0 = No active faults
9 WARNING 1 = A warning is active
0 = No active warnings
10 LIMIT 1 = Drive at a limit
0 = Drive at no limit
11…15 Reserved
Firmware Manual D-1
Appendix D – Analogue Extension Module NAIO
Speed Control
Through NAIO
This section describes the use of the Analogue Extension Module
NAIO in speed control of the ACS 600 equipped with the Standard
Application Program 6.0.
Two variants are described:
• Bipolar Input in Basic Speed Control
• Bipolar Input in Joystick Mode
Only the use of a bipolar input (± signal range) is covered here. The
use of an unipolar input corresponds to that of a standard input when:
• the settings described in sections Basic Checks and NAIO Settings
are done (see below), and
• the communication between the module and the drive is activated
with Parameter 98.06 AI/O EXT MODULE.
Basic Checks Ensure the ACS 600 is:
• installed and commissioned, and
• the external start and stop signals are connected.
Ensure the NAIO Module:
• settings are adjusted. (See the NAIO Settings below.)
• is installed and reference signal is connected to AI1.
• is connected to ACS 600.
NAIO Settings Set the module node address to 5.
Select the signal type for the input AI1 (DIP switch).
Select the operation mode of the NAIO-03 module (DIP switch). In
NAIO-01 and NAIO-02 module the modes are fixed. See the table
below.
Note: Ensure the drive parameter setting corresponds to the mode of
the NAIO module (98.06 AI/O EXT MODULE).
ACS 600 Parameter
Settings
Set the ACS 600 parameters (see the appropriate subsection on the
following pages).
Mode NAIO-01 NAIO-02 NAIO-03
Unipolar x - x
Bipolar - x x
Appendix D – Analogue Extension Module NAIO
D-2 Firmware Manual
Bipolar Input in Basic
Speed Control
The table below lists the parameters that affect the handling of the
speed reference received through the NAIO module bipolar input AI1.
1)
For the negative speed range, the drive must receive a separate reverse command.
2)
Set if supervision of living zero is used.
The figure below represents the speed reference corresponding to the
NAIO module bipolar input AI1.
Parameter Setting
98.06 AI/O EXT MODULE BIP AIO PRG; BIP AO PRG; BIPOLAR
10.03 DIRECTION FORWARD; REQUEST(1
; REVERSE
11.02 EXT1/EXT2 SELECT (O) EXT1
11.03 EXT REF1 SELECT (O) AI2
11.04 EXT REF1 MINIMUM minREF1
11.05 EXT REF1 MAXIMUM maxREF1
13.06 MINIMUM AI2 minAI1
13.07 MAXIMUM AI2 maxAI1
13.08 SCALE AI2 100%
13.10 INVERT AI2 NO
30.01 AI<MIN FUNCTION (2
SpeedReference
scaled
minREF1
-minAI1 minAI1 maxAI1-maxAI1
-minREF1
-scaled
10.03 DIRECTION =
FORWARD or
REQUEST1)
10.03 DIRECTION =
REVERSE or
REQUEST1)
Analogue Input Signal
Operation Range
minAI1 = 13.06 MINIMUM AI2 (i.e. NAIO AI1)
maxAI1 = 13.07 MAXIMUM AI2 (i.e. NAIO AI1)
scaled
maxREF1
= 13.08 SCALE AI2 x 11.05 EXT REF1 MAXIMUM
minREF1 = 11.04 EXT REF1 MINIMUM
maxREF1
maxREF1
Appendix D – Analogue Extension Module NAIO
Firmware Manual D-3
Bipolar Input in
Joystick Mode
The table below lists the parameters that affect the handling of the
speed and direction reference received through the NAIO module
bipolar input AI1.
1)
Enables the use of both positive and negative speed range.
2)
Set if supervision of living zero is used.
The figure below represents the speed reference corresponding to the
NAIO module bipolar input AI1 in joystick mode.
Parameter Setting
98.06 AI/O EXT MODULE BIP AIO PRG; BIP AO PRG; BIPOLAR
10.03 DIRECTION FORWARD; REQUEST(1
; REVERSE
11.02 EXT1/EXT2 SELECT (O) EXT1
11.03 EXT REF1 SELECT (O) AI2/JOYST
11.04 EXT REF1 MINIMUM minREF1
11.05 EXT REF1 MAXIMUM maxREF1
13.06 MINIMUM AI2 minAI1
13.07 MAXIMUM AI2 maxAI1
13.08 SCALE AI2 100%
13.10 INVERT AI2 NO
30.01 AI<MIN FUNCTION (2
SpeedReference
minAI1 = 13.06 MINIMUM AI2 (i.e. NAIO AI1)
maxAI1 = 13.07 MAXIMUM AI2 (i.e. NAIO AI1)
scaled
maxREF1
= 13.08 SCALE AI2 x 11.05 EXT REF1 MAXIMUM
minREF1 = 11.04 EXT REF1 MINIMUM
scaled
minREF1
-minAI1 minAI1 maxAI1-maxAI1
-minREF1
-scaled
10.03 DIRECTION =
FORWARD or
REQUEST1)
10.03 DIRECTION =
REVERSE or
REQUEST1)
Analogue Input Signal
Operation Range
maxREF1
maxREF1
Appendix D – Analogue Extension Module NAIO
D-4 Firmware Manual
Firmware Manual I-1
A
ACC COMPENSATION 6-44
ACC/DEC RAMP SHPE 6-39
Actual Signals
full name 2-5
AI MIN FUNCTION 6-53
APPL SW VERSION 6-66
C
Constant speeds 5-16, 6-11
Not considered 4-5, 5-10, 5-14
Contrast setting 2-10
Control location
indication on display 2-13
selecting 4-5
Control operation C-1, D-1
Control source
selecting 4-5
CONTROL SW VERSION 6-66
D
DC HOLD 6-35, 6-37
Direction 2-3, 6-4
E
External control 2-13, 4-5, 6-2, 6-6
EXTERNAL FAULT 6-53
F
Fault History 2-4, 4-4
Fault reset 2-4, 6-29
Faults 2-4, 7-1
Firmware version 6-66
First display 2-4
FLUX BRAKING 6-49
FLUX OPTIMIZATION 6-49
I
ID-number 2-3
Integer scaling C-1, D-1
IR COMPENSATION 6-50, 6-51
K
Keypad control 2-13
Keypad reference 6-5
L
Language 3-2
Living zero 6-53
Local 2-3, 2-13, 4-4
M
Motor ID Run 3-4, 3-5
Motor overload protection 6-54, 6-82, 6-85, 6-
86, 6-91
MOTOR PHASE LOSS 6-59
O
OVERVOLTAGE CTRL 6-32
P
PANEL LOSS 6-53
PARAMETER LOCK 6-28
Parameters
changing value 2-8
copying 2-11
downloading 2-9
restoring 3-2
uploading 2-9
Program version 6-66
R
Reference
connection 6-6
setting 2-14
Remote 2-3, 2-13
S
Serial communication 6-105, 6-106, 6-107
START FUNCTION 6-34
Starting the drive 2-13, 6-2
Status Row 2-3
Status row 2-3, 2-13
STOP FUNCTION 6-35
Stopping the drive 2-13, 6-2
Index
I-2 Firmware Manual
T
TEST DATE 6-66
U
UNDERLOAD FUNC 6-58
UNDERVOLTAGE CTRL 6-32
USER MACRO IO CHG 6-29
User unit 6-67
V
Version 6-66
W
Warnings 2-4, 7-1
En 600stdprg fwmanual
ABB Industry Oy
Drives
P.O. Box 184
FIN-00381 HELSINKI
FINLAND
Telephone: +358-10 22 2000
Telefax: +358-10-22 22681
Internet: http://www.abb.com/automation
3AFY61201441R0725EN
EFFECTIVE:16.10.2000

More Related Content

PDF
Siemens s7-200 starter kit 221
PDF
FactoryTalk View SE - Building a Better View
PDF
Contactores ABB
PPTX
Industrial Automation
PPT
SIEMENS S7-300c.ppt
PPT
Distributed Control System
PPT
Ch5 v70 cfc_en
PPTX
Tia portal v14_en
Siemens s7-200 starter kit 221
FactoryTalk View SE - Building a Better View
Contactores ABB
Industrial Automation
SIEMENS S7-300c.ppt
Distributed Control System
Ch5 v70 cfc_en
Tia portal v14_en

What's hot (6)

PDF
Manual Variador Danfoss VLT 2800
PDF
Actividad el programador Tango.pdf
PDF
Teoria Aire Acondicionado
PPTX
PLC and SCADA in Industrial Automation
PPT
CENTUM CS300 R3
PPTX
Honeywell PLC ML-50 (MLM-DR16S)
Manual Variador Danfoss VLT 2800
Actividad el programador Tango.pdf
Teoria Aire Acondicionado
PLC and SCADA in Industrial Automation
CENTUM CS300 R3
Honeywell PLC ML-50 (MLM-DR16S)
Ad

Viewers also liked (19)

PDF
Tech pv series
PDF
Affinity quick start guide issue 3
PDF
VltFC 102 hvac drive operating instructions
PDF
Ct2000 pro plus_manual_english[1]
PDF
Goodrive10 english-manual
PDF
Vf fs1 instruction manual
PDF
Abb acs55-users-guide
PDF
Danfoss vlt-5000
PDF
Fr f700
PDF
Unidrive m200 m201 sheet issue 1
PDF
Vlt micro drive fc51
PDF
Instrucsia chf100 a
PDF
F5 b c_g_instruction manual
PDF
F6 instruction manual
PDF
Vlt hvac basic_quick_start_guide_fc101
PDF
Fuji fvr-e9-manual
PDF
PDF
Vf as1 operation-man
PDF
Ct2000 v english_ver 1.36
Tech pv series
Affinity quick start guide issue 3
VltFC 102 hvac drive operating instructions
Ct2000 pro plus_manual_english[1]
Goodrive10 english-manual
Vf fs1 instruction manual
Abb acs55-users-guide
Danfoss vlt-5000
Fr f700
Unidrive m200 m201 sheet issue 1
Vlt micro drive fc51
Instrucsia chf100 a
F5 b c_g_instruction manual
F6 instruction manual
Vlt hvac basic_quick_start_guide_fc101
Fuji fvr-e9-manual
Vf as1 operation-man
Ct2000 v english_ver 1.36
Ad

Similar to En 600stdprg fwmanual (20)

PDF
En acs800 standard_fw_l
PDF
Tài liệu biến tần ABB ACS850
PDF
Abb acs850-04-firmware-manual
PDF
Abb acs850-04-firmware-manual
PDF
ARRF340x_en.pdf
PDF
En acs880 fw_man_d
PDF
Atv32 programming manual
PDF
En acq810 fw manual b
PDF
Manual micrologix 1100
PDF
Acs550 x1-rev e
PDF
Modicon m241 logic
PDF
Cummins onan wbtpcc power generation transfer switch 150 1000 amperes service...
PDF
Cummins onan wbtpcd power generation transfer switch 150 1000 amperes service...
PDF
Cummins onan wbtpcb power generation transfer switch 150 1000 amperes service...
PDF
Cummins onan wbtpcc power generation transfer switch 150 1000 amperes service...
PDF
27911 gyroscope appnote2
PDF
Cummins onan wbtpcd power generation transfer switch 150 1000 amperes service...
PDF
ATV320_Modbus_TCP_EtherNet_IP_Manual_NVE41313_02.pdf
En acs800 standard_fw_l
Tài liệu biến tần ABB ACS850
Abb acs850-04-firmware-manual
Abb acs850-04-firmware-manual
ARRF340x_en.pdf
En acs880 fw_man_d
Atv32 programming manual
En acq810 fw manual b
Manual micrologix 1100
Acs550 x1-rev e
Modicon m241 logic
Cummins onan wbtpcc power generation transfer switch 150 1000 amperes service...
Cummins onan wbtpcd power generation transfer switch 150 1000 amperes service...
Cummins onan wbtpcb power generation transfer switch 150 1000 amperes service...
Cummins onan wbtpcc power generation transfer switch 150 1000 amperes service...
27911 gyroscope appnote2
Cummins onan wbtpcd power generation transfer switch 150 1000 amperes service...
ATV320_Modbus_TCP_EtherNet_IP_Manual_NVE41313_02.pdf

More from Toàn Huỳnh (20)

PDF
Fr f700
PDF
Ct2000 f manual_english
PDF
Ct2000 ev manual_english_version 1.1
PDF
Ct2000 es manual_english_version_1[1].0
PDF
En acs150 um rev c_a4_screen
PDF
En ach550 01_um_f_a4_lo_screenres
PDF
Acs550 02-us-04
PDF
PDF
Abb acs310-users-guide
PDF
Sv i s5 user manual-100520
PDF
Sv i p5a-manual_(english)
PDF
PDF
I v5 eng_110526
PDF
I s7 eng_101201
PDF
PDF
I c5 eng_100323
PDF
756 i e5_eng_081014
PDF
Invt gd100-user-manual
PDF
Goodrive 200 operation manual v1.2
PDF
Gd300 user manual v1.1
Fr f700
Ct2000 f manual_english
Ct2000 ev manual_english_version 1.1
Ct2000 es manual_english_version_1[1].0
En acs150 um rev c_a4_screen
En ach550 01_um_f_a4_lo_screenres
Acs550 02-us-04
Abb acs310-users-guide
Sv i s5 user manual-100520
Sv i p5a-manual_(english)
I v5 eng_110526
I s7 eng_101201
I c5 eng_100323
756 i e5_eng_081014
Invt gd100-user-manual
Goodrive 200 operation manual v1.2
Gd300 user manual v1.1

Recently uploaded (20)

PDF
Nidhal Samdaie CV - International Business Consultant
PDF
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
PDF
A Brief Introduction About Julia Allison
PDF
IFRS Notes in your pocket for study all the time
PPTX
Principles of Marketing, Industrial, Consumers,
PDF
DOC-20250806-WA0002._20250806_112011_0000.pdf
PDF
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
PPTX
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
PPTX
HR Introduction Slide (1).pptx on hr intro
PPTX
New Microsoft PowerPoint Presentation - Copy.pptx
PPTX
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
PDF
MSPs in 10 Words - Created by US MSP Network
PDF
Digital Marketing & E-commerce Certificate Glossary.pdf.................
PPT
Chapter four Project-Preparation material
PDF
Chapter 5_Foreign Exchange Market in .pdf
DOCX
Business Management - unit 1 and 2
PDF
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
PDF
How to Get Funding for Your Trucking Business
PPTX
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
PPTX
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
Nidhal Samdaie CV - International Business Consultant
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
A Brief Introduction About Julia Allison
IFRS Notes in your pocket for study all the time
Principles of Marketing, Industrial, Consumers,
DOC-20250806-WA0002._20250806_112011_0000.pdf
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
HR Introduction Slide (1).pptx on hr intro
New Microsoft PowerPoint Presentation - Copy.pptx
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
MSPs in 10 Words - Created by US MSP Network
Digital Marketing & E-commerce Certificate Glossary.pdf.................
Chapter four Project-Preparation material
Chapter 5_Foreign Exchange Market in .pdf
Business Management - unit 1 and 2
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
How to Get Funding for Your Trucking Business
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...

En 600stdprg fwmanual

  • 1. Standard Application Program 6.x for ACS 600 Frequency Converters ACS 600 Firmware Manual This manual includes information on: • Control Panel • Application macros (including the I/O channel wiring diagrams) • Parameters • Fault tracing • Fieldbus control
  • 3. ã 2000 ABB Industry Oy. All Rights Reserved. Standard Application Program 6.x for ACS 600 Frequency Converters Firmware Manual 3AFY 61201441 R0725 EN EFFECTIVE: 16.10.2000 SUPERSEDES: 06.09.1999
  • 5. Firmware Manual iii Safety Instructions Overview This chapter states the safety instructions which must be followed when installing, operating and servicing the ACS 600. If neglected, physical injury and death may follow, or damage may occur to the frequency converter, the motor and driven equipment. The material in this chapter must be studied before attempting any work on, or with, the unit. Warnings and Notes This manual distinguishes two sorts of safety instructions. Warnings are used to inform of conditions which can, if proper steps are not taken, lead to a serious fault condition, physical injury and death. Notes are used when the reader is required to pay special attention or when there is additional information available on the subject. Notes are less crucial than Warnings, but should not be disregarded. Warnings Readers are informed of situations that can result in serious physical injury and/or serious damage to equipment with the following symbols: Notes Readers are notified of the need for special attention or additional information available on the subject with the following symbols: Dangerous Voltage Warning: warns of situations in which a high voltage can cause physical injury and/or damage equipment. The text next to this symbol describes ways to avoid the danger. General Warning: warns of situations which can cause physical injury and/or damage equipment by means other than electrical. The text next to this symbol describes ways to avoid the danger. Electrostatic Discharge Warning: warns of situations in which an electrostatic discharge can damage equipment. The text next to this symbol describes ways to avoid the danger. CAUTION! Caution aims to draw special attention to a particular issue. Note: Note gives additional information or points out more information available on the subject.
  • 6. Safety Instructions iv Firmware Manual General Safety Instructions These safety instructions are intended for all work on the ACS 600. In addition to the instructions given below, there are more safety instructions on the first pages of the appropriate hardware manual. WARNING! All electrical installation and maintenance work on the ACS 600 should be carried out by qualified electricians. The ACS 600 and adjoining equipment must be properly earthed. Do not attempt any work on a powered ACS 600. After switching off the mains, always allow the intermediate circuit capacitors 5 minutes to discharge before working on the frequency converter, the motor or the motor cable. It is good practice to check (with a voltage indicating instrument) that the frequency converter is in fact discharged before beginning work. The ACS 600 motor cable terminals are at a dangerously high voltage when mains power is applied, regardless of motor operation. There can be dangerous voltages inside the ACS 600 from external control circuits when the ACS 600 mains power is shut off. Exercise appropriate care when working with the unit. Neglecting these instructions can cause physical injury and death. WARNING! The ACS 600 introduces electric motors, drive train mechanisms and driven machines to an extended operating range. It should be determined from the outset that all equipment is up to these conditions. Operation is not allowed if the motor nominal voltage is less than one half of the ACS 600 nominal input voltage, or the motor nominal current is less than 1/6 of the ACS 600 nominal output current. Proper attention should be given to the motor insulation properties. The ACS 600 output comprises of short, high voltage pulses (approximately 1.35 ... 1.41 · mains voltage) regardless of output frequency. This voltage can be almost doubled by unfavourable motor cable properties. Contact an ABB office for additional information if multimotor operation is required. Neglecting these instructions can result in permanent damage to the motor. All insulation tests must be carried out with the ACS 600 disconnected from the cabling. Operation outside the rated capacities should not be attempted. Neglecting these instructions can result in permanent damage to the ACS 600. There are several automatic reset functions in the ACS 600. If selected, they reset the unit and resume operation after a fault. These functions should not be selected if other equipment is not compatible with this kind of operation, or dangerous situations can be caused by such action.
  • 7. Firmware Manual v Table of Contents Safety Instructions Table of Contents Chapter 1 – Introduction to This Manual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Before You Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 What This Manual Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 ACS 600 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Application Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1 Parameter Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1 Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Panel Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Keypad Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4 Identification Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4 Actual Signal Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4 Parameter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8 Function Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-9 Drive Selection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12 Operational Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13 Reading and Entering Packed Boolean Values on the CDP 312 . . . . . . . . . . . . . . . . . . . . . . .2-14 Chapter 3 – Start-up Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Start-up Data Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5 Chapter 4 – Control Operation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Group 1 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1 Group 2 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3 Group 3 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4 Fault History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Local Control vs. External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
  • 8. Table of Contents vi Firmware Manual Local Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Chapter 5 – Standard Application Macro Programs Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Application Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 User Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Application Macros Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Application Macro 1 – Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Application Macro 2 – Hand/Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Application Macro 3 – PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Application Macro 4 – Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 Application Macro 5 – Sequential Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 Input and Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18 Control Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 Chapter 6 – Parameters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 Parameter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 Group 10 Start/Stop/Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Group 11 Reference Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Group 12 Constant Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 Group 13 Analogue Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 Group 14 Relay Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 Group 15 Analogue Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 Group 16 System Ctr Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28 Group 20 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31 Group 21 Start/Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34 Group 22 Accel/Decel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38 Group 23 Speed Ctrl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41
  • 9. Table of Contents Firmware Manual vii Group 24 Torque Ctrl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-46 Group 25 Critical Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-47 Group 26 Motor Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-49 Group 30 Fault Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-52 Group 31 Automatic Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-62 Group 32 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-64 Group 33 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-66 Group 34 Process Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-67 Group 35 Mot Temp Meas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-69 Group 40 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-75 Group 42 Brake Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-87 Group 45 Function Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-93 Group 50 Encoder Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-95 Group 51 Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-97 Group 52 Standard Modbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-97 Group 60 MASTER/FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-98 Group 70 DDCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-105 Group 90 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-106 Group 92 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-106 Group 96 EXTERNAL AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-107 Group 98 Option Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-109 Chapter 7 – Fault Tracing Fault Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Fault Resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-1 Fault History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2 Fault and Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2 Appendix A – Complete Parameter Settings Appendix B – Default Settings of Application Macros Appendix C – Fieldbus Control Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 Control via NDCO Board Channel CH0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2 Fieldbus Adapter Communication Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2 AF 100 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3 Control through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5 Communication Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5 Drive Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-6 The Fieldbus Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9 The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9 How Direction of Rotation Is Determined in Fieldbus Control . . . . . . . . . . . . . . . . . . . . . . . . C-12 Actual Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14 Modbus Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14 Communication Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-17
  • 10. Table of Contents viii Firmware Manual Appendix D – Analogue Extension Module NAIO Speed Control Through NAIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1 Basic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1 NAIO Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1 ACS 600 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1 Bipolar Input in Basic Speed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-2 Bipolar Input in Joystick Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-3 Index
  • 11. Firmware Manual 1-1 Chapter 1 – Introduction to This Manual Overview This chapter describes the purpose, contents and the intended audience of this manual. It also lists related publications. This Manual is compatible with the ACS 600 Standard Application Program version 6.0 or later. Before You Start The purpose of this manual is to provide you with the information necessary to control and program your ACS 600 drive. The audience for this manual is expected to have: • Knowledge of standard electrical wiring practices, electronic components, and electrical schematic symbols. • Minimal knowledge of ABB product names and terminology. • No experience or training in installing, operating, or servicing the ACS 600. What This Manual Contains Safety Instructions can be found on pages iii - iv of this manual. The Safety Instructions describe the formats for various warnings and notations used in this manual. This chapter also states the general safety instructions which must be followed. Chapter 1 – Introduction, the chapter you are reading now, introduces you to the ACS 600 Firmware Manual. Chapter 2 – Overview of ACS 600 Programming and the Control Panel provides an overview of programming your ACS 600. This chapter describes the operation of the Control Panel used for controlling and programming. Chapter 3 – Start-up Data lists and explains the Start-up Data parameters. Chapter 4 – Control Operation describes actual signals and keypad and external controls. Chapter 5 – Standard Application Macro Programs describes the operation and suitable applications of five standard Application Macros and the User Macro. Chapter 6 – Parameters lists the ACS 600 parameters and explains the functions of each parameter. Chapter 7 – Fault Tracing lists the ACS 600 fault and warning messages, possible causes and remedies.
  • 12. Chapter 1 – Introduction to This Manual 1-2 Firmware Manual Appendix A – Complete Parameter Settings lists, in tabular form, all parameter settings for the ACS 600. Appendix B – Default Settings of Application Macros lists default settings of ACS 600 Application Macros in tabular form. Appendix C – Fieldbus Control contains the information needed to control the ACS 600 through a fieldbus adapter module. There are several fieldbus adapter modules for the ACS 600 available as optional equipment. Appendix D – Analogue Extension Module NAIO contains the information needed to control the ACS 600 through an Analogue Extension Module NAIO (optional). Index helps you locate the page numbers of topics contained in this manual. Related Publications In addition to this manual the ACS 600 user documentation includes the following manuals: • Start-up Guide for ACS 600 equipped with Standard Application Program (English code: 3BFE 64049224) • Hardware manuals for various ACS 600 family members • Several Installation and Start-up Guides for the optional devices for the ACS 600
  • 13. Firmware Manual 2-1 Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Overview This chapter describes how to use the panel with ACS 600 to modify parameters, monitor actual values and control the drive. Note: The CDP 312 Panel does not communicate with ACS 600 Standard Application Program versions 3.x or earlier. The CDP 311 Panel does not communicate with program version 5.x or later. ACS 600 Programming The user can change the configuration of the ACS 600 to meet the needs of the application by programming. The ACS 600 is programmable through a set of parameters. Application Macros Parameters can be set one by one or a preprogrammed set of parameters can be selected. Preprogrammed parameter sets are called Application Macros. See Chapter 5 – Standard Application Macro Programs for further information on the Application Macros. Parameter Groups In order to simplify programming, parameters in the ACS 600 are organised in Groups. Parameters of the Start-Up Data Group are described in Chapter 3 – Start-up Data and other parameters in Chapter 6 – Parameters. Start-up Data Parameters The Start-up Data Group contains the basic settings needed to match the ACS 600 with your motor and to set the Control Panel display language. This group also contains a list of preprogrammed Application Macros. The Start-up Data Group includes parameters that are set at start-up, and should not need to be changed later on. See Chapter 3 – Start-up Data for description of each parameter. Control Panel The Control Panel is the device used for controlling and programming the ACS 600. The Panel can be attached directly to the door of the cabinet or it can be mounted, for example, in a control desk.
  • 14. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-2 Firmware Manual Figure 2-1 The Control Panel. Display The LCD type display has 4 lines of 20 characters. The language is selected at start-up by Parameter 99.01 LANGUAGE. Keys The keys on the Control Panel are flat, labelled push-buttons. Their functions are explained on the next page. 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % ACT PAR FUNC DRIVE ENTER LOC RESET REF REM I 0
  • 15. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Firmware Manual 2-3 Figure 2-2 Control Panel Display indications and function of the Control Panel keys. Figure 2-3 Operational commands of the Control Panel keys. Parameter Mode Function Mode Drive Selection Mode Act. Signal/Fault History Enter selection mode Accept new signal Group selection Parameter selection Enter change mode Accept new value Fast value change Slow value change Row selection Function start Drive selection Enter change mode Accept new value Actual Signal Display Mode ENTER ENTER ENTER ENTER selection ID number change ID Number of the Selected Drive Panel Status L = Local The Value of the Reference Run Status O = Stop I = Run Rotation Direction " = Forward # = Reverse Group Number Parameter Number Parameter Value and Name and Name Device Type ID Number Status Row Status Row ACT PAR FUNC DRIVE Actual Signals = Run disabled Names and Values 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L " 1242.0 rpm I 10 START/STOP 01 EXT1 STRT/STP/DIR DI1,2 1 L " 1242.0 rpm I UPLOAD <=<= DOWNLOAD =>=> CONTRAST 7 ACS 601 75 kW ASAA5000 xxxxxx ID NUMBER 1 Status Row Selectable Functions Application SW Name and Version Date Act. Signal/Fault Message scrolling R = External LOC RESET REF REM Keypad / External Control Fault Reset Reference Setting Function Forward Reverse Start Stop I 0
  • 16. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-4 Firmware Manual Panel Operation The following is a description of the operation of the Control Panel. The Control Panel Keys and Displays are explained in Figure 2-1, Figure 2- 2, and Figure 2-3. Keypad Modes The Control Panel has four different keypad modes: Actual Signal Display Mode, Parameter Mode, Function Mode, and Drive Selection Mode. In addition to these, there is a special Identification Display, which is displayed after connecting the panel to the link. The Identification Display and the keypad modes are described briefly below. Identification Display When the panel is connected for the first time, or the power is applied to the drive, the Identification Display appears. Note: The panel can be connected to the drive while power is applied to the drive. After two seconds, the display will clear, and the Actual Signals of the drive will appear. Actual Signal Display Mode This mode includes two displays, the Actual Signal Display and the Fault History Display. The Actual Signal Display is displayed first when the Actual Signal Display mode is entered. If the drive is in a fault condition, the Fault Display will be shown first. The panel will automatically return to the Actual Signal Display Mode from other modes if no keys are pressed within one minute (exceptions: Status Display in Drive Selection Mode and Fault Display Mode). In the Actual Signal Display Mode you can monitor three Actual Signals at a time. For more information of actual signals see Chapter 4 – Control Operation. How to select the three Actual Signals to the display is explained in Table 2-2. The Fault History includes information on 64 faults and warnings that occurred in your ACS 600. 16 remain in the memory over a power switch-off. The procedure for clearing the Fault History is described in Table 2-3. The table below shows the events that are stored in the Fault History. For each event it is described what information is included. ACS 600 75 kW ID NUMBER 1
  • 17. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Firmware Manual 2-5 When a fault or warning occurs in the drive, the message will be displayed immediately, except in the Drive Selection Mode. Table 2-4 shows how to reset a fault. From the fault display, it is possible to change to other displays without resetting the fault. If no keys are pressed the fault or warning text is displayed as long as the fault exists. See Chapter 7 – Fault Tracing for information on fault tracing. Table 2-1 How to display the full name of the three Actual Signals. Step Function Press key Display 1. To display the full name of the three actual signals. Hold 2. To return to the Actual Signal Display Mode. Release 1 L " 1242.0 rpm I 2 LAST FAULT +OVERVOLTAGE 1121 H 1 MIN 23 S Event Information A fault is detected by ACS 600. Sequential number of the event. Name of the fault and a “+” sign in front of the name. Total power on time. A fault is reset by user. Sequential number of the event. -RESET FAULT text. Total power on time. A warning is activated by ACS 600. Sequential number of the event. Name of the warning and a “+” sign in front of the name. Total power on time. A warning is deactivated by ACS 600. Sequential number of the event. Name of the warning and a “-” sign in front of the name. Total power on time. Sequential number (1 is the most recent event) Sign Power- on time Name A Fault History View ACT 1 L " 1242.0 rpm I FREQUENCY CURRENT POWER ACT 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
  • 18. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-6 Firmware Manual Table 2-2 How to select Actual Signals to the display. Step Function Press key Display 1. To enter the Actual Signal Display Mode. 2. To select a row (a blinking cursor indicates the selected row). 3. To enter the Actual Signal Selection Function. 4. To select an actual signal. To change the actual signal group. 5.a To accept the selection and to return to the Actual Signal Display Mode. 5.b To cancel the selection and keep the original selection, press any of the Mode keys The selected Keypad Mode is entered. ACT 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % ENTER 1 L " 1242.0 rpm I 1 ACTUAL SIGNALS 04 CURRENT 80.00 A 1 L " 1242.0 rpm I 1 ACTUAL SIGNALS 05 TORQUE 70.00 % ENTER 1 L " 1242.0 rpm I FREQ 45.00 Hz TORQUE 80.00 A POWER 75.00 % ACT FUNC DRIVE PAR 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
  • 19. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Firmware Manual 2-7 Table 2-3 How to display a fault and reset the Fault History. The fault history cannot be reset if there is a fault or warning active. Table 2-4 How to display and reset an active fault. Step Function Press key Display 1. To enter the Actual Signal Display Mode. 2. To enter the Fault History Display. 3. To select the previous (UP) or the next fault/warning (DOWN). To clear the Fault History. The Fault History is empty. 4. To return to the Actual Signal Display Mode. Step Function Press Key Display 1. To display an active fault. 2. To reset the fault. ACT 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L " 1242.0 rpm I 1 LAST FAULT +OVERCURRENT 6451 H 21 MIN 23 S 1 L " 1242.0 rpm I 2 LAST FAULT +OVERVOLTAGE 1121 H 1 MIN 23 S RESET 1 L " 1242.0 rpm I 2 LAST FAULT H MIN S 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % ACT 1 L " 1242.0 rpm ACS 601 75 kW ** FAULT ** ACS 600 TEMP RESET 1 L " 1242.0 rpm O FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
  • 20. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-8 Firmware Manual Parameter Mode The Parameter Mode is used for changing the ACS 600 parameters. When this mode is entered for the first time after power up, the display will show the first parameter of the first group. The next time the Parameter Mode is entered, the previously selected parameter is shown. Table 2-5 How to select a parameter and change the value. Step Function Press key Display 1. To enter the Parameter Mode. 2. To select a different group. 3. To select a parameter. 4. To enter the Parameter Setting function. 5. To change the parameter value. (slow change for numbers and text) (fast change for numbers only) 6a. To save the new value. 6b. To cancel the new setting and keep the original value, press any of the Mode keys. The selected Keypad Mode is entered. PAR 1 L " 1242.0 rpm O 10 START/STOP/DIR 01 EXT1 STRT/STP/DIR DI1,2 1 L " 1242.0 rpm O 11 REFERENCE SELECT 01 KEYPAD REF SEL REF1 (rpm) 1 L " 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI1 ENTER 1 L " 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT [AI1] 1 L " 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT [AI2] ENTER 1 L " 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI2 ACT FUNC DRIVE PAR 1 L " 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI1
  • 21. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Firmware Manual 2-9 Function Mode The Function Mode is used to select special functions. These functions include Parameter Upload, Parameter Download and setting the contrast of the Control Panel display. Parameter Upload will copy all parameters and the results of motor identification from the drive to the panel. The upload function can be performed while the drive is running. Only the STOP command can be given during the uploading process. Table 2-6 and subsection Copying Parameters from One Unit to Other Units below describe how to select and perform Parameter Upload and Parameter Download functions. Note: • By default, Parameter Download will copy parameter Groups 10 to 97 stored in the panel to the drive. Groups 98 and 99 concerning options, language, macro and motor data are not downloaded. • Uploading has to be done before downloading. • The parameters can be uploaded and downloaded only if the drive firmware versions (see Parameters 33.01 SOFTWARE VERSION and 33.02 APPL SW VERSION) of the destination drive are the same as the versions of the source drive. • The drive must be stopped during the downloading process. Table 2-6 How to select and perform a function. Step Function Press Key Display 1. To enter the Function Mode. 2. To select a function (a flashing cursor indicates the selected function). 3. To start the selected function. ACS600 UPLOAD DOWNLOAD FUNC 1 L " 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4 1 L " 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4 ENTER 1 L " 1242.0 rpm O =>=>=>=>=>=>=> DOWNLOAD
  • 22. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-10 Firmware Manual Table 2-7 How to set the contrast of the panel display. Step Function Press Key Display 1. To enter the Function Mode. 2. To select a function (a flashing cursor indicates the selected function). 3. To enter the contrast setting function. 4. To adjust the contrast. 5.a To accept the selected value. 5.b To cancel the new setting and retain the original value, press any of the Mode keys. The selected Keypad Mode is entered. FUNC 1 L " 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4 1 L " 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4 ENTER 1 L " 1242.0 rpm O CONTRAST [4] 1 L " 1242.0 rpm O CONTRAST [6] ENTER 1 L " 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 6 ACT FUNC DRIVE PAR 1 L " 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4
  • 23. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Firmware Manual 2-11 Copying Parameters from One Unit to Other Units You can copy parameters from one drive to another by using the Parameter Upload and Parameter Download functions in the Function Mode. Follow the procedure below: 1. Select the correct options (Group 98), language and macro (Group 99) for each drive. 2. Set the rating plate values for the motors (Group 99), and perform the identification for each motor (the Identification Magnetisation at zero speed by pressing start, or an ID Run. For the ID Run procedure see Chapter 3 – Start-up Data). 3. Set the parameters in Groups 10 to 97 as preferred in one ACS 600 drive. 4. Upload the parameters from the ACS 600 to the panel (see Table 2-6). 5. Press the key to change to external control (no L visible on the first row of the display). 6. Disconnect the panel and reconnect it to the next ACS 600 unit. 7. Ensure the target ACS 600 is in Local control (L shown on the first row of the display). If necessary, change by pressing . 8. Download the parameters from the panel to the ACS 600 unit (see Table 2-6). 9. Repeat steps 7. and 8. for the rest of the units. Note: Parameters in Groups 98 and 99 concerning options, language, macro and motor data are not downloaded.1) LOC REM LOC REM 1) The restriction prevents downloading of incorrect motor data (Group 99). In special cases it is also possible to download Groups 98 and 99 and the results of the motor identification. For more informa- tion, please contact your local ABB representative.
  • 24. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-12 Firmware Manual Drive Selection Mode In normal use the features available in the Drive Selection Mode are not needed; these features are reserved for applications where several drives are connected to one Panel Link. (For more information, see the Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, Code: 3AFY 58919748). Panel Link is the communication link connecting the Control Panel and the ACS 600. Each on-line station must have an individual identification number (ID). By default, the ID number of the ACS 600 is 1. CAUTION! The default ID number setting of the ACS 600 should not be changed unless it is to be connected to the Panel Link with other drives on-line. Table 2-8 How to select a drive and change its ID number. Step Function Press key Display 1. To enter the Drive Selection Mode. 2. To select the next drive/view. The ID number of the station is changed by first pressing ENTER (the brackets round the ID number appear) and then adjusting the value with buttons. The new value is accepted with ENTER. The power of the ACS 600 must be switched off to validate its new ID number setting (the new value is not displayed until the power is switched off and on). The Status Display of all devices connected to the Panel Link is shown after the last individual station. If all stations do not fit on the display at once, press to view the rest of them. Status Display Symbols: á = Drive stopped, direction forward Ñ = Drive running, direction reverse F = Drive has tripped on a fault 3. To connect to the last displayed drive and to enter another mode, press one of the Mode keys. The selected Keypad Mode is entered. DRIVE ACS 600 75 kW ASAAA5000 xxxxxx ID NUMBER 1 ACS 600 75 kW ASAA5000 xxxxxx ID NUMBER 1 1á PAR FUNC ACT 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
  • 25. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel Firmware Manual 2-13 Operational Commands Operational commands control the operation of the ACS 600. They include starting and stopping the drive, changing the direction of rotation and adjusting the reference. The reference value is used for controlling motor speed or torque. Changing Control Location Operational commands can be given from the Control Panel always when the status row is displayed and the control location is the panel. This is indicated by L (Local Control) on the display. R (Remote Control) indicates that External control is active and the Panel is the signal source for the external reference or the Start/Stop/Direction signals the ACS 600 is following. If there is neither an L nor an R on the first row of the display, the drive is controlled by another device. Operational commands cannot be given from this panel. Only monitoring actual signals, setting parameters, uploading and changing ID numbers is possible. The control is changed between Local and External control locations by pressing the LOC REM key. See Chapter 4 – Control Operation for the explanation of Local and External control. Start, Stop, Direction and Reference Start, Stop and Direction commands are given from the panel by pressing , , or . Table 2-9 explains how to set the Reference from the panel. 1 L " 1242.0 rpm I 1 R " 1242.0 rpm I Local Control External Control by Panel 1 " 1242.0 rpm I External Control through the I/O interface or communication module I 0
  • 26. Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel 2-14 Firmware Manual Table 2-9 How to set the reference. Reading and Entering Packed Boolean Values on the CDP 312 Some actual values and parameters are Packed Boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the CDP 312 Control Panel, Packed Boolean values are read and entered in hexadecimal format. In this example, Bits 1, 3 and 4 of the Packed Boolean value are ON: Step Function Press Key Display 1. To enter a Keypad Mode displaying the status row, press a Mode key. 2. To enter the Reference Setting function. A blinking cursor indicates that the Reference Setting function has been selected. 3. To change the reference. (slow change) (fast change) 4.a To save the reference, press Enter. The value is stored in the permanent memory; it is restored automatically after power switch-off. 4.b To escape the Reference Setting Mode without saving, press any of the Mode keys. The selected Keypad Mode is entered. ACT PAR FUNC 1 L " 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % REF 1 L "[ 1242.0 rpm]I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L "[ 1325.0 rpm]I FREQ 48.00 Hz CURRENT 85.00 A POWER 80.00 % ENTER 1 L " 1325.0 rpm I FREQ 48.00 Hz CURRENT 85.00 A POWER 80.00 % ACT PAR FUNC DRIVE 1 L " 1325.0 rpm I FREQ 48.00 Hz CURRENT 85.00 A POWER 80.00 % Boolean 0000 0000 0001 1010 Hex 0 0 1 A Bit 15 Bit 0
  • 27. Firmware Manual 3-1 Chapter 3 – Start-up Data Overview This chapter lists and explains the Start-up Data Parameters. The Start-up Data Parameters are a special set of parameters that allow you to set up the ACS 600 and motor information. Start-up Data Parameters should only need to be set during start-up and should not need to be changed afterwards. Start-up Data Parameters When changing the value of the Start-up Data Parameters, follow the procedure described in Chapter 2 – Overview of ACS 600 Programming..., Table 2-5. Table 3-1, lists the Start-up Data Parameters. The Range/Unit column in Table 3-1 shows the parameter values, which are explained in detail below the table. WARNING! Running the motor and the driven equipment with incorrect start-up data can result in improper operation, reduction in control accuracy and damage to equipment. Table 3-1 Group 99, Start-up Data Parameters. Parameter Range/Unit Description 01 LANGUAGE Languages Display language selection. 02 APPLICATION MACRO Application Macros Application Macro selection. 03 APPLIC RESTORE NO; YES Restores parameters to factory setting values. 04 MOTOR CTRL MODE DTC; SCALAR Motor control mode selection. 05 MOTOR NOM VOLTAGE 1/2 · UN of ACS 600 ... 2 · UN of ACS 600 Nominal voltage from the motor rating plate. 06 MOTOR NOM CURRENT 1/6 · I2hd of ACS 600 ... 2 · I2hd of ACS 600 Matches the ACS 600 to the rated motor current. 07 MOTOR NOM FREQ 8 ... 300 Hz Nominal frequency from the motor rating plate. 08 MOTOR NOM SPEED 1 ... 18000 rpm Nominal speed from the motor rating plate. 09 MOTOR NOM POWER 0 ... 9000 kW Nominal power from the motor rating plate. 10 MOTOR ID RUN NO; STANDARD; REDUCED Selects the type of the motor identification run.
  • 28. Chapter 3 – Start-up Data 3-2 Firmware Manual Parameters 99.04 ... 99.09 are always to be set at start-up. If several motors are connected to the ACS 600, some additional instructions must be considered when setting the Start-up Data Parameters. Please contact your local ABB representative for more information. 99.01 LANGUAGE The ACS 600 displays all information in the language you select. The alternatives are: • English, English (Am), French, Spanish, Portuguese, German, Italian, Dutch, Danish, Swedish, Finnish, Czech, Polish If English (Am) is selected, the unit of power used is HP instead of kW. 99.02 APPLICATION MACRO This parameter is used to select the Application Macro which will configure the ACS 600 for a particular application. Refer to Chapter 5 – Standard Application Macro Programs for a list and description of available Application Macros. There is also a selection for saving the current settings as a User Macro (USER 1 SAVE or USER 2 SAVE), and recalling these settings (USER 1 LOAD or USER 2 LOAD). There are parameters that are not included in Macros. See section 99.03 APPLIC RESTORE. Note: User Macro load restores also the motor settings of the Start-up Data group and the results of the Motor Identification. Check that the settings correspond to the motor used. 99.03 APPLIC RESTORE Selection YES restores the original settings of an application macro as follows: • If a standard macro (Factory, ... , Sequential Control) is in use, the parameter values are restored to the default settings (factory settings). Exception: Parameter settings in Group 99 remain unchanged. Results of the motor identification remain unchanged. • If User Macro 1 or 2 is in use, the parameter values are restored to the last saved values. In addition, the last saved results of the motor identification are restored (see Chapter 5 – Standard Application Macro Programs). Exceptions: Settings of Parameters 16.05 USER MACRO IO CHG and 99.02 APPLICATION MACRO remain unchanged. Note: The parameter settings and the results of motor identification are restored according to the same principles when a macro is changed to another.
  • 29. Chapter 3 – Start-up Data Firmware Manual 3-3 99.04 MOTOR CTRL MODE This parameter sets the motor control mode. DTC The DTC (Direct Torque Control) mode is suitable for most applications. The ACS 600 performs precise speed and torque control of standard squirrel cage motors without pulse encoder feedback. If several motors are connected to the ACS 600, there are certain restrictions on the usage of DTC. Please contact your local ABB representative for more information. SCALAR The scalar control should be selected in those special cases in which the DTC cannot be applied. The SCALAR control mode is recommended for multimotor drives when number of motors connected to the ACS 600 is variable. The SCALAR control is also recommended when the nominal current of the motor is less than 1/6 of the nominal current of the inverter or the inverter is used for test purposes with no motor connected. The outstanding motor control accuracy of DTC cannot be achieved in the scalar control mode. The differences between the SCALAR and DTC control modes are discussed further in this manual in relevant parameter lists. There are some standard features that are disabled in the SCALAR control mode: Motor Identification Run (Group 99), Speed Limits (Group 20), Torque Limit (Group 20), DC Hold (Group 21), DC Magnetizing (Group 21), Speed Controller Tuning (Group 23), Torque Control (Group 24), Flux Optimization (Group 26), Flux Braking (Group 26), Underload Function (Group 30), Motor Phase Loss Protection (Group 30), Motor Stall Protection (Group 30). 99.05 MOTOR NOM VOLTAGE This parameter matches the ACS 600 with the nominal voltage of the motor as indicated on the motor rating plate. Note: It is not allowed to connect a motor with nominal voltage less than 1/2 · UN or more than 2 · UN of the ACS 600. 99.06 MOTOR NOM CURRENT This parameter matches the ACS 600 to the rated motor current. The allowed range 1/6 · I2hd ... 2 · I2hd of ACS 600 is valid for DTC motor control mode. In SCALAR mode the allowed range is 0 · I2hd ... 2 · I2hd of ACS 600. Correct motor run requires that the magnetizing current of the motor does not exceed 90 per cent of the nominal current of the inverter. 99.07 MOTOR NOM FREQUENCY This parameter matches the ACS 600 to the rated motor frequency, adjustable from 8 Hz to 300 Hz.
  • 30. Chapter 3 – Start-up Data 3-4 Firmware Manual 99.08 MOTOR NOM SPEED This parameter matches the ACS 600 to the nominal speed as indicated on the motor rating plate. Note: It is very important to set this parameter exactly to the value given on the motor rating plate to guarantee proper operation of the drive. The motor synchronous speed or another approximate value must not be given instead! Note: The speed limits in Group 20 Limits are linked to the setting of 99.08 MOTOR NOM SPEED. If value of Parameter 99.08 MOTOR NOM SPEED is changed, the speed limit settings change automatically as well. 99.09 MOTOR NOM POWER This parameter matches the ACS 600 to the rated power of the motor, adjustable between 0 kW and 9000 kW. 99.10 MOTOR ID RUN This parameter is used to initiate the Motor Identification Run. During the run, the ACS 600 will identify the characteristics of the motor for optimum motor control. The ID Run takes about one minute. The ID run cannot be performed if the scalar control mode is selected (Parameter 99.04 MOTOR CTRL MODE is set to SCALAR). NO The Motor ID Run is not performed. This can be selected in most applications. The motor model is calculated at first start by magnetising the motor for 20 to 60 s at zero speed. Note: The ID Run (Standard or Reduced) should be selected if: • operation point is near zero speed • operation at torque range above the motor nominal torque within wide speed range and without any pulse encoder (i.e. without any measured speed feedback) is required. STANDARD Performing the Standard Motor ID Run guarantees that the best possible control accuracy is achieved. The motor must be de-coupled from the driven equipment before performing the Standard Motor ID Run. REDUCED The Reduced Motor ID Run should be selected instead of the Standard ID Run: • if mechanical losses are higher than 20 % (i.e. the motor cannot be de-coupled from the driven equipment) • if flux reduction is not allowed while the motor is running (i.e. in case of a braking motor in which the brake switches on if the flux is reduced below a certain level).
  • 31. Chapter 3 – Start-up Data Firmware Manual 3-5 Note: Check the rotation direction of the motor before starting the Motor ID Run. During the run the motor will rotate in the forward direction. WARNING! The motor will run at up to approximately 50 % ... 80 % of the nominal speed during the Motor ID Run. BE SURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE MOTOR ID RUN! ID Run Procedure To perform the Motor ID Run: Note: If parameter values (Group 10 to 98) are changed before the ID Run, check that the new settings meet the following conditions: • 20.01 MINIMUM SPEED < 0. • 20.02 MAXIMUM SPEED > 80 % of motor rated speed. • 20.03 MAXIMUM CURRENT > 100*Ihd. • 20.04 MAXIMUM TORQUE > 50 %. 1. Ensure that the Panel is in the local control mode (L displayed on the status row). Press the key to switch modes. 2. Change the selection to STANDARD or REDUCED: 3. Press ENTER to verify selection. The following message will be displayed: LOC REM 1 L ->1242.0 rpm O 99 START-UP DATA 10 MOTOR ID RUN [STANDARD] 1 L ->1242.0 rpm O ACS 600 55 kW **WARNING** ID RUN SEL
  • 32. Chapter 3 – Start-up Data 3-6 Firmware Manual 4. To start the ID Run, press the key. The run enable signal must be active (see Parameter 16.01 RUN ENABLE). In general it is recommended not to press any control panel keys during the ID run. However: • The Motor ID Run can be stopped at any time by pressing the Control Panel key or removing the Run enable signal. • After the ID Run is started with the key, it is possible to monitor the actual values by first pressing the ACT key and then the key. Warning when the ID Run is started Warning during the ID Run Warning after a successfully completed ID Run 1 L -> 1242.0 rpm I ACS 600 55 kW **WARNING** MOTOR STARTS 1 L -> 1242.0 rpm I ACS 600 55 kW **WARNING** ID RUN 1 L -> 1242.0 rpm I ACS 600 55 kW **WARNING** ID DONE
  • 33. Firmware Manual 4-1 Chapter 4 – Control Operation Overview This chapter describes the Actual Signals, the Fault History, and the Local and External control modes. Actual Signals Actual Signals monitor ACS 600 functions. They do not affect the performance of the ACS 600. Actual Signal values are measured or calculated by the drive and they cannot be set by the user. To select the actual values to be displayed follow the procedure described in Chapter 2 – Overview..., Table 2-2. Group 1 Actual Signals Table 4-1 Group 1 Actual Signals. The signals marked with * are updated only when the PID Control Macro is selected. Actual Signal Short Name Range/Unit Description 01 PROCESS VARIABLE PROC VAR 0 ... 100000/user units Process variable based on settings in Parameter Group 34. 02 SPEED SPEED rpm Calculated speed, in motor rpm. Filter time setting by 34.04 MOTOR SP FILTER TIM. 03 FREQUENCY FREQ Hz Calculated motor frequency. 04 CURRENT CURRENT A Measured motor current. 05 TORQUE TORQUE % Calculated motor torque. 100 is the motor nominal torque rating. Filter time setting by 34.05 TORQ ACT FILT TIM. 06 POWER POWER % Motor power. 100 is the nominal power rating. 07 DC BUS VOLTAGE V DC BUS V V Measured Intermediate circuit voltage. 08 MAINS VOLTAGE MAINS V V Calculated supply voltage. 09 OUTPUT VOLTAGE OUT VOLT V Calculated motor voltage. 10 ACS 600 TEMP ACS TEMP C Temperature of the heatsink. 11 EXTERNAL REF 1 EXT REF1 rpm, Hz External reference 1. The unit is Hz with scalar motor control mode only. See the section Local Control vs. External Control in this chapter 12 EXTERNAL REF 2 EXT REF2 % External reference 2. See the section Local Control vs. External Control in this chapter. 13 CTRL LOCATION CTRL LOC LOCAL; EXT1; EXT2 Active control location. See the section Local Control vs. External Control in this chapter. 14 OP HOUR COUNTER OP HOURS h Elapsed time meter. The timer is running when the NAMC board is powered. 15 KILOWATT HOURS KW HOURS kWh kWh meter. 16 APPL BLOCK OUTPUT APPL OUT % Application block output signal. See Figure 4-3. 17 DI6-1 STATUS DI6-1 Status of digital inputs. 0 V = “0” +24 VDC = “1”
  • 34. Chapter 4 – Control Operation 4-2 Firmware Manual 18 AI1 (V) AI1 (V) V Value of analogue input 1. 19 AI2 (mA) AI2 (mA) mA Value of analogue input 2. 20 AI3 (mA) AI3 (mA) mA Value of analogue input 3. 21 RO3-1 STATUS RO3-1 Status of relay outputs. 1 = relay is energised, 0 = relay is de-energised 22 AO1 (mA) AO1 (mA) mA Value of analogue output 1. 23 AO2 (mA) AO2 (mA) mA Value of analogue output 2. 24 ACTUAL VALUE 1 * ACT VAL1 % Feedback signal for the PID Controller. 25 ACTUAL VALUE 2 * ACT VAL2 % Feedback signal for the PID Controller. 26 CONTROL DEVIATION* CONT DEV % Deviation of the PID Controller (difference between the reference value and the actual value of the PID process controller). 27 APPLICATION MACRO MACRO FACTORY; HAND/AUTO; PID-CTRL; T-CTRL; SEQ CTRL; USER 1 LOAD; USER 2 LOAD Active application macro (value of Parameter 99.02 APPLICATION MACRO) 28 EXT AO1 [mA] EXT AO1 mA Value of output 1 of the NAIO Analogue I/O Extension Module (optional). 29 EXT AO2 [mA] EXT AO2 mA Value of output 2 of the NAIO Analogue I/O Extension Module (optional). 30 PP 1 TEMP PP 1 TEM °C IGBT maximum temperature inside inverter 1 (used only in the high power units with parallel inverters) 31 PP 2 TEMP PP 2 TEM °C IGBT maximum temperature inside inverter 2 (used only in the high power units with parallel inverters) 32 PP 3 TEMP PP 3 TEM °C IGBT maximum temperature inside inverter 3 (used only in the high power units with parallel inverters) 32 PP 4 TEMP PP 4 TEM °C IGBT maximum temperature inside inverter 4 (used only in the high power units with parallel inverters) 34 ACTUAL VALUE ACT VAL % PID controller actual value (see Parameter 40.06 ACTUAL VALUE SEL) 35 MOTOR 1 TEMP M1 TEMP °C/ohm Measured temperature of motor 1. See Parameter 35.01 MOT1 TEMP AI1 SEL. 36 MOTOR 2 TEMP M2 TEMP °C/ohm Measured temperature of motor 2. See Parameter 35.04 MOT2 TEMP AI2 SEL. 37 MOTOR TEMP EST MOTOR TE °C Estimated motor temperature. 38 AI5 mA AI5 mA mA Value of analogue input AI5 read from AI1 of the Analogue I/O Extension Module (NAIO). See Group 98 Option Modules.1) 39 AI6 mA AI6 mA mA Value of analogue input AI6 read from AI1 of the Analogue I/O Extension Module (NAIO). See Group 98 Option Modules.1) 40 DI7..12 STATUS DI7..12 Status of digital inputs DI7 to DI12 read from the Digital I/O Extension Modules (NDIO). See Group 98 Option Modules. 41 EXT RO STATUS EXT RO Status of external relay outputs on the Digital I/O Extension Module no. 1 (NDIO). 1 = relay is energised, 0 = relay is de-energised Actual Signal Short Name Range/Unit Description 0000001 DI7 is on 0000001 RO1/NDIO 1 is on
  • 35. Chapter 4 – Control Operation Firmware Manual 4-3 1) A voltage signal connected to an analogue input on the NAIO Analogue I/O Extension Module is also displayed in mA (instead of V). Group 2 Actual Signals By the Group 2 Actual Signals it is possible to monitor the processing of speed and torque references in the drive. For the signal measuring points see Figure 4-3, or the Control Signal Connections figures of the Application Macros (Chapter 5 – Standard Application Macro Programs). Table 4-2 The Table below lists the Group 2 Actual Signals. 1) Max. speed is the value of Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of the minimum limit is greater than the maximum limit. 42 PROCESS SPEED REL P SPEED % Motor actual speed in percent of maximum speed i.e. of Parameter 20.02 MAXIMUM SPEED (or 20.01 MINIMUM SPEED if it has a greater absolute value). If Parameter 99.04 MOTOR CTRL MODE is SCALAR, this value is the relative actual output frequency of ACS 600. 43 MOTOR RUN TIME MOTOR RUN TIME h Motor run time counter. The counter runs when the inverter modulates. Can be reset by 34.06 RESET RUN TIME. Actual Signal Short Name Range/ Unit Description 01 SPEED REF 2 S REF 2 rpm Limited speed reference. 100 % = max. speed.1) 02 SPEED REF 3 S REF 3 rpm Ramped and shaped speed reference. 100 % = max. speed.1) 03 ... 08 Reserved 09 TORQ REF 2 T REF 2 % Speed controller output. 100 % = motor nominal torque. 10 TORQ REF 3 T REF 3 % Torque reference. 100 % = motor nominal torque. 11 ... 12 Reserved 13 TORQ REF USED T USED R % Torque reference after frequency, voltage and torque limiters. 100 % = motor nominal torque. 14 ... 16 Reserved 17 SPEED ESTIMATED SPEED ES rpm Estimated motor speed. 18 SPEED MEASURED SPEED ME rpm Measured motor actual speed (zero when no encoder is in use). Actual Signal Short Name Range/Unit Description
  • 36. Chapter 4 – Control Operation 4-4 Firmware Manual Group 3 Actual Signals Group 3 contains actual signals mainly for fieldbus use (a master station controls the ACS 600 via a serial communication link). All signals in Group 3 are 16 bit data words, each bit corresponding one piece of binary (0,1) information from the drive to the master station. The signal values (data words) can be viewed also with the Control Panel in hexadecimal format. For more information on Group 3 Actual Signals, see Appendix A – Complete Parameter Settings and Appendix C – Fieldbus Control. Fault History The Fault History includes information on the 16 most recent faults and warnings that occurred in the ACS 600 (or 64, if the power is not switched off meanwhile). The description of the fault and the total power-on time are available. The power-on time is calculated always when the NAMC board of the ACS 600 is powered. Chapter 2 – Overview..., Table 2-4, describes how to display and clear the Fault History from the Control Panel. Local Control vs. External Control The ACS 600 can be controlled, i.e. reference, and Start/Stop and Direction commands can be given, from an External control location or from the Local control location. The selection between Local control and External control can be done with the LOC REM key on the Control Panel keypad. Figure 4-1 Local and external control. Fieldbus Adapter Control Panel Digital and Analogue I/O Terminals DriveWindow External ControlLocal Control CH0 (DDCS) Panel Link CH3 (DDCS) Standard Modbus Link (Modbus RTU) FIELDBUS CONTROL RS-485 ACS 600 RS-485
  • 37. Chapter 4 – Control Operation Firmware Manual 4-5 Local Control The control commands are given from the Control Panel keypad or from the DriveWindow PC tool when ACS 600 is in Local control. This is indicated by L on the Control Panel display. External Control When the ACS 600 is in External control, the commands are given through the control terminal block on the NIOC board (digital and analogue inputs), optional I/O extension modules and/or either of the two fieldbus interfaces, CH0 Fieldbus Adapter or the Standard Modbus Link. In addition it is also possible to set the Control Panel as the source for the external control. External control is indicated by a blank character on the Control Panel display or with an R in those special cases when the Panel is defined as a source for the external control. Signal Source Selection In the application program the user can define signal sources for two external control locations EXT1 and EXT2, one of which can be active at a time. Parameter 11.02 EXT1/EXT2 SELECT (O) selects between EXT1 and EXT2. For EXT1, the source of the Start/Stop/Direction commands is defined by Parameter 10.01 EXT1 STRT/STP/DIR, and the reference source is defined by Parameter 11.03 EXT REF1 SELECT (O).External reference 1 is always a speed reference. 1 L ->1242 rpm I External Control through the Input/Output terminals, or through the fieldbus interfaces 1 R ->1242 rpm I1 ->1242 rpm I External Control by Control Panel (Start/Stop/Direction commands and/or reference given by an “external” Panel)
  • 38. Chapter 4 – Control Operation 4-6 Firmware Manual The figure below illustrates the signal source selection for EXT1. Figure 4-2 Block diagram of the EXT1 signal source selection. For EXT2, the source of the Start/Stop/Direction commands is defined by Parameter 10.02 EXT2 STRT/STP/DIR, and the reference source is defined by Parameter 11.06 EXT REF2 SELECT (O). External reference 2 can be a speed reference, a torque reference, or a process reference, depending on the Application Macro selected. For the type of external reference 2 refer to the description of the selected Application Macro. If the ACS 600 is in External control, constant speed operation can also be selected by setting Parameter 12.01 CONST SPEED SEL. One of 15 constant speeds can be selected with digital inputs. Constant speed selection overrides external speed reference signal unless EXT2 is selected as the active control location in PID Control Macro or Torque Control Macro. DI1 / NIOC board 10.01 Fieldbus Selection See Appendix C – Fieldbus Control CH0 / NAMC board KEYPAD EXT1 EXT1 DI6 / NIOC board DI1 / NDIO 1 DI2 / NDIO 1 DI1 / NDIO 2 DI2 / NDIO 2 St.Modbus Link / NIOC board I/O Extensions See Group 98 Option Modules Select DI7 to DI9 COMM. MODULE DI1 DI6 Control panel AI1 / NIOC board AI1 / NAIO AI2 / NAIO 11.03 Select DI1 / NDIO 3 DI2 / NDIO 3 CH0 / NAMC board KEYPAD St.Modbus Link / NIOC board COMM. MODULE Control panel I/O Extensions See Group 98 Option Modules AI2 / NIOC board AI3 / NIOC board DI3 / NIOC board DI4 / NIOC board AI1, AI2, AI3, DI3, DI4 Fieldbus Selection See Appendix C – Fieldbus Control AI5, AI6 DI11, DI12 Start/Stop/Direction EXT 1 Start/Stop/Direction EXT1 Reference Reference (rpm)
  • 39. Chapter 4 – Control Operation Firmware Manual 4-7 Figure 4-3 Selecting control location and control source. NAIO DI1-12, COMM.MOD. 12 EXTERNAL REF 2 Start/Stop/Direction source selection 10.01 EXT1 STRT/STP/DIR Group 25 CRITICAL SPEEDS 20.01 MINIMUM SPEED 20.02 MAXIMUM SPEED Group 22 ACCEL/DECEL Group 23 SPEED CTRL Speed Controller 2.02 SPEED REF 3 2.01 SPEED REF 2 ACS 600I/O Termi- nals on NIOC I/O Extension Modules CH0 Fieldbus Adapter Reference source selection Reference selection 11.06 EXT REF2 SELECT Group 12 CONSTANT SPEEDS 11.03 EXT REF1 SELECT 12.01 CONST SPEED SEL 11.01 KEYPAD REF SELECT 11.02 EXT1/ EXT2 SELECT EXT1 11 EXTERNAL REF 1 EXT1 KEYPAD EXT2 CONTROL PANEL REF LOC REM EXT1 NOT SEL EXTERNAL NOT SEL KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD DI1-12, COMM.MOD. AI1-6,DI1-12, COMM.MOD. EXTERNAL Speed REF2(%) REF1(rpm) NOT SEL REQUEST FORWARD REVERSE 10.02 EXT2 STRT/STP/DIR 10.03 DIRECTION 16.01 RUN ENABLE AI1-6, DI1-12, COMM.MOD. DI1-6 A P P L I C A T I O N S 16 APPL BLOCK OUTPUT 12 EXTERNAL REF 2 EXT2 Torque REF2(%) REF1(rpm) EXTERNAL KEYPAD EXT2 EXTERNAL YES, DI1-12, COMM.MOD. 20.04 MAXIMUM TORQUE Group 24 TORQUE CTRL Torque Controller 2.13 TORQ REF USED 2.10 TORQ REF 3 2.09 TORQ REF 2 Start/Stop Direction Start/Stop, Direction Standard Modbus Link Fieldbus Selection App. C NDIO I/O Ext. Settings Group 98
  • 40. Chapter 4 – Control Operation 4-8 Firmware Manual
  • 41. Firmware Manual 5-1 Chapter 5 – Standard Application Macro Programs Overview This chapter describes the operation of, and suitable applications for, the five standard Application Macros and the two User Macros. The chapter begins with a general description of Application Macros. Table 5-1, lists the macros along with suitable applications, controls and how to access each macro for parameter modification. The remainder of this chapter contains the following information for each macro: • Operation • Input and Output Signals • External Connections The default parameter settings are given in Appendix B – Default Settings of Application Macros. Application Macros Application Macros are preprogrammed parameter sets. Using the Application Macros enables a quick and easy start-up of the ACS 600. Application Macros minimise the number of different parameters to be set during start-up. All parameters have factory-set default values. The Factory Macro is the factory-set default macro. While starting up the ACS 600, you can select one of the standard macros as the default for your ACS 600 (see Parameter 99.02 APPLICATION MACRO): • Factory • Hand/Auto Ctrl • PID Control • Sequential Control • Torque Control The Application Macro default values are chosen to represent the average values in a typical application. Check that the default settings match your requirements and customise the settings when appropriate. All inputs and outputs are programmable. Note: When you change the parameter values of a standard macro, the new settings become active immediately and stay active even if the power of the ACS 600 is switched off and on. However, the default parameter settings (factory settings) of each standard macro are still available. The default settings are restored when Parameter 99.03 APPLIC RESTORE is changed to YES, or if the macro is changed.
  • 42. Chapter 5 – Standard Application Macro Programs 5-2 Firmware Manual Note: There are certain parameters that remain the same even though the macro were changed to another, or the default settings of the macro were restored. For more information, see Chapter 3 – Start-up Data, section 99.03 APPLIC RESTORE. User Macros In addition to the standard Application Macros, it is possible to create two User Macros. The User Macro allows the user to save the Parameter settings including Group 99, and the results of the motor identification into the permanent memory1) , and recall the data at a later time. To create User Macro 1: 1. Adjust the Parameters. Perform the motor identification if not yet performed. 2. Save the parameter settings and the results of the motor identification by changing Parameter 99.02 APPLICATION MACRO to USER 1 SAVE (press ENTER). The storing takes from 20 s to one minute. To recall the User Macro: 1. Change Parameter 99.02 APPLICATION MACRO to USER 1 LOAD. 2. Press ENTER to load. The User Macro can also be switched via digital inputs (see Parameter 16.05 USER MACRO IO CHG). Note: User Macro load restores also the motor settings of the Start-up Data group and the results of the motor identification. Check that the settings correspond to the motor used. Example: User Macros make it possible to switch the ACS 600 between two motors without having to adjust the motor parameters and to repeat the motor identification every time the motor is changed. The user can simply adjust the settings and perform the motor identification once for both motors, and then save the data as two User Macros. When the motor is changed, only the corresponding User Macro needs to be loaded and the drive is ready to operate. 1) Also the panel reference and the control location setting (Local or Remote) are saved.
  • 43. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-3 Application Macros Overview Table 5-1 Application Macros. Macro Suitable Applications Controls Select Factory Conveyors and other industrial constant torque applications. Applications to be run for long periods with constant speed different from the nominal speed of the motor. Vibration endurance test benches needing variable speeds of vibrating motors. Testing of rotating machines. All applications needing traditional external controls. Keypad, External FACTORY Hand/Auto Processes requiring motor speed control automatically with PLC or other process automation and manually with an external control panel. Active control location selection is made with a digital input. Speed controls having one or two external control locations with reference setting and START/STOP control. Active reference selection is made with digital input. EXT1, EXT2 HAND/AUTO PID Control Intended for use with different closed loop control systems such as pressure control, level control, and flow control. For example: • Booster pumps of municipal water supply systems. • Automatic level control of water reservoirs. • Booster pumps of district heating systems. • Speed control of different types of material handling systems where the material flow has to be regulated. EXT1, EXT2 PID-CTRL Torque Control Processes requiring torque control, e.g. mixers and slave drives. Torque reference comes from a PLC or some other process automation system or control panel. Manual reference is speed reference. EXT1, EXT2 T-CTRL Sequential Control Processes requiring motor speed control in addition to the adjustable speed with 1 to 15 constant speeds and/or with two different acceleration/deceleration times. The control can be performed automatically with a PLC or some other process automation system or by using normal speed selection switches. Regulated Constant Speed SEQ CTRL
  • 44. Chapter 5 – Standard Application Macro Programs 5-4 Firmware Manual Application Macro 1 – Factory All drive commands and reference settings can be given from the Control Panel keypad or selectively from an external control location. The active control location is selected with the LOC REM key on the Control Panel keypad. The drive is speed controlled. In External Control the control location is EXT1. The reference signal is connected to analogue input AI1 and Start/Stop and Direction signals to digital inputs DI1 and DI2. By default, the direction is fixed to FORWARD (Parameter 10.03 DIRECTION). DI2 does not control the rotation direction unless Parameter 10.03 DIRECTION is changed to REQUEST. Three constant speeds are available on digital inputs DI5 and DI6 with external control location selection. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are applied according to the state of digital input DI4. Two analogue and three relay output signals are available on terminal blocks. Default signals for the Actual Signal Display Mode of the Control Panel are FREQUENCY, CURRENT and POWER. Operation Diagram Figure 5-1 Operation Diagram for Factory Macro. Input and Output Signals Table 5-2 Input and Output Signals as set by the Factory Macro. Input Signals Output Signals Start, Stop, Direction (DI1,2) Analogue Reference (AI1) Constant Speed Selection (DI5,6) ACC/DEC 1/2 SEL through (DI4) Analogue Output AO1: Speed Analogue Output AO2: Current Relay Output RO1: READY Relay Output RO2: RUNNING Relay Output RO3: FAULT (-1) rpm A M 3~ Relay Motor Ext. Controls Input 1 L ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 ->1000.0 rpm I FREQ 40.00 Hz CURRENT 65.00 A POWER 60.00 % Power Current Outputs Speed Reference and Start/Stop and Direction commands are given from the Control Panel. To change to External, press LOC REM key. Reference is read from analogue input AI1. Start/Stop and Direction commands are given through digital inputs DI1 and DI2.
  • 45. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-5 External Connections The following connection example is applicable when the Factory Macro settings are used. Figure 5-2 Control Connections for Application Macro 1 - Factory. The markings of the NIOC board terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block intended for the user connections. The separate terminal block is optional. See the appropriate hardware manual for the corresponding terminal markings. Relay output 2 RUNNING 1 2 3 4 7 8 8 7 1 2 3 4 5 6 9 10 11 12 1 2 3 1 2 3 1 2 3 VREF GND AI1+ AI1- AI3+ AI3- +24DVDC +24DVDC DI1 DI2 DI3 D4 DI5 DI6 AO1+ AO1- AO2+ AO2- RO11 RO12 RO13 RO21 RO22 RO23 RO31 RO32 RO33 Terminal Block X21 Function Reference voltage 10 VDC External reference 1 0 ... 10 V Not specified in this application +24 VDC max. 100 mA STOP/START FORWARD/REVERSE (if 10.3 is REQUEST) CONSTANT SPEED SELECT* ACCEL/DECEL 1/2 Speed 0 ... 20 mA <-> 0 ... Motor nom. speed Current Relay output 1 READY Relay output 3 FAULT (-1) A rpm 0 ... 20 mA <-> 0 ... Motor nom. current * Operation: 0 = Open, 1 = Closed DI 5 DI 6 Output 0 1 0 1 0 0 1 1 set speed through AI1 Constant Speed 1 Constant Speed 2 Constant Speed 3 Reference max. 10 mA CONSTANT SPEED SELECT* NOT IN USE Terminal Block X25 Terminal Block X26 Terminal Block X27 5 6 AI2+ AI2- Not specified in this application 9 DGND Digital ground Terminal Block X22 0 ... 20 mA 0 ... 20 mA 1 2 +24 VDC GND Auxiliary voltage output 24 VDC Terminal Block X23 Ready Run Fault max. 250 mA
  • 46. Chapter 5 – Standard Application Macro Programs 5-6 Firmware Manual Control Signal Connections Control signals i.e. Reference, Start, Stop and Direction command connections are established as in Figure 5-3 when you select the Factory Macro. Figure 5-3 Control Signal connections for the Factory Macro. 11 EXTERNAL REF 1 Start/Stop/Direction source selection 10.01 EXT1 STRT/STP/DIR Group 25 CRITICAL SPEEDS 20.01 MINIMUM SPEED 20.02 MAXIMUM SPEED Group 22 ACCEL/DECEL Group 23 SPEED CTRL Speed Controller 2.02 SPEED REF 3 2.01 SPEED REF 2 ACS 600 Reference source selection Reference selection 11.06 EXT REF2 SELECT Group 12 CONSTANT SPEEDS 11.03 EXT REF1 SELECT 12.01 CONST SPEED SEL 11.01 KEYPAD REF SELECT 11.02 EXT1/ EXT2 SELECT DI5,6 12 EXTERNAL REF 2 EXT1DI1,2 KEYPAD EXT2 CONTROL PANEL REF LOC REM AI1 EXT1 NOT SEL EXTERNAL NOT SEL KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD YES DI1-6, COMM.MOD. AI1-3,DI1-6 COMM.MOD. EXTERNAL REF2(%) REF1(rpm) NOT SEL REQUEST FORWARD REVERSE 10.02 EXT2 STRT/STP/DIR 10.03 DIRECTION 16.01 RUN ENABLE EXT2 EXTERNAL Start/Stop Direction NAIO I/O Termi- nals on NIOC I/O Extension Modules CH0 Fieldbus Adapter Standard Modbus Link Fieldbus Selection App. C NDIO I/O Ext. Settings Group 98
  • 47. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-7 Application Macro 2 – Hand/Auto Start/Stop and Direction commands and reference settings can be given from one of two external control locations, EXT1 (Hand) or EXT2 (Auto). The Start/Stop/Direction commands of the EXT1 (Hand) are connected to digital inputs DI1 and DI2, and the reference signal is connected to analogue input AI1. The Start/Stop/Direction commands of the EXT2 (Auto) are connected to digital inputs DI5 and DI6, and the reference signal is connected to analogue input AI2. The selection between EXT1 and EXT2 is dependent on the status of digital input DI3. The drive is speed controlled. Speed reference and Start/Stop and Direction commands can be given from the Control Panel keypad also. One constant speed can be selected through digital input DI4. Speed reference in Auto Control (EXT2) is given as a percentage of the maximum speed of the drive (see Parameters 11.07 EXT REF2 MINIMUM and 11.08 EXT REF2 MAXIMUM). Two analogue and three relay output signals are available on terminal blocks. Default signals for the Actual Signal Display Mode of the Control Panel are FREQUENCY, CURRENT and CTRL LOC. Operation Diagram Figure 5-4 Operation Diagram for Hand/Auto Macro. Input and Output Signals Table 5-3 Input and Output Signals as set by the Hand/Auto Macro. Input Signals Output Signals Start/Stop (DI1,6) and Reverse (DI2,5) Switch for each control location Two analogue reference inputs (AI1,AI2) Control Location Selection (DI3) Constant Speed Selection (DI4) Speed (AO1) Current (AO2) READY (RO1) RUNNING (RO2) FAULT (-1) (RO3) rpm A M 3~ Relay Motor EXT1 (rpm) = Input 1 L ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A CTRL LOC LOCAL 1 L ->1200.0 rpm I FREQ 43.00 Hz CURRENT 77.00 A CTRL LOC EXT1 Power Current Outputs Hand/Auto Const.Speed1 PLC or automation EXT2 (%) = Speed Hand Control Auto Control Reference, Start/Stop and Direction commands are given from the Control Panel. To change to External, press LOC REM key. Hand control: Reference is read from analogue input AI1. Start/ Stop and Direction commands are given through digital inputs DI1 and DI2.
  • 48. Chapter 5 – Standard Application Macro Programs 5-8 Firmware Manual External Connections The following connection example is applicable when the Hand/Auto Macro settings are used. Figure 5-5 Control Connections for Hand/Auto Application Macro. The markings of the NIOC board terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block intended for the user connections. The separate terminal block is optional. See the appropriate hardware manual for the corresponding terminal markings. Relay output 2 RUNNING 1 2 3 4 7 8 1 2 8 7 1 2 3 4 5 6 9 10 11 12 1 2 3 1 2 3 1 2 3 VREF GND AI1+ AI1- AI3+ AI3- +24 VDC GND +24DVDC DI1 DI2 DI3 DI4 DI5 DI6 AO1+ AO1- AO2+ AO2- RO11 RO12 RO 13 RO21 RO22 RO23 RO 31 RO 32 RO 33 Terminal Block X21 Function Reference voltage 10 VDC External reference 1 (Hand Control) 0 ... 10 V Not specified in this application Auxiliary voltage output 24 VDC +24 VDC max. 100 mA STOP/START (Hand) FORWARD/REVERSE (Hand) STOP/START (Auto) CONSTANT SPEED 4 Speed 0 ... 20 mA <-> 0 ... Motor rated speed Current Relay output 1 READY Relay output 3 FAULT (-1) 0 ... 20 mA <-> 0 ... Motor nom. current * Operation: Open Switch = Hand (EXT1), Reference max. 10 mA FORWARD/REVERSE (Auto) EXT1/EXT2 SELECT* Terminal Block X25 Terminal Block X26 Terminal Block X27 5 6 AI2+ AI2- External reference 2 (Auto Control) 9 DGND Digital ground Terminal Block X22 (Hand) Reference (Auto) 0 ... 20 mA Terminal Block X23 A rpm +24DVDC Closed Switch = Auto (EXT2) 250 mA Ready Run Fault
  • 49. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-9 Control Signal Connections Control signals i.e. Reference, Start, Stop and Direction command connections are established as in Figure 5-6 when you select the Hand/Auto Macro. Figure 5-6 Control Signal connections for the Hand/Auto Macro. EXTERNAL KEYPAD Start/Stop/Direction source selection 10.01 EXT1 STRT/STP/DIR Group 25 CRITICAL SPEEDS 20.01 MINIMUM SPEED 20.02 MAXIMUM SPEED Group 22 ACCEL/DECEL Group 23 SPEED CTRL Speed Controller 2.02 SPEED REF 3 2.01 SPEED REF 2 ACS 600 Reference source selection Reference selection 11.06 EXT REF2 SELECT Group 12 CONSTANT SPEEDS 11.03 EXT REF1 SELECT 12.01 CONST SPEED SEL 11.01 KEYPAD REF SELECT 11.02 EXT1/ EXT2 SELECT DI4(SPEED4) 12 EXTERNAL REF 2 11 EXTERNAL REF 1 EXT1DI1,2 KEYPAD EXT2 CONTROL PANEL REF LOC REM AI1 EXT1 NOT SEL NOT SEL KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD YES EXTERNAL DI6,5 REF2(%) REF1(rpm) NOT SEL REQUEST FORWARD REVERSE 10.02 EXT2 STRT/STP/DIR 10.03 DIRECTION 16.01 RUN ENABLE EXT2 DI3 AI2 EXTERNAL Statr/Stop Direction NAIO I/O Termi- nals on NIOC I/O Extension Modules CH0 Fieldbus Adapter Standard Modbus Link Fieldbus Selection App. C NDIO I/O Ext. Settings Group 98
  • 50. Chapter 5 – Standard Application Macro Programs 5-10 Firmware Manual Application Macro 3 – PID Control The PID Control macro is used for controlling a process variable – such as pressure or flow – by controlling the speed of the driven motor. Process reference signal is connected to analogue input AI1 and process feedback signal to analogue input AI2. Alternatively, a direct speed reference can be given to the ACS 600 through analogue input AI1. Then the PID controller is bypassed and the ACS 600 no longer controls the process variable. Selection between the direct speed control and the process variable control is done with digital input DI3. Two analogue and three relay output signals are available on terminal blocks. Default signals for the Actual Signal Display Mode of the Control Panel are SPEED, ACTUAL VALUE1 and CONTROL DEVIATION. Operation Diagram Figure 5-7 Operation Diagram for the PID Control Macro. Input and Output Signals Table 5-4 Input and Output Signal as set by the PID Control Macro. Note: Constant speeds (parameter Group 12) are not considered while the process reference is fol- lowed (PID controller is in use). Input Signals Output Signals START/STOP for each control location (DI1,DI6) Analogue Reference (AI1) Actual Value (AI2) Control Location Selection (DI3) Constant Speed Selection (DI4) Run Enable (DI5) Speed (AO1) Current (AO2) READY (RO1) RUNNING (RO2) FAULT (-1) (RO3) rpm A M 3~ Relay Motor Input 1 L ->1242.0 rpm I SPEED 1242.0 rpm ACT VAL1 52.00 % CONT DEV 0.1 % Power Current Outputs Const.Speed Speed Run Enable Speed/Process PIDPT EXT1 EXT2 START/STOP(EXT2) START/STOP(EXT1) Ref. Actual value (EXT1/EXT2) 1 -> 52.1 % I SPEED 1242.0 rpm ACT VAL1 52.0 % CONT DEV 0.1 % Reference is read from analogue input AI1. Start/ Stop command is given through digital input DI1 while in direct speed control (EXT1) or through digital input DI6 while in Process Control (EXT2). Reference and Start/Stop and Direction commands are given from the Control Panel. To change to External, press the LOC REM key. External Control EXT1 (rpm) = Direct Speed Control EXT2 (%) = Process PID Control Keypad Control REF1 (rpm) = Direct Speed Control REF2 (%) = Process PID Control
  • 51. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-11 External Connections The following connection example is applicable when the PID Control Macro settings are used. Figure 5-8 Control Connections for the PID Control Application Macro. The markings of the NIOC board terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block intended for the user connections. The separate terminal block is optional. See the appropriate hardware manual for the corresponding terminal markings. Relay output 2 RUNNING 1 2 3 4 7 8 8 7 1 2 3 4 5 6 9 10 11 12 1 2 3 1 2 3 1 2 3 VREF GND AI1+ AI1- AI3+ AI3- +24DVDC +24DVDC DI1 DI2 DI3 DI4 DI5 DI6 AO1+ AO1- AO2+ AO2- RO11 RO12 RO13 RO21 RO22 RO23 RO 31 RO 32 RO 33 Terminal Block X21 Function Reference voltage 10 VDC EXT1 or EXT2 reference 0 ... 10 V Not specified in this application +24 VDC max. 100 mA STOP/START (Manual) Not specified in this application STOP/START (Process) CONSTANT SPEED 4**** Speed 0 ... 20 mA <-> 0 ... Motor rated speed Current Relay output 1 READY Relay output 3 FAULT (-1) 0 ... 20 mA <-> 0 ... Motor nom. current Reference Setting*** max. 10 mA RUN ENABLE** EXT1/EXT2 SELECT* Terminal Block X25 Terminal Block X26 Terminal Block X27 5 6 AI2+ AI2- Actual Signal 9 DGND Digital ground Terminal Block X22 (EXT1 and EXT2) Transducer feedback 0 ... 20 mA * Open Switch = Speed Control (direct speed setting) PT Closed Switch (+24 V) = Process Control (PID control) *** Reference setting possible also internally with the 1 2 +24 VDC GND Auxiliary voltage output 24 VDC Terminal Block X23 A rpm 250 mA ** Open switch = No RUN ENABLE signal received; The drive will not start (or it stops). Closed switch (+24 V) =RUN ENABLE activated; Normal operation is allowed. keypad. **** No constant speeds can be selected if the Process Control is selected (i.e. if +24 V d.c. is connected to DI3). See Figure 5-9. Ready Run Fault
  • 52. Chapter 5 – Standard Application Macro Programs 5-12 Firmware Manual Control Signal Connections Control signals i.e. Reference, Start, Stop and Direction command connections are established as in Figure 5-9 when you select the PID Control Macro. Figure 5-9 Control Signal connections for the PID Control Macro. AI1 AI3 AI2 NOT SEL DI6 12 EXTERNAL REF 2 Start/Stop/Direction source selection 10.01 EXT1 STRT/STP/DIR Group 25 CRITICAL SPEEDS 20.01 MINIMUM SPEED 20.02 MAXIMUM SPEED Group 22 ACCEL/DECEL Group 23 SPEED CTRL Speed Controller 2.02 SPEED REF 3 2.01 SPEED REF 2 ACS 600 Reference source selection Reference selection 11.06 EXT REF2 SELECT Group 12 CONSTANT SPEEDS 11.03 EXT REF1 SELECT 12.01 CONST SPEED SEL 11.01 KEYPAD REF SELECT 11.02 EXT1/ EXT2 SELECT DI4(SPEED4) 11 EXTERNAL REF 1 EXT1 KEYPAD EXT2 EXT1 NOT SEL EXTERNAL KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD EXTERNAL REF2(%) REF1(rpm) NOT SEL REQUEST FORWARD REVERSE 10.02 EXT2 STRT/STP/DIR 10.03 DIRECTION 16.01 RUN ENABLE DI1-6 PID CONTROL- LER 16 APPL BLOCK OUTPUT EXT2 EXTERNAL Start/Stop Direction DI3 AI1 AI1 Actual source selection 40.08 ACTUAL 2 INPUT SEL 40.06 ACTUAL VALUE SEL 40.07 ACTUAL 1 INPUT SEL 26 CONTROL DEVIATION 24 ACTUAL VALUE 1 25 ACTUAL VALUE 2 AI1 AI3 AI2 ACT1 DI1 11.02 EXT1/ EXT2 SELECT DI3 DI5 CONTROL PANEL REF LOC REM NAIO I/O Termi- nals on NIOC I/O Extension Modules CH0 Fieldbus Adapter Standard Modbus Link Fieldbus Selection App. C NDIO I/O Ext. Settings Group 98
  • 53. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-13 Application Macro 4 – Torque Control Torque Control macro is used in applications that require torque control of the motor. Torque reference is given through analogue input AI2 as a current signal. By default, 0 mA corresponds to 0 %, and 20 mA to 100 % of the rated motor torque. The Start/Stop/Direction commands are given through digital inputs DI1 and DI2. The Run enable signal is connected to DI6. Through digital input DI3 it is possible to select speed control instead of torque control. It is also possible to change the external control location to local (i.e. to Control Panel) by pressing the key. The Panel controls the speed by default. If torque control with the Panel is required, the value of Parameter 11.01 KEYPAD REF SEL should be changed to REF2 (%). Two analogue and three relay output signals are available on terminal blocks. Default signals for the Actual Signal Display Mode of the Control Panel are SPEED, TORQUE and CTRL LOC. Operation Diagram Figure 5-10 Operation Diagram for the Torque Control Macro. Input and Output Signals Table 5-5 Input and Output Signals as set by the Torque Control Macro. Input Signals Output Signals Start/Stop (DI1,2) Analogue Speed Reference (AI1) Analogue Torque Reference (AI2) Torque Control Selection (DI3) Accel/Decel 1/2 Selection (DI5) Constant Speed Selection (DI4) Run Enable (DI6) Speed (AO1) Current (AO2) READY (RO1) RUNNING (RO2) FAULT (-1) (RO3) LOC REM 1 L ->1242.0 rpm I SPEED 1242.0 rpm TORQUE 66.00 % CTRL LOC LOCAL 1 -> 50.0 % I SPEED 1242.0 rpm TORQUE 66.00 % CTRL LOC EXT2 rpm A M 3~ Relay Motor Ext. Controls Input Power Current Outputs Speed External Control EXT1 (rpm) = Speed Control EXT2 (%) = Torque Control Keypad Control REF1 (rpm) = Speed Control REF2 (%) = Torque Control Reference and Start/Stop and Direction commands are given from the Control Panel. To change to External, press LOC REM key. Reference is read from analogue input AI2 (torque control selected) or AI1 (speed control selected). Start/Stop and Direc- tion commands are given through digital inputs DI1 and DI2. Selection between speed and torque control is done through DI3. EXT1 EXT2 Speed ref. Torque ref.
  • 54. Chapter 5 – Standard Application Macro Programs 5-14 Firmware Manual External Connections The following connection example is applicable when the Torque Control Macro settings are used. Figure 5-11 Control Connections for Torque Control Application Macro. The markings of the NIOC board terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block intended for the user connections. The separate terminal block is optional. See the appropriate hardware manual for the corresponding terminal markings. Relay output 2 RUNNING 1 2 3 4 7 8 1 2 8 7 1 2 3 4 5 6 9 10 11 12 1 2 3 1 2 3 1 2 3 VREF GND AI1+ AI1- AI3+ AI3- +24 VDC GND +24DVDC +24DVDC DI1 DI2 DI3 DI4 DI5 DI6 AO1+ AO1- AO2+ AO2- RO11 RO12 RO13 RO21 RO22 RO23 RO 31 RO 32 RO 33 Terminal Block X21 Function Reference voltage 10 VDC Speed reference (EXT1) 0 ... 10 V Not specified in this application Auxiliary voltage output 24 VDC +24 VDC max. 100 mA STOP/START FORWARD/REVERSE RUN ENABLE*** CONSTANT SPEED SELECTION**** Speed 0 ... 20 mA <-> 0 ... Motor rated speed Current Relay output 1 READY Relay output 3 FAULT (-1) 0 ... 20 mA <-> 0 ... Motor nom .current Speed Reference max.10 mA ACC/DEC 1/2 SEL** SPEED/TORQUE CONTROL SEL* Terminal Block X25 Terminal Block X26 Terminal Block X27 5 6 AI2+ AI2- Torque reference (EXT2) 9 DGND Digital ground Terminal Block X22 Torque Reference 0 ... 20 mA Terminal Block X23 A rpm * Open Switch = EXT1 selected = Speed Control Closed Switch (+24 V) = EXT2 selected = Torque Control ** Open switch = ACC/DEC 1 selected Closed Switch (+24 V) = ACC/DEC 2 selected *** Open switch = No RUN ENABLE signal received; The drive will not start (or it stops). Closed switch (+24 V) =RUN ENABLE activated; Normal operation is allowed. **** No constant speeds can be selected if the Torque Control is selected (i.e. if +24 V d.c. is connected to DI3). See Figure 5-12. 250 mA Ready Run Fault
  • 55. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-15 Control Signal Connections Control signals i.e. Reference, Start, Stop and Direction command connections are established as in Figure 5-12 when you select the Torque Control Macro. Figure 5-12 Control Signal connections for the Torque Control Macro. Start/Stop/Direction source selection 10.01 EXT1 STRT/STP/DIR Group 25 CRITICAL SPEEDS 20.01 MINIMUM SPEED 20.02 MAXIMUM SPEED Group 22 ACCEL/DECEL Group 23 SPEED CTRL Speed Controller 2.02 SPEED REF 3 2.01 SPEED REF 2 ACS 600 Reference source selection Reference selection 11.06 EXT REF2 SELECT Group 12 CONSTANT SPEEDS 11.03 EXT REF1 SELECT 12.01 CONST SPEED SEL 11.01 KEYPAD REF SELECT 11.02 EXT1/ EXT2 SELECT EXT1 11 EXTERNAL REF 1 EXT1 KEYPAD EXT2 EXT1 NOT SEL EXTERNAL NOT SEL KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD EXTERNAL REF2(%) REF1(rpm) NOT SEL REQUEST FORWARD REVERSE 10.02 EXT2 STRT/STP/DIR 10.03 DIRECTION 16.01 RUN ENABLE DI1-6 12 EXTERNAL REF 2 EXT2 REF2(%) REF1(rpm) EXTERNAL KEYPAD EXT2 EXTERNAL 20.04 MAXIMUM TORQUE Group 24 TORQUE CTRL Torque Controller 2.13 TORQ REF USED 2.10 TORQ REF 3 2.09 TORQ REF 2 Start/Stop Direction DI1,2 DI1,2 DI6 AI1 AI2 DI3 DI4(SPEED4) CONTROL PANEL REF LOC REM NAIO I/O Termi- nals on NIOC I/O Extension Modules CH0 Fieldbus Adapter Standard Modbus Link Fieldbus Selection App. C NDIO I/O Ext. Settings Group 98
  • 56. Chapter 5 – Standard Application Macro Programs 5-16 Firmware Manual Application Macro 5 – Sequential Control This macro offers seven preset constant speeds, which can be activated by digital inputs DI4 to DI6 according to the Figure 5-16. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are applied according to the state of digital input DI3. The Start/Stop and Direction commands are given through digital inputs DI1 and DI2. External speed reference can be given through analogue input AI1. It is active only when all of the digital inputs DI4 to DI6 are 0 VDC. Giving operational commands and setting reference is possible also from the Control Panel. Two analogue and three relay output signals are available on terminal blocks. Default stop mode is ramp. Default signals for the Actual Signal Display Mode of the Control Panel are FREQUENCY, CURRENT and POWER. Operation Diagram Figure 5-13 Operation Diagram for the Sequential Control Macro. rpm A M 3~ Relay Motor Ext. Controls Input Power Current Outputs Speed Accel1 Accel1 Accel2 Decel2 Speed 3 Speed 2 Speed 1 Speed Time Start/Stop Accel1/Decel1 Speed 1 Speed 2 Accel2/Decel2 Speed 3 Stop with deceleration ramp Example of sequential control using constant speeds and different acceleration and deceleration times. External Control EXT1 (rpm) = Speed Control EXT2 (%) = Speed Control Keypad Control REF1 (rpm) = Speed Control REF2 (%) = Speed Control
  • 57. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-17 Figure 5-14 Keypad Control and External Control modes of the Sequential Control Macro. Input and Output Signals Input and Output signals of the ACS 600 as set by the Sequential Control Macro are listed in Table 5-6. Table 5-6 Input and Output Signals for Sequential Control Macro. Input Signals Output Signals Start/Stop (DI1) and Reverse (DI2) Analogue Reference (AI1) Accel/Decel 1/2 Selection (DI3) Constant Speed Selection (DI4-6) Speed (AO1) Current (AO2) READY (RO1) RUNNING (RO2) FAULT (-1) (RO3) 1 L ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % To change to External, press the LOC REM key. Reference is read from analogue input AI1 or constant speed is used. Start/Stop and Direction commands are given through digital inputs DI1 and DI2. Reference and Start/Stop and Direction commands are given from the Control Panel.
  • 58. Chapter 5 – Standard Application Macro Programs 5-18 Firmware Manual External Connections The following connection example is applicable when the Sequential Control Macro settings are used. Figure 5-15 Control Connections for Sequential Control Application Macro. The markings of the NIOC board terminals are given above. In ACS 601 and ACS 604, user connections are always made directly to the input and output terminals of the NIOC board. In ACS 607 the connections are made either directly to NIOC board, or the I/O terminals of the NIOC board are wired to a separate terminal block intended for the user connections. The separate terminal block is optional. See the appropriate hardware manual for the corresponding terminal markings. Relay output 2 RUNNING 1 2 3 4 7 8 1 2 8 7 1 2 3 4 5 6 9 10 11 12 1 2 3 1 2 3 1 2 3 VREF GND AI1+ AI1- AI3+ AI3- +24 VDC GND +24 DVDC +24 DVDC DI1 DI2 DI3 DI4 DI5 DI6 AO1+ AO1- AO2+ AO2- RO11 RO12 RO13 RO21 RO22 RO23 RO31 RO32 RO33 Terminal Block X21 Function Reference voltage 10 VDC External reference 0 ... 10 V Not specified in this application Auxiliary voltage output 24 VDC +24 VDC max. 100 mA STOP/START FORWARD/REVERSE CONSTANT SPEED SELECT* CONSTANT SPEED SELECT* Speed 0 ... 20 mA <-> 0 ... Motor rated speed Current Relay output 1 READY Relay output 3 FAULT (-1) 0 ... 20 mA <-> 0 ... Motor nom. current max. 10 mA CONSTANT SPEED SELECT* ACC/DEC 1/2 SEL Terminal Block X25 Terminal Block X26 Terminal Block X27 5 6 AI2+ AI2- Not specified in this application 9 DGND Digital ground Terminal Block X22 DI4 DI5 DI6 Output set speed through AI1 Constant Speed 1 Constant Speed 2 Constant Speed 3 Constant Speed 4 Constant Speed 5 Constant Speed 6 Constant Speed 7 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 * Operation: 0 = Open, 1 = Closed 1 0 0 1 1 0 0 1 0 Terminal Block X23 A rpm Reference 250 mA Ready Run Fault
  • 59. Chapter 5 – Standard Application Macro Programs Firmware Manual 5-19 Control Signal Connections Control signals i.e. Reference, Start, Stop and Direction command connections are established as in Figure 5-16 when you select the Sequential Control Macro. Figure 5-16 Control Signal connections for the Sequential Control Macro. EXTERNAL KEYPAD Start/Stop/Direction source selection 10.01 EXT1 STRT/STP/DIR Group 25 CRITICAL SPEEDS 20.01 MINIMUM SPEED 20.02 MAXIMUM SPEED Group 22 ACCEL/DECEL Group 23 SPEED CTRL Speed Controller 2.02 SPEED REF 3 2.01 SPEED REF 2 ACS 600 Reference source selection Reference selection 11.06 EXT REF2 SELECT Group 12 CONSTANT SPEEDS 11.03 EXT REF1 SELECT 12.01 CONST SPEED SEL 11.01 KEYPAD REF SELECT 11.02 EXT1/ EXT2 SELECT DI4,5,6 12 EXTERNAL REF 2 11 EXTERNAL REF 1 EXT1DI1,2 KEYPAD EXT2 AI1 EXT1 NOT SEL NOT SEL KEYPAD KEYPAD KEYPAD KEYPAD KEYPAD YES EXTERNAL DI1,DI2 REF2(%) REF1(rpm) NOT SEL REQUEST FORWARD REVERSE 10.02 EXT2 STRT/STP/DIR 10.03 DIRECTION 16.01 RUN ENABLE EXT2 AI1 EXTERNAL Statr/Stop Direction EXT1 CONTROL PANEL REF LOC REM NAIO I/O Termi- nals on NIOC I/O Extension Modules CH0 Fieldbus Adapter Standard Modbus Link Fieldbus Selection App. C NDIO I/O Ext. Settings Group 98
  • 60. Chapter 5 – Standard Application Macro Programs 5-20 Firmware Manual
  • 61. Firmware Manual 6-1 Chapter 6 – Parameters Overview This chapter explains the function of, and valid selections for, each ACS 600 parameter. Parameter Groups The ACS 600 parameters are arranged into groups by their function. Figure 6-1 illustrates the organisation of the parameter groups. Chapter 2 – Overview of ACS 600 Programming... explains how to select and set the parameters. Refer to Chapter 3 – Start-up Data and Chapter 4 – Control Operation for more information on the Start-up Data and Actual Signals. Some parameters that are not in use in the current application are hidden to simplify programming. CAUTION! Exercise caution when configuring input/output connections, as it is possible (albeit not recommended) to use one I/O connection to control several operations. If an I/O is programmed for some purpose the setting remains, even if you select the I/O for another purpose with another parameter. Figure 6-1 Parameter Groups. 35 MOT TEMP MEAS 34 PROCESS SPEED 33 INFORMATION 32 SUPERVISION 31 AUTOMATIC RESET 30 FAULT FUNCTIONS . . . 22 ACCEL/DECEL 20 LIMITS 21 START/STOP 24 TORQUE CTRL 25 CRITICAL SPEEDS 26 MOTOR CONTROL 23 SPEED CTRL . . . . . 99 START-UP DATA 98 OPTION MODULES 96 EXTERNAL AO 92 D SET TR ADDR 90 D SET REC ADDR 70 DDCS CONTROL 60 MASTER/FOLLOWER 12 CONSTANT SPEEDS 10 START/STOP/DIR 11 REFERENCE SELECT 14 RELAY OUTPUTS 15 ANALOGUE OUTPUTS 16 SYSTEM CTR INPUTS 13 ANALOGUE INPUTS . . . 52 STANDARD MODBUS 51 COMMUNICATION MOD 50 ENCODER MODULE 45 FUNCTION SELECTION 42 BRAKE CONTROL 40 PID CONTROL 40.1 PID GAIN . . .
  • 62. Chapter 6 – Parameters 6-2 Firmware Manual Group 10 Start/Stop/Dir These parameter values can only be altered with the ACS 600 stopped. The Range/Unit column in Table 6-1 shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-1 Group 10. Start, Stop and Direction commands can be given from the keypad or from two external locations. The selection between the two external locations is made with Parameter 11.02 EXT1/EXT2 SELECT. For more information on control locations refer to Chapter 4 – Control Operation. 10.01 EXT1 STRT/STP/DIR This parameter defines the connections and the source of Start, Stop and Direction commands for External control location 1 (EXT1). NOT SEL No Start, Stop and Direction command source for EXT1 is selected. DI1 Two-wire Start/Stop, connected to digital input DI1. 0 V DC on DI1 = Stop; 24 V DC on DI1 = Start. Direction of rotation is fixed according to Parameter 10.3 DIRECTION. WARNING! After a fault reset, the drive will start if the start signal is on. DI1,2 Two-wire Start/Stop. Start/Stop is connected to digital input DI1 as above. Direction is connected to digital input DI2. 0 V DC on DI2 = Forward; 24 V DC on DI2 = Reverse. To control Direction, value of Parameter 10.3 DIRECTION should be REQUEST. WARNING! After a fault reset, the drive will start if the start signal is on. Parameter Range/Unit Description 1 EXT1 STRT/STP/DIR NOT SEL; Digital Inputs; KEYPAD; COMM. MODULE Selects source of Start/Stop/ Direction commands for External control location EXT1. 2 EXT2 STRT/STP/DIR NOT SEL; Digital Inputs; KEYPAD; COMM. MODULE Selects source of Start/Stop/ Direction commands for External control location EXT2. 3 DIRECTION FORWARD; REVERSE; REQUEST Rotation direction lock.
  • 63. Chapter 6 – Parameters Firmware Manual 6-3 DI1P,2P Three-wire Start/Stop. Start/Stop commands are given by means of momentary push-buttons (the P stands for “pulse”). The Start push- button is normally open, and connected to digital input DI1. The Stop push-button is normally closed, and connected to digital input DI2. Multiple Start push-buttons are connected in parallel; multiple Stop push-buttons are connected in series. Direction of rotation is fixed according to Parameter 10.03 DIRECTION. DI1P,2P,3 Three-wire Start/Stop. Start/Stop connected as with DI1P,2P. Direction is connected to digital input DI3. 0 V DC on DI3 = Forward; 24 V DC on DI3 = Reverse. To control Direction, value of Parameter 10.03 DIRECTION should be REQUEST. DI1P,2P,3P Start Forward, Start Reverse, and Stop. Start and Direction commands are given simultaneously with two separate momentary push-buttons (the P stands for “pulse”). The Stop push-button is normally closed, and connected to digital input DI3. The Start Forward and Start Reverse push-buttons are normally open, and connected to digital inputs DI1 and DI2 respectively. Multiple Start push-buttons are connected in parallel, and multiple Stop push-buttons are connected in series. To control Direction, value of Parameter 10.03 DIRECTION should be REQUEST. DI6 Two-wire Start/Stop, connected to digital input DI6. 0 V DC on DI6 = Stop and 24 V DC on DI6 = Start. Direction of rotation is fixed according to Parameter 10.03 DIRECTION. WARNING! After a fault reset, the drive will start if the start signal is on. DI6,5 Two-wire Start/Stop. Start/Stop is connected to digital input DI6. Direction is connected to digital input DI5. 0 V DC on DI5 = Forward and 24 V DC on DI5 = Reverse. To control Direction, value of Parameter 10.03 DIRECTION should be REQUEST. WARNING! After a fault reset, the drive will start if the start signal is on. KEYPAD The Start/Stop and Direction commands are given from the Control Panel keypad when External control location 1 is active. To control Direction, value of Parameter 10.03 DIRECTION should be REQUEST. COMM. MODULE The Start/Stop and Direction commands are given through Fieldbus Control Word. See Appendix C – Fieldbus Control.
  • 64. Chapter 6 – Parameters 6-4 Firmware Manual DI7; DI7,8; DI7P,8P; DI7P,8P,9; DI7P,8P,9P For the connection of digital inputs DI7, DI8 and DI9, see Parameter Group 98 Option Modules. For the function descriptions, see the corresponding selections implemented using DI1, DI2 and DI3. 10.02 EXT2 STRT/STP/DIR This parameter defines the connections and the source of Start, Stop and Direction commands for External control location 2 (EXT2). NOT SEL; DI1; DI1,2; DI1P,2P; DI1P,2P,3; DI1P,2P,3P; DI6; DI6,5; KEYPAD; COMM. MODULE; DI7; DI7,8; DI7P,8P; DI7P,8P,9; DI7P,8P,9P Refer to Parameter 10.01 EXT1 STRT/STP/DIR above for details on these settings. 10.03 DIRECTION This parameter allows you to fix the direction of rotation of the motor to FORWARD or REVERSE. If you select REQUEST, the direction is selected as defined by Parameters 10.01 EXT1 STRT/STP/DIR and 10.02 EXT2 STRT/STP/DIR or by keypad push-buttons.
  • 65. Chapter 6 – Parameters Firmware Manual 6-5 Group 11 Reference Select These parameter values can be altered with the ACS 600 running, except those marked with (O). The Range/Unit column in Table 6-2 shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-2 Group 11. Reference can be set from the keypad or from two external locations. Refer to Chapter 4 – Control Operation. 11.01 KEYPAD REF SEL REF1 (rpm) Keypad reference 1 is selected as the active keypad reference. The type of the reference is speed, given in rpm. If scalar control is selected (Parameter 99.04 is set to SCALAR), the reference is given in Hz. REF2 (%) Keypad reference 2 is selected as the active keypad reference. Keypad reference 2 is given in %. The type of Keypad reference 2 depends on the selected Application Macro. For example, if the Torque Control macro is selected, REF 2 (%) is torque reference. Parameter Range/Unit Description 1 KEYPAD REF SEL REF1 (rpm); REF2 (%) Selection of active keypad reference. 2 EXT1/EXT2 SELECT (O) DI1 ... DI12; EXT1; EXT2; COMM. MODULE External control location selection input. 3 EXT REF1 SELECT (O) KEYPAD; Analogue and Digital Inputs; COMM. REF; COMMREF+AI1; COMMREF*AI1; FAST COMM; COMMREF+AI5; COMMREF*AI5; External reference 1 input. 4 EXT REF1 MINIMUM (0 ... 18000) rpm External reference 1 minimum value. 5 EXT REF1 MAXIMUM (0 ... 18000) rpm External reference 1 maximum value. 6 EXT REF2 SELECT (O) KEYPAD; Analogue and Digital Inputs; COMM. REF; COMMREF+AI1; COMMREF*AI1; FAST COMM; COMMREF+AI5; COMMREF*AI5 External reference 2 input. 7 EXT REF2 MINIMUM 0 ... 100 % External reference 2 minimum value. 8 EXT REF2 MAXIMUM 0 ... 500 % External reference 2 maximum value.
  • 66. Chapter 6 – Parameters 6-6 Firmware Manual 11.02 EXT1/EXT2 SELECT (O) This parameter sets the input used for selecting the external control location, or fixes it to EXT1 or EXT2. The external control location of both Start/Stop/Direction commands and reference is determined by this parameter. EXT1 External control location 1 is selected. The control signal sources for EXT1 are defined with Parameter 10.01 EXT1 STRT/STP/DIR and Parameter 11.03 EXT REF1 SELECT (O). EXT2 External control location 2 is selected. The control signal sources for EXT2 are defined with Parameter 10.02 EXT2 STRT/STP/DIR and Parameter 11.06 EXT REF2 SELECT (O). DI1 - DI12 External control location 1 or 2 is selected according to the state of the selected digital input (DI1 ... DI12), where 0 V DC = EXT1 and 24 V DC = EXT2. For the connection of DI7 to DI12, see Group 98 Option Modules. COMM. MODULE External control location 1 or 2 is chosen through Fieldbus Control Word. See Appendix C – Fieldbus Control. 11.03 EXT REF1 SELECT (O) This parameter selects the signal source of External reference 1. KEYPAD Reference is given from the Keypad. The first line on the display shows the reference value. AI1 Reference from analogue input 1 (voltage signal). AI2 Reference from analogue input 2 (current signal). AI3 Reference from analogue input 3 (current signal). AI1/JOYST; AI2/JOYST Reference from analogue input 1 (or 2 accordingly) configured for a joystick. The minimum input signal runs the drive at maximum reference in the reverse direction. The maximum input signal runs the drive at maximum reference in the forward direction (See Figure 6-2). See also Parameter 10.03 DIRECTION. CAUTION: Minimum reference for joystick must be higher than 0.5 V. If a 0 ... 10 V signal is used, the ACS 600 will operate at maximum reference in the reverse direction if the control signal is lost. Set Parameter 13.01 MINIMUM AI1 to 2 V or to a value higher than 0.5 V, and Parameter 30.01 AI<MIN FUNCTION to FAULT, and the ACS 600 will stop in case the control signal is lost.
  • 67. Chapter 6 – Parameters Firmware Manual 6-7 Figure 6-2 Joystick control. Maximum for the external reference 1 is set with Parameter 11.05 EXT REF1 MAXIMUM and minimum with Parameter 11.04 EXT REF1 MINIMUM. AI1+AI3; AI2+AI3; AI1-AI3; AI2-AI3; AI1*AI3; AI2*AI3; MIN(AI1,AI3); MIN(AI2,AI3); MAX(AI1,AI3); MAX(AI2,AI3) The reference is calculated from the selected input signals according to the mathematical functions defined by this setting. DI3U,4D(R) Speed reference is given through digital inputs as motor potentiometer control (or Floating Point Control). Digital input DI3 increases the speed (the U stands for “up”), and digital input DI4 decreases the speed (the D stands for “down”). (R) indicates that the reference will be reset to zero when a Stop command is given. The rate of change of the reference signal is controlled by Parameter 22.04 ACCEL TIME 2. DI3U,4D Same as above, except that the speed reference is not reset to zero on a Stop command or when power is switched off. When the ACS 600 is started, the motor will ramp up at the selected acceleration rate to the stored reference. DI5U,6D Same as above, except that the digital inputs in use are DI5 and DI6. COMM. REF The reference is given through fieldbus reference REF1. See Appendix C – Fieldbus Control. COMMREF+AI1; COMMREF*AI1; The reference is given through fieldbus reference REF1. The analogue input signal 1 is combined to the fieldbus reference (sum or multiplication). See Appendix C – Fieldbus Control for more information. EXT REF MAXIMUM EXT REF MINIMUM 0 - EXT REF MINIMUM - EXT REF MAXIMUM 1050 REF [V] AI MINIMUM = 0 V AI MAXIMUM = 10 V SPEEDout
  • 68. Chapter 6 – Parameters 6-8 Firmware Manual FAST COMM As with the selection COMM. REF, the reference is given through fieldbus reference REF1. See Appendix C – Fieldbus Control. The FAST COMM differs from the COMM. REF as follows: • shorter communication cycle time when transferring the reference to the core motor control program (6 ms -> 2ms) • the direction cannot be controlled through interfaces defined byParameters 10.01 EXT1 STRT/STP/DIR or 10.02 EXT2 STRT/STP/DIR, nor from the control panel. • Group 25 Critical Speeds is not effective Note: If any of the following selections is true, the selection FAST COMM is not effective. Instead, the operation is according to selection COMM. REF. • 99.02 APPLICATION MACRO is PID • 99.04 MOTOR CTRL MODE is SCALAR • 40.14 TRIM MODE is PROPORTIONAL or DIRECT COMMREF+AI5; COMMREF*AI5 The reference is given through fieldbus reference REF1. The analogue input signal AI5 is combined to the fieldbus reference (sum or multiplication). See Appendix C – Fieldbus Control for more information. For the connection of analogue input AI5, see Group 98 Option Modules. AI5; AI6; AI5/JOYST; AI6/JOYST; AI5+AI6; AI5-AI6; AI5*AI6; MIN(AI5,6); MAX(AI5,6) For the function description, see the corresponding selection described for AI1 and AI2 above. For the connection of analogue inputs AI5 and AI6, see Group 98 Option Modules. DI11U,12D(R);DI11U,12D For the function description, see the corresponding selection described for DI3 and DI4 above. For the connection of digital inputs DI11 and DI12, see Group 98 Option Modules. 11.04 EXT REF1 MINIMUM This parameter sets the minimum speed reference in rpm. The value corresponds to the minimum of the analogue input signal connected to REF1 (value of Parameter 11.03 EXT REF1 SELECT (O) is AI1, AI2 or AI3). See Figure 6-3. In the SCALAR control mode (see 99.04 MOTOR CTRL MODE), this parameter is given in Hz. Note: If the reference is given through fieldbus, the scaling differs from that of an analogue signal. See Appendix C – Fieldbus Control for more information.
  • 69. Chapter 6 – Parameters Firmware Manual 6-9 11.05 EXT REF1 MAXIMUM This parameter sets the maximum speed reference in rpm. The value corresponds to the maximum of the analogue input signal connected to REF1 (value of Parameter 11.03 EXT REF1 SELECT (O) is AI1, AI2 or AI3). See Figure 6-3. In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL MODE), this parameter is given in Hz. Note: If the reference is given through fieldbus, the scaling differs from that of an analogue signal. See Appendix C – Fieldbus Control for more information. 11.06 EXT REF2 SELECT (O) This parameter selects the signal source for External reference 2. The alternatives are the same as with External reference 1. 11.07 EXT REF2 MINIMUM This parameter sets the minimum reference in percent. The value corresponds to the minimum of the analogue input signal connected to REF2 (value of 11.06 EXT REF2 SELECT (O) is AI1, AI2 or AI3). See Figure 6-3. • If the Factory, Hand/Auto or Sequential Control macro is selected, this parameter sets the minimum speed reference. The value is given as a percentage of the maximum speed defined with Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of the minimum limit is greater than the maximum limit. • If the Torque Control macro is selected, this parameter sets the minimum torque reference. The value is given as a percentage of the nominal torque. • If the PID Control macro is selected, this parameter sets the minimum process reference. The value is given as a percentage of the maximum process quantity. In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL MODE), this value is given as a percentage of the maximum frequency defined with Parameter 20.08 MAXIMUM FREQ, or 20.07 MINIMUM FREQ if the absolute value of the minimum limit is greater than the maximum limit. Note: If the reference is given through fieldbus, the scaling differs from that of an analogue signal. See Appendix C – Fieldbus Control for more information. 11.08 EXT REF2 MAXIMUM This parameter sets the maximum reference in percent. The value corresponds to the maximum of the analogue signal connected to REF2 (value of 11.06 EXT REF2 SELECT (O) is AI1, AI2 or AI3). See Figure 6-3. • If the Factory, Hand/Auto or Sequential Control macro is selected, this parameter sets the maximum speed reference. The value is given as a percentage of the maximum speed defined with Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of the minimum limit is greater than the maximum limit.
  • 70. Chapter 6 – Parameters 6-10 Firmware Manual • If the Torque Control macro is selected, this parameter sets the maximum torque reference. The value is given as a percentage of the nominal torque. • If the PID Control macro is selected, this parameter sets the maximum process reference. The value is given as a percentage of the maximum process quantity. In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL MODE), this value is given as a percentage of the maximum frequency defined with Parameter 20.08 MAXIMUM FREQ, or 20.07 MINIMUM FREQ if the absolute value of the minimum limit is greater than the maximum limit. Note: If the reference is given through fieldbus, the scaling differs from that of an analogue signal. See Appendix C – Fieldbus Control for more information. Figure 6-3 Setting EXT REF MINIMUM and MAXIMUM. The range of the analogue input signal is set by Parameter 13.02 MAXIMUM AI1, 13.07 MAXIMUM AI2, 13.12 MAXIMUM AI3 and Parameter 13.01 MINIMUM AI1, 13.06 MINIMUM AI2, 13.11 MINIMUM AI3, depending on the analogue input used. 10 V 20 mA 0/2 V 0/4 mA The range of analogue input MAXIMUM AI MINIMUM AI 18000 rpm 1500 rpm 0 rpm 18000 rpm 0 rpm 11.05 EXT REF1 MAXIMUM 11.04 EXT REF1 MINIMUM 500 % 100 % 0 % 100 % 0 % 11.08 EXT REF2 MAXIMUM 11.07 EXT REF2 MINIMUM The range of ex- ternal reference 1 The range of ex- ternal reference 2
  • 71. Chapter 6 – Parameters Firmware Manual 6-11 Group 12 Constant Speeds These parameter values can be altered with the ACS 600 running, except those marked with (O). The Range/Unit column in Table 6-3 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-3 Group 12. If a constant speed is activated, the absolute value of the speed is read from parameter group 12. The sign of speed no. 15 is considered when used as a Fault Speed (see Parameters 30.01 AI<MIN FUNCTION and 30.02 PANEL LOSS). In External Control, when External Control Location EXT 1 is selected, constant speeds override other speed references. Constant speed selections are ignored if the torque reference or process PID reference is followed (see the Torque Control and PID Control Macros). In the SCALAR control mode (see Parameter 99.04 MOTOR CTRL MODE), six constant frequencies can be set with Parameters 12.02 to 12.06 and 12.15. By default, the parameter values are set to zero Hz. Parameter Range/Unit Description 1 CONST SPEED SEL (O) NOT SEL; Digital Inputs Constant speed selection 2 CONST SPEED 1 0 ... 18000 rpm Constant speed 1 3 CONST SPEED 2 0 ... 18000 rpm Constant speed 2 4 CONST SPEED 3 0 ... 18000 rpm Constant speed 3 5 CONST SPEED 4 0 ... 18000 rpm Constant speed 4 6 CONST SPEED 5 0 ... 18000 rpm Constant speed 5 7 CONST SPEED 6 0 ... 18000 rpm Constant speed 6 8 CONST SPEED 7 0 ... 18000 rpm Constant speed 7 9 CONST SPEED 8 0 ... 18000 rpm Constant speed 8 10 CONST SPEED 9 0 ... 18000 rpm Constant speed 9 11 CONST SPEED 10 0 ... 18000 rpm Constant speed 10 12 CONST SPEED 11 0 ... 18000 rpm Constant speed 11 13 CONST SPEED 12 0 ... 18000 rpm Constant speed 12 14 CONST SPEED 13 0 ... 18000 rpm Constant speed 13 15 CONST SPEED 14 0 ... 18000 rpm Constant speed 14 16 CONST SPEED 15 -18000 ... 18000 rpm Constant speed 15/ Fault speed
  • 72. Chapter 6 – Parameters 6-12 Firmware Manual 12.01 CONST SPEED SEL This parameter defines which digital inputs are used to select Constant Speeds. NOT SEL Constant speed function disabled. DI1(SPEED1); DI2(SPEED2); DI3(SPEED3); DI4(SPEED4); DI5(SPEED5); DI6(SPEED6) Constant Speeds 1-6 selected with digital inputs DI1-DI6. 24 V DC = Constant Speed activated. DI1,2 Three Constant Speeds (1 ... 3) are selected with two digital inputs. Table 6-4 Constant Speed selection with digital inputs DI1,2. DI3,4 Three Constant Speeds (1 ... 3) are selected with two digital inputs as in DI1,2. DI5,6 Three Constant Speeds (1 ... 3) are selected with two digital inputs as in DI1,2. DI1,2,3 Seven Constant Speeds (1 ... 7) are selected with three digital inputs. Table 6-5 Constant Speed selection with digital inputs DI1,2,3. DI3,4,5 Refer to DI1,2,3. DI1 DI2 Function 0 0 No Constant Speed 1 0 Constant Speed 1 0 1 Constant Speed 2 1 1 Constant Speed 3 DI1 DI2 DI3 Function 0 0 0 No Const. Speed 1 0 0 Constant Speed 1 0 1 0 Constant Speed 2 1 1 0 Constant Speed 3 0 0 1 Constant Speed 4 1 0 1 Constant Speed 5 0 1 1 Constant Speed 6 1 1 1 Constant Speed 7
  • 73. Chapter 6 – Parameters Firmware Manual 6-13 DI4,5,6 Refer to DI1,2,3. DI3,4,5,6 15 Constant Speeds (1 ... 15) are selected with four digital inputs. Table 6-6 Constant Speed selection with digital inputs DI3,4,5,6. DI7(SPEED1); DI8 (SPEED2); DI9(SPEED3); DI10 (SPEED4); DI11(SPEED5); DI12 (SPEED6); DI7,8; DI9,10; DI11,12 For the connection of digital inputs DI7 to DI12, see Group 98 Option Modules. For the function descriptions, see the corresponding selections implemented using DI1 to DI6. DI3 DI4 DI5 DI6 Function 0 0 0 0 No Const. Speed 1 0 0 0 Constant Speed 1 0 1 0 0 Constant Speed 2 1 1 0 0 Constant Speed 3 0 0 1 0 Constant Speed 4 1 0 1 0 Constant Speed 5 0 1 1 0 Constant Speed 6 1 1 1 0 Constant Speed 7 0 0 0 1 Constant Speed 8 1 0 0 1 Constant Speed 9 0 1 0 1 Constant Speed 10 1 1 0 1 Constant Speed 11 0 0 1 1 Constant Speed 12 1 0 1 1 Constant Speed 13 0 1 1 1 Constant Speed 14 1 1 1 1 Constant Speed 15
  • 74. Chapter 6 – Parameters 6-14 Firmware Manual Group 13 Analogue Inputs These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-7 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-7 Group 13. Parameter Range/Unit Description 1 MINIMUM AI1 0 V; 2 V; TUNED VALUE; TUNE Minimum value of AI1. Value to correspond to minimum reference. 2 MAXIMUM AI1 10 V; TUNED VALUE; TUNE Maximum value of AI1. Value to correspond to maximum reference. 3 SCALE AI1 0 ... 100.0 % Scaling factor for AI1. 4 FILTER AI1 0 ... 10 s Filter time constant for AI1. 5 INVERT AI1 NO; YES Analogue input signal 1 inversion. 6 MINIMUM AI2 0 mA; 4 mA; TUNED VALUE; TUNE Minimum value of AI2. Value to correspond to minimum reference. 7 MAXIMUM AI2 20 mA; TUNED VALUE; TUNE Maximum value of AI2. Value to correspond to maximum reference. 8 SCALE AI2 See the corresponding parameters for AI1. 9 FILTER AI2 10 INVERT AI2 11 MINIMUM AI3 12 MAXIMUM AI3 13 SCALE AI3 14 FILTER AI3 15 INVERT AI3 16 MINIMUM AI5 17 MAXIMUM AI5 18 SCALE AI5 19 FILTER AI5 20 INVERT AI5 21 MINIMUM AI6 22 MAXIMUM AI6 23 SCALE AI6 24 FILTER AI6 25 INVERT AI6
  • 75. Chapter 6 – Parameters Firmware Manual 6-15 13.01 MINIMUM AI1 0 V; 2 V; TUNED VALUE; TUNE This parameter sets the minimum value of the signal to be applied to AI1. If AI1 is selected as the signal source for external reference 1 (Par. 11.03) or external reference 2 (Par. 11.06), this value will correspond to the reference defined by Parameter 11.04 EXT REF1 MINIMUM or 11.07 EXT REF2 MINIMUM. Typical minimum values are 0 V or 2 V. To tune the minimum value according to the analogue input signal, press the ENTER key, select TUNE, apply the minimum analogue input signal and press ENTER again. The value is set as the minimum. The readable range in tuning is 0 V to 10 V. The text TUNED VALUE is displayed after the TUNE operation. The ACS 600 has a “living zero” function which allows the protection and supervision circuitry to detect a loss of control signal. To enable this feature, the minimum input signal must be set higher than 0.5 V and Parameter 30.01 AI<MIN FUNCTION must be set accordingly. 13.02 MAXIMUM AI1 10 V; TUNED VALUE; TUNE This parameter sets the maximum value of the signal to be applied to AI1. If AI1 is selected as the signal source for external reference 1 (Par. 11.03) or external reference 2 (Par. 11.06), this value will correspond to the reference defined by Parameter 11.05 EXT REF1 MAXIMUM or 11.08 EXT REF2 MAXIMUM. A typical maximum value is 10 V. To tune the maximum value according to the analogue input signal, press the ENTER key, select TUNE, apply the maximum analogue input signal and press ENTER again. The value is set as the maximum. The readable range in tuning is 0 V to 10 V. The text TUNED VALUE is displayed after TUNE operation. 13.03 SCALE AI1 Scaling factor for analogue input AI1 signal. See Figure 6-5. 13.04 FILTER AI1 Filter time constant for analogue input AI1. As the analogue input value changes, 63 % of the change takes place within the time specified by this parameter. Note: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters.
  • 76. Chapter 6 – Parameters 6-16 Firmware Manual Figure 6-4 Filter time constant for analogue input AI1. 13.05 INVERT AI1 NO; YES If this parameter is set to YES, the maximum value of the analogue input signal corresponds to minimum reference and the minimum value of the analogue input signal corresponds to maximum reference. 13.06 MINIMUM AI2 0 mA; 4 mA; TUNED VALUE; TUNE This parameter sets the minimum value of the signal to be applied to analogue input AI2. If AI2 is selected as the signal source for external reference 1 (Par. 11.03) or external reference 2 (Par. 11.06), this value will correspond to the reference set by Parameter 11.04 EXT REF1 MINIMUM or 11.07 EXT REF2 MINIMUM. Typical minimum values are 0 mA or 4 mA. To tune the minimum value according to the analogue input signal, press the ENTER key, select TUNE, apply the minimum analogue input signal and press ENTER again. The value is set as the minimum. The readable range in tuning is 0 mA to 20 mA. The text TUNED VALUE is displayed after the TUNE operation. The ACS 600 has a “living zero” function which allows the protection and supervision circuitry to detect a loss of signal. To enable this feature, the minimum input signal must be greater than 1 mA. 13.07 MAXIMUM AI2 20 mA; TUNED VALUE; TUNE This parameter sets the maximum value of the signal to be applied to AI2. If AI2 is selected as the signal source for external reference 1 (Parameter 11.03 EXT REF1 SELECT (O)) or external reference 2 (Parameter 11.06 EXT REF2 SELECT (O)), this value will correspond to the reference defined by Parameter 11.05 EXT REF1 MAXIMUM or 11.08 EXT REF2 MAXIMUM. A typical maximum value is 20 mA. To tune the maximum value according to the analogue input signal, press the ENTER key, select TUNE, apply the maximum analogue input signal and press ENTER again. The values is set as the 63 [%] 100 Time constant t Filtered Signal Unfiltered Signal
  • 77. Chapter 6 – Parameters Firmware Manual 6-17 maximum. The readable range in tuning is 0 mA to 20 mA. The text TUNED VALUE is displayed after TUNE operation. 13.08 SCALE AI2 Refer to Parameter 13.03 SCALE AI1. 13.09 FILTER AI2 Refer to Parameter 13.04 FILTER AI1. 13.10 INVERT AI2 Refer to Parameter 13.05 INVERT AI1. 13.11 MINIMUM AI3 Refer to Parameter 13.06 MINIMUM AI2. 13.12 MAXIMUM AI3 Refer to Parameter 13.07 MAXIMUM AI2. 13.13 SCALE AI3 Refer to Parameter 13.03 SCALE AI1. 13.14 FILTER AI3 Refer to Parameter 13.04 FILTER AI1. 13.15 INVERT AI3 Refer to Parameter 13.05 INVERT AI1. 13.16 MINIMUM AI5 Refer to Parameter 13.06 MINIMUM AI2. 13.17 MAXIMUM AI5 Refer to Parameter 13.07 MAXIMUM AI2. 13.18 SCALE AI5 Refer to Parameter 13.03 SCALE AI1. 13.19 FILTER AI5 Refer to Parameter 13.04 FILTER AI1. 13.20 INVERT AI5 Refer to Parameter 13.05 INVERT AI1. 13.21 MINIMUM AI6 Refer to Parameter 13.06 MINIMUM AI2. 13.22 MAXIMUM AI6 Refer to Parameter 13.07 MAXIMUM AI2. 13.23 SCALE AI6 Refer to Parameter 13.03 SCALE AI1. 13.24 FILTER AI6 Refer to Parameter 13.04 FILTER AI1. 13.25 INVERT AI6 Refer to Parameter 13.05 INVERT AI1. Figure 6-5 Example of scaling of analogue inputs. External reference 1 has been selected by Parameter 11.03 EXT REF1 SELECT (O) as AI1 + AI3 and the maximum value for it (1500 rpm) by Parameter 11.05 EXT REF1 MAXIMUM. The scale for analogue input AI1 is set to 100 % by Parameter 13.03 SCALE AI1. The scale for analogue input AI3 is set to 10 % by Parameter 13.13 SCALE AI3. 60 % 40 % 150 rpm1500 rpm10 V SCALE AI1 100 % SCALE AI3 10 % 0 V 0 mA 20 mA EXT REF1 MAXIMUM 1500 rpm EXT REF1 600 rpm 90 rpm 690 rpm AI1 + AI3 = 0 rpm
  • 78. Chapter 6 – Parameters 6-18 Firmware Manual Group 14 Relay Outputs These parameter values can only be altered when the ACS 600 is stopped. The text following Table 6-8 below explains the parameters in detail. Table 6-8 Group 14. 14.01 RELAY RO1 OUTPUT This parameter allows you to select which information is indicated with relay output 1. NOT USED READY The ACS 600 is ready to function. The relay is energised unless no run enable signal is present or a fault exists. RUNNING The ACS 600 has been started, run enable signal is active, and no active faults exist. FAULT A fault has occurred. See Chapter 7 – Fault Tracing for more details. FAULT (-1) Relay energised when power is applied, and de-energised upon a fault trip. FAULT(RST) The ACS 600 is in a fault condition, but will reset after the programmed autoreset delay (refer to Parameter 31.03 DELAY TIME). Parameter Range/Unit Description 1 RELAY RO1 OUTPUT Refer to the text below for the available selections. Relay output 1 content. 2 RELAY RO2 OUTPUT Relay output 2 content. 3 RELAY RO3 OUTPUT Relay output 3 content. 4 RO1 TON DELAY 0.0 to 3600.0 s Operation delay of the relay 5 RO1 TOFF DELAY 0.0 to 3600.0 s Release delay of the relay 6 RO2 TON DELAY 0.0 to 3600.0 s Operation delay of the relay 7 RO2 TOFF DELAY 0.0 to 3600.0 s Release delay of the relay 8 RO3 TON DELAY 0.0 to 3600.0 s Operation delay of the relay 9 RO3 TOFF DELAY 0.0 to 3600.0 s Release delay of the relay 10 NDIO MOD1 RO1 READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED; POINTER1 (or POINTER2 or POINTER3) Drive status indicated by a relay output of the optional Digital I/O Extension Module (NDIO).11 NDIO MOD1 RO2 12 NDIO MOD2 RO1 13 NDIO MOD2 RO2 14 NDIO MOD3 RO1 15 NDIO MOD3 RO2
  • 79. Chapter 6 – Parameters Firmware Manual 6-19 STALL WARN Stall alarm has been activated (refer to Parameter 30.10 STALL FUNCTION). STALL FLT Stall protection has tripped (refer to Parameter 30.10 STALL FUNCTION). MOT TEMP WRN Motor temperature has exceeded the warning level. MOT TEMP FLT Motor thermal protection has tripped. ACS TEMP WRN The ACS 600 temperature has exceeded the warning level 115 °C (239 °F). ACS TEMP FLT The ACS 600 overheat protection has tripped. The tripping level is 125 °C (257 °F). FAULT/WARN Any fault or warning has occurred. WARNING Any warning has occurred. REVERSED Motor rotates in reverse direction. EXT CTRL External control is selected. REF 2 SEL Reference 2 is selected. CONST SPEED A Constant Speed (1 ... 15) is selected. DC OVERVOLT The intermediate circuit DC voltage has exceeded the overvoltage limit. DC UNDERVOL The intermediate circuit DC voltage has fallen below the undervoltage limit. SPEED 1 LIM Output speed has exceeded or fallen below the supervision limit 1. Refer to Parameter 32.01 SPEED1 FUNCTION and Parameter 32.02 SPEED1 LIMIT. SPEED 2 LIM Output speed has exceeded or fallen below the supervision limit 2. Refer to Parameter 32.03 SPEED2 FUNCTION and Parameter 32.04 SPEED2 LIMIT.
  • 80. Chapter 6 – Parameters 6-20 Firmware Manual CURRENT LIM Motor current has exceeded or fallen below the set current supervision limit. Refer to Parameter 32.05 CURRENT FUNCTION and Parameter 32.06 CURRENT LIMIT. REF 1 LIM Reference 1 has exceeded or fallen below the set supervision limit. Refer to Parameter 32.11 REF1 FUNCTION and Parameter 32.12 REF1 LIMIT. REF 2 LIM Reference 2 has exceeded or fallen below the set supervision limit. Refer to Parameter 32.13 REF2 FUNCTION and Parameter 32.14 REF2 LIMIT. TORQUE 1 LIM The motor torque has exceeded or fallen below the set supervision limit. Refer to Parameter 32.07 TORQUE1 FUNCTION and Parameter 32.08 TORQUE1 LIMIT. TORQUE 2 LIM The motor torque has exceeded or fallen below the set supervision limit. Refer to Parameter 32.09 TORQUE2 FUNCTION and Parameter 32.10 TORQUE2 LIMIT. STARTED The ACS 600 has received a Start command. LOSS OF REF The reference has been lost. AT SPEED The actual value has reached the reference value. The speed error is max. 10 % of the nominal speed in the speed control mode. ACT1 LIM PID controller actual value 1 has exceeded or fallen below the set supervision limit. Refer to Parameter 32.15 ACT1 FUNCTION and Parameter 32.16 ACT1 LIMIT. ACT2 LIM PID controller actual value 2 has exceeded or fallen below the set supervision limit. Refer to Parameter 32.17 ACT2 FUNCTION and Parameter 32.18 ACT2 LIMIT. COMM. MODULE The relay is controlled by fieldbus reference REF3. See Appendix C – Fieldbus Control. POINTER1 The relay output is controlled by a status bit selected using Parameters 45.01 POINTER1 GRP+IND and 45.02 POINTER1 BIT. BRAKE CTRL The relay output is controlled by a brake control function. See Group 42 Brake Control.
  • 81. Chapter 6 – Parameters Firmware Manual 6-21 14.02 RELAY RO2 OUTPUT Refer to Parameter 14.01 RELAY RO1 OUTPUT. Difference: • POINTER1 is replaced with POINTER2. The relay is controlled by a status bit selected using Parameters 45.03 POINTER2 GRP+IND and 45.04 POINTER2 BIT. 14.03 RELAY RO3 OUTPUT Refer to Parameter 14.01 RELAY RO1 OUTPUT. Differences: • ACT 1 LIM and ACT 2 LIM indications cannot be selected for RO3. • POINTER1 is replaced with POINTER3. The relay is controlled by a status bit selected using Parameters 45.05 POINTER3 GRP+IND and 45.06 POINTER3 BIT. • MAGN READY can be selected for RO3 only. The motor is magnetised and ready to give nominal torque (nominal magnetising of the motor has been reached). • USER 2 SEL can be selected for RO3 only. The User Macro 2 has been loaded. 14.04 RO1 TON DELAY Sets an operation delay for relay output RO1. 0.0 s to 3600.0 s Default value is 0.0 s. 14.05 RO1 TOFF DELAY Sets the release delay for relay output RO1. See Parameter 14.04 RO1 TON DELAY for more information. 14.06 RO2 TON DELAY Sets the operation delay for relay output RO2. See Parameter 14.04 RO1 TON DELAY for more information. 14.07 RO2 TOFF DELAY Sets the release delay for relay output RO2. See Parameter 14.04 RO1 TON DELAY for more information. 14.08 RO3 TON DELAY Sets the operation delay for relay output RO3. See Parameter 14.04 RO1 TON DELAY for more information. 14.09 RO3 TOFF DELAY Sets the release delay for relay output RO3. See Parameter 14.04 RO1 TON DELAY for more information. “1” “0” “1” “0” time tOn tOff tOn tOff tOn Operation delay for relay output RO1 (14.04 RO1 TON DELAY) tOff Release delay for relay output RO1 (14.05 RO1 TOFF DELAY) Drive status Relay RO1 status
  • 82. Chapter 6 – Parameters 6-22 Firmware Manual 14.10 NDIO MOD1 RO1 Selects the drive status that is indicated by relay output RO1 of the optional Digital I/O Extension Module no. 1 (see Parameter 98.03 DI/O EXT MODULE 1). READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED READY is the default value. See Parameter 14.01 RELAY RO1 OUTPUT for more information on the selections. POINTER1 The relay output is controlled by a status bit selected using Parameters 45.01 POINTER1 GRP+IND and 45.02 POINTER1 BIT. 14.11 NDIO MOD1 RO2 Selects the drive status that is indicated by relay output RO2 of the optional Digital I/O Extension Module no. 1 (see Parameter 98.03 DI/O EXT MODULE 1). READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED RUNNING is the default value. See Parameter 14.01 RELAY RO1 OUTPUT for more information on the selections. POINTER2 The relay is controlled by a status bit selected using Parameters 45.03 POINTER2 GRP+IND and 45.04 POINTER2 BIT. 14.12 NDIO MOD2 RO1 Selects the drive status that is indicated by relay output RO1 of the optional Digital I/O Extension Module no. 2 (see Parameter 98.04 DI/O EXT MODULE 2). READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED FAULT is the default value. See Parameter 14.01 RELAY RO1 OUTPUT for more information on the selections. POINTER3 The relay is controlled by a status bit selected using Parameters 45.05 POINTER3 GRP+IND and 45.06 POINTER3 BIT. 14.13 NDIO MOD2 RO2 Selects the drive status that is indicated by relay output RO2 of the optional Digital I/O Extension Module no. 2 (see Parameter 98.04 DI/O EXT MODULE 2). READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED WARNING is the default value. See Parameter 14.01 RELAY RO1 OUTPUT for more information on the selections. POINTER4 The relay is controlled by a status bit selected using Parameters 45.07 POINTER4 GRP+IND and 45.08 POINTER4 BIT. 14.14 NDIO MOD3 RO1 Selects the drive status that is indicated by relay output RO1 of the optional Digital I/O Extension Module no. 3 (see Parameter 98.05 DI/O EXT MODULE 3). READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED REF 2 SEL is the default value. See Parameter 14.01 RELAY RO1 OUTPUT for more information on the selections.
  • 83. Chapter 6 – Parameters Firmware Manual 6-23 POINTER5 The relay is controlled by a status bit selected using Parameters 45.09 POINTER5 GRP+IND and 45.10 POINTER5 BIT. 14.15 NDIO MOD3 RO2 Selects the drive status that is indicated by relay output RO2 of the optional Digital I/O Extension Module no. 3 (see Parameter 98.05 DI/O EXT MODULE 3). READY; RUNNING; FAULT; WARNING; REF 2 SEL; AT SPEED AT SPEED is the default value. See Parameter 14.01 RELAY RO1 OUTPUT for more information on the selections. POINTER6 The relay is controlled by a status bit selected using Parameters 45.11 POINTER6 GRP+IND and 45.12 POINTER6 BIT.
  • 84. Chapter 6 – Parameters 6-24 Firmware Manual Group 15 Analogue Outputs These parameter values can be altered with the ACS 600 running, except those marked with (O). The Range/Unit column in Table 6-9 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-9 Group 15. 15.01 ANALOGUE OUTPUT1 (O) This parameter allows you to select which output signal is connected to analogue output AO1 (current signal). The following list shows the full scale value with Parameters 15.05 SCALE AO1 and 15.10 SCALE AO2 set to 100 %. NOT USED P SPEED Value of a process quantity derived from the motor speed. Refer to Group 34 Process Variable for scaling and unit selection (%; m/s; rpm). The updating interval is 100 ms. SPEED Motor speed. 20 mA = motor nominal speed. The updating interval is 24 ms. Parameter Range/Unit Description 1 ANALOGUE OUTPUT 1 (O) Refer to the text below for the available selections. Analogue output 1 content. 2 INVERT AO1 NO; YES Analogue output signal 1 inversion. 3 MINIMUM AO1 0 mA; 4 mA Analogue output signal 1 minimum. 4 FILTER AO1 0.00 ... 10.00 s Filter time constant for AO1. 5 SCALE AO1 10 ... 1000 % Analogue output signal 1 scaling factor. 6 ANALOGUE OUTPUT 2 (O) Refer to the text below for the available selections. Analogue output 2 content. 7 INVERT AO2 NO; YES Analogue output signal 2 inversion. 8 MINIMUM AO2 0 mA; 4 mA Analogue output signal 2 minimum. 9 FILTER AO2 0.00 ... 10.00 s Filter time constant for AO2. 10 SCALE AO2 10 ... 1000 % Analogue output signal 2 scaling factor.
  • 85. Chapter 6 – Parameters Firmware Manual 6-25 FREQUENCY Output frequency. 20 mA = motor nominal frequency. The updating interval is 24 ms. CURRENT Output current. 20 mA = motor nominal current. The updating interval is 24 ms. TORQUE Motor torque. 20 mA = 100 % of motor nominal rating. The updating interval is 24 ms. POWER Motor power. 20 mA = 100 % of motor nominal rating. The updating interval is 100 ms. DC BUS VOLT DC bus voltage. 20 mA = 100 % of the reference value. The reference value is 540 V d.c. ( =1.35 · 400 V) for the ACS 600 with 380 ... 415 V a.c. mains voltage rating and 675 V d.c. (1.35 · 500 V) for the ACS 600 with 380 ... 500 V a.c. mains voltage rating. The updating interval is 24 ms. OUTPUT VOLT Motor voltage. 20 mA = motor rated voltage. The updating interval is 100 ms. APPL OUTPUT The reference which is given as output from the application. For example, if the PID Control macro is in use, this is the output of the process PID controller. The updating interval is 24 ms. REFERENCE Active reference that the ACS 600 is currently following. 20 mA = 100 % of the active reference. The updating interval is 24 ms. CONTROL DEV The difference between the reference and the actual value of the Process PID Controller. 0/4 mA = -100 %, 10/12 mA = 0 %, 20 mA = 100 %. The updating interval is 24 ms. ACTUAL 1 Actual value 1 of the process PID controller. 20 mA = value of Parameter 40.10 ACT1 MAXIMUM. The updating interval is 24 ms. ACTUAL 2 Actual value 2 of the process PID controller. 20 mA = value of Parameter 40.12 ACT2 MAXIMUM. The updating interval is 24 ms. COMM. MODULE The value is read from fieldbus reference REF4. See Appendix C – Fieldbus Control. M1 TEMP MEAS Analogue output is a current source in a motor temperature measuring circuit. Depending on the sensor type, the output is 9.1 mA (Pt 100) or
  • 86. Chapter 6 – Parameters 6-26 Firmware Manual 1.6 mA (PTC). For more information, see Parameter 35.01 MOT1 TEMP AI1 SEL. If this value is selected, the settings of Parameters 15.02 INVERT AO1 to 15.05 SCALE AO1 are not effective. 15.02 INVERT AO1 If you select YES, the analogue output AO1 signal is inverted. 15.03 MINIMUM AO1 The minimum value of the analogue output signal can be set to either 0 mA or 4 mA. 15.04 FILTER AO1 Filter time constant for analogue output AO1. As the analogue output value changes, 63 % of the change takes place within the time period specified by this parameter (See Figure 6-4). Note: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters. 15.05 SCALE AO1 This parameter is the scaling factor for the analogue output AO1 signal. If the selected value is 100 %, the nominal value of the output signal corresponds to 20 mA. If the maximum is less than full scale, increase the value of this parameter. Example: The nominal motor current is 7.5 A and the measured maximum current at maximum load is 5 A. The motor current 0 to 5 A is read as 0 to 20 mA analogue signal through AO1. 1. AO1 is set to CURRENT with Parameter 15.01 ANALOGUE OUTPUT1 (O). 2. AO1 minimum is set to 0 mA with Parameter 15.03 MINIMUM AO1. 3. The measured maximum motor current is scaled to correspond to 20 mA analogue output signal: The reference value of the output signal CURRENT is the motor nominal current i.e. 7.5 A (see Parameter 15.01 ANALOGUE OUTPUT1 (O)). With 100 % scaling, the reference value corresponds to full scale output signal 20 mA. To make the measured maximum motor current correspond to 20 mA, it should be scaled equal to the reference value before it is converted to analogue output signal. Thus the scaling factor is set to 150 %. 15.06 ANALOGUE OUTPUT2 (O) Refer to Parameter 15.01 ANALOGUE OUTPUT1 (O). Exceptions: • If COMM. MODULE is selected, the value is read from fieldbus reference REF 5. See Appendix C – Fieldbus Control. • Selection M1 TEMP MEAS is not available. 15.07 INVERT AO2 Refer to Parameter 15.02 INVERT AO1. k · 5 A = 7.5 A => k = 1.5 = 150 %
  • 87. Chapter 6 – Parameters Firmware Manual 6-27 15.08 MINIMUM AO2 Refer to Parameter 15.03 MINIMUM AO1. 15.09 FILTER AO2 Refer to Parameter 15.04 FILTER AO1. 15.10 SCALE AO2 Refer to Parameter 15.05 SCALE AO1.
  • 88. Chapter 6 – Parameters 6-28 Firmware Manual Group 16 System Ctr Inputs These parameter values can only be altered with the ACS 600 stopped. The Range/Unit column in Table 6-10 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-10 Group 16. 16.01 RUN ENABLE This parameter selects the source of the run enable signal. Indication of missing Run Enable signal is shown on the first row of the Control Panel display (see Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel). YES Run enable signal is active. The ACS 600 is ready to start without an external run enable signal. DI1 ... DI12 To activate the Run Enable signal, the selected digital input must be connected to +24 V DC. If the voltage drops to 0 V DC, the ACS 600 will stop and will not start until the run enable signal resumes. The drive stop mode is selected with Parameter 21.07 RUN ENABLE FUNC. For the connection of DI7 to DI12 see Group 98 Option Modules. COMM. MODULE The signal is given through Fieldbus Control Word. See Appendix C – Fieldbus Control. 16.02 PARAMETER LOCK This parameter selects the state of the Parameter Lock. With Parameter Lock you can inhibit unauthorised parameter changes. OPEN Parameter Lock is open. Parameters can be altered. Parameter Range/Unit Description 1 RUN ENABLE YES; DI1; ...; DI12; COMM. MODULE Run enable input. 2 PARAMETER LOCK OPEN; LOCKED; Parameter lock input. 3 PASS CODE 0 ... 30000 Parameter lock pass code. 4 FAULT RESET SEL NOT SEL; DI1; ... ;DI6; ON STOP; COMM. MODULE; DI7; ... ; DI12 Fault reset input. 5 USER MACRO IO CHG NOT SEL; DI1; ... ; DI12 Restores parameters to user macro setting values. 6 LOCAL LOCK OFF; ON Disables local control (Panel) 7 PARAM SAVE SAVE..; DONE Parameter saving to the permanent memory
  • 89. Chapter 6 – Parameters Firmware Manual 6-29 LOCKED Parameter Lock is closed from the Control Panel. Parameters cannot be altered. The Parameter Lock can be opened only by entering the valid code at Parameter 16.03 PASS CODE. 16.03 PASS CODE This parameter selects the Pass Code for the Parameter Lock. The default value of this parameter is 0. In order to open the Parameter Lock change the value to 358. After the Parameter Lock is opened the value is automatically changed back to 0. 16.04 FAULT RESET SEL NOT SEL If you select NOT SEL, fault reset is executed from the Control Panel keypad only. DI1 ... DI12 If a digital input is selected, fault reset is executed through the digital input, or from the Control Panel: • Control Panel is in remote mode: Reset is activated by a rising (positive) edge of the digital input signal i.e. by closing the normally open contact connecting 24 VDC to the digital input terminal. • Control Panel is in local mode: Reset is activated by the Control Panel reset key. For the connection of DI7 to DI12, see Group 98 Option Modules. ON STOP Fault reset is executed along with the stop signal received through a digital input. Reset can be given from the Control Panel also. COMM. MODULE The signal is given through fieldbus Control Word. See Appendix C – Fieldbus Control. Reset can be given from the Control Panel also. 16.05 USER MACRO IO CHG NOT SEL; DI1 ... DI12 This parameter enables the selection of the desired User Macro via a digital input in the following way: When the state of the specified digital input changes from high to low User Macro 1 is loaded. When the state of the specified digital input changes from low to high User Macro 2 is loaded. The User Macro used can be changed via a digital input only when the drive is stopped. During the change of the Macro the drive will not start. The value of this parameter is not included in the User Macro. The setting once made remains despite of the User Macro change. User Macro 2 selection can be supervised via relay output 3. See Parameter 14.03 RELAY RO3 OUTPUT for more information. Note: Always redo the User Macro save by Parameter 99.02 APPLICATION MACRO after changing parameter settings or reperforming the motor identification. If Parameter 16.05 USER
  • 90. Chapter 6 – Parameters 6-30 Firmware Manual MACRO IO CHG is pointing to digital input, the last settings saved by the user are loaded into use whenever the power is switched off and on again, or macro is changed. Any unsaved changes will be lost. For the connection of DI7 to DI12, see Group 98 Option Modules. 16.06 LOCAL LOCK OFF No local lock in use. ON Disables entering to local control mode (LOC/REM key of the Panel). WARNING: Before activating this function it must be ensured that the Control Panel is not needed for stopping the drive. 16.07 PARAM SAVE SAVE..; DONE Selection SAVE saves parameter values to the permanent memory. Note: A new parameter value of a standard macro is saved automatically when changed from the Panel but not when altered through a fieldbus connection.
  • 91. Chapter 6 – Parameters Firmware Manual 6-31 Group 20 Limits These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-11 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-11 Group 20. Parameter Range/Unit Description 1 MINIMUM SPEED -18000/(number of pole pairs)... 20.02 MAXIMUM SPEED Operating range minimum speed. Cannot be used in the SCALAR mode. 2 MAXIMUM SPEED 20.01 MINIMUM SPEED ... 18000/(number of pole pairs) Operating range maxi- mum speed. Cannot be used in the SCALAR mode. 3 MAXIMUM CURRENT 0 % Ihd ... 200 % Ihd Maximum output current. 4 MAXIMUM TORQUE 0.0 % ... 600.0 % Maximum torque. Cannot be used in the SCALAR mode. 5 OVERVOLTAGE CTRL YES; NO DC overvoltage controller 6 UNDERVOLTAGE CTRL YES; NO DC undervoltage control- ler 7 MINIMUM FREQ -300 Hz ... 50 Hz Operating range mini- mum frequency. Visible in the SCALAR mode only. 8 MAXIMUM FREQ -50 ... 300 Hz Operating range maxi- mum frequency. Visible in the SCALAR mode only. 9 MIN TORQ SELECTOR -MAX TORQ; SET MIN TORQ Minimum torque limit selector. Cannot be used in the SCALAR mode. 10 SET MIN TORQUE -600.0 % ... 0.0 % Minimum torque value, when Parameter 20.09 MIN TORQ SELECTOR is SET MIN TORQ. Cannot be used in the SCALAR mode. 11 P MOTORING LIMIT 0%...600% Limit for the maximum power from inverter to motor 12 P GENERATING LIMIT -600% .. 0% Limit for the maximum power from motor to inverter
  • 92. Chapter 6 – Parameters 6-32 Firmware Manual 20.01 MINIMUM SPEED Represents the minimum speed. The default value depends on the number of motor pole pairs and it is either -750, -1000, -1500 or -3000. When the value is positive the motor will not run in the reverse direction. This limit cannot be set in the SCALAR control mode. Note: The speed limits in Group 20 Limits are linked to the setting of 99.08 MOTOR NOM SPEED. If value of Parameter 99.08 MOTOR NOM SPEED is changed, the speed limit settings change automatically as well. 20.02 MAXIMUM SPEED Represents the maximum speed. The default value depends on the selected motor and it is either 750, 1000, 1500 or 3000. This limit cannot be set in the SCALAR control mode. Note: The speed limits in Group 20 Limits are linked to the setting of 99.08 MOTOR NOM SPEED. If value of Parameter 99.08 MOTOR NOM SPEED is changed, the speed limit settings change automatically as well. 20.03 MAXIMUM CURRENT The maximum output current that the ACS 600 will supply to the motor. The default value is 200 % I2hd e.g. 200 percentage of the heavy-duty use output current of the ACS 600. 20.04 MAXIMUM TORQUE This setting defines the momentarily allowed maximum torque of the motor in the forward direction. The motor control software of the ACS 600 limits the setting range of the maximum torque according to the inverter and motor data. The default value is 300 % of the nominal torque of the motor. This limit cannot be set in the SCALAR control mode. 20.05 OVERVOLTAGE CTRL Selection NO deactivates the overvoltage controller. Fast braking of a high inertia load causes the DC bus voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque. CAUTION! If a braking chopper and a braking resistor are connected to the ACS 600, this parameter value must be set to OFF to ensure proper operation of the chopper. 20.06 UNDERVOLTAGE CTRL Selection NO deactivates the undervoltage controller. If the DC bus voltage drops due to loss of input power, the undervoltage controller will decrease the motor speed in order to keep the DC bus voltage above the lower limit. By decreasing the motor speed, the inertia of the load will cause regeneration back into the ACS 600, keeping the DC bus charged, and preventing an undervoltage trip.
  • 93. Chapter 6 – Parameters Firmware Manual 6-33 This will increase power loss ride through on systems with a high inertia, such as a centrifuge or fan. 20.07 MINIMUM FREQ This limit can be set in the SCALAR control mode only. When the value is positive the motor will not run in the reverse direction. 20.08 MAXIMUM FREQ This limit can be set in the SCALAR control mode only. 20.09 MIN TORQ SELECTOR Parameter defines the allowed minimum torque i.e. the allowed torque in reverse (negative) rotation direction. This parameter cannot be set in the SCALAR control mode. -MAX TORQ Minimum torque limit is equal to the inverted maximum limit (20.04 MAXIMUM TORQUE). SET MIN TORQ Minimum torque limit is defined with Parameter 20.10 SET MIN TORQUE. 20.10 SET MIN TORQUE Parameter defines the allowed minimum torque of the motor when Parameter 20.09 MIN TORQ SELECTOR is set to value SET MIN TORQ. This parameter cannot be set in the SCALAR control mode. -600 % ... 0% Minimum torque limit in percent of the nominal motor torque. Default value is -300 %. 20.11 P MOTORING LIMIT Parameter defines the allowed maximum power fed by the inverter to the motor. 0% ... 600% Maximum motoring power limit in percent of the motor nominal power. Default value is 300%. 20.12 P GENERATING LIMIT Parameter defines the allowed maximum power fed by the motor to the inverter. -600% ... 0% Maximum generating power limit in percent of the motor nominal power. Default value is -300%.
  • 94. Chapter 6 – Parameters 6-34 Firmware Manual Group 21 Start/Stop The parameter values marked with (O) cannot be altered with the ACS 600 running. The Range/Unit column in Table 6-12 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-12 Group 21. 21.01 START FUNCTION (O) AUTOMATIC Automatic start is the default start function. This selection guarantees optimal motor start in most cases. It includes the flying start (starting to a rotating machine) and the automatic restart (stopped motor can be restarted immediately without waiting the motor flux to die away) functions. The ACS 600 motor control identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions. AUTOMATIC is always to be selected in the scalar control mode (see Parameter 99.04 MOTOR CTRL MODE) although no flying start or automatic restart is possible by default in scalar control. The flying start feature needs to be activated separately with Parameter 21.08 SCALAR FLY START. DC MAGN DC magnetising should be selected if high breakaway torque is required. The ACS 600 pre-magnetises the motor before the start. The pre-magnetising time is determined automatically, being typically 200 ms to 2 s depending on the motor size. This selection guarantees the highest possible break-away torque. The starting to a rotating machine is not possible when DC magnetising is selected. DC magnetising cannot be selected in the scalar control mode (see Parameter 99.04 MOTOR CTRL MODE). Parameter Range/Unit Description 1 START FUNCTION (O) AUTO; DC MAGN; CNST DC MAGN Start function selection. 2 CONST MAGN TIME (O) 30.0 ms ... 10000.0 ms Time for pre–magnetising. 3 STOP FUNCTION COAST; RAMP Stop function selection. 4 DC HOLD NO; YES Enable DC Hold. 5 DC HOLD SPEED (O) 0 rpm ... 3000 rpm Speed for DC Hold. 6 DC HOLD CURR (O) 0 % ... 100 % Current for DC Hold. 07 RUN ENABLE FUNC RAMP STOP; COAST STOP; OFF2 STOP; OFF3 STOP Drive stop mode for the run enable function 8 SCALAR FLY START NO; YES Activation of the flying start feature in scalar control mode.
  • 95. Chapter 6 – Parameters Firmware Manual 6-35 CNST DC MAGN Constant DC magnetising should be selected instead of DC magnetising if constant pre-magnetising time is required (e.g. if the motor start must be simultaneous with a mechanical brake release). This selection also guarantees the highest possible break-away torque when the pre-magnetising time is set long enough. The pre- magnetising time is defined by Parameter 21.02 CONST MAGN TIME (O). WARNING! The drive will start after the set magnetising time has passed although the motor magnetisation is not completed. In applications where a full breakaway torque is essential, ensure always that the constant magnetising time is long enough to allow generation of full magnetisation and torque. The starting to a rotating machine is not possible when DC magnetising is selected. DC magnetising cannot be selected in the scalar control mode (see Parameter 99.04 MOTOR CTRL MODE. 21.02 CONST MAGN TIME (O) Defines the magnetising time in the constant magnetising mode. After the start command the ACS 600 automatically pre-magnetises the motor the set time. To ensure full magnetising, set the value the same as or higher than the rotor time constant. If not known, use the rule-of-thumb value given in table below: 21.03 STOP FUNCTION COAST The ACS 600 stops supplying voltage immediately after a Stop command is received and the motor coasts to a stop. RAMP Ramp deceleration, as defined by the active deceleration time, Parameter 22.03 DECEL TIME 1 or Parameter 22.05 DECEL TIME 2. Warning: If the brake control function is on, the application program uses ramp stop in spite of the selection COAST (see Group 42 Brake Control 21.04 DC HOLD If this parameter is set to YES, the DC Hold feature is enabled. Motor Rated Power Constant Magnetising Time < 10 kW > 100 to 200 ms 10 to 200 kW > 200 to 1000 ms 1200 to 1000 kW > 1000 to 2000 ms
  • 96. Chapter 6 – Parameters 6-36 Firmware Manual DC Hold is not possible in the SCALAR control mode. Figure 6-6 DC Hold. When both reference and speed drop below Parameter 21.05 DC HOLD SPEED (O), the ACS 600 will stop generating sinusoidal current and inject DC into the motor. The current value is the current set by Parameter 21.06 DC HOLD CURR (O). When the reference speed rises above 21.05 DC HOLD SPEED (O), the DC will be removed and normal ACS 600 function resumed. DC Hold has no effect if the Start signal is deactivated. Note: Injecting DC current into the motor causes the motor to heat up. In applications where long DC Hold times are required, externally ventilated motors should be used. If the DC Hold period is long, the DC Hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor. 21.05 DC HOLD SPEED (O) Sets the speed limit for DC Hold. 21.06 DC HOLD CURR (O) Sets the current applied to the motor when DC Hold is activated. 21.07 RUN ENABLE FUNC Parameter selects which stop mode is applied when the run enable signal is switched off. The run enable signal is put into use by Parameter 16.01 RUN ENABLE. The setting overrides the normal stop mode setting (Parameter 21.03 STOP FUNCTION) when the run enable signal is switched off. WARNING! The drive will restart after the run enable signal restores (if the START signal is on). DC HOLD SPEED t t SPEEDmotor Ref. DC Hold
  • 97. Chapter 6 – Parameters Firmware Manual 6-37 Warning: If the brake control function is on, the application program uses ramp stop in spite of the selection COAST STOP (see Group 42 Brake Control). RAMP STOP This is the default value. The application program stops the drive along the deceleration ramp defined by Parameters in Group 22 Accel/Decel. COAST STOP The application program stops the drive by cutting off the motor power supply (the inverter IGBTs are blocked). The motor rotates freely to zero speed. OFF2 STOP The application program stops the drive by cutting off the motor power supply (the inverter IGBTs are blocked). The motor rotates freely to zero speed. The drive will restart only when the run enable signal is on and the START signal is switched on (progam receives a rising edge of the START signal). OFF3 STOP The application program stops the drive along the deceleration ramp defined by Parameter 22.07 EM STOP RAMP TIME. The drive will restart only when the run enable is on and the START signal is switched on (progam receives a rising edge of the START signal). 21.08 SCALAR FLY START This Parameter activates the flying start feature in the scalar control mode. See Parameters 21.01 START FUNCTION (O) and 99.04 MOTOR CTRL MODE. NO Flying start feature is not active. This is the default setting. YES Flying start feature is active.
  • 98. Chapter 6 – Parameters 6-38 Firmware Manual Group 22 Accel/Decel These parameter values can be altered with the ACS 600 running, except those marked with (O). The Range/Unit column in Table 6-13 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-13 Group 22. 22.01 ACC/DEC 1/2 SEL (O) This parameter selects the Acceleration/Deceleration Ramp pair that is used. The selection can be performed through digital inputs DI1 to DI12. 0 V DC = Acceleration ramp 1 and Deceleration ramp 1 are used; 24 V DC = Acceleration ramp 2 and Deceleration ramp 2 are used. For the connection of DI7 to DI12, see Group 98 Option Modules. 22.02 ACCEL TIME 1 The time required for the speed to change from 0 to the maximum speed. The maximum speed is defined with Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of the minimum limit is greater than the maximum limit. If the reference signal changes at a rate slower than the acceleration time, the motor speed will follow the reference signal. If the reference signal changes faster than the acceleration time, the rate at which the motor speeds up will be limited by this parameter. If acceleration time is set too short, the ACS 600 will automatically prolong the acceleration not to exceed the maximum current limit (Parameter 20.03 MAXIMUM CURRENT). 22.03 DECEL TIME 1 The time required for the speed to change from maximum to zero. The maximum speed is defined with Parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED, if the absolute value of the minimum limit is greater than the maximum limit. Parameter Range/Unit Description 1 ACC/DEC 1/2 SEL (O) ACC/DEC 1; ACC/DEC 2; DI1 ... DI12 Acceleration/Deceleration ramp selection. 2 ACCEL TIME 1 0.00 ... 1800.00 s Time for speed 0 to max. speed (Acceleration ramp 1). 3 DECEL TIME 1 0.00 ... 1800.00 s Time for max. speed to 0 speed (Deceleration ramp 1). 4 ACCEL TIME 2 0.00 ... 1800.00 s Time for speed 0 to max. speed (Acceleration ramp 2). 5 DECEL TIME 2 0.00 ... 1800.00 s Time for speed max. to 0 speed (Deceleration ramp 2). 6 ACC/DEC RAMP SHPE 0 ... 1000.00 s Accel./Decel. ramp shape time. 7 EM STOP RAMP TIME 0.00 ... 2000.00 s Emergency Stop ramp time.
  • 99. Chapter 6 – Parameters Firmware Manual 6-39 If the reference signal changes at a rate slower than the deceleration time, the motor speed will follow the reference signal. If the reference signal changes faster than the deceleration time, the rate at which the motor slows down will be limited by this parameter. If deceleration time is set too short, the ACS 600 will automatically prolong the deceleration not to exceed the DC bus overvoltage limit. If there is any doubt about the deceleration time being too short, ensure that the DC overvoltage control is on (Parameter 20.05 OVERVOLTAGE CTRL). If short deceleration time is needed for the high inertia application, the ACS 600 should be equipped with a braking chopper and a braking resistor. The excess energy generated during the braking is led by the chopper to the resistor and dissipated to prevent a DC voltage rise in the intermediate circuit. The chopper and the resistor are available for all ACS 600 types as optional add-on kits. 22.04 ACCEL TIME 2 Refer to Parameter 22.02 ACCEL TIME 1. 22.05 DECEL TIME 2 Refer to Parameter 22.03 DECEL TIME 1. 22.06 ACC/DEC RAMP SHPE This parameter allows you to select the shape of the acceleration/deceleration ramp. 0 s Linear ramp. Suitable for drives requiring steady acceleration or deceleration and for slow ramps. 0.100 ... 1000.00 s S-curve ramp. S-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. The S curve consists of symmetrical curves at both ends of the ramp and a linear part in between. Figure 6-7 Acceleration and deceleration ramp shapes. Linear ramp ACC/DEC RAMP SHPE = 0 s S-curve ramp ACC/DEC RAMP SHPE = x s x s As a rule of thumb, a suitable relation between the ramp shape time and the acceleration ramp time is 1/5. Examples are given below. Acc/Dec Ramp Time (Par. 22.02 to 05) Ramp Shape Time (Par. 22.06) 1 s 0.2 s 5 s 1 s 15 s 3 s
  • 100. Chapter 6 – Parameters 6-40 Firmware Manual 22.07 EM STOP RAMP TIME This parameter defines the time inside which the drive is stopped upon an Emergency Stop command. The command can be given through fieldbus or the NDIO module Emergency Stop option. For more information on the Emergency Stop option consult the local ABB representative. 0.00 ... 2000.00 s
  • 101. Chapter 6 – Parameters Firmware Manual 6-41 Group 23 Speed Ctrl These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-14 below shows the allowable parameter values. The text following the table explains the parameters in detail. These parameters are not visible in the SCALAR control mode. Table 6-14 Group 23. It is possible to tune the PID algorithm based speed controller of the ACS 600 by setting Parameters 1 to 5 in this group or by selecting the Autotune run by Parameter 6. The Motor ID Run automatically tunes the speed controller. In most cases there is no need to tune it separately. The values of these parameters define how the output of the Speed Controller changes when there is a difference (error value) between the actual speed and the reference. Figure 6-8 displays typical step responses of the Speed Controller. Step responses can be seen by monitoring Actual Signal 1.02 SPEED. Note: The Standard Motor ID Run (refer to Chapter 3 – Start-up Data) updates the values of Parameters 23.01, 23.02 and 23.04. The dynamic performance of the speed control at low speeds can be improved by increasing the relative gain and decreasing the integration time. Speed controller output is the reference for the torque controller. The torque reference is limited by Parameter 20.04 MAXIMUM TORQUE. Parameter Range/Unit Description 1 GAIN 0.0 ... 200.0 Gain for speed controller. 2 INTEGRATION TIME 0.01 s ... 999.97 s Integration time for speed controller. 3 DERIVATION TIME 0.0 ... 9999.8 ms Derivation time for speed controller. 4 ACC COMPENSATION 0.00 s ... 999.98 s Derivation time used in compensation of acceleration. 5 SLIP GAIN 0.0 % ... 400.0 % Gain for the slip of the motor. 6 AUTOTUNE RUN NO; YES Autotuning of the speed controller.
  • 102. Chapter 6 – Parameters 6-42 Firmware Manual Figure 6-8 Step responses of the Speed Controller with different settings. 1 to 10 % reference step is used. Figure 6-9 Speed controller, a simplified block diagram. 23.01 GAIN Relative gain for the speed controller. If you select 1, a 10 % change in error value (e.g. reference - actual value) causes the speed controller output to change 10 % of the nominal torque. Note: Great gain may cause speed oscillation. A : Undercompensated: 23.02 INTEGRATION TIME too short and 23.01 GAIN too low B : Normally tuned, autotuning C : Normally tuned, manual tuning. Better dynamic performance than with B D : Overcompensated: 23.02 INTEGRATION TIME too short and 23.01 GAIN too high Speed t CB DA Step height Derivative Proportional, Integral Derivative Acceleration Compensation Torque reference Speed reference Calculated Actual Speed Error value- + + + +
  • 103. Chapter 6 – Parameters Firmware Manual 6-43 Figure 6-10 Speed Controller Output after an error step when the error remains constant. 23.02 INTEGRATION TIME Integration time defines the rate at which the controller output changes when the error value is constant. The shorter the integration time, the faster the continuous error value is corrected. Too short integration time makes the control unstable. Figure 6-11 Speed Controller Output after an error step when the error remains constant. 23.03 DERIVATION TIME Derivative action boosts the controller output if the error value changes. The longer the derivation time, the more the speed controller output is boosted during the change. The derivation makes the control more responsive for the disturbances. If derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller. Gain = Kp = 1 TI = Integration time = 0 TD= Derivation time = 0 Controller Error Value Controller Output t % e = Error value Output = Kp · e TI Controller Output t % Gain = Kp = 1 TI = Integration time > 0 TD= Derivation time = 0 Kp · e e = Error value Kp · e
  • 104. Chapter 6 – Parameters 6-44 Firmware Manual Figure 6-12 Speed Controller Output after an error step when the error remains constant. Note: Changing this parameter is recommended only if a pulse encoder is used. 23.04 ACC COMPENSATION Derivation time for compensation of acceleration. In order to compensate inertia during acceleration the derivative of the reference is added to the output of the speed controller. The principle of a derivative action is described at 23.03 DERIVATION TIME above. As a general rule, set this parameter to a value from 50 to 100 % of the sum of the mechanical time constants of the motor and the driven machine. Figure 6-13 Speed responses when a high inertia load is accelerated along a ramp. Note: AUTOTUNE RUN initialises this parameter to 50 % of mechanical time constant. 23.05 SLIP GAIN Defines the gain for the slip. 100 % means full slip compensation; 0 % means no slip compensation. The default value is 100 %. Other values can be used if static speed error is detected despite of the full slip compensation. Example: 1000 rpm constant speed reference is given to the drive. Despite of the full slip compensation (SLIP GAIN = 100 %) a manual TI Kp · e Error Value Controller Output t % Gain = Kp = 1 TI = Integration time > 0 TD= Derivation time > 0 Ts= Sample time period = 2 ms ,e = Error value change between two samples e = Error value Kp · TD · ,e Ts Kp · e Speed reference Actual speed No Acceleration Compensation Acceleration Compensation tt % %
  • 105. Chapter 6 – Parameters Firmware Manual 6-45 tachometer measurement from the motor axis gives speed value 998 rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip gain should be increased. At 106 % gain value no static speed error exists. 23.06 AUTOTUNE RUN The speed controller of the ACS 600 can be tuned automatically by performing the Autotune Run. The mechanical inertia of the load is taken into consideration in GAIN, INTEGRATION, DERIVATION and ACC COMPENSATION parameters. The system is tuned to be undercompensated rather than overcompensated. To perform the Autotune Run: • Run the motor at a constant speed of 20 to 70 % of the rated speed. • Change Parameter 23.06 AUTOTUNE RUN to YES. After the Autotune Run is performed, this parameter value automatically reverts to NO. Note: Autotune Run can be performed only while the ACS 600 is running. The motor load must be connected to the motor. The best result is achieved when the motor is run up to 20 ... 40 % of the rated speed before starting the Autotune Run. CAUTION! The motor will be accelerated by 10 % of the rated speed with 10 ... 20 % torque step without any ramp during this procedure. MAKE SURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE AUTOTUNE RUN!
  • 106. Chapter 6 – Parameters 6-46 Firmware Manual Group 24 Torque Ctrl This group is visible only if the Torque Control Macro is selected. It is invisible in the SCALAR control mode. These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-15 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-15 Group 24. 24.01 TORQ RAMP UP Defines the time required for the reference to increase from zero to the rated torque. 24.02 TORQ RAMP DOWN Defines the time required for the reference to decrease from the rated torque to zero. Parameter Range/Unit Description 1 TORQ RAMP UP 0.00 s ... 120.00 s Time for reference from 0 to the rated torque. 2 TORQ RAMP DOWN 0.00 s ... 120.00 s Time for reference from the rated torque to 0.
  • 107. Chapter 6 – Parameters Firmware Manual 6-47 Group 25 Critical Speeds These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-16 below shows the allowable parameter values. The text following the table explains the parameters in detail. In the SCALAR control mode the critical speed ranges are set as Hz. Note: In the PID Control macro (see Parameter 99.02 APPLICATION MACRO), Critical Speeds are not in use. Table 6-16 Group 25. Note: Using the critical speed lockout function in a closed loop application will cause the system to oscillate if the required output speed is within the critical speed band. Note: The value of the low speed cannot be higher than the high speed of the same band. In some mechanical systems, certain speed ranges can cause resonance problems. With this Parameter Group, it is possible to set up to three different speed ranges that the ACS 600 will skip over. It is not required that Parameter 25.04 CRIT SPEED 2 LOW is higher than Parameter 25.03 CRIT SPEED 1 HIGH, as long as the LOW parameter of any one set is lower than the HIGH parameter of the same set. Sets may overlap, but the skip will be from the lower LOW value to the higher HIGH value. To activate the Critical Speed settings, set Parameter 25.01 CRIT SPEED SELECT to ON. Note: Set unused Critical Speeds to 0 rpm. Parameter Range/Unit Description 1 CRIT SPEED SELECT OFF; ON Critical speed jump over logic. 2 CRIT SPEED 1 LOW 0 ... 18000 rpm Critical speed 1 start. 3 CRIT SPEED 1 HIGH 0 ... 18000 rpm Critical speed 1 end. 4 CRIT SPEED 2 LOW 0 ... 18000 rpm Critical speed 2 start. 5 CRIT SPEED 2 HIGH 0 ... 18000 rpm Critical speed 2 end. 6 CRIT SPEED 3 LOW 0 ... 18000 rpm Critical speed 3 start. 7 CRIT SPEED 3 HIGH 0 ... 18000 rpm Critical speed 3 end.
  • 108. Chapter 6 – Parameters 6-48 Firmware Manual Example: A fan system has bad vibration from 540 rpm to 690 rpm and from 1380 rpm to 1560 rpm. Set the parameters as follows: 2 CRIT SPEED 1 LOW 540 rpm 3 CRIT SPEED 1 HIGH 690 rpm 4 CRIT SPEED 2 LOW 1380 rpm 5 CRIT SPEED 2 HIGH 1560 rpm If, due to bearing wear, another resonance occurs at 1020 ... 1080 rpm, the critical speed table can be added to as follows: 6 CRIT SPEED 3 LOW 1020 rpm 7 CRIT SPEED 3 HIGH 1080 rpm Figure 6-14 Example of critical speed settings in a fan system suffering vibration problems in the speed ranges 540 ... 690 rpm and 1380 ... 1560 rpm. s1 Low s1 High s2 Low s2 High SPEEDref 540 690 1380 1560 [rpm] 540 690 1380 1560 [rpm] SPEEDmotor
  • 109. Chapter 6 – Parameters Firmware Manual 6-49 Group 26 Motor Control These parameter values can only be altered with the ACS 600 stopped. The Range/Unit column in Table 6-17 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-17 Group 26. 26.01 FLUX OPTIMIZATION The total energy consumption and noise can be reduced by changing the magnitude of the flux depending on the actual load. Flux optimization should be activated in drives that usually operate below nominal load. Flux optimization cannot be selected in the scalar control mode (see Parameter 99.04 MOTOR CTRL MODE). 26.02 FLUX BRAKING The ACS 600 can provide faster deceleration by raising the level of magnetisation in the motor when needed, instead of limiting the deceleration ramp. By increasing the flux in the motor, the energy of the mechanical system is changed to thermal energy in the motor. Parameter Range/Unit Description 1 FLUX OPTIMIZATION NO; YES Selection of the flux optimization function. 2 FLUX BRAKING NO; YES Selection of the flux braking function. 3 IR COMPENSATION 0 % ... 30 % Compensation voltage level. 5 HEX FIELD WEAKEN NO; YES Activates the motor flux control based on a hexagonal flux pattern.
  • 110. Chapter 6 – Parameters 6-50 Firmware Manual Figure 6-15 Motor braking torque in percent of the rated torque as function of output frequency. Flux braking cannot be selected in the scalar control mode (see Parameter 99.04 MOTOR CTRL MODE). 26.03 IR COMPENSATION This parameter is adjustable in the SCALAR control mode only. This parameter sets the extra relative voltage level that is given to the motor at zero speed. The range is 0 ... 30 % of motor nominal voltage. IR compensation increases the breakaway torque. Figure 6-16 IR Compensation is implemented by applying extra voltage to the motor. UN is the nominal voltage of the motor. 120 80 40 0 5 10 20 30 40 50 1 2 34 5 120 80 40 0 5 10 20 30 40 50 1 2 3 4 5 f (Hz) Braking Torque (%) f (Hz) Flux Braking No Flux Braking 1 2 3 4 5 2.2 kW 15 kW 37 kW 75 kW 250 kW Rated Motor Power UN U (%) f (Hz)Field weakening point No compensation IR Compensation
  • 111. Chapter 6 – Parameters Firmware Manual 6-51 26.05 HEX FIELD WEAKEN This parameter selects whether motor flux is controlled along a circular or a hexagonal pattern in the field weakening area of the frequency range. NO ACS 600 controls the motor flux insuch a way that the rotating flux vector follows a circular pattern. This is the default value and ideal for most applications. However, when operated in the field weakening range, it is not possible to reach 100% output voltage. The peak load capacity of the drive is lower than with the full voltage. YES Motor flux is controlled along a circular pattern below the field weakening point (FWP, typically 50 or 60 Hz), and along a hexagonal pattern in the field weakening range. The applied pattern is changed gradually as the frequency increases from 100% to 120% of the FWP. Using the hexagonal flux pattern, the maximum output voltage can be reached; The peak load capacity is higher than with the circular flux pattern but the continuous load capacity is lower in the frequency range of FWP to 1.6 x FWP, due to increased losses.
  • 112. Chapter 6 – Parameters 6-52 Firmware Manual Group 30 Fault Functions These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-18 shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-18 Group 30. Parameter Range/Unit Description 1 AI<MIN FUNCTION FAULT; NO; CONST SP 15; LAST SPEED Operation in case of AI <Minimum fault. 2 PANEL LOSS FAULT; CONST SP 15; LAST SPEED Operation in case the Control Panel selected as active control location for the ACS 600 stops communicating. 3 EXTERNAL FAULT NOT SEL; DI1-DI12 External fault input. 4 MOTOR THERM PROT FAULT; WARNING; NO Operation in case of overtemperature. 5 MOT THERM P MODE DTC; USER MODE; THERMISTOR Motor thermal protection mode selection. 6 MOTOR THERM TIME 256.0 ... 9999.8 s Time for 63 % temperature rise. 7 MOTOR LOAD CURVE 50.0 ... 150.0 % Motor current maximum limit. 8 ZERO SPEED LOAD 25.0 ... 150.0 % Motor load curve point at zero speed. 9 BREAK POINT 1.0 ... 300.0 Hz Break point of motor load curve. 10 STALL FUNCTION FAULT; WARNING; NO Operation in case of motor stall. 11 STALL FREQ HI 0.5 ... 50 Hz Frequency limit for stall protection logic. 12 STALL TIME 10.00 ... 400.00 s Time for stall protection logic. 13 UNDERLOAD FUNC NO; WARNING; FAULT Operation in case of underload fault. 14 UNDERLOAD TIME 0.0 ... 600.0 s Time limit for underload logic. 15 UNDERLOAD CURVE 1 ... 5 Torque limit for underload logic. 16 MOTOR PHASE LOSS NO; FAULT Operation in case motor phase is lost. 17 EARTH FAULT WARNING; FAULT Operation in case of earth fault. 18 COMM FAULT FUNC FAULT; NO; CONST SP 15; LAST SPEED Operation of the drive in case of the Main or Auxiliary Reference Data Set loss. 19 MAIN REF DS T-OUT 0.1 s ... 60 s Time delay for the Main Data Set supervision function. See Parameter 30.18 COMM FAULT FUNC. 20 COMM FAULT RO/AO ZERO; LAST VALUE Operation of the relay output/analogue output in case of the Auxiliary Reference Data Set loss. 21 AUX DS T-OUT 0.1 ... 60.0 s Time delay for the Auxiliary Data Set supervision function. See Parameter 30.18 COMM FAULT FUNC. 22 IO CONF FUNC NO; WARNING Operation in case of an improper use of the optional I/O.
  • 113. Chapter 6 – Parameters Firmware Manual 6-53 30.01 AI<MIN FUNCTION This parameter allows the selection of operation in case the analogue input signal drops below the minimum limit, provided the minimum is set at 0.5 V / 1 mA or above (“living zero”). CAUTION: If you select CONST SP 15 or LAST SPEED, make sure that it is safe to continue operation in case analogue input signal is lost. FAULT Fault indication is displayed and the motor coasts to stop. NO No activity wanted. CONST SP 15 Warning indication is displayed and the speed is set according to Parameter 12.16 CONST SPEED 15. LAST SPEED Warning indication is displayed and the speed is set to the level the ACS 600 was last operating at. This value is determined by the average speed over the last 10 seconds. 30.02 PANEL LOSS Defines the operation of the ACS 600 if the Control Panel selected as the control location for the ACS 600 stops communicating. CAUTION: If you select CONST SP 15 or LAST SPEED, make sure that it is safe to continue operation in case communication with the Control Panel fails. FAULT Fault indication is displayed (if there are any Control Panels communicating on the link) and the ACS 600 stops according to the setting of Parameter 21.03 STOP FUNCTION. CONST SP 15 Warning indication is displayed (if there are any Control Panels communicating on the link) and the speed is set according to Parameter 12.16 CONST SPEED 15. LAST SPEED Warning indication on display (if there are any Control Panels communicating on the link) and the speed is set to the level the ACS 600 was last operating at. This value is determined by the average speed over the last 10 seconds. 30.03 EXTERNAL FAULT NOT SEL DI1-DI12 This selection defines the digital input used for an external fault signal. If an external fault occurs, i.e. digital input drops to 0 VDC, the ACS 600
  • 114. Chapter 6 – Parameters 6-54 Firmware Manual is stopped and the motor coasts to stop. A fault message is displayed on the Control Panel. For the connection of DI7 to DI12, see Group 98 Option Modules. 30.04 MOTOR THERM PROT This parameter defines the operation of the motor thermal protection function which protects the motor from overheating. FAULT Displays a warning indication at the warning level. Displays a fault indication and stops the ACS 600 when the motor temperature reaches the 100 % level. WARNING Warning indication is displayed when the motor temperature reaches the warning level (95 % of the nominal value). NO No activity wanted. 30.05 MOT THERM P MODE Selects the thermal protection mode. The motor protection is made by means of the thermal model or thermistor measurement. The ACS 600 calculates the temperature of the motor using the following assumptions: • The motor is in ambient temperature (30 °C) when power is applied to the ACS 600. • Motor heating is calculated assuming a load curve (Figure 6-19). The motor will heat above nominal temperature if it operates in the region above the curve, and cool if it operates below the curve. The rate of heating and cooling is set by MOTOR THERM TIME. CAUTION: Motor thermal protection will not protect the motor if the cooling of the motor is reduced due to dust and dirt. DTC The DTC (Direct Torque Control) load curve is used for calculating heating of the motor. Motor thermal time is approximated for standard self-ventilated squirrel-cage motors as a function of the current of the motor and the number of pole pairs. It is possible to scale the DTC load curve with Parameter 30.07 MOTOR LOAD CURVE if the motor is used in conditions other than described above. Parameters 30.06 MOTOR THERM TIME, 30.08 ZERO SPEED LOAD and 30.09 BREAK POINT cannot be set. Note: Automatically calculated model (DTC) cannot be applied when 99.06 MOTOR NOM CURRENT > 800 A. USER MODE In this mode the user can define the operation of thermal protection by
  • 115. Chapter 6 – Parameters Firmware Manual 6-55 setting Parameters 30.06 MOTOR THERM TIME, 30.08 ZERO SPEED LOAD and 30.09 BREAK POINT. THERMISTOR Motor thermal protection is activated with an I/O signal based on a motor thermistor. This mode requires a motor thermistor or break contact of a thermistor relay connected between digital input DI6 and +24 V d.c. If direct thermistor connection is used, digital input DI6 supervises the overtemperature as follows: When overtemperature is detected, the drive stops if the Parameter 30.04 MOTOR THERM PROT is set to FAULT. WARNING! According to IEC 664, the connection of the thermistor to the digital input 6 of ACS 600 requires double or reinforced insulation between motor live parts and the thermistor. Reinforced insulation entails a clearance and creeping distance of 8 mm (400/500 VAC equipment). If the thermistor assembly does not fulfil the requirement, the other I/O terminals of ACS 600 must be protected against contact, or a thermistor relay must be used to isolate the thermistor from the digital input. WARNING! In standard application macros, digital input 6 is selected as the source for constant speed selection, Start/Stop or Run Enable signal. Change these settings before selecting THERMISTOR for Parameter 30.05 MOT THERM P MODE. In other words, ensure that digital input 6 is not selected as signal source by any other parameter than 30.05 MOT THERM P MODE. Thermistor resistance DI6 Status Temperature 0 ... 1.5 kohm “1” Normal 4 kohm or higher “0” Overtemperature
  • 116. Chapter 6 – Parameters 6-56 Firmware Manual Figure 6-17 Thermistor connection. Alternative 2: At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected. 30.06 MOTOR THERM TIME This is the time within which the motor temperature reaches 63 % of the final temperature rise. Figure 6-18 shows Motor Thermal Time definition. If the DTC mode is selected for motor thermal protection, motor thermal time can be read from this parameter. This parameter can be set only if Parameter 30.05 MOT THERM P MODE is set to USER MODE. If thermal protection according to UL requirements for NEMA class motors is desired, use this rule of thumb - Motor Thermal Time equals 35 times t6 (t6 in seconds is the time that the motor can safely operate at six times its rated current, given by the motor manufacturer). The thermal time for a Class 10 trip curve is 350 s, for a Class 20 trip curve 700 s and for a Class 30 trip curve 1050 s. Figure 6-18 Motor Thermal Time. Motor T 10 nF Motor T Thermistor relay 6 18 DI6 7 19 +24 V d.c. Alternative 1 Alternative 2 X22:NIOCboard (ACS601/604/607) X2:Terminalblock (optionalforACS607) 6 18 DI6 7 19 +24 V d.c. X22:NIOCboard (ACS601/604/607) X2:Terminalblock (optionalforACS607) Motor Load 100 % Temp. Rise 63 % Motor Therm Time t t
  • 117. Chapter 6 – Parameters Firmware Manual 6-57 30.07 MOTOR LOAD CURVE The Motor Load Curve sets the maximum allowable operating load of the motor. When set to 100 %, the maximum allowable load is equal to the value of Start-up Data Parameter 99.06 MOTOR NOM CURRENT. The load curve level should be adjusted if the ambient temperature differs from the nominal value. Figure 6-19 Motor Load Curve. 30.08 ZERO SPEED LOAD This parameter defines the maximum allowable current at zero speed to define the Motor Load Curve. 30.09 BREAK POINT This parameter defines the point at which the motor load curve begins to decrease from the maximum value set by Parameter 30.07 MOTOR LOAD CURVE to the Parameter 30.08 ZERO SPEED LOAD. Refer to Figure 6-19 for an example of motor load curve. 30.10 STALL FUNCTION This parameter defines the operation of the stall protection. The protection is activated if the following conditions are valid at a time longer than the period set by Parameter 30.12 STALL TIME. • The motor torque is close to the internal momentary changing limit of the motor control software that prevents the motor and the inverter from overheating or the motor from pulling out. • The output frequency is below the level set by Parameter 30.11 STALL FREQ HI. FAULT When the protection is activated the ACS 600 stops and a fault indication is displayed. WARNING A warning indication is displayed. The indication disappears in half of the time set by Parameter 30.12 STALL TIME. NO No activity is wanted. 50 100 150 30.08 ZERO SPEED LOAD 30.07 MOTOR LOAD CURVE 30.09 BREAK POINT 99.06 MOTOR NOM CURRENT Speed ( % )
  • 118. Chapter 6 – Parameters 6-58 Firmware Manual Figure 6-20 Stall protection. T is motor torque. 30.11 STALL FREQ HI This parameter sets the frequency value for the stall function. 30.12 STALL TIME This parameter sets the time value for the stall function. 30.13 UNDERLOAD FUNC Removal of motor load may indicate a process malfunction. The protection is activated if: • The motor torque drops below the load curve selected by Parameter 30.15 UNDERLOAD CURVE. • This condition has lasted longer than the time set by Parameter 30.14 UNDERLOAD TIME. • Output frequency is higher than 10 % of the nominal frequency of the motor. The protection function assumes that the drive is equipped with a motor of the rated power. Select NO; WARNING; FAULT according to the activity you prefer. With selection FAULT the ACS 600 stops the motor and displays a fault message. 30.14 UNDERLOAD TIME Time limit for underload logic. 30.15 UNDERLOAD CURVE This parameter provides five selectable curves shown in Figure 6-21. If the load drops below the set curve for longer than the time set by Parameter 30.14 UNDERLOAD TIME, the underload protection is activated. Curves 1 ... 3 reach maximum at the motor rated frequency set by Parameter 99.07 MOTOR NOM FREQUENCY. T Stall torque limit Stall region ƒStall Frequency (Parameter 30.11)
  • 119. Chapter 6 – Parameters Firmware Manual 6-59 Figure 6-21 Underload curve types. TM nominal torque of the motor, ƒN nominal frequency of the motor. 30.16 MOTOR PHASE LOSS This parameter defines the operation when one or more motor phases are lost. FAULT Fault indication is displayed and the ACS 600 stops. NO No activity wanted. 30.17 EARTH FAULT This parameter defines the operation when an earth fault is detected in the motor or the motor cable. FAULT Fault indication is displayed and the ACS 600 stops. WARNING A warning indication is displayed. Ther drive continues to operate. 30.18 COMM FAULT FUNC This parameter defines the operation on a fieldbus communication loss, i.e. when the drive fails to receive the Main Reference Data Set or the Auxiliary Reference Data Set. See Appendix C – Fieldbus Control. The delay times for the supervision function are defined by Parameter 30.19 MAIN REF DS T-OUT for the Main Reference Data Set, and Parameter 30.21 AUX DS T-OUT for the Auxiliary Reference Data Set. CAUTION: If you select CONST SP 15 or LAST SPEED, make sure that it is safe to continue operation in case communication with the communication module fails. 100 80 60 40 20 0 2.4 * ƒN 3 2 1 5 4 TM 70 % 50 % 30 % ƒN (%)
  • 120. Chapter 6 – Parameters 6-60 Firmware Manual FAULT A fault indication is given and the ACS 600 stops according to the setting of Parameter 21.03 STOP FUNCTION. NO No activity wanted. CONST SP 15 A warning indication is given and the speed is set according to Parameter 12.16 CONST SPEED 15. LAST SPEED A warning indication is given and the speed is set to the level the ACS 600 was last operating at. This value is determined by the average speed over the last 10 seconds. 30.19 MAIN REF DS T-OUT Time delay for the Main Reference Data Set supervision function. See Parameter 30.18 COMM FAULT FUNC. Default value is 1 s. 0.1 ... 60.0 s 30.20 COMM FAULT RO/AO This parameter defines the operation of the fieldbus controlled relay output and analogue output in a communication loss. See Parameter Group 14 Relay Outputs, Group 15 Analogue Outputs and Appendix C – Fieldbus Control. Default value is ZERO. The delay time for the supervision function is equal to value of Parameter 30.21 AUX DS T-OUT. ZERO Relay output is de-energised. Analogue output is set to zero. LAST Relay output keeps the last state before the communication loss. Analogue output gives the last value before the communication loss. WARNING After the communication recovers, the update of the relay and analogue outputs starts immediately without the fault message resetting. 30.21 AUX DS T-OUT Time delay for the Auxiliary Reference Data Set supervision function. See Parameter 30.18 COMM FAULT FUNC. The drive automatically activates the supervision function 60 seconds after power switch-on if the Auxiliary Reference Data Set is in use i.e. Parameter 90.01 AUX DS REF3, 90.02 AUX DS REF4 or 90.03 AUX DS REF5 has a value other than zero. The application program also applies this delay time to the function defined with Parameter 30.20 COMM FAULT RO/AO. Default value is 1 s. 0.1 ... 60.0 s
  • 121. Chapter 6 – Parameters Firmware Manual 6-61 30.22 IO CONF FUNC Operation in case of improper use of the inputs/outputs of the optional I/O extension modules in the ACS 600 application program. NO No indication of improper use of the optional I/O. WARNING This is the default value. The application program generates a warning “IO CONF” if an optional input or output channel has been selected as a signal interface, but the communication to the appropriate analogue or digital I/O extension module has not been set up accordingly in Group 98 Option Modules. Example: The application program generates a warning if Parameter 16.01 RUN ENABLE is set to DI7 but: • 98.03 DI/O EXT MODULE 1 is set to NO, or • 98.09 NDIO1 DI FUNC is set to REPL DI1,2
  • 122. Chapter 6 – Parameters 6-62 Firmware Manual Group 31 Automatic Reset These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-19 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-19 Group 31. The Automatic fault reset system resets the faults selected with Parameters 31.04 OVERCURRENT, 31.05 OVERVOLTAGE, 31.06 UNDERVOLTAGE and 31.07 AI SIGNAL<MIN. 31.01 NUMBER OF TRIALS Sets the number of allowed autoresets within a certain time. The time is defined with Parameter 31.02 TRIAL TIME. The ACS 600 prevents additional autoresets and remains stopped until a successful reset is performed from the Control Panel or through a digital input. 31.02 TRIAL TIME The time within which a limited number of fault autoresets is allowed. The allowed number of faults per this time period is given with Parameter 31.01 NUMBER OF TRIALS. 31.03 DELAY TIME This parameter sets the time that the ACS 600 will wait after a fault occurs before attempting to reset. If set to zero, the ACS 600 will reset immediately. If set to a value higher than zero, the drive will wait before resetting. 31.04 OVERCURRENT If YES is selected, the fault (motor overcurrent) is reset automatically after the delay set by Parameter 31.03 DELAY TIME and the ACS 600 resumes normal operation. 31.05 OVERVOLTAGE If YES is selected, the fault (DC bus overvoltage) is reset automatically after the delay set by Parameter 31.03 DELAY TIME and the ACS 600 resumes normal operation. Parameter Range/Unit Description 1 NUMBER OF TRIALS 0 ... 5 Number of faults limit for Autoreset logic. 2 TRIAL TIME 1.0 ... 180.0 s Time limit for Autoreset logic. 3 DELAY TIME 0.0 ... 3.0 s Time delay between the fault and the reset attempt. 4 OVERCURRENT NO; YES Enable automatic fault reset. 5 OVERVOLTAGE NO; YES Enable automatic fault reset. 6 UNDERVOLTAGE NO; YES Enable automatic fault reset. 7 AI SIGNAL<MIN NO; YES Enable automatic fault reset.
  • 123. Chapter 6 – Parameters Firmware Manual 6-63 31.06 UNDERVOLTAGE If YES is selected, the fault (DC bus undervoltage) is reset automatically after the delay set by Parameter 31.03 DELAY TIME and the ACS 600 resumes normal operation. 31.07 AI SIGNAL<MIN If YES is selected, the fault (analogue input signal under minimum level) is reset automatically after the delay set by Parameter 31.03 DELAY TIME. WARNING! If Parameter 31.07 AI SIGNAL<MIN is enabled, the drive may restart even after a long stop when the analogue input signal is restored. Ensure that the use of this feature will not cause physical injury and/or damage equipment.
  • 124. Chapter 6 – Parameters 6-64 Firmware Manual Group 32 Supervision These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-20 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-20 Group 32. *) These parameters are significant only if the PID Control Macro is selected. 32.01 SPEED1 FUNCTION This parameter allows you to activate a speed supervision function. Relay outputs selected with Parameters 14.01 RELAY RO1 OUTPUT, 14.02 RELAY RO2 OUTPUT and 14.03 RELAY RO3 OUTPUT are used to indicate if the speed drops below (LOW LIMIT) or exceeds (HIGH LIMIT) the supervision limit. Parameter Range/Unit Description 1 SPEED1 FUNCTION NO; LOW LIMIT; HIGH LIMIT; ABS LOW LIMIT Speed 1 supervision. 2 SPEED1 LIMIT - 18000 ... 18000 rpm Speed 1 supervision limit. 3 SPEED2 FUNCTION NO; LOW LIMIT; HIGH LIMIT; ABS LOW LIMIT Speed 2 supervision. 4 SPEED2 LIMIT - 18000 ... 18000 rpm Speed 2 supervision limit. 5 CURRENT FUNCTION NO; LOW LIMIT; HIGH LIMIT Motor current supervision. 6 CURRENT LIMIT 0 ... 1000 A Motor current supervision limit. 7 TORQUE 1 FUNCTION NO; LOW LIMIT; HIGH LIMIT Motor torque supervision. 8 TORQUE 1 LIMIT -400 %... 400 % Motor torque supervision limit. 9 TORQUE 2 FUNCTION NO; LOW LIMIT; HIGH LIMIT Motor torque supervision. 10 TORQUE 2 LIMIT -400 %... 400 % Motor torque supervision limit. 11 REF1 FUNCTION NO; LOW LIMIT; HIGH LIMIT Reference 1 supervision. 12 REF1 LIMIT 0 ... 18000 rpm Reference 1 supervision limit. 13 REF2 FUNCTION NO; LOW LIMIT; HIGH LIMIT Reference 2 supervision. 14 REF2 LIMIT 0 ... 500 % Reference 2 supervision limit. 15 ACT1 FUNCTION*) NO; LOW LIMIT; HIGH LIMIT Actual 1 supervision. 16 ACT1 LIMIT*) 0 ... 200 % Actual 1 supervision limit. 17 ACT2 FUNCTION*) NO; LOW LIMIT; HIGH LIMIT Actual 2 supervision. 18 ACT2 LIMIT*) 0 ... 200 % Actual 2 supervision limit.
  • 125. Chapter 6 – Parameters Firmware Manual 6-65 NO Supervision not used. LOW LIMIT Supervision will be activated if value is below the limit set. HIGH LIMIT Supervision will be activated if value is above the limit set. ABS LOW LIMIT Supervision will be activated if value is below the set limit. Limit is supervised in both rotating directions, forward and reverse (see the shaded area on the left). 32.02 SPEED1 LIMIT Speed supervision limit adjustable from -18000 rpm to 18000 rpm. 32.03 SPEED2 FUNCTION Refer to Parameter 32.01 SPEED1 FUNCTION. 32.04 SPEED2 LIMIT Speed supervision limit adjustable from -18000 rpm to 18000 rpm. 32.05 CURRENT FUNCTION Motor current supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION excluding ABS LOW LIMIT. 32.06 CURRENT LIMIT Motor current supervision limit. Setting in actual amperes, adjustable between 0 A ... 1000 A. 32.07 TORQUE1 FUNCTION Motor torque supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION excluding ABS LOW LIMIT. 32.08 TORQUE1 LIMIT Motor torque supervision limit. Setting in -400 % ... 400 % of the nominal torque of the motor. 32.09 TORQUE2 FUNCTION Motor torque supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION excluding ABS LOW LIMIT. 32.10 TORQUE2 LIMIT Motor torque supervision limit. Setting in -400 % ... 400 % of nominal torque of the motor. 32.11 REF1 FUNCTION Reference 1 supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION excluding ABS LOW LIMIT. 32.12 REF1 LIMIT Reference 1 supervision limit adjustable from 0 to 18000 rpm. 32.13 REF2 FUNCTION Reference 2 supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION excluding ABS LOW LIMIT. 32.14 REF2 LIMIT Reference 2 supervision limit adjustable from 0 to 200 %. 32.15 ACT1 FUNCTION Actual value 1 supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION, except that relay output RO3 cannot be used and excluding ABS LOW LIMIT. 32.16 ACT1 LIMIT Actual value 1 supervision limit adjustable from 0 to 200 %. ABS LOW LIMIT -ABS LOW LIMIT speed/rpm 0
  • 126. Chapter 6 – Parameters 6-66 Firmware Manual 32.17 ACT2 FUNCTION Actual value 2 supervision. Same options as with Parameter 32.01 SPEED1 FUNCTION, except that relay output RO3 cannot be used and excluding ABS LOW LIMIT. 32.18 ACT2 LIMIT Actual value 2 supervision limit adjustable from 0 to 200 %. Group 33 Information These parameter values cannot be altered. The Range/Unit column in Table 6-21 below shows the parameter values. The text following the table explains the parameters in detail. Table 6-21 Group 33. 33.01 SOFTWARE VERSION This parameter displays the type, and the version of the firmware package loaded into the ACS 600. 33.02 APPL SW VERSION This parameter displays the type, and the version of the application program of your ACS 600. 33.03 TEST DATE This parameter displays the test date of your ACS 600. Parameter Range/Unit Description 1 SOFTWARE VERSION xxxxxxxx Version of the software package. 2 APPL SW VERSION xxxxxxxx Version of the application software. 3 TEST DATE DDMMYY Test date (Day, Month, Year). ASxxxxyx Product Family A = ACS 600 Product S = ACS 600 Standard Firmware Version 5xyx = Version 5.xyx ASAxxxyx Product Family A = ACS 600 Product S = ACS 600 Standard Firmware Type A = Application Program Firmware Version 5xyx = Version 5.xyx
  • 127. Chapter 6 – Parameters Firmware Manual 6-67 Group 34 Process Variable These parameter values can be altered with the ACS 600 running. The Range/Unit column in Table 6-22 below shows the allowable parameter values. The text following the table explains the parameters in detail. Table 6-22 Group 34. Function Description: Process Variable Definition The block diagram below illustrates the use of the parameters that define actual signal 1.01 PROCESS VARIABLE 34.01 SCALE This parameter scales the selected ACS 600 variable into a desired process variable. Default value is 100.00. See section Function Description: Process Variable Definition above. 34.02 P VAR UNIT This parameter selects the unit for the process variable. See section Function Description: Process Variable Definition above. NO No unit is selected. Parameter Range/Unit Description 1 SCALE 0.00 ... 100000.00 Scaling factor for the process variable 2 P VAR UNIT NO; rpm; ... ; FPM Unit of the process variable 3 SELECT P VAR 0 to 9999 Selects the ACS 600 variable to be scaled into a process variable 4 MOTOR SP FILT TIM 0 to 20000 ms Filter time for actual speed 5 TORQ ACT FILT TIM 0. to 20000 ms Filter time for actual torque 6 RESET RUN TIME NO; YES Reset for the counter 1.43 MOTOR RUN TIME 1.01 PROCESS VARIABLE34.01 SCALE NO FPM Unit for value 1.01 PROCESS VARIABLE 34.03 Select 34.02 Select PARAMETER 00.00 99.99 TABLE • • • Mul.
  • 128. Chapter 6 – Parameters 6-68 Firmware Manual rpm; %;m/s; A; V; Hz; s; h; kh; C; lft (labels per foot); mA; mV; kW; W; kWh; F; hp; MWh; m3h (m3 /h); l/s (dm3 /s); bar; kPa; GPM (gallons per minute); PSI (pounds per square inch); CFM (cubic feet per minute); ft; MGD (millions of gallons per day); iHg (inches of mercury); FPM (feet per minute) Possible choices for the unit. The default value is %. 34.03 SELECT P VAR This parameter selects the ACS 600 variable that is scaled into a desired process variable. Default value is 142 (i.e. Actual Signal 1.42 PROCESS SPEED REL). See section Function Description: Process Variable Definition above. 34.04 MOTOR SP FILTER TIM Sets a filter time for actual speed signal. Has an effect on: • 1.02 SPEED • speed read through an analogue output • 32.01 SPEED1 FUNCTION and 32.03 SPEED2 FUNCTION 0 to 20000 ms Default value is 500 ms 34.05 TORQ ACT FILT TIM Sets a filter time for actual torque signal. Has an effect on: • 1.05 TORQUE • torque read through an analogue output • 32.07 TORQUE1 FUNCTION and 32.09 TORQUE2 FUNCTION 0 to 20000 ms Default value is 100 ms 34.06 RESET RUN TIME Selecting YES resets the counter 1.43 MOTOR RUN TIME. NO; YES
  • 129. Chapter 6 – Parameters Firmware Manual 6-69 Group 35 Mot Temp Meas The parameters of the motor temperature measurement function are included in this group. The table below lists the parameters. The detailed parameter descriptions are given after two application examples. Table 6-23 Group 35. Parameter Range/Unit Description 1 MOT1 TEMP AI1 SEL NOT IN USE; 1XPT100; 2XPT100, 3XPT100, 1..3 PTC Motor 1 temperature sensor type. 2 MOT 1 TEMP ALM L -10 to 5000 °C / ohm Alarm limit for motor 1 temperature measurement. 3 MOT 1 TEMP FLT L -10 to 5000 °C / ohm Fault limit for motor 1 temperature measurement. 4 MOT2 TEMP AI2 SEL NOT IN USE; 1XPT100; 2XPT100, 3XPT100, 1..3 PTC Motor 2 temperature sensor type. 5 MOT 2 TEMP ALM L -10 to 5000 °C / ohm Alarm limit for motor 2 temperature measurement. 6 MOT 2 TEMP FLT L -10 to 5000 °C / ohm Fault limit for motor 2 temperature measurement. 7 MOT MOD COMPENSAT NO; YES Motor model temperature compensation by measured value.
  • 130. Chapter 6 – Parameters 6-70 Firmware Manual Application Example: Temperature Measurement through the NIOC Board The figure below shows the temperature measurement of one motor using the Standard I/O Board, NIOC. WARNING! According to IEC 664, the connection of the motor temperature sensor to the Standard IO Board, NIOC, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creeping distance of 8 mm (400/500 VAC equipment). If the assembly does not fulfil the requirement: • The NIOC terminals must be protected against contact and they may not be connected to other equipment. Or • The temperature sensor must be isolated from the NIOC board terminals. Motor T 10 nF 3 AI1+ 4 AI1- 9 AO1+ 10 AO1- Motor T 3 AI1+ 4 AI1- 9 AO1+ 10 AO1- TT One sensor Three sensors Parameter Settings 15.01 ANALOGUE OUTPUT1 (O) M1 TEMP MEAS 35.01 MOT1 TEMP AI1 SEL To be set according to the type and number of sensors 35.02 MOT 1 TEMP ALM L Alarm limit for motor 1 35.03 MOT 1 TEMP FLT L Fault limit for motor 1 98.12 AI/O MOTOR TEMP NO Note: Parameters 13.01 MINIMUM AI1 to 13.05 INVERT AI1 and 15.02 INVERT AO1 to 15.05 SCALE AO1 are not effective. Actual values 1.35 MOTOR 1 TEMP, 3.08 ALARM WORD 1, 3.12 FAULT WORD 3, 3.16 ALARM WORD 3 Warnings (See Chapter 7 – Fault Tracing and Group 3 Actual Signals) MOTOR 1 TEMP, MOTOR 2 TEMP, T MEAS ALM Faults (See Chapter 7 – Fault Tracing and Group 3 Actual Signals) MOTOR 1 TEMP, MOTOR 2 TEMP Other At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected. NIOC board NIOC board 10 nF
  • 131. Chapter 6 – Parameters Firmware Manual 6-71 Application Example: Temperature Measurement through the NAIO Module The figure below shows the temperature measurement of one motor through an optional Analogue I/O Extension Module, NAIO. WARNING! According to IEC 664, the connection of the motor temperature sensor to NAIO module requires double or reinforced insulation between motor live parts and sensor. Reinforced insulation entails a clearance and creeping distance of 8 mm (400/500 VAC equipment). If the assembly does not fulfil the requirement: • The NAIO terminals must be protected against contact and they may not be connected to other equipment. The NAIO module power supply output must also have isolation level of 2.5 kV (note that the NIOC board does not fulfil this requirement). Or • The temperature sensor must be isolated from the NAIO module terminals. Motor T Motor TTT One sensor Three sensors Parameter Settings 35.01 MOT1 TEMP AI1 SEL To be set according to the type and number of sensors 35.02 MOT 1 TEMP ALM L Alarm limit for motor 1 35.03 MOT 1 TEMP FLT L Fault limit for motor 1 98.12 AI/O MOTOR TEMP UNIPOLAR Actual values 1.35 MOTOR 1 TEMP, 3.08 ALARM WORD 1, 3.12 FAULT WORD 3, 3.16 ALARM WORD 3 Warnings (See Chapter 7 – Fault Tracing and Group 3 Actual Signals) MOTOR 1 TEMP, MOTOR 2 TEMP, T MEAS ALM Faults (See Chapter 7 – Fault Tracing and Group 3 Actual Signals) MOTOR 1 TEMP, MOTOR 2 TEMP Other At the motor end, the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected. The NAIO module must also be connected to a power supply. See the module manual. AI1+ AI1- AO1+ AO1- NAIO module AI1+ AI1- AO1+ AO1- NAIO module 10 nF 10 nF
  • 132. Chapter 6 – Parameters 6-72 Firmware Manual 35.01 MOT1 TEMP AI1 SEL The Parameter activates the motor 1 temperature measurement function, and selects the sensor type. See the following subsections above: • Application Example: Temperature Measurement through the NIOC Board • Application Example: Temperature Measurement through the NAIO Module NOT IN USE Motor 1 temperature is not measured. This is the default setting. 1xPT100; 2xPT100; 3xPT100 Motor 1 temperature is measured using one to three Pt 100 sensors. The analogue output AO1 feeds a constant current through the sensor. The resistance of the sensor increases linearly as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through an analogue input AI1 and converts it into degrees centigrade. 1..3 PTC Motor 1 temperature is supervised by one to three PTC sensors. The analogue output AO1 feeds a constant current through the sensor(s). The resistance of the sensor increases sharply as the motor temperature rises over the PTC reference temperature (Tref), as does the voltage over the resistor. The temperature measurement function reads the voltage through the analogue input AI1 and converts it into ohms. The figure below shows typical PTC sensor resistance values as a function of the motor operating temperature. 35.02 MOT 1 TEMP ALM L Sets the alarm limit for the motor 1 temperature measurement. The alarm indication is given when the limit is exceeded. -10 to 5000 °C Alarm limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1xPT100; 2xPT100; 3xPT100. Default value is 110 °C. 100 550 1330 4000 Ohm T Temperature Resistance Normal 0 to 1.5 k ohm Overtemperature > 4 kohm
  • 133. Chapter 6 – Parameters Firmware Manual 6-73 -10 to 5000 ohm Alarm limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1..3 PTC. Default value is 110 ohm. 35.03 MOT 1 TEMP FLT L Sets the fault trip limit for the motor 1 temperature measurement. The fault indication is given when the limit is exceeded. -10 to 5000 °C Fault trip limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1xPT100; 2xPT100; 3xPT100. Default value is 130 °C. -10 to 5000 ohm Fault trip limit if Parameter 35.01 MOT1 TEMP AI1 SEL is 1..3 PTC. Default value is 130 ohm. 35.04 MOT2 TEMP AI2 SEL The parameter activates the motor 2 temperature measurement function, and selects the sensor type. See the subsection Application Example: Temperature Measurement through the NAIO Module above. Note: Two motors can be protected only by using an optional Analogue Extension Module, NAIO. If Parameter 98.12 AI/O MOTOR TEMP is set, the NAIO module is taken into use, and it is also used in the motor 1 temperature measurement (the Standard I/O Board, NIOC, is not in use). NOT IN USE Motor 2 temperature is not measured. This is the default setting. 1xPT100; 2xPT100; 3xPT100 Motor 2 temperature is measured using one to three Pt 100 sensors. See 35.01 MOT1 TEMP AI1 SEL 1..3 PTC Motor 2 temperature is supervised by one to three PTC sensors. See 35.01 MOT1 TEMP AI1 SEL 35.05 MOT 2 TEMP ALM L Sets the alarm limit for the motor 2 temperature measurement function. The alarm indication is given when the limit is exceeded. -10 to 5000 °C Alarm limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1xPT100; 2xPT100; 3xPT100. Default value is 110 °C. -10 to 5000 ohm Alarm limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1..3 PTC. Default value is 110 ohm. 35.06 MOT 2 TEMP FLT L Sets the fault trip limit for the motor 2 temperature measurement function. The fault indication is given when the limit is exceeded. -10 to 5000 °C Fault limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1xPT100; 2xPT100; 3xPT100. Default value is 110 °C.
  • 134. Chapter 6 – Parameters 6-74 Firmware Manual -10 to 5000 ohm Fault limit if Parameter 35.04 MOT2 TEMP AI2 SEL is 1..3 PTC. Default value is 110 ohm. 35.07 MOT MOD COMPENSATION Parameter selects whether the measured motor 1 temperature is used in the motor model compensation. NO Measured motor 1 temperature is not used. YES Measured motor 1 temperature is used in motor model compensation. Note: Selection is possible only when Pt 100 sensor(s) is used.
  • 135. Chapter 6 – Parameters Firmware Manual 6-75 Group 40 PID Control The parameter group includes parameters for three functions: • process PID control (in use only when Parameter 99.02 APPLICATION MACRO is PID CTRL). • speed or torque reference trimming (in use only when Parameter 99.02 APPLICATION MACRO is not PID CTRL). • sleep function for the process PID control (in use only when Parameter 99.02 APPLICATION MACRO is PID CTRL). Table 6-24 below shows the parameters.The functions are described on the following pages. The text following the function descriptions explains the parameters in detail. The parameter values can be altered with the ACS 600 running. Table 6-24 Group 40. Parameter Range/Unit Description 1 PID GAIN 0.1 ... 100 PID Controller Gain selection. 2 PID INTEG TIME 0.02 ... 320.00 s PID Controller I-time selection. 3 PID DERIV TIME 0.00 ... 10.00 s PID Controller D-time selection. 4 PID DERIV FILTER 0.04 ... 10.00 s Time constant for the filter of the D-term. 5 ERROR VALUE INV NO; YES PID Controller error value inversion. 6 ACTUAL VALUE SEL ACT1; ACT1 - ACT2; ACT1 + ACT2; ACT1 * ACT2; ACT1/ACT2; MIN(A1,A2); MAX(A1,A2); sqrt(A1 - A2); sqA1 + sqA2 PID Controller actual signal selection. 7 ACTUAL1 INPUT SEL AI1; AI2; AI3; AI5; AI6; CURRENT; TORQUE; POWER Actual 1 signal input selection. 8 ACTUAL2 INPUT SEL AI1; AI2; AI3; AI5; AI6; CURRENT; TORQUE; POWER Actual 2 signal input selection. 9 ACT1 MINIMUM -1000 ... 1000 % Minimum scaling factor of the Actual 1. 10 ACT1 MAXIMUM -1000 ... 1000 % Maximum scaling factor of the Actual 1. 11 ACT2 MINIMUM -1000 ... 1000 % Minimum scaling factor of the Actual 2.
  • 136. Chapter 6 – Parameters 6-76 Firmware Manual 1) Not visible with 99.02 APPLICATION MACRO = PID CTRL, 2) Visible only when 99.02 APPLICATION MACRO = T CTRL, 3) Visible only when 99.02 APPLICATION MACRO = PID CTRL. 12 ACT2 MAXIMUM -1000 ... 1000 % Maximum scaling factor of the Actual 2 13 PID INTEGRATION ON; OFF On/Off switch for the PID control block integrator 14 TRIM MODE1) OFF;PROPORTIONAL; DIRECT Enables/disbles trim function and selects between direct and proportional trimming 15 TRIM REF SEL1) AI1; AI2; AI3; AI5; AI6; PAR 40.16 Selects the signal source for the trim reference 16 TRIM REFERENCE1) -100.0% to 100.0% Fixed trim reference value (for 40.15 TRIM REF SEL) 17 TRIM RANGE ADJUST1) -100.0% to 100.0% Multiplier for the PID control block output. Used in the trim function 18 TRIM SELECTION1,2) SPEED TRIM; TORQUE TRIM Selects between speed and torque reference trimming 19 ACTUAL FILT TIME 0.04 s to 10.00s Filter time for the actual signals connected to the PID control block 20 SLEEP SELECTION3) OFF; INTERNAL; DI1; DI2; DI3; DI4; DI5; DI6; DI7; DI8; DI9; DI10; DI11; DI12 Sleep function conrol 21 SLEEP LEVEL3) 0.0 to 7200.0 rpm Sleep activation speed 22 SLEEP DELAY3) 0.0 s to 3600.0 s Sleep activation delay 23 WAKE UP LEVEL3) 0.0 % to 100.0 % Sleep deactivation level (actual value in the process PID ctrl) 24 WAKE UP DELAY3) 0.0 s to 3600.0 s Sleep deactivation delay Parameter Range/Unit Description
  • 137. Chapter 6 – Parameters Firmware Manual 6-77 Function Description: Process PID Control The process PID control adjusts the drive speed in order to keep the measured prosess quantity (actual value) at the desired level (reference). The block diagram below on the right illustrates the process PID control. The minimum and maximum values of the PID controller output are the same as Parameter 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED (or 20.07 MINIMUM FREQ and 20.08 MAXIMUM FREQ). The figure on the left shows an application example: The process PID controller adjusts the speed of a pressure boost pump according to the measured pressure and the set pressure reference. A C T P A R F U N C D R I V E E N T E R L O C R E M R E S E T R E F A C S 6 0 0 0 . . . 1 0 b a r 4 . . . 2 0 m A 3 3 2 PID ref k ti td i dFiltT errVInv rInt oh1 ol1 Actual Values 40.05 40.12 AI1 AI2 AI3 AI5 AI6 IMOT 40.19 Filter %ref 40.01 40.02 40.03 40.04 40.05 40.13 PIDmax PIDmin Switch Speed reference Frequency reference 99.04 = 0 (DTC) Example: Pressure boost pump . .. PID Control Block Diagram
  • 138. Chapter 6 – Parameters 6-78 Firmware Manual Function Description: Reference Trimming In trimming, the drive external %-reference (External reference 2) is corrected. The block diagram below illustrates the function. 40.14 Select %ref 1 Mul. Mul. Add %ref The drive reference before trimming %ref’ The drive reference after trimming max. speed = 20.02 MAXIMUM SPEED (or 20.01 MINIMUM SPEED if the absolute value is greater) max freq = 20.08 MAXIMUM FREQ (or 20.07 MINIMUM FREQ if the absolute value is greater) max. torq = 20.04 MAXIMUM TORQUE (or 20.10 SET MIN TORQUE if the absolute value is greater) %ref %ref’ DIRECT (3) PROPOR. (2) OFF (1) max.speed Switch max.freq 99.04 (DTC) 40.17 PID tref k ti td i dFiltT errVInv rInt oh1 ol1 Actual Values 40.05 40.07 AI1 AI2 AI3 AI5 AI6 IMOT 40.19 Filter 40.15 Select AI1 AI2 ... 40.16 40.01 40.02 40.03 40.04 40.05 40.13 PIDmax PIDmin . . . 40.18 Select max.torque
  • 139. Chapter 6 – Parameters Firmware Manual 6-79 Example: A speed controlled conveyor line where the line tension also needs to be considered: The drive is speed controlled. In addition, the line tension is monitored. If the measured tension increases too much (above the tension setpoint) the speed is slightly decreased, and vice versa. To accomplish the desired speed correction, the user: • activates the trimming function and connects the tension setpoint and the measured tension to the trimming function • tunes the trimming to a suitable level Drive rollers (pull) Tension measurement Speed controlled conveyor line PID Add Tension measurement Speed reference Tension setpoint Trimmed speed reference Speed reference trimming
  • 140. Chapter 6 – Parameters 6-80 Firmware Manual Function Description: Sleeping The block diagram below illustrates the sleep function enable/disable logic. The sleep function can be put into use only when Parameter 99.02 APPLICATION MACRO is PID CTRL. The time sceme below visualises the operation of the sleep function. 1) “1” = Switch to sleep mode 40.20 Select Compare 1<2 Or <1 40.22 Delay t 1 240.21 Mot.speed 0 DI1 And &%refActive PIDCtrlActive modulating Set/Reset S R S/R Compare 1<2 1 240.23 0 INTERNAL DI1 40.24 Delay t Or <1 StartRq 03.02 (B1) 03.02 (B2) 1) 01.34 INTERNAL .. . 40.20 Select .. . Mot.speed: Actual speed of the motor %refActive: The % reference is in use (instead of the rpm (speed) reference) PIDCtrlActive: 99.02 APPLICATION MACRO is PID CTRL modulating: The inverter IGBT control is operating Actual Value Wake-up level Parameter 42.23 Motor Speed Sleep level Par. 40.21 Time Time STARTSTOP t<td td td = Sleep delay, Parameter 40.22 Control Panel SLEEP MODE Application example: Sleep function and a PID controlled pressure boost pump (see also the subsection Function Description: Process PID Control above) The water consumption falls at night. As a concequence, the PID process controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speed, the motor does not stop but keeps rotating. The sleep function detects the slow rotating, and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still moni- toring the pressure: The pumping restarts when the pressure falls under the allowed minimum level and the wake-up delay has passed. twd twd = Wake-up delay, Parameter 40.24
  • 141. Chapter 6 – Parameters Firmware Manual 6-81 40.01 PID GAIN This parameter defines the gain of the PID Controller. The setting range is 0.1 ... 100. If you select 1, a 10 % change in error value causes the PID Controller output to change by 10 %. If the 20.02 MAXIMUM SPEED is set to 1500 rpm, the actual speed reference is changed by 150 rpm. Table 6-25 below lists a few examples of gain settings, and the resulting speed change to a 10 % change in error value and a 50 % change in error value. Table 6-25 Gain Settings (MAXIMUM SPEED is 1500 rpm). 40.02 PID INTEG TIME Defines the time in which the maximum output is achieved if a constant error value exists and the gain is 1. Integration time 1 s denotes that a 100 % change is achieved in 1 s. Figure 6-22 PID Controller Gain, I-Time, and Error Value. PID Gain Speed Change for a 10 % Change in Error Speed Change for a 50 % Change in Error 0.5 75 rpm 375 rpm 1.0 150 rpm 750 rpm 3.0 450 rpm 1500 rpm (limited by parameter 20.02 MAXIMUM SPEED) Process Error Value PID Controller Output Gain Gain PID Integration Time t
  • 142. Chapter 6 – Parameters 6-82 Firmware Manual 40.03 PID DERIV TIME Derivative is calculated according to two consecutive error values (EK-1 and EK) according to the following formula: PID DERIV TIME · (EK - EK-1)/TS, in which TS = 12 ms sample time. For example, if there is a 10 % step in error value, the output of the PID Controller is increased by: PID DERIV TIME · 10 % / TS. The derivative is filtered with a 1-pole filter. The time constant of the filter is defined by Parameter 40.04 PID DERIV FILTER. 40.04 PID DERIV FILTER Time constant of the 1-pole filter. 40.05 ERROR VALUE INV This parameter allows you to invert the Error Value (and thus the operation of the PID Controller). Normally, a decrease in Actual Signal (feedback) causes an increase in drive speed. If a decrease in Actual is desired to cause a decrease in speed, set Error Value Invert to YES. 40.06 ACTUAL VALUE SEL ACT1; ACT1 - ACT2; ACT1 + ACT2; ACT1 * ACT2; ACT1/ACT2; MIN(A1,A2) ; MAX(A1,A2); sqrt(A1-A2); sqA1 + sqA2 Actual signal source for the PID Process Controller is selected by this parameter. The choice ACT1 sets one of the analogue inputs AI1, AI2 or AI3 as actual signal for the PID Controller. The setting of Parameter 40.07 ACTUAL 1 INPUT SEL determines the analogue inputs used. The setting of Parameter 40.08 ACTUAL 2 INPUT SEL determines the value of ACT2 which is used in selecting the Actual Value for the PID Controller together with ACT1. ACT1 and ACT2 are combined by subtraction, addition, multiplication or other functions as listed above. In the list of parameter value choices A1 denotes ACT1 and A2 denotes ACT2. MIN(A1,A2) sets the parameter value to either ACT1 or ACT2, depending which one has the smallest value. sqrt(A1 - A2) sets the parameter value to square root of (ACT1 - ACT2). sqA1+sqA2 sets the parameter value to square root of ACT1 plus square root of ACT2. Use the sqrt(A1 - A2) or sqA1+sqA2 function if the PID Controller controls flow with a pressure transducer measuring the pressure difference over a flow meter. 40.07 ACTUAL 1 INPUT SEL This parameter selects one of the analogue inputs as actual signal 1 e.g. ACT1 used in Parameter 40.06 ACTUAL VALUE SEL. AI1; AI2; AI3; AI5; AI6; CURRENT; TORQUE; POWER For connection of AI5 to AI6, see Group 98 Option Modules. 40.08 ACTUAL 2 INPUT SEL This parameter selects one of the analogue inputs as actual signal 2 e.g. ACT2 used in Parameter 40.06 ACTUAL VALUE SEL. AI1; AI2; AI3; AI5; AI6; CURRENT; TORQUE; POWER For connection of AI5 to AI6, see Group 98 Option Modules. 40.09 ACT1 MINIMUM Minimum value for Actual Value 1. Defined as % of the difference between the maximum and minimum values of the selected analogue input. The setting range is -1000 to +1000 %. Refer to Parameter
  • 143. Chapter 6 – Parameters Firmware Manual 6-83 Group 13 Analogue Inputs for analogue input minimum and maximum settings. The value of this parameter can be calculated using the formula below. The minimum of the actual value refers to the minimum of the span of the actual value. For example: The pressure of a pipe system is to be controlled between 0 and 10 bar. The pressure transducer has an output span from 4 to 8 V for pressure between 0 and 10 bar. The minimum output voltage of the transducer is 2 V and the maximum 10 V, so the minimum and the maximum of the analogue input is set to 2 V and 10 V. ACTUAL 1 MINIMUM is calculated as follows: 40.10 ACT1 MAXIMUM Maximum value for the Actual Value 1. Defined as % of the difference between the maximum and minimum values of the selected analogue input. The setting range is -1000 to +1000 %. Refer to Parameter Group 13 Analogue Inputs for analogue input minimum and maximum settings. The value of this parameter can be calculated using the formula below. The maximum of the actual value refers to the maximum of the span of the actual value Refer to the description of the example at Parameter 40.09 ACT1 MINIMUM. ACTUAL 1 MAXIMUM in this case is: Figure 6-23 below shows three examples of actual value scaling. ACTUAL 1 Minimum of actual value (V or mA) - MINIMUM AI (1, 2 or 3) MAXIMUM AI (1, 2 or 3) - MINIMUM AI (1, 2 or 3)MINIMUM = · 100 % ACTUAL 1 4 V - 2 V 10 V - 2 V MINIMUM = · 100 % = 25 % ACTUAL 1 Maximum of actual value (V or mA) - MINIMUM AI (1, 2 or 3) MAXIMUM AI (1, 2 or 3) - MINIMUM AI (1, 2 or 3)MAXIMUM = · 100 % ACTUAL 1 8 V - 2 V 10 V - 2 V MAXIMUM = · 100 % = 75 %
  • 144. Chapter 6 – Parameters 6-84 Firmware Manual Figure 6-23 Actual Value Scaling. 40.11 ACT2 MINIMUM Refer to Parameter 40.09 ACT1 MINIMUM. 40.12 ACT2 MAXIMUM Refer to Parameter 40.10 ACT1 MAXIMUM. 40.13 PID INTEGRATION On/Off switch for the PID control block integrator. ON Integration is in use. This is the default value. OFF Integration is not used. 40.14 TRIM MODE Activates the trim function and selects between direct and proportional trimming. Not visible with 99.02 APPLICATION MACRO = PID CTRL. See subsection Function Description: Reference Trimming. OFF Trim function is not in use. This is the default value. PROPORTIONAL Trim function is in use. The trimming factor is relative to the external %- reference (EXT2). DIRECT Trim function is in use. The trimming factor is relative to a fixed limit used in the reference control loop (speed, frequency or torque). 40.15 TRIM REF SEL Selects the signal source for the trim reference. Not visible with 99.02 APPLICATION MACRO = PID CTRL. See subsection Function Description: Reference Trimming above. 10 V(100 %) 8 V(75 %) 4 V(25 %) 2 V(0 %) 0 V 0 % 100 % Actual Scaled Actual 10 V(100 %) 8 V(80 %) 4 V(40 %) 0 V(0 %) 0 % 100 % Actual Scaled Actual 100 % 60 % 20 % 0 % 0 % 100 % Actual Scaled Actual Minimum AI Actual 1 Maximum 75 % Actual 1 Minimum Actual 1 Maximum = 20 % Actual 1 Minimum = 60 % 2 V/4 mA 25 % Minimum AI: 0 V/0 mAI Actual 1 Maximum 80 % Actual 1 Minimum 40 %
  • 145. Chapter 6 – Parameters Firmware Manual 6-85 AI1; AI2; AI3; AI5; AI6; Analogue signal AI1 (to AI6) is used as the trim reference. AI1 is the default value. For the connection of AI5 to AI6, see Group 98 Option Modules. PAR 40.16 Value of Parameter 40.16 TRIM REFERENCE is used as the trim reference. 40.16 TRIM REFERENCE Fixed trim reference value for the selector 40.15 TRIM REF SEL. Not visible with 99.02 APPLICATION MACRO = PID CTRL. See subsection Function Description: Reference Trimming above. -100.0% to 100.0% 0.0% is the default value. 40.17 TRIM RANGE ADJUST Multiplier for the PID control block output. Used in the trim function. Not visible with 99.02 APPLICATION MACRO = PID CTRL. See subsection Function Description: Reference Trimming above. -100.0% to 100.0% 0.0% is the default value. 40.18 TRIM SELECTION Selects whether the trimming is used for correcting the speed or torque reference. Visible only when 99.02 APPLICATION MACRO = T CTRL. See subsection Function Description: Reference Trimming above. SPEED TRIM Trimming is used for speed reference correction. This is the default value. TORQUE TRIM Trimming is used for torque reference correction. 40.19 ACTUAL FILT TIME Filter time for the actual signals connected to the PID control block. See subsection Function Description: Process PID Control above. 0.04 s to 10.00 s Trimreference -minAI1 minAI1 maxAI1-maxAI1 Analogue Input Signal Legend AI5 and negative signal range (i.e bipolar signal) can be used only with an optional I/O extension module. minAI5 = 13.16 MINIMUM AI5 maxAI5 = 13.17 MAXIMUM AI5 scaleAI = 13.18 SCALE AI5 scaleAI1 -scaleAI1 Example: AI5 as a trim reference
  • 146. Chapter 6 – Parameters 6-86 Firmware Manual 40.20 SLEEP SELECTION Sets the sleep activation criteria. See subsection Function Description: Sleeping above. Visible only with 99.02 APPLICATION MACRO = PID CTRL. OFF The sleep function is not active. This is the default value. INTERNAL The Sleep function is activated and deactivated as defined with Parameters 40.21 SLEEP LEVEL, and 40.23 WAKE UP LEVEL. DI1; …; DI12 Digital input must be on (“1”) to enter the sleep mode. The sleep delay, set with Parameter 40.22 SLEEP DELAY, is in effect. For connection of DI7 to DI12, see Group 98 Option Modules. 40.21 SLEEP LEVEL Sets the speed limit for the sleep function. See subsection Function Description: Sleeping above.Visible only with 99.02 APPLICATION MACRO = PID CTRL. 0.0 to 7200.0 rpm The default value is 0.0 rpm. When the motor speed falls below the sleep level, the sleep delay counter is started. When the motor speed exceeds the sleep level the sleep delay counter is reset. 40.22 SLEEP DELAY Sets the delay for the sleep function. See the figures in subsection Function Description: Sleeping above. Visible only with 99.02 APPLICATION MACRO = PID CTRL. 0.0 s to 3600.0 s The default value is 0.0 s. If the motor speed is below a set level (40.21 SLEEP LEVEL) longer than the sleep delay, the ACS 600 is stopped, and the control panel shows the warning message “SLEEP MODE”. 40.23 WAKE UP LEVEL Sets the process actual value limit for the sleep function. See the figures in subsection Function Description: Sleeping above. Visible only with 99.02 APPLICATION MACRO = PID CTRL. 0.0% to 100.0% The default value is 0.0%. When the process actual value falls below the limit, the wake-up counter starts. The wake-up level is defined in percents of the used process reference value. 40.24 WAKE UP DELAY Sets the wake-up delay for the sleep function. See subsection Function Description: Reference Trimming above. Visible only with 99.02 APPLICATION MACRO = PID CTRL. 0.0 s to 3600.0 s The default value is 0.0 s. The drive wakes up if the process actual value is below a set level (40.23 WAKE UP LEVEL) longer than the wake-up delay.
  • 147. Chapter 6 – Parameters Firmware Manual 6-87 Group 42 Brake Control Group 42 includes parameters for the brake control function. The function operates on a 100 ms time level. The mechanical brake is used for holding the motor and driven machinery at zero speed when the drive is stopped, or when the drive is not powered. Table 6-26 Group 42. Parameter Range/Unit Description 1 BRAKE CTRL OFF; ON Brake control function on/off 2 BRAKE ACKNOWLEDGE OFF; DI5; DI6; DI11; DI12 Interface for the brake acknowledge signal 3 BRAKE OPEN DELAY 0.0 to 5.0 s Brake open delay 4 BRAKE CLOSE DELAY 0.0 to 60.0 s Brake close delay 5 ABS BRAKE CLS SPD 0 to 1000 rpm Absolute brake close speed 6 BRAKE FAULT FUNC FAULT; WARNING Brake fault function 7 STRT TORQ REF SEL NO; AI1; AI2; AI3; AI5; AI6; PAR 42.08 Starting torque signal source 8 START TORQ REF -300 to 300% Starting torque setting
  • 148. Chapter 6 – Parameters 6-88 Firmware Manual Brake Control Function Description The figure below shows a brake control application example. WARNING! Make sure the machinery into which the ACS 600 with brake control function is integrated fulfils the personnel safety regulations. Note that the frequency converter (a Complete Drive Module or a Basic Drive Module, as defined in IEC 61800-2), is not considered as a safety device mentioned in the European Machinery Directive and related harmonised standards. Thus the personnel safety of the complete machinery must not be based on a specific frequency converter feature (such as the brake control function), but it has to be implemented as defined in the application specific regulations. Summary - brake on/off control through relay output RO1 - brake supervision through digital input DI5 (optional) - fixed starting torque at brake release - emergency brake switch in the brake control circuit Parameter Settings 14.01 RELAY RO1 OUTPUT BRAKE CTRL 42.01 BRAKE CTRL ON 42.02 BRAKE ACKNOWLEDGE DI5 42.03 BRAKE OPEN DELAY Brake specific 42.04 BRAKE CLOSE DELAY Brake specific 42.05 ABS BRAKE CLS SPD Application specific 42.06 BRAKE FAULT FUNC FAULT 42.07 STRT TORQ REF SEL Par 42.08 42.08 START TORQ REF 100% Actual values 3.12 FAULT WORD 3, 3.16 ALARM WORD 3 Fault / Warning messages (SeeChapter 7 – Fault Tracing) BRAKE ACKN X25 X22 1 RO1 2 RO1 3 RO1 5 DI5 7 +24 VDC Motor M Wirings 230 VAC ACS 600 NIOC board 1) Mechanical brake Brake control hardware Emergency brake
  • 149. Chapter 6 – Parameters Firmware Manual 6-89 The time scheme below illustrates the operation of the brake control function. See also the state machine on the following page. Ts Start torque at brake release: See 42.07 STRT TORQ REF SEL and 42.08 START TORQ REF. tod Brake open delay: See 42.03 BRAKE OPEN DELAY. ncs Brake close speed: See 42.05 ABS BRAKE CLS SPD. tcd Brake close delay: See 42.04 BRAKE CLOSE DELAY. Start command Inverter modulating Motor magnetised Open brake command Actual motor speed Torque reference time tod tcd ncs Ts Speed reference
  • 150. Chapter 6 – Parameters 6-90 Firmware Manual The figure below is the state machine for the brake control function. RFG INPUT TO ZERO CLOSE BRAKE BRAKE ACK FAULT OPEN BRAKE From any state “1”/“1”/“1” “0”/“1”/“1” “1”/“1”/“1” “1”/“1”/“0” “0”/“0”/“1” 1) 2) RELEASE RFG INPUT 3) 4) 7) 8) 10) 11) 12) 13) 5) NO MODULATION “0”/“0”/“1” 9) 6) A A Brake control function state - NN: State name - X/Y/Z: State outputs/operations X = “1” Open the brake. The relay output set to brake on/off control energises. Y = “1” Forced start. The function keeps the internal Start on until the brake is closed in spite of the status of the external Start signal. Z = “1” Ramp in zero. Forces the used speed reference to zero along a ramp. NN X/Y/Z State change conditions 1) Brake control active ”0” -> ”1” OR Inverter is modulating =”0” 2) Motor magnetised = “1” AND Drive running = “1” 3) Brake acknowlegement = “1” AND Brake open delay passed AND Start = “1” 4) Start = “0” 5) Start = “0” 6) Start = “1” 7) Actual motor speed < Brake close speed AND Start = “0” 8) Start = “1” 9) Brake acknowledgement = “0” AND Brake close delay passed =”1” AND Start = “0” Only if Parameter 42.02 BRAKE ACKNOWLEDGE OFF: 10) Brake acknowledgement = “0” AND Brake open delay passed =”1” 11) Brake acknowledgement = “0” 12) Brake acknowledgement = “0” 13) Brake acknowledgement = “1” AND Brake close delay passed =”1” = RFG = Ramp Function Generator. Used in the reference handling in the speed control loop. (rising edge)
  • 151. Chapter 6 – Parameters Firmware Manual 6-91 42.01 BRAKE CTRL Activates the brake control function. OFF Off is the default value: Brake control function is not in use. ON Brake control function is on. 42.02 BRAKE ACKNOWLEDGE Activates the external brake on/off supervision and selects the source for the signal. The use of the external on/off supervision signal is optional. OFF External brake on/off supervision is not in use. This is the default value. DI5 Brake on/off supervision is in use. Digital input DI5 is the signal source. DI5 = “1”: Brake is open. DI5 = “0”: Brake is closed. The connection is shown in the subsection Brake Control Function Description above. DI6; DI11; DI12 See DI5. For connection of DI11 and DI12, see Group 98 Option Modules. 42.03 BRAKE OPEN DELAY See the operation diagrams in subsection Brake Control Function Description above: The delay counter starts after the motor is magnetised. The brake control function simultaneously energises the ACS 600 relay output, and the brake starts opening. During the delay, the drive rises the motor torque to level required at the brake release (= Parameters 42.07 STRT TORQ REF SEL and 42.08 START TORQ REF). 0.0 to 5.0 s The default value is zero. Set the delay the same as the mechanical opening delay of the brake given by the brake manufacturer. 42.04 BRAKE CLOSE DELAY See the operation diagrams in subsection Brake Control Function Description above: The delay counter starts when the motor actual speed has fallen below the set level after the drive has received the stop command (= Parameter 42.05 ABS BRAKE CLS SPD). Simultaneously with the counter start, the brake control function de- energises the relay output, and the brake starts closing. During the delay, the brake function keeps the motor live preventing the motor speed from falling below zero. 0.0 to 60.0 s The default value is zero. Set the delay the same as the mechanical make up time of the brake (= operating delay when closing) given by the brake manufacturer. 42.05 ABS BRAKE CLS SPD See Parameter 42.04 BRAKE CLOSE DELAY and the operation diagrams in subsection Brake Control Function Description above. Note: This is an absolute value.
  • 152. Chapter 6 – Parameters 6-92 Firmware Manual 0 to 1000 rpm Default value is 100 rpm. 42.06 BRAKE FAULT FUNC Defines how the drive reacts in case the status of the external brake acknowledge signal does not meet the status expected by the brake control function. See the state machine in subsection Brake Control Function Description above. FAULT Brake control function generates a fault. The drive trips and a fault message is shown on the control panel display. The fault is also saved in the event log. WARNING Brake control function generates a warning. The drive continues operation and a warning message is shown on the control panel display. The warning is also saved in the event log. 42.07 STRT TORQ REF SEL Selects the source for the motor starting torque reference. See the operation diagrams in subsection Brake Control Function Description above. NO No source for the starting torque. This is the default value. AI1; AI2; AI3; AI5; AI6 Starting torque reference is given through an analogue input. For the connection of AI5 and AI6, see Group 98 Option Modules. PAR 42.08 Starting torque reference is given by Parameter 42.08 START TORQ REF. 42.08 START TORQ REF Sets the motor starting torque at brake release in percent of the motor nominal torque. See the operation diagrams in subsection Brake Control Function Description above. -300 to 300 % Default value is 0.
  • 153. Chapter 6 – Parameters Firmware Manual 6-93 Group 45 Function Selection Group 45 includes parameters for six pointers. The user can select any drive status information for a pointer and direct the value to a relay output. Table 6-27 Group 45. The figure below shows how to indicate drive status “READY TO OPERATE” through the relay output RO1. Parameter Range/Value Description 45.01 POINTER1 GRP+IND -9999 to 9999 Index selector for pointer 1 45.02 POINTER1 BIT 0 to 15 Bit selector for pointer 1 45.03 POINTER2 GRP+IND -9999 to 9999 Index selector for pointer 2 45.04 POINTER2 BIT 0 to 15 Bit selector for pointer 2 45.05 POINTER3 GRP+IND -9999 to 9999 Index selector for pointer 3 45.06 POINTER3 BIT 0 to 15 Bit selector for pointer 3 45.07 POINTER4 GRP+IND -9999 to 9999 Index selector for pointer 4 45.08 POINTER4 BIT 0 to 15 Bit selector for pointer 4 45.09 POINTER5 GRP+IND -9999 to 9999 Index selector for pointer 5 45.10 POINTER5 BIT 0 to 15 Bit selector for pointer 5 45.11 POINTER6 GRP+IND -9999 to 9999 Index selector for pointer 6 45.12 POINTER6 BIT 0 to 15 Bit selector for pointer 6 14.01 0000 9999 Select MAIN CTRL WORD3.01 MAIN STATUS WORD3.02 B0 READY TO OPERATEB1 ...B2 ...AUX STATUS WORD3.03 3.02 MAIN STATUS WORD NOT USED COMM. MODULE POINTER1 (POINTER1) Relay output RO1 . .. . .. (0302) (1) 45.02 Select 45.01 Select . .. . ..
  • 154. Chapter 6 – Parameters 6-94 Firmware Manual 45.01 POINTER1 GRP+IND Parameter index selector for pointer 1. See the figure above. -9999 to 9999 Default value is 0000. The negative range is reserved for the signal inversion. Example (see the figure above): If 45.01 POINTER1 GRP+IND has the value -0302, the output of selector 45.02 POINTER1 BIT is inverted. In other words, the pointer output has value “0” when status bit B1 “READY TO OPERATE” has the value “1” and vice versa. 45.02 POINTER1 BIT Bit selector for the pointer 1. See the figure above. 0 to 15 Default value is 0 (bit no. 0). 45.03 POINTER2 GRP+IND See Parameter 45.01 POINTER1 GRP+IND. 45.04 POINTER2 BIT See Parameter 45.02 POINTER1 BIT. 45.05 POINTER3 GRP+IND See Parameter 45.01 POINTER1 GRP+IND. 45.06 POINTER3 BIT See Parameter 45.02 POINTER1 BIT. 45.07 POINTER4 GRP+IND See Parameter 45.01 POINTER1 GRP+IND. 45.08 POINTER4 BIT See Parameter 45.02 POINTER1 BIT. 45.09 POINTER5 GRP+IND See Parameter 45.01 POINTER1 GRP+IND. 45.10 POINTER5 BIT See Parameter 45.02 POINTER1 BIT. 45.11 POINTER6 GRP+IND See Parameter 45.01 POINTER1 GRP+IND. 45.12 POINTER6 BIT See Parameter 45.02 POINTER1 BIT.
  • 155. Chapter 6 – Parameters Firmware Manual 6-95 Group 50 Encoder Module These parameters are visible, and need to be adjusted, only when a pulse encoder module (optional) is installed and activated with Parameter 98.01 ENCODER MODULE. The parameters in Group 50 define the encoder signal decoding and the operation of the ACS 600 in encoder or NTAC module fault conditions. These parameter settings will remain the same even though the application macro is changed. Table 6-28 Group 50 parameters. 50.01 PULSE NR This parameter states the number of the encoder pulses per one revolution. 50.02 SPEED MEAS MODE This parameter defines how the encoder pulses are calculated. A - - B DIR Ch A: positive edges calculated for speed. Ch B: direction. A - - - Ch A: positive and negative edges calculated for speed. Ch B: not used. A - - - B DIR Ch A: positive and negative edges are calculated for speed. Ch B: direction. Parameter Range Description 50.01 PULSE NR 0 ... 29999 Number of encoder pulses per revolution. 50.02 SPEED MEAS MODE A - - B DIR ; A- - - ; A - - - B DIR ; A - - - B - - - Calculation of encoder pulses. 50.03 ENCODER FAULT WARNING; FAULT Operation of the ACS 600 if an encoder failure or encoder communication failure is detected. 50.04 ENCODER DELAY 5 ... 50000 ms Delay for the encoder supervision function (See Parameter 50.03 ENCODER FAULT) 50.05 ENCODER CHANNEL CHANNEL1, CHANNEL 2 Channel from which the Standard Application Program reads the signals of the Pulse Encoder Module (NTAC). 50.06 SPEED FB SEL INTERNAL; ENCODER Selects the speed feedback value used in the control; Speed estimate or measured speed.
  • 156. Chapter 6 – Parameters 6-96 Firmware Manual A - - - B - - - All edges of the signals are calculated. 50.03 ENCODER FAULT This parameter defines the operation of the ACS 600 if a failure is detected in communication between the pulse encoder and the Pulse Encoder Interface Module (NTAC) or in between the NTAC module and the ACS 600. Encoder supervision function activates if either of the following conditions is valid: 1. There is a 20 % difference between the estimated speed and the measured speed received from the encoder. 2. No pulses are received from the encoder within defined time (see Parameter 50.04 ENCODER DELAY), and the motor torque is at the allowed maximum value. WARNING Warning indication is generated. FAULT Fault indication is generated and the ACS 600 stops the motor. 50.04 ENCODER DELAY This is the time delay for the encoder supervision function (See Parameter 50.03 ENCODER FAULT). 50.05 ENCODER CHANNEL This parameter defines the fibre optic channel of the control board from which the Standard Application Program reads the signals coming from the Pulse Encoder Interface Module (NTAC). CHANNEL 2 Pulse Encoder Module (NTAC) signals are read from channel 2 (CH2). This is the default value. It can be used in most cases. CHANNEL 1 Pulse Encoder Module (NTAC) signals are read from channel 1 (CH1). The Pulse Encoder Module (NTAC) must be connected to CH1 instead of CH2 in applications where CH2 is reserved by a Master station (e.g. a Master/Follower application). This parameter value must be changed accordingly. See also Parameter 70.03 CH1 BAUDRATE. 50.06 SPEED FB SEL This parameter defines the speed feedback value used in control. INTERNAL Calculated speed estimate is used as the speed feedback. ENCODER Actual speed measured with an encoder is used as the speed feedback.
  • 157. Chapter 6 – Parameters Firmware Manual 6-97 Group 51 Communication Module These parameters are visible, and need to be adjusted, only when a fieldbus adapter module (optional) is installed and activated with Parameter 98.02 COMM. MODULE LINK. For details on the parameters, refer to the manual of the fieldbus module. These parameter settings will remain the same even though the macro is changed. Group 52 Standard Modbus These parameters define the basic settings for the Standard Modbus Link. See Appendix C – Fieldbus Control. Table 6-29 Group 52 parameters. Parameter Range Description 52.01 STATION NUMBER 1 to 247 Device address. Two units with the same addresses are not allowed on-line. Default value is 1. 52.02 BAUDRATE 600; 1200; 2400; 4800; 9600 Transfer rate of the link in bit/s. Default value is 9600. 52.03 PARITY NONE1STOPBIT; NONE2STOPBIT; ODD; EVEN Usage of parity bit(s). Default value is ODD.
  • 158. Chapter 6 – Parameters 6-98 Firmware Manual Group 60 MASTER/FOLLOWER The Master/Follower group includes parameters needed when the system is run by several ACS 600 drives and the motor shafts are coupled to each other via gearing, chain, belt etc. This section contains a brief introductory to Master/Follower application and the parameter descriptions. For more information see the separate Master/Follower Application Guide (EN code: 58962180). Table 6-30 Group 60 parameters. Parameter Range Description 60.01 MASTER LINK MODE NOT IN USE; MASTER; FOLLOWER Sets the Master/Follower communication mode for the station 60.02 TORQUE SELECTOR SPEED;TORQUE; MINIMUM; MAXIMUM; ADD; ZERO Follower torque reference selector 60.03 WINDOW SEL ON NO; YES Window function activation 60.04 WINDOW WIDTH POS 0 to 1500 Window limit for the positive speed error 60.05 WINDOW WIDTH NEG 0 to 1500 Window limit for the negative speed error 60.06 DROOP RATE 0 to 100% Droop rate as a percent of the maximum speed 60.07 MASTER SIGNAL 2 0000 to 9999 Addres from which Master reads Reference 1 60.08 MASTER SIGNAL 3 0000 to 9999 Addres from which Master reads Reference 2
  • 159. Chapter 6 – Parameters Firmware Manual 6-99 Function Description: Master/Follower The figures below illustrate the Master/Follower function in brief. In Master/Follower communication, the Master station cyclically sends a message to the Follower stations. The message is read by all on-line Follower stations through channel CH2. The drive behaviour depends on the settings of Group 60 Parameters and Parameters 10.01 EXT1 STRT/STP/DIR, 10.02 EXT2 STRT/STP/DIR, 11.03 EXT REF1 SELECT, 11.06 EXT REF2 SELECT, 16.01 RUN ENABLE and 16.04 FAULT RESET SEL. Mains Supply 33 Solidly coupled motor shafts: • Speed-Controlled Master • Follower Follows the Torque Reference of the Master External Control Signals Mains Supply 3 n3 22 Master/Follower Link Follower Fault Supervision 3 22 Master/Follower Link Follower Fault Supervision 3 3 External Control Signals Mains Supply 3 n Flexibly coupled motor shafts: • Speed-Controlled Master • Follower Follows the Speed Reference of the Master Mains Supply ACS 600 ACS 600 ACS 600 ACS 600 M/F Application, Overview PID– + – + 0 1 2 0 3 4 5 SPEED REF = Speed Reference TORQ REF 1 = Torque Reference TORQ REF 2 = Speed Controller Output TORQ REF 3 = Internal Torque Reference EXT1 = External control location 1 EXT2 = External control location 2 See Parameter 11.02 EXT1/EXT2 SELECT (O) EXT2 EXT1 SPEED TORQUE MIN MAX ADD 2.102.09 TORQ REF 3 TORQUE TORQ REF 1 TORQ REF 2 DROOP 2.02 SPEED REF 3 ACTUAL SPEED 60.02 TORQUE SELECTOR SPEED CONTROLLERWINDOW CONTROL REFERENCE CHAIN RATE M/F Application, Functions for the Speed and Torque Control Loop Tuning • Torque selector • Window control • Drooping The functions are typically applied in the Follower station when selecting and processing the reference(s) received from the Master.
  • 160. Chapter 6 – Parameters 6-100 Firmware Manual The Follower drive is torque-controlled. Parameter 11.02 EXT1/EXT2 SELECT is set to EXT2 and 60.02 TORQUE SELEC- TOR to ADD. 1. Normal operating range. Window Control keeps the speed con- troller input zero. The Follower is controlled by torque reference of the Master. 2. Load loss occurs. Follower actual speed starts to rise. 3. The speed increases until the absolute value of the negative speed error exceeds WINDOW WIDTH NEG. Window Control con- nects the value outside the window to the speed controller. Negative speed controller output value is produced and added to torque ref- erence received from the Master. Internal torque reference is restricted to stop the speed increase. Speed Reference Internal Torque Reference Load torque % Time Actual Speed 60.05 WINDOW WIDTH NEG 1. 2. 3. Example 2: Window Control On in a Load Loss Condition 60.05 WINDOW WIDTH NEG 60.04 WINDOW WIDTH POS Speed Reference Actual Speed Speed Controller Output Internal Torque Reference = Torque Reference + Speed Controller Output Time The Follower drive is torque-controlled. Parameter 11.02 EXT1/EXT2 SELECT is set to EXT2 and 60.02 TORQUE SELEC- TOR to TORQUE. 1. Normal operating range. The Follower is controlled by torque reference of the Master. 2. Load loss occurs. Follower actual speed starts to rise. 3. The speed increases until the maximum speed limit of the ACS 600 is reached (Parameter 20.02 MAXIMUM SPEED). Internal torque reference is restricted to stop the speed increase. Speed Reference Internal Torque Reference Load torque % Time Actual Speed 1. 2. 3. Example 1: Window Control Off in a Load Loss Condition G = Speed controller gain e = Value connected to speed controller e G·e Torque Reference 20.02 SPEED MAXIMUM Torque Reference Torque Reference M/F Application, Window Control
  • 161. Chapter 6 – Parameters Firmware Manual 6-101 60.01 MASTER LINK MODE This parameter determines the role of the drive on the Master/Follower link. NOT IN USE The Master/Follower link is not active. This the default value. MASTER The drive acts as the Master station. FOLLOWER The drive acts as a Follower station. 60.02 TORQUE SELECTOR Selects the reference used in motor torque control. Typically, the value needs to be changed only in the Follower station(s). See subsection Function Description: Master/Follower above. The parameter is visible only when Parameter 99.02 APPLICATION MACRO is T CTRL. External control location 2 (EXT2) must be active to enable torque selector. SPEED The follower speed controller output is used as a reference for motor torque control. The drive is speed controlled. SPEED can be used both in the Follower and the Master if • the motor shafts of the Master and Follower are connected flexibly. (A slight speed difference between the Master and the Follower is possible/allowed.) • drooping is used (see Parameter 60.06 DROOP RATE). TORQUE This is the default value. The drive is torque-controlled. The selection is used in the Follower(s) when the motor shafts of the Master and Follower are coupled solidly to each other by gearing, a chain or other means of mechanical power transmission and no speed difference between the drives is allowed or possible.
  • 162. Chapter 6 – Parameters 6-102 Firmware Manual Note: If TORQUE is selected, the ACS 600 does not restrict the speed variation as long as the speed is within the limits defined with Parameters 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED. More definite speed supervision is often needed. In those cases, the selection ADD should be used instead of TORQUE. MINIMUM The torque selector compares the torque reference and the speed controller output, the smaller of which is used as the reference for the motor torque control. MINIMUM is selected in special cases only. MAXIMUM The torque selector compares the torque reference and the speed controller output, the greater of which is used as the reference for the motor torque control. MAXIMUM is selected in special cases only. ADD The torque selector adds the speed controller output to the torque reference. The drive is torque controlled in the normal operating range. The selection ADD, together with the window control, forms a speed supervision function for a torque controlled Follower drive as follows: • In the normal operating range, the Follower follows the torque reference of the Master (TORQ REF 1). • Window control keeps the speed controller input and output at zero as long as the speed error (speed reference - actual speed) remains within the parameter-set window. • If the speed error moves out of the window, window control connects the error to the speed controller. The speed controller output increases or decreases the internal torque reference, stopping the change of the actual speed. ZERO This selection forces the output of the torque selector to zero.
  • 163. Chapter 6 – Parameters Firmware Manual 6-103 60.03 WINDOW SEL ON The window control is visualised in the subsection Function Description: Master/Follower above. Window control, together with selection ADD at Parameter 60.02 TORQUE SELECTOR, forms a speed supervision function for a torque controlled drive. The parameter is visible only when Parameter 99.02 APPLICATION MACRO is T CTRL. External control location 2 (EXT2) must be active to enable window control. NO Window control is off. This is the default value. YES Window control is on. Selection YES is used only when Parameter 60.02 TORQUE SELECTOR is ADD. Window control supervises the speed error value (Speed Reference - Actual Speed). In the normal operating range, window control keeps the speed controller input at zero. The speed controller is evoked only if: • the speed error exceeds the value of Parameter 60.04 WINDOW WIDTH POS or • the absolute value of the negative speed error exceeds the value of Parameter 60.05 WINDOW WIDTH NEG. When the speed error moves outside the window, the exceeding part of the error value is connected to the speed controller. The speed controller produces a reference term relative to the input and gain of the speed controller (Parameter 23.01 GAIN) which the torque selector adds to torque reference. The result is used as the internal torque reference for the ACS 600. Example: In a load loss condition, the internal torque reference of the drive is decreased to prevent an excessive rise of the motor speed. If window control were inactivated, the motor speed would rise until a speed limit of the ACS 600 were reached. (Parameters 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED define the speed limits.) 60.04 WINDOW WIDTH POS See Parameter 60.03 WINDOW SEL ON. The parameter is visible only when Parameter 99.02 APPLICATION MACRO is T CTRL. 0 to 1500 rpm The default value is 0. 60.05 WINDOW WIDTH NEG See Parameter 60.03 WINDOW SEL ON. The parameter is visible only when Parameter 99.02 APPLICATION MACRO is T CTRL. 0 to 1500 rpm The default value is 0. 60.06 DROOP RATE This parameter value needs to be changed only if both the Master and the Follower are speed-controlled: • External control location 1 (EXT1) is selected (see Parameter 11.02 EXT 1/EXT 2 SELECT, or
  • 164. Chapter 6 – Parameters 6-104 Firmware Manual • External control location 2 (EXT2) is selected (see Parameter 11.02 EXT 1/EXT 2 SELECT) and Parameter 60.02 TORQUE SELECTOR is set to SPEED. The default value is 0%. The drooping prevents conflict between the Master and Follower by allowing a slight speed difference between them. The correct droop rate for a process mut be found out case by case in practice. The droop rate needs to be set both for the Master and the Follower. The droop rate is set in % of the motor nominal speed. The actual speed decrease at a certain operating point depends on the droop rate setting and the drive load ( = torque reference / speed controller output). The drooping slightly decreases the drive speed as the drive load increases At 100% speed controller output, drooping is at its nominal level, i.e. equal to the value of the DROOP RATE. The drooping effect decreases linearly to zero along with the decreasing load. 60.07 MASTER SIGNAL 2 This parameter selects the signal that is sent by the Master to the Follower(s) as Reference 1 (speed reference). See the separate Master/Follower Application Guide (English code: 58962180). The format is as follows: (x)xyy, where (x)x = Actual Signal or Parameter Group, yy = Actual Signal or Parameter Index. The default value is 202, which denotes Actual Signal Group 2, Index 02, i.e. 2.02 SPEED REF 3. 60.08 MASTER SIGNAL 3 This parameter selects the signal that is sent by the Master to the Follower(s) as Reference 2 (torque reference). See the separate Master/Follower Application Guide (EN code: 58962180). The format is as follows: (x)xyy, where (x)x = Actual Signal or Parameter Group, yy = Actual Signal or Parameter Index. The default value is 213, which denotes Actual Signal Group 2, Index 13, i.e. 2.13 TORQ REF USED. Motor Speed % of nominal Drooping No Drooping Speed Controller 100% } Par. 60.06 DROOP RATE Output /% Speed Decrease = Speed Controller Output · Drooping · Max. Speed Calculation Example: DROOP RATE is 1%, Speed Controller output is 50%, maximum speed of the drive is 1500 rpm. Speed decrease = 0.01 · 0.50 · 1500 rpm = 7.5 rpm Drive load 100%
  • 165. Chapter 6 – Parameters Firmware Manual 6-105 Group 70 DDCS Control The ACS 600 can communicate with external equipment via a DDCS protocol serial communication channels. The parameters in Group 70 set the ACS 600 node addresses for the DDCS channels. These parameter values need to be adjusted only in certain special cases, examples of which are given in the table below. Table 6-31 Group 70 parameters. Parameter Range Description 70.01 CHANNEL 0 ADDR 1 ... 125 Node address for CH0. There must not be two nodes with the same address on-line. The setting needs to be changed when a master station is connected to CH0 and it does not automatically change the address of the slave. Examples of such masters are an ABB Advant Controller AC 70 or another ACS 600. 70.02 CHANNEL 3 ADDR 1 ... 254 Node address for CH3. There must not be two nodes with the same address on-line. Typically the setting needs to be changed when ACS 600 is connected to a ring which consists of several ACS 600s and a PC with the DriveWindow® program running. 70.03 CH1 BAUDRATE 8; 4; 2; 1 MBITS The communication speed of the fibre optic channel 1. Typically the setting needs to be changed only if the Pulse Encoder Module (NTAC) is connected to CH1 instead of CH2. Then the speed must be changed to 4 Mbits. See also Parameter 50.05 ENCODER CHANNEL.
  • 166. Chapter 6 – Parameters 6-106 Firmware Manual Group 90 D SET REC ADDR These parameters are visible, and can be adjusted, only when a fieldbus communication is activated with Parameter 98.02 COMM. MODULE LINK. Table 6-32 Group 90 parameters. Group 92 D SET TR ADDR These parameters are visible, and can be adjusted, only when a fieldbus communication is activated with Parameter 98.02 COMM. MODULE LINK Table 6-33 Group 92 parameters. Parameter Range Description 90.01 AUX DS REF3 0 ... 8999 These parameters enable parameter adjustment through the fieldbus reference. See Appendix C – Fieldbus Control. 90.02 AUX DS REF4 0 ... 8999 90.03 AUX DS REF5 0 ... 8999 90.04 MAIN DS SOURCE 1 ... 255 Defines the data set number from which the drive reads the Control Word, Reference REF1 and Reference REF2. See Appendix C – Fieldbus Control. 90.05 AUX DS SRCE 1 ... 255 Defines the data set number from which the drive reads the References REF3, REF4 and REF5. See Appendix C – Fieldbus Control. Parameter Range Description 92.01 MAIN DS STATUS WORD 302 (fixed, not visible) These parameters define the Main and Auxiliary Actual signal data sets, sent by the ACS 600 to the fieldbus master station. See Appendix C – Fieldbus Control. 92.02 MAIN DS ACT1 0 ... 9999 92.03 MAIN DS ACT2 0 ... 9999 92.04 AUX DS ACT3 0 ... 9999 92.05 AUX DS ACT4 0 ... 9999 92.06 AUX DS ACT5 0 ... 9999
  • 167. Chapter 6 – Parameters Firmware Manual 6-107 Group 96 EXTERNAL AO These parameters are visible, and can be adjusted, only when the optional Analogue Extension Module (NAIO) is installed and activated by setting Parameter 98.06 AI/O EXT MODULE to UNIPOLAR PRGUNIP AO PROG, BIP AO PROG, UNIP AIO PROG or BIP AIO PROG. The parameters define the content and handling of the analogue output signals of the module. The Range/Unit column in the table below shows the parameters. The text following the table explains the parameters in detail. Table 6-34 Group 96 parameters. 96.01 EXT AO1 This parameter allows you to select which signal is connected to analogue output AO1 of the analogue extension module. The alternative settings are the same as for the standard analogue outputs. See Parameter 15.01 ANALOGUE OUTPUT1 (O). 96.02 INVERT EXT AO1 If you select YES, the Extension module analogue output AO1 signal is inverted. Parameter Range/Unit Description 1 EXT AO1 Refer to the text below for the available selections. Content of the extension module analogue output 1. 2 INVERT EXT AO1 NO; YES Extension module analogue output signal 1 inversion. 3 MINIMUM EXT AO1 0 mA; 4 mA; 10 mA; 12 mA Extension module analogue output signal 1 minimum. 4 FILTER EXT AO1 0.00 ... 10.00 s Filter time constant for extension module AO1. 5 SCALE EXT AO1 10 ... 1000 % Extension module analogue output signal 1 scaling factor. 6 EXT AO2 Refer to the text below for the available selections. Extension module analogue output 2 content. 7 INVERT EXT AO2 NO; YES Extension module analogue output signal 2 inversion. 8 MINIMUM EXT AO2 0 mA; 4 mA; 10 mA; 12 mA Extension module analogue output signal 2 minimum. 9 FILTER EXT AO2 0.00 ... 10.00 s Filter time constant for extension module AO2. 10 SCALE EXT AO2 10 ... 1000 % Extension module analogue output signal 2 scaling factor.
  • 168. Chapter 6 – Parameters 6-108 Firmware Manual 96.03 MINIMUM EXT AO1 The minimum value of the Extension module analogue output signal can be set to either 0 mA, 4 mA,10 mA or 12 mA. Actually, the setting 10 mA or 12 mA does not set the AO1 minimum but fixes 10/12 mA to actual signal value zero. See the figure below. Example: Motor speed is read through the analogue output. • Motor nominal speed is 1000 rpm (Parameter 99.08 MOTOR NOM SPEED). • 96.02 INVERT EXT AO1 is NO • 96.05 SCALE EXT AO1 is 100 % The analogue output value as a function of speed is shown below. 96.04 FILTER EXT AO1 Filter time constant for Extension module analogue output AO1. See Parameter 15.04 FILTER AO1. 96.05 SCALE EXT AO1 This parameter is the scaling factor for the Extension module analogue output AO1 signal. See Parameter 15.05 SCALE AO1. 96.06 EXT AO2 See Parameter 96.01 EXT AO1. 96.07 INVERT EXT AO2 See Parameter 96.02 INVERT EXT AO1. 96.08 MINIMUM EXT AO2 See Parameter 96.03 MINIMUM EXT AO1. 96.09 FILTER EXT AO2 See Parameter 96.04 FILTER EXT AO1. 96.10 SCALE EXT AO2 See Parameter 96.05 SCALE EXT AO1. -1000 Analogue output 1000 mA 20 0-500 500 Speed/rpm 10 12 4 1 2 3 4 0 mA 4 mA 10 mA 12 mA Analogue output signal minimum 1 2 3 4 1 2
  • 169. Chapter 6 – Parameters Firmware Manual 6-109 Group 98 Option Modules The parameters of this group are set if an option module is installed or external serial communication is in use. For more information on option modules refer to the option module manuals. These parameter values cannot be altered with the ACS 600 running. These parameter settings will remain the same even though the application macro is changed. Table 6-35 Group 98 parameters. 98.01 ENCODER MODULE Set to YES if pulse encoder module (optional) is installed. Set the module node number to 16 (for directions see module manual). See also Parameter Group 50. Parameter Range Description 98.01 ENCODER MODULE NO; YES Pulse encoder option module selection. See also Parameter Group 50 Encoder Module. 98.02 COMM. MODULE LINK NO; FIELDBUS; ADVANT: STD MODBUS; CUSTOMISED Option module selection. See also Group 51 Communication Module. 98.03 DI/O EXT MODULE 1 NO; YES Option module selection. 98.04 DI/O EXT MODULE 2 NO; YES Option module selection. 98.05 DI/O EXT MODULE 3 NO; YES Option module selection. 98.06 AI/O EXT MODULE NO; UNIPAIO PRG; BIP AIO PRG; UNIPOLAR; BIPOLAR; UNIP AO PRG; BIP AO PRG Option module selection. 98.07 COMM PROFILE ABB DRIVES; CSA2.8/3.0 Communication profile selection 98.08 NIOC-01 BOARD NO; YES Enable/disable the NIOC board supervision function 98.09 NDIO1 DI FUNC DI7,8; REPL DI1,2 Selects the use of the NDIO module no. 1 input channels 98.10 NDIO2 DI FUNC DI9.10; REPL DI1,2 Selects the use of the NDIO module no. 2 input channels 98.11 NDIO3 DI FUNC DI11,12; REPL DI1,2 Selects the use of the NDIO module no. 3 input channels 98.12 AI/O MOTOR TEMP NO; UNIPOLAR NAIO module setting for motor temperature measuring
  • 170. Chapter 6 – Parameters 6-110 Firmware Manual 98.02 COMM. MODULE LINK This parameter selects the external serial communication interface. See Appendix C – Fieldbus Control. NO No external serial communication in use. FIELDBUS ACS 600 communicates with a communication module (e.g. fieldbus adapter) via CH0 Fieldbus Adapter link. See also Parameter Group 51 Communication Module. ADVANT ACS 600 communicates with an ABB Advant OCS system via CH0 Fieldbus Adapter link. See also Parameter Group 70 DDCS Control. STD MODBUS ACS 600 communicates with a Modbus controller via the Standard Modbus link. See also Parameter Group 52 Standard Modbus. CUSTOMISED ACS 600 can be controlled via two serial communication interfaces simultaneously. The control sources must be defined by the user with Parameter 90.04 MAIN DS SOURCE and 90.05 AUX DS SRCE. 98.03 DI/O EXT MODULE 1 Set to YES if external digital input/output module 1 (NDIO; optional) is installed. Set the module node number to 2 (for directions see module manual). NO Communication between ACS 600 and the NDIO module 1 inactive. This is the default value. YES Communication between ACS 600 and the NDIO module 1 active. • Parameter 98.09 NDIO1 DI FUNC further defines the use of the digital inputs in the application program. • Parameters 14.10 NDIO MOD1 RO1 and 14.11 NDIO MOD1 RO2 select the drive states that are indicated through the relay outputs. 98.04 DI/O EXT MODULE 2 Set to YES if a second NDIO module (digital input/output module 2) is installed. Set the module node number to 3 (for directions see module manual). NO Communication between ACS 600 and the NDIO module 2 inactive. This is the default value. YES Communication between ACS 600 and the NDIO module 2 active. • Parameter 98.10 NDIO2 DI FUNC further defines the use of the digital inputs in the application program. • Parameters 14.12 NDIO MOD2 RO1 and 14.13 NDIO MOD2 RO2 select the drive states that are indicated through the relay outputs.
  • 171. Chapter 6 – Parameters Firmware Manual 6-111 98.05 DI/O EXT MODULE 3 Set to YES if a third NDIO module (digital input/output module 3) is installed. Set the module node number to 4 (for directions see module manual). NO No communication between drive and NDIO module 3. This is the default value. YES Communication between drive and NDIO module 3 active. • Parameter 98.11 NDIO3 DI FUNC further defines the use of the digital inputs in the application program. • Parameters 14.14 NDIO MOD3 RO1 and 14.15 NDIO MOD3 RO2 select the drive states that are indicated through the relay outputs. 98.06 AI/O EXT MODULE Parameter activates the communication to an optional analogue input/output extension module, NAIO. Note: Before setting the ACS 600 parameters, ensure the NAIO module hardware settings (DIP switches) are OK: • The NAIO module node number is set to 5. • The input signal type selections matches the actual signals (mA/V). • For type NAIO-03 module the operation mode selection matches the applied input signals (unipolar/bipolar). For directions see Installation and Start-up Guide for NTAC-0x/NDIO- 0x/NAIO-0x Modules (EN code: 3AFY 58919730). For information on the NAIO module with the ACS 600 Standard Application Program, see also Appendix D – Analogue Extension Module NAIO. NO No communication between the drive and the NAIO module. This is the default value.
  • 172. Chapter 6 – Parameters 6-112 Firmware Manual UNIP AIO PROG Unipolar NAIO module inputs: Total number of I/Os in the application program is increased. The application program handles the analogue I/O’s as follows: • Input type: 0 to 20 mA (0 to 10 V) • Total no. of inputs: 5 • Total no. of outputs:4 • Input terminals: • Output terminals: BIP AIO PROG Bipolar NAIO module inputs: Total number of I/Os in the application program is increased. The application program handles the analogue I/O’s as follows: • Input type: -20 to 20 mA (-10 to 10 V) • Total no. of inputs: See selection UNIP AIO PROG • Total no. of outputs:See selection UNIP AIO PROG • Input terminals: See selection UNIP AIO PROG • Output terminals: See selection UNIP AIO PROG Input name in the application program Physical input terminal AI1 AI1 on NIOC AI2 AI2 on NIOC AI3 AI3 on NIOC AI1/JOYST AI1 on NIOC AI2/JOYST AI2 on NIOC AI5 AI1 on NAIO AI6 AI2 on NAIO AI5/JOYST AI1 on NAIO AI5/JOYST AI2 on NAIO Output value selector in the application program Physical output terminal 15.01 ANALOGUE OUTPUT1 (O) AO1 on NIOC 15.06 ANALOGUE OUTPUT2 (O) AO2 on NIOC 96.01 EXT AO1 AO1 on NAIO 96.06 EXT AO2 AO2 on NAIO
  • 173. Chapter 6 – Parameters Firmware Manual 6-113 UNIPOLAR Unipolar NAIO module inputs: Total number of I/Os in the application program is not increased. The application program handles the analogue I/O’s as follows: • Input type: 0 to 20 mA (0 to 10 V) • Total no. of inputs: 3 • Total no. of outputs: 2 • Input terminals: • Output terminals: BIPOLAR Bipolar NAIO module inputs: Total number of I/Os in the application program is not increased. The application program handles the analogue I/O’s as follows: • Input type: -20 to 20 mA (-10 to 10 V) • Total no. of inputs: See selection UNIPOLAR • Total no. of outputs: See selection UNIPOLAR • Input terminals: See selection UNIPOLAR • Output terminals See selection UNIPOLAR Input name in the application program Physical input terminal AI1 AI1 on NIOC AI2 AI1 on NAIO AI3 AI2 on NAIO AI1/JOYST AI2 on NAIO AI2/JOYST AI1 on NAIO AI5 AI1 on NAIO AI6 AI2 on NAIO AI5/JOYST AI1 on NAIO AI6/JOYST AI2 on NAIO Output value selector in the application program Physical output terminal 15.01 ANALOGUE OUTPUT1 (O) AO1 on NIOC and AO1 on NAIO 15.06 ANALOGUE OUTPUT2 (O) AO2 on NIOC and AO2 on NAIO
  • 174. Chapter 6 – Parameters 6-114 Firmware Manual UNIP AO PROG Unipolar NAIO-module inputs: Total number of outputs in the application program is increased. The application program handles the analogue I/O’s as follows: • Input type: 0 to 20 mA (0 to 10 V) • Total no. of inputs: 3 • Total no. of outputs:4 • Input terminals: • Output terminals: BIP AO PROG Bipolar NAIO-module inputs: Total number of outputs in the application program is increased. The application program handles the analogue I/O’s as follows: • Input type: -20 to 20 mA (-10 to 10 V) • Total no. of inputs: See selection UNIP AO PRG • Total no. of outputs:See selection UNIP AO PRG • Input terminals: See selection UNIP AO PRG • Output terminals See selection UNIP AO PRG 98.07 COMM PROFILE This parameter is visible only when a fieldbus communication is activated with Parameter 98.02 COMM. MODULE LINK. This parameter defines the profile on which the communication with the fieldbus or another ACS 600 is based. Input name in the application program Physical input terminal AI1 AI1 on NIOC AI2 AI1 on NAIO AI3 AI2 on NAIO AI1/JOYST AI2 on NAIO AI2/JOYST AI1 on NAIO AI5 AI1 on NAIO AI6 AI2 on NAIO AI5/JOYST AI1 on NAIO AI6/JOYST AI2 on NAIO Output value selector in the application program Physical output terminal 15.01 ANALOGUE OUTPUT1 (O) AO1 on NIOC 15.06 ANALOGUE OUTPUT2 (O) AO2 on NIOC 96.01 EXT AO1 AO1 on NAIO 96.06 EXT AO2 AO2 on NAIO
  • 175. Chapter 6 – Parameters Firmware Manual 6-115 ABB DRIVES The default profile in ACS 600 application program version 5.0 and later. CSA 2.8/3.0 Communication profile used in ACS 600 application program versions 2.8x and 3.x. 98.08 NIOC-01 BOARD The parameter enables or disables the communication supervision of the Standard I/O Board (NIOC). NO The communication to the NIOC board is not supervised. YES The communication to the NIOC board is supervised. This is the default value. The application program checks the communication to the NIOC board cyclically. If the communication fails, the program generates a warning “IO COMM”. 98.09 NDIO1 DI FUNC The parameter selects the use of the inputs of the Digital I/O Extension Module (NDIO) no. 1. See Parameter 98.03 DI/O EXT MODULE 1. DI7,8 The DI1 and DI2 of the NDIO module extend the number of input channels. The NDIO inputs are named DI7 and DI8 in the ACS 600 application program. REPL DI1,2 The DI1 and DI2 of the NDIO module replace the standard input channels DI1 and DI2 on the NIOC board. The NDIO inputs are named DI1 and DI2 in the ACS 600 application program. This is the default value. 98.10 NDIO2 DI FUNC The parameter selects the use of the inputs of the Digital I/O Extension Module (NDIO) no. 2. See Parameter 98.04 DI/O EXT MODULE 2. DI9,10 The DI1 and DI2 of the NDIO module extend the total number of digital inputs. The NDIO inputs are named DI9 and DI10 in the ACS 600 application program. REPL DI3,4 The DI1 and DI2 of the NDIO module replace the standard input channels DI3 and DI4. The NDIO inputs are named DI3 and DI4 in the ACS 600 application program. This is the default value. 98.11 NDIO3 DI FUNC The parameter selects the use of the inputs of the Digital I/O Extension Module (NDIO) no. 3. See Parameter 98.05 DI/O EXT MODULE 3. DI11,12 The DI1 and DI2 of the NDIO module extend the total number of digital inputs. The NDIO inputs are named DI11 and DI12 in the ACS 600 application program.
  • 176. Chapter 6 – Parameters 6-116 Firmware Manual REPL DI5,6 The DI1 and DI2 of the NDIO module replace the standard input channels DI5 and DI6. The NDIO inputs are named DI5 and DI6 in the ACS 600 application program. This is the default value. 98.12 AI/O MOTOR TEMP The parameter sets an optional Analogue I/O Extension Module (NAIO) an interface for motor temperature measurement. For more information on the temperature measurement function and connections see, Parameter Group 35 Mot Temp Meas. Note: Before setting the ACS 600 parameters, ensure the NAIO module hardware settings (DIP switches) are apprpopriate for the motor temperature measurement: • The NAIO module node number is 9. • The input signal type selections are the following: • for one Pt 100 sensor measurement, set the range to 0 - 2 V. • for two to three Pt 100 sensors or one to three PTC sensors, set the range to 0 - 10 V. • For type NAIO-03 module, the operation mode selection is unipolar. For directions see Installation and Start-up Guide for NTAC-0x/NDIO- 0x/NAIO-0x Modules (Eglish code: 3AFY 58919730). NO The NAIO module is not used in the motor temperature measurement. UNIPOLAR The NAIO module is used in the motor temperature measurement. The use of the analogue inputs (AI) and outputs (AO) of the NAIO module is shown in the table below. Motor 1 temperature measurement AO1 AO1 feeds a constant current to the motor 1 temperature sensor. The current value depends on the setting of Parameter 35.01 MOT1 TEMP AI1 SEL: - AO1 is 9.1 mA with selections 1xPT100; 2xPT100; 3xPT100 - AO1 is 1.6 mA with selection 1..3 PTC AI1 AI1 measures voltage over the motor 1 temperature sensor. Motor 2 temperature measurement AO2 AO2 feeds a constant current to the motor 2 temperature sensor. The current value depends on the setting of Parameter 35.04 MOT2 TEMP AI2 SEL: - AO2 is 9.1 mA. with selections 1xPT100; 2xPT100; 3xPT100, - AO2 is 1.6 mA. with selection 1..3 PTC AI2 AI2 measures voltage over the motor 2 temperature sensor.
  • 177. Firmware Manual 7-1 Chapter 7 – Fault Tracing WARNING! All electrical installation and maintenance work described in this chapter should only be undertaken by a qualified electrician. The Safety Instructions on the first pages of this manual and the appropriate hardware manual must be followed. Fault Tracing The ACS 600 is equipped with advanced protection features that continuously guard the unit against damage and down time due to incorrect operating conditions and electrical and mechanical malfunctions. This chapter explains the ACS 600 fault tracing procedure with the Control Panel. All Warning and Fault messages are presented in tables below with information on the cause and remedy for each case. Most Warning and Fault conditions can be identified and cured with that information. If not, contact an ABB service representative. CAUTION! Do not attempt any measurement, parts replacement or other service procedure not described in this manual. Such action will void guarantee, endanger correct operation, and increase downtime and expense. The Warning message disappears when any of the Control Panel keys are pressed. The Warning will reappear in one minute if conditions remain unchanged. If the frequency converter is operated with the Control Panel detached, the red LED in the Control Panel mounting platform indicates Fault condition. For setting of programmable warning and fault messages and functions, refer to Chapter 6 – Parameters. Fault Resetting An active fault can be reset either by pressing the keypad RESET key, by digital input or fieldbus, or switching the supply voltage off for a while. When the fault has been removed, the motor can be started. WARNING! If an external source for start command is selected and it is ON, the ACS 600 (with Standard Application Program) will start immediately after fault reset. (If the fault has not been removed, the ACS 600 will trip again.)
  • 178. Chapter 7 – Fault Tracing 7-2 Firmware Manual Fault History When a Fault is detected, it is stored in the Fault History. The last Faults and Warnings are stored with the time the Fault was detected. WARNING! After a fault reset, the drive will start if the start signal is on. Before the reset, switch off the external start signal or ensure that it is safe to start. The Fault History can be viewed by pressing or in the Actual Signal Display Mode. The Fault History can then be scrolled with and . To exit the Fault History press or . The Fault History can be cleared by pressing the RESET key. Fault and Warning Messages The Tables below show the warning and fault messages. Table 7-1 The Warning Messages generated by the drive firmware. WARNING CAUSE WHAT TO DO ACS 600 TEMP The ACS 600 internal temperature is excessive. A warning is given if inverter module temperature exceeds 115 °C. Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against unit power. AI < MIN FUNC (programmable Fault Function 30.01) An analogue control signal is below minimum allowed value. This can be caused by incorrect signal level or a failure in the control wiring. Check for proper analogue control signal levels. Check the control wiring. Check AI < MIN FUNC Fault Function parameters. PANEL LOSS (programmable Fault Function 30.02) A Control Panel selected as active control location for the ACS 600 has ceased communicating. Check the Panel is connected to the right connector (see the appropriate hardware manual). Check Control Panel connector. Replace Control Panel in the mounting platform. Check PANEL LOSS Fault Function parameters. MOTOR TEMP (programmable Fault Function 30.04 ... 30.10) Motor temperature is too high (or appears to be too high). This can be caused by excessive load, insufficient motor power, inadequate cooling or incorrect start-up data. Check motor ratings, load and cooling. Check start-up data. Check MOTOR TEMP Fault Function parameters. THERMISTOR (programmable Fault Function 30.04 ... 30.05) Motor thermal protection mode selected as THERMISTOR and the temperature is excessive. Check motor ratings and load. Check start-up data. Check thermistor connections for digital input DI6 of NIOC board. MOTOR STALL (programmable Fault Function 30.10) Motor is operating in the stall region. This can be caused by excessive load or insufficient motor power. Check motor load and the ACS 600 ratings. Check MOTOR STALL Fault Function parameters.
  • 179. Chapter 7 – Fault Tracing Firmware Manual 7-3 COMM MODULE (programmable Fault Function) Cyclical communication between ACS 600 and fieldbus/ACS 600 Master is lost. Check the status of fieldbus communication. See Appendix C – Fieldbus Control, or the appropriate fieldbus adapter manual. Check the parameter settings: - Group 51 (for CH0 fieldbus adapter), or - Group 52 (for Standard Modbus Link) Check cable connections. Check if the bus master is not communicating or configured. UNDERLOAD (programmable Fault Function 30.13) Motor load is too low. This can be caused by a release mechanism in the driven equipment. Check for a problem in the driven equipment. Check UNDERLOAD Fault Function parameters. ENCODER ERR Communication fault between the pulse encoder and the NTAC module or between the NTAC module and the ACS 600. Check the pulse encoder and its wiring, the NTAC module, Parameter Group 50 settings and the fibre optic connections on NAMC channel CH1. ID N CHANGED The ID number of the drive has been changed from 1 in Drive Selection Mode (the change is not shown on the display). To change the ID number back to 1 go to Drive Selection Mode by pressing DRIVE. Press ENTER. Set the ID number to 1. Press ENTER. MACRO CHANGE Macro is restoring or user Macro is being saved. Please wait. ID MAGN REQ Motor identification is required. This warning belongs to the normal start-up procedure. The drive expects the user to select how the motor identification is to be performed: By ID magnetisation or by ID Run. To start the ID magnetisation: Press the Start key. To start the ID Run procedure: Select the Identification Run type (See Parameter 99.10 MOTOR ID RUN). ID MAGN Motor identification magnetisation is on. This warning belongs to the normal start-up procedure. Wait until the drive indicates that motor identification is completed. ID DONE The ACS 600 has performed the motor identification magnetisation and is ready for operation. This warning belongs to the normal start-up procedure. Continue drive operation. ID RUN SEL Motor Identification Run is selected, and the drive is ready to start the ID Run. This warning belongs to the ID Run procedure. Press Start key to start the Identification Run. MOTOR STARTS Motor Identification Run starts. This warning belongs to the IR Run procedure. Wait until the drive indicates that motor identification is completed. ID RUN Motor Identification Run is on. Wait until the drive indicates that Identification Run is completed. ID DONE The ACS 600 has performed the Identification Run and is ready for operation. This warning belongs to the ID Run procedure. Continue drive operation. ENCODER A<>B The pulse encoder phasing is wrong: Phase A is connected to the terminal of phase B and vice versa. Interchange the connection of pulse encoder phases A and B. WARNING CAUSE WHAT TO DO
  • 180. Chapter 7 – Fault Tracing 7-4 Firmware Manual MOTOR 1 TEMP Measured motor temperature has exceeded the alarm limit set by Parameter 35.02 MOT 1 TEMP ALM L. Check that the value of the alarm limit is OK. Check that the actual number of the sensors corresponds to the parameter set value. Let the motor cool down. Ensure proper motor cooling: Check the cooling fan, clean the cooling surfaces, etc. MOTOR 2 TEMP Measured motor temperature has exceeded the alarm limit set by Parameter 35.05 MOT 2 TEMP ALM L. Check that the value of the alarm limit is OK. Check that the actual number of the sensors corresponds to the parameter set value. Let the motor cool down. Ensure proper motor cooling: Check the cooling fan, clean the cooling surfaces, etc. T MEAS ALM Motor temperature measurement is out of the acceptable range. Check the connections of the motor temperature measurement circuit. See Group 35 Mot Temp Meas for the circuit diagram. BRAKE ACKN Unexpected state of the brake acknowledge signal. See Group 42 Brake Control. Check the connection of the brake acknowledgement signal. IO CONF An input or output of an optional I/O extension module has been selected as a signal interface in the application program but the communication to the appropriate I/O extension module has not been set accordingly. Check the fault function description (Parameter 30.22 IO CONF FUNC) and Group 98 Option Modules. Correct the settings where necessary. SLEEP MODE The sleep function has entered the sleeping mode. See Group 40 PID Control. WARNING CAUSE WHAT TO DO
  • 181. Chapter 7 – Fault Tracing Firmware Manual 7-5 Table 7-2 The Warning Messages generated by the Control Panel firmware. WARNING CAUSE WHAT TO DO WRITE ACCESS DENIED PARAMETER SETTING NOT POSSIBLE Certain parameters do not allow changes while motor is running. If tried, no change is accepted, and a warning is displayed. Stop the motor then change the parameter value. Parameter Lock is on. Open the parameter Lock (see Parameter 16.02 PARAMETER LOCK). DOWNLOAD FAILED Download function of the panel has failed. No data has been copied from the Panel to the ACS 600. Make sure the Panel is in local mode. Retry (there might be interference on the link). Contact an ABB representative. UPLOAD FAILED Upload function of the panel has failed. No data has been copied from the ACS 600 to the Panel. Retry (there might be interference on the link). Contact an ABB representative. NOT UPLOADED DOWNLOADING NOT POSSIBLE No upload function has been performed. Perform the Upload function before downloading. See Chapter 2 – Overview of ACS 600 Programming and the CDP 312 Control Panel. DRIVE INCOMPATIBLE DOWNLOADING NOT POSSIBLE Program versions in the Panel and in the ACS 600 do not match. It is not possible to copy data from Panel to the ACS 600. Check the program versions (see Parameter Group 33 Information). DRIVE IS RUNNING DOWNLOADING NOT POSSIBLE Downloading is not possible while the motor is running. Stop the motor. Perform the downloading. NO FREE ID NUMBERS ID NUMBER SETTING NOT POSSIBLE The Panel Link already includes 31 stations. Disconnect another station from the link to free an ID number. NO COMMUNICATION (X) There is a cabling problem or a hardware malfunction on the Panel Link. Check the Panel Link connections. Press the RESET key. The panel reset may take up to half a minute, please wait. (4) = Panel type is not compatible with the version of the drive application program. CDP 312 Panel does not communicate with Standard Application Program (ACS) version 3.x or earlier. The CDP 311 Panel does not communicate with Standard Application Program (ACS) version 5.x or later. Check the Panel type and the version of the drive application program. The Panel type is printed on the cover of the Panel. The application program version is stored in Parameter 33.02 APPL SW VERSION.
  • 182. Chapter 7 – Fault Tracing 7-6 Firmware Manual Table 7-3 The Fault Messages generated by the drive firmware. FAULT CAUSE WHAT TO DO TEMP The internal temperature is excessive. The trip level of inverter module temperature is 125 °C. Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against unit power. OVERCURRENT*) Output current is excessive. The software overcurrent trip limit is 3.5 · I2hd. Check motor load. Check acceleration time. Check motor and motor cable (including phasing). Check there are no power factor correction capacitors or surge absorbers in the motor cable. Check encoder cable (including phasing). SHORT CIRC*) There is a short-circuit in the motor cable(s) or motor. Check the motor and motor cable. Check there are no power factor correction capacitors or surge absorbers in the motor cable. The output bridge of the converter unit is faulty. Consult an ABB representative. PPCC LINK*) The fibre optic link to the NINT board is faulty. Check the fibre optic cables connected to the power plates. DC OVERVOLT Intermediate circuit DC voltage is excessive. DC overvoltage trip limit is 1.3 · U1max, where U1max is the maximum value of the mains voltage range. For 400 V units, U1max is 415 V. For 500 V units, U1max is 500 V. The actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 728 V d.c. for 400 V units and 877 V d.c. for 500 V units. Check that the overvoltage controller is on (Parameter 20.05). Check mains for static or transient overvoltage. Check Braking Chopper and Resistor (if used). Check deceleration time. Use Coasting To Stop function (if applicable). Retrofit the frequency converter with a Braking Chopper and a Braking Resistor. SUPPLY PHASE Intermediate circuit DC voltage is oscillating. This can be caused by a missing mains phase, a blown fuse or a rectifier bridge internal fault. A trip occurs when the DC voltage ripple is 13 per cent of the DC voltage. Check mains fuses. Check for mains supply imbalance. DC UNDERVOLT Intermediate circuit DC voltage is not sufficient. This can be caused by a missing mains phase, a blown fuse or a rectifier bridge internal fault. DC undervoltage trip limit is 0.65 · U1min, where U1min is the minimum value of the mains voltage range. For 400 V and 500 V units, U1min is 380 V. The actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 334 V d.c. Check mains supply and fuses.
  • 183. Chapter 7 – Fault Tracing Firmware Manual 7-7 OVERFREQ Motor is turning faster than the highest allowed speed. This can be caused by an incorrectly set minimum/maximum speed, insufficient braking torque or changes in the load when using torque reference. The trip level is 40 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active). The operating range limits are set by Parameters 20.01 and 20.02 (DTC mode active) or 20.07 and 20.08 (Scalar Control active). Check minimum/maximum speed settings. Check adequacy of motor braking torque. Check applicability of torque control. Check the need for a Braking Chopper and Resistor(s). START INHIBIT Optional start inhibit hardware logic is activated. Check the start inhibit circuit (NGPS board). EARTH FAULT*) (programmable Fault Function 30.17 The load on the incoming mains system is out of balance. This can be caused by a fault in the motor, motor cable or an internal malfunction. Check motor. Check motor cable. Check there are no power factor correction capacitors or surge absorbers in the motor cable. AI < MIN FUNC (programmable Fault Function 30.01) An analogue control signal is below minimum allowed value. This can be caused by incorrect signal level or a failure in the control wiring. Check for proper analogue control signal levels. Check the control wiring. Check AI < MIN FUNC Fault Function parameters. PANEL LOSS (programmable Fault Function 30.02) A Control Panel or Drives Window selected as active control location for the ACS 600 has ceased communicating. Check the Panel is connected to the right connector (see the appropriate hardware manual). Check Control Panel connector. Re-insert Control Panel in the mounting platform. Check PANEL LOSS Fault Function parameters. Check DrivesWindow connection. EXTERNAL FLT (programmable Fault Function 30.03) There is a fault in one of the external devices. (This information is configured through one of the programmable digital inputs.) Check external devices for faults. Check Parameter 30.03 EXTERNAL FAULT. MOTOR TEMP (programmable Fault Function 30.04 ... 30.09) Motor temperature is too high (or appears to be too high). This can be caused by excessive load, insufficient motor power, inadequate cooling or incorrect start-up data. Check motor ratings and load. Check start-up data. Check MOTOR TEMP Fault Function parameters. THERMISTOR (programmable Fault Function 30.04 ... 30.05) Motor thermal protection mode selected as THERMISTOR and the temperature is excessive. Check motor ratings and load. Check start-up data. Check thermistor connections for digital input DI6. Check thermistor cabling. I/O COMM A communication error has occurred on the NAMC board, channel CH1. Electromagnetic interference. There is an internal fault on the NIOC board. Check the connections of the fibre optic cables on NAMC channel CH1. Check all I/O modules (if present) connected to channel CH1. Check for proper earthing of the equipment. Check for highly emissive components nearby. Replace the NIOC board. FAULT CAUSE WHAT TO DO
  • 184. Chapter 7 – Fault Tracing 7-8 Firmware Manual AMBIENT TEMP I/O Control board temperature is lower than -guatda.com/cmx.p5...0 °C or exceeds +73...82 °C. Check air flow and fan operation. USER MACRO There is no User Macro saved or the file is defective. Create the User Macro again. MOTOR STALL (programmable Fault Function 30.10 ... 30.12) Motor is operating in the stall region. This can be caused by excessive load or insufficient motor power. Check motor load and the ACS 600 ratings. Check MOTOR STALL Fault Function parameters. NO MOT DATA Motor data is not given or motor data does not match with inverter data. Check the motor data given by Parameters 99.04... 99.09. UNDERLOAD (programmable Fault Function 30.13 ... 30.15) Motor load is too low. This can be caused by a release mechanism in the driven equipment. Check for a problem in the driven equipment. Check UNDERLOAD Fault Function parameters. ID RUN FAIL The Motor ID Run is not completed successfully. Check the maximum speed (Parameter 20.02). It should be at least 80 % of the nominal speed of the motor (Parameter 99.08). MOTOR PHASE (programmable Fault Function 30.16 (ACC: 30.10)) One of the motor phases is lost. This can be caused by a fault in the motor, the motor cable, a thermal relay (if used) or an internal fault. Check motor and motor cable. Check thermal relay (if used). Check MOTOR PHASE Fault Function parameters. Disable this protection. COMM MODULE (programmable Fault Function) Cyclical communication with ACS 600 and fieldbus/ACS 600 Master is lost. Check the status of fieldbus communication. See Appendix C – Fieldbus Control, or the appropriate fieldbus adapter manual. Check the parameter settings: - Group 51 (for CH0 fieldbus adapter), or - Group 52 (for Standard Modbus Link) Check cable connections. Check if the bus master is not communicating or configured. LINE CONV Fault on the line side converter. Shift the Panel from the motor side converter control board to the line side converter control board. See the line side converter manual for the fault description. SC (INU 1)*) SC (INU 2) SC (INU 3) SC (INU 4) Short circuit in inverter unit consisting of several parallel inverter modules. Number refers to the faulty inverter module number. Check the motor and motor cable. Check the power semiconductors (IGBT power plates) of the inverter module. (INU 1 stands for inverter module 1 etc.). NINT board fibre optic connection fault in inverter unit consisting of several parallel inverter modules. Number refers to the inverter module number. Check the connection from the inverter module Main Circuit Interface Board, NINT to the PPCC Branching Unit, NPBU. (inverter module 1 is connected to NPBU CH1 etc.) CURR MEAS Current transformer failure in output current measurent circuit. Check the current tranformers connected to Main Circuit Interface Board, NINT. FAULT CAUSE WHAT TO DO
  • 185. Chapter 7 – Fault Tracing Firmware Manual 7-9 . *) More detailed information on the high power units with parallel inverters is given in fault word 3.12 INT FAULT INFO (see Appendix C – Fieldbus Control). ENCODER ERR Communication fault between the pulse encoder and the NTAC module or between the NTAC module and the ACS 600. Check the pulse encoder and its wiring, the NTAC module, Parameter Group 50 settings and the fibre optic connections on NAMC channel CH1. ENCODER A<>B The pulse encoder phasing is wrong: Phase A is connected to the terminal of phase B and vice versa. Interchange the connection of pulse encoder phases A and B. MOTOR 1 TEMP Measured motor temperature has exceeded the fault limit set by Parameter 35.03 MOT 1 TEMP FLT L. Check that the value of the fault limit is ok. Let the motor cool down. Ensure proper motor cooling: Check the cooling fan, clean the cooling surfaces, etc. MOTOR 2 TEMP Measured motor temperature has exceeded the fault limit set by Parameter 35.06 MOT 2 TEMP FLT L. Check that the value of the fault limit is ok. Let the motor cool down. Ensure proper motor cooling: Check the cooling fan, clean the cooling surfaces, etc. THERMAL MODE The motor thermal protection mode is set to DTC for a high-power motor. See Parameter 30.05 MOT THERM P MODE. BRAKE ACKN Unexpected state of the brake acknowledge signal. See Group 42 Brake Control. Check the connection of the brake acknowledgement signal. IO CONF An input or output of an optional I/O extension module has been selected as a signal interface in the application program but the communication to the appropriate I/O extension module has not been set accordingly. Check the fault function description (Parameter 30.22 IO CONF FUNC) and Group 98 Option Modules. Correct the settings where necessary. FAULT CAUSE WHAT TO DO
  • 186. Chapter 7 – Fault Tracing 7-10 Firmware Manual
  • 187. Firmware Manual A-1 Appendix A – Complete Parameter Settings The tables in this Appendix list all the actual signals and parameters with their alternative settings of the ACS 600. The numbers in brackets () in the Range/Unit and Alternative Settings columns show the numerical equivalents for fieldbus use. Note for Interbus-S (NIBA-01 module) Users: The Parameter Index equals ((Drive Parameter No.) • 100 + 12288) converted to hexadecimal. Example: the index for drive parameter 13.09 is 1309 + 12288 = 13597 = 351Dh. Table A-1 Group 1 Actual Signals. No. Signal Short name Range/Unit ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus 1.01 PROCESS VARIABLE PROC VAR NO; rpm; %; m/s; A; V; Hz; s; h; kh; C; lft; mA; mV; kW; W; kWh; F; hp; MWh; m3h; l/s; bar; kPa; GPM; PSI; CFM; ft; MGD; iHg; FPM 1 40101 1 = 1 1.02 SPEED SPEED rpm 2 40102 -20000 = -100 % 20000 = 100 % of motor absolute max. speed 1.03 FREQUENCY FREQ Hz 3 40103 -100 = -1 Hz 100 = 1 Hz 1.04 CURRENT CURRENT A 4 40104 10 = 1 A 1.05 TORQUE TORQUE % 5 40105 -10000 = -100 % 10000 = 100 % of motor nominal torque 1.06 POWER POWER % 6 40106 0 = 0 % 1000 = 100 % of motor nominal power 1.07 DC BUS VOLTAGE V DC BUS V V 7 40107 1 = 1 V 1.08 MAINS VOLTAGE MAINS V V 8 40108 1 = 1 V 1.09 OUTPUT VOLTAGE OUT VOLT V 9 40109 1 = 1 V 1.10 ACS 600 TEMP ACS TEMP C 10 40110 1 = 1 °C 1.11 EXTERNAL REF 1 EXT REF1 rpm 11 40111 1 = 1 rpm 1.12 EXTERNAL REF 2 EXT REF2 % 12 40112 0 = 0 % 10000 = 100 % of motor max. speed / nominal torque / max. process reference (depending on the ACS 600 macro selected) 1.13 CTRL LOCATION CTRL LOC (1,2) LOCAL; (3) EXT1; (4) EXT2 13 40113 (see Range/Unit) 1.14 OP HOUR COUNTER OP HOURS h 14 40114 1 = 1 h 1.15 KILOWATT HOURS KW HOURS kWh 15 40115 1 = 100 kWh 1.16 APPL BLOCK OUTPUT APPL OUT % 16 40116 0 = 0 % 10000 = 100 % 1.17 DI6-1 STATUS DI6-1 17 40117 1.18 AI1 [V] AI1 [V] V 18 40118 1 = 0.001 V 1.19 AI2 [mA] AI2 [mA] mA 19 40119 1 =0.001 mA
  • 188. Appendix A – Complete Parameter Settings A-2 Firmware Manual Table A-2 Group 2 Actual Signals for speed and torque reference monitoring. 1.20 AI3 [mA] AI3 [mA] mA 20 40120 1 = 0.001 mA 1.21 RO3-1 STATUS RO3-1 21 40121 1.22 AO1 [mA] AO1 [mA] mA 22 40122 1 =0.001 mA 1.23 AO2 [mA] AO2 [mA] mA 23 40123 1 = 0.001 mA 1.24 ACTUAL VALUE 1 ACT VAL1 % 24 40124 0 = 0 % 10000 = 100 % 1.25 ACTUAL VALUE 2 ACT VAL2 % 25 40125 0 = 0 % 10000 = 100 % 1.26 CONTROL DEVIATION CONT DEV % 26 40126 -10000 = -100 % 10000 = 100 % 1.27 APPLICATION MACRO MACRO (1) FACTORY; (2) HAND/AUTO; (3) PID.CTRL; (4) T-CTRL; (5) SEQ CTRL; (6) USER 1 LOAD; (7) USER 2 LOAD 27 40127 (see Range/Unit) 1.28 EXT AO1 [mA] EXT AO1 mA 28 40128 1 = 0.001 mA 1.29 EXT AO2 [mA] EXT AO2 mA 29 40129 1 = 0.001 mA 1.30 PP 1 TEMP PP 1 TEM °C 30 40130 1 = 1 °C 1.31 PP 2 TEMP PP 2 TEM °C 31 40131 1 = 1 °C 1.32 PP 3 TEMP PP 3 TEM °C 32 40132 1 = 1 °C 1.33 PP 4 TEMP PP 4 TEM °C 33 40133 1 = 1 °C 1.34 ACTUAL VALUE ACT V % 34 40134 0 = 0 % 10000 = 100 % 1.35 MOTOR 1 TEMP M 1 TEMP °C 35 40135 1 = 1 °C 1.36 MOTOR 2 TEMP M 2 TEMP °C 36 40136 1 = 1 °C 1.37 MOTOR TEMP EST MOTOR TE °C 37 40137 1 = 1 °C 1.38 AI5 [mA] AI5 [mA] mA 38 40138 1 = 0.001 mA 1.39 AI6 [mA] AI6 [mA] mA 39 40139 1 = 0.001 mA 1.40 DI7-12 STATUS DI7..12 40 40140 1.41 EXT RO STATUS EXT RO 41 40141 1.42 PROCESS SPEED REL P SPEED % 42 40142 1 = 1 1.43 MOTOR RUN TIME MOTOR RUN TIME h 43 40143 1 = 10 h No. Signal Short name Range/Unit ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus 2.01 SPEED REF 2 S REF 2 rpm 51 40201 0 = 0 % 20000 = 100 % of motor absolute max. speed2.02 SPEED REF 3 S REF 3 rpm 52 40202 2.09 TORQ REF 2 T REF 2 % 59 40209 0 = 0 % 10000 = 100 % of motor nominal torque2.10 TORQ REF 3 T REF 3 % 60 40210 2.13 TORQ USED REF T USED R % 63 40213 2.17 SPEED ESTIMATED SPEED ES rpm 67 40217 0 = 0 % 20000 = 100 % of motor absolute max. speed 2.18 SPEED MEASURED SPEED ME rpm 68 40218 0 = 0 % 20000 = 100 % of motor absolute max. speed No. Signal Short name Range/Unit ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 189. Appendix A – Complete Parameter Settings Firmware Manual A-3 Table A-3 Group 3 Actual Signals for fieldbus communication (each signal is a 16-bit data word). No. Signal Short name Range/Unit ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus 3.01 MAIN CTRL WORD MAIN CW 0 ... 65535 (Decimal) 76 40301 The contents of these data words are detailed in Appendix C – Fieldbus Control. For the contents of Actual Signal 3.11, see the Master/Follower Application Guide (3AFY 58962180 [English]) 3.02 MAIN STATUS WORD MAIN SW 0 ... 65535 (Decimal) 77 40302 3.03 AUX STATUS WORD AUX SW 0 ... 65535 (Decimal) 78 40303 3.04 LIMIT WORD 1 LIMIT W1 0 ... 65535 (Decimal) 79 40304 3.05 FAULT WORD 1 FAULT W1 0 ... 65535 (Decimal) 80 40305 3.06 FAULT WORD 2 FAULT W2 0 ... 65535 (Decimal) 81 40306 3.07 SYSTEM FAULT SYS FLT 0 ... 65535 (Decimal) 82 40307 3.08 ALARM WORD 1 ALARM W 1 0 ... 65535 (Decimal) 83 40308 3.09 ALARM WORD 2 ALARM W 2 0 ... 65535 (Decimal) 84 40309 3.11 FOLLOWER MCW FOLL MCW 0 ... 65535 (Decimal) 86 40311 3.12 INT FAULT INFO INT FAUL 0 ... 65535 (Decimal) 87 40312 3.13 AUX STATUS WORD 3 AUX SW 3 0 ... 65535 (Decimal) 88 40313 3.14 AUX STATUS WORD 4 AUX SW 4 0 ... 65535 (Decimal) 89 40314 3.15 FAULT WORD 3 FAULT W3 0 ... 65535 (Decimal) 90 40315 3.16 ALARM WORD 3 ALARM W3 0 ... 65535 (Decimal) 91 40316
  • 190. Appendix A – Complete Parameter Settings A-4 Firmware Manual Table A-4 Parameter Settings. Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus 99 START-UP DATA 99.01 LANGUAGE (0) ENGLISH; (1) ENGLISH(AM); (2) DEUTSCH; (3) ITALIANO; (4) ESPANOL; (5) PORTUGUES; (6) NEDERLANDS; (7) FRANCAIS; (8) DANSK; (9) SUOMI; (10) SVENSKA 1926 49901 (see Alternative Settings) 99.02 APPLICATION MACRO (1) FACTORY; (2) HAND/AUTO; (3) PID CTRL; (4) T CTRL; (5) SEQ CTRL; (6) USER 1 LOAD; (7) USER 1 SAVE; (8) USER 2 LOAD; (9) USER 2 SAVE 1927 49902 (see Alternative Settings) 99.03 APPLIC RESTORE (0) NO; (1) YES 1928 49903 (see Alternative Settings) 99.04 MOTOR CTRL MODE (0) DTC; (1) SCALAR 1929 49904 (see Alternative Settings) 99.05 MOTOR NOM VOLTAGE 1/2 · UN of ACS 600 ... 2 · UN of ACS 600 (printed on the motor nameplate) 1930 49905 1 = 1 V 99.06 MOTOR NOM CURRENT 1/6 · I2hd of ACS 600 ... 2 · I2hd of ACS 600 (printed on the motor nameplate) 1931 49906 1 = 0.1 A 99.07 MOTOR NOM FREQ 8 Hz ... 300 Hz (printed on the motor nameplate) 1932 49907 1 = 0.01 Hz 99.08 MOTOR NOM SPEED 1 rpm ... 18000 rpm (printed on the motor nameplate) 1933 49908 1 = 1 rpm 99.09 MOTOR NOM POWER 0 kW ... 9000 kW (printed on the motor nameplate) 1934 49909 1 = 0.1 kW 99.10 MOTOR ID RUN (1) NO; (2) STANDARD; (3) REDUCED 1935 49910 (see Alternative Settings) 10 START/STOP/DIR 10.01 EXT1 STRT/STP/DIR (1) NOT SEL; (2) DI1; (3) DI1,2; (4) DI1P,2P; (5) DI1P,2P,3; (6) DI1P,2P,3P; (7) DI6; (8) DI6,5; (9) KEYPAD; (10) COMM. MODULE; (11) DI7; (12) DI7,8; (13) DI7P,8P; (14) DI7P,8P,9; (15) DI7P,8P,9P 101 41001 (see Alternative Settings) 10.02 EXT2 STRT/STP/DIR (1) NOT SEL; (2) DI1; (3) DI1,2; (4) DI1P,2P; (5) DI1P,2P,3; (6) DI1P,2P,3P; (7) DI6; (8) DI6,5; (9) KEYPAD; (10) COMM. MODULE; (11) DI7; (12) DI7,8; (13) DI7P,8P; (14) DI7P,8P,9; (15) DI7P,8P,9P 102 41002 (see Alternative Settings) 10.03 DIRECTION (1) FORWARD; (2) REVERSE; (3) REQUEST 103 41003 (see Alternative Settings) 11 REFERENCE SELECT 11.01 KEYPAD REF SEL (1) REF1(rpm); (2) REF2(%) 126 41101 (see Alternative Settings) 11.02 EXT1/EXT2 SELECT (1) DI1; (2) DI2; (3) DI3; (4) DI4; (5) DI5; (6) DI6; (7) EXT1; (8) EXT2; (9) COMM. MODULE; (10) DI7; (11) DI8; (12) DI9; (13) DI10; (14) DI11; (15) DI12; 127 41102 (see Alternative Settings) 11.03 EXT REF1 SELECT (1) KEYPAD; (2) AI1; (3) AI2; (4) AI3; (5) AI1/JOYST; (6) AI2/JOYST; (7) AI1+AI3; (8) AI2+AI3; (9) AI1-AI3; (10) AI2-AI3; (11) AI1*AI3; (12) AI2*AI3; (13) MIN(AI1,AI3); (14) MIN(AI2,AI3); (15) MAX(AI1,AI3); (16) MAX(AI2,AI3); (17) DI3U,4D(R); (18) DI3U,4D; (19) DI5U,6D; (20) COMM. REF; (21) COMMREF+AI1; (22) COMMREF*AI1; (23) FAST COMM; (24) COMMREF+AI5; (25) COMMREF*AI5; (26) AI5; (27) AI6; (28) AI5/JOYST; (29) AI6/JOYST; (30) AI5+AI6; (31) AI5-AI6; (32) AI5*AI6; (33) MIN(AI5,6); (34) MAX(AI5,6); (35) DI11U,12D(R); (36) DI11U,12D 128 41103 (see Alternative Settings) 11.04 EXT REF1 MINIMUM 0 ... 18000 rpm 129 41104 1 = 1 rpm 11.05 EXT REF1 MAXIMUM 0 ... 18000 rpm 130 41105 1 = 1 rpm 11.06 EXT REF2 SELECT (1) KEYPAD; (2) AI1; (3) AI2; (4) AI3; (5) AI1/JOYST; (6) AI2/JOYST; (7) AI1+AI3; (8) AI2+AI3; (9) AI1-AI3; (10) AI2-AI3; (11) AI1*AI3; (12) AI2*AI3; (13) MIN(AI1,AI3); (14) MIN(AI2,AI3); (15) MAX(AI1,AI3); (16) MAX(AI2,AI3); (17) DI3U,4D(R); (18) DI3U,4D; (19) DI5U,6D; (20) COMM. REF; (21) COMMREF+AI1; (22) COMMREF*AI1; (23) FAST COMM; (24) COMMREF+AI5; (25) COMMREF*AI5; (26) AI5; (27) AI6; (28) AI5/JOYST; (29) AI6/JOYST; (30) AI5+AI6; (31) AI5-AI6; (32) AI5*AI6; (33) MIN(AI5,6); (34) MAX(AI5,6); (35) DI11U,12D(R); (36) DI11U,12D 131 41106 (see Alternative Settings)
  • 191. Appendix A – Complete Parameter Settings Firmware Manual A-5 11.07 EXT REF2 MINIMUM 0 % ... 100 % 132 41107 0 = 0 % 10000 = 100 % 11.08 EXT REF2 MAXIMUM 0 % ... 500 % 133 41108 0 = 0 % 5000 = 500 % 12 CONSTANT SPEEDS 12.01 CONST SPEED SEL (1) NOT SEL; (2) DI1 (SPEED1); (3) DI2 (SPEED2); (4) DI3 (SPEED3); (5) DI4 (SPEED4); (6) DI5 (SPEED5); (7) DI6 (SPEED6); (8) DI1,2; (9) DI3,4; (10) DI5,6; (11) DI1,2,3; (12) DI3,4,5; (13) DI4,5,6; (14) DI3,4,5,6; (15) DI7(SPEED1); (16) DI8 (SPEED2); (17) DI9(SPEED3); (18) DI10 (SPEED4); (19) DI11(SPEED5); (20) DI12 (SPEED6); (21) DI7,8; (22) DI9,10; (23) DI11,12 151 41201 (see Alternative Settings) 12.02 CONST SPEED 1 0 ... 18000 rpm 152 41202 1 = 1 rpm 12.03 CONST SPEED 2 0 ... 18000 rpm 153 41203 12.04 CONST SPEED 3 0 ... 18000 rpm 154 41204 12.05 CONST SPEED 4 0 ... 18000 rpm 155 41205 12.06 CONST SPEED 5 0 ... 18000 rpm 156 41206 12.07 CONST SPEED 6 0 ... 18000 rpm 157 41207 12.08 CONST SPEED 7 0 ... 18000 rpm 158 41208 12.09 CONST SPEED 8 0 ... 18000 rpm 159 41209 12.10 CONST SPEED 9 0 ... 18000 rpm 160 41210 12.11 CONST SPEED 10 0 ... 18000 rpm 161 41211 12.12 CONST SPEED 11 0 ... 18000 rpm 162 41212 12.13 CONST SPEED 12 0 ... 18000 rpm 163 41213 12.14 CONST SPEED 13 0 ... 18000 rpm 164 41214 12.15 CONST SPEED 14 0 ... 18000 rpm 165 41215 12.16 CONST SPEED 15 -18000 ... 18000 rpm 166 41216 13 ANALOGUE INPUTS 13.01 MINIMUM AI1 (1) 0 V; (2) 2 V; (3) TUNED VALUE; (4) TUNE 176 41301 (see Alternative Settings) 13.02 MAXIMUM AI1 (1) 10 V; (2) TUNED VALUE; (3) TUNE 177 41302 (see Alternative Settings) 13.03 SCALE AI1 0 ... 100 % 178 41303 0 = 0 % 10000 = 100 % 13.04 FILTER AI1 0.00 s ... 10.00 s 179 41304 0 = 0 s 1000 = 10 s 13.05 INVERT AI1 (0) NO; (65535) YES 180 41305 (see Alternative Settings) 13.06 MINIMUM AI2 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 181 41306 (see Alternative Settings) 13.07 MAXIMUM AI2 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 182 41307 (see Alternative Settings) 13.08 SCALE AI2 0 ... 100 % 183 41308 0 = 0 % 10000 = 100 % 13.09 FILTER AI2 0.00 s ... 10.00 s 184 41309 0 = 0 s 1000 = 10 s 13.10 INVERT AI2 (0) NO; (65535) YES 185 41310 (see Alternative Settings) 13.11 MINIMUM AI3 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 186 41311 (see Alternative Settings) 13.12 MAXIMUM AI3 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 187 41312 (see Alternative Settings) 13.13 SCALE AI3 0 ... 100 % 188 41313 0 = 0 % 10000 = 100 % 13.14 FILTER AI3 0.00 s ... 10.00 s 189 41314 0 = 0 s 1000 = 10 s 13.15 INVERT AI3 (0) NO; (65535) YES 190 41315 (see Alternative Settings) 13.16 MINIMUM AI5 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 191 41316 (see Alternative Settings) Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 192. Appendix A – Complete Parameter Settings A-6 Firmware Manual 13.17 MAXIMUM AI5 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 192 41317 (see Alternative Settings) 13.18 SCALE AI5 0 ... 100 % 193 41318 0 = 0 % 10000 = 100 % 13.19 FILTER AI5 0.00 s ... 10.00 s 194 41319 0 = 0 s 1000 = 10 s 13.20 INVERT AI5 (0) NO; (65535) YES 195 41320 (see Alternative Settings) 13.21 MINIMUM AI6 (1) 0 mA; (2) 4 mA; (3) TUNED VALUE; (4) TUNE 196 41321 (see Alternative Settings) 13.22 MAXIMUM AI6 (1) 20 mA; (2) TUNED VALUE; (3) TUNE 197 41322 (see Alternative Settings) 13.23 SCALE AI6 0 ... 100 % 198 41323 0 = 0 % 10000 = 100 % 13.24 FILTER AI6 0.00 s ... 10.00 s 199 41324 0 = 0 s 1000 = 10 s 13.25 INVERT AI6 (0) NO; (65535) YES 200 41325 (see Alternative Settings) 14 RELAY OUTPUTS 14.01 RELAY RO1 OUTPUT Relay outputs 1, 2 & 3: (1) NOT USED; (2) READY; (3) RUNNING; (4) FAULT; (5) FAULT(-1); (6) FAULT(RST); (7) STALL WARN; (8) STALL FLT; (9) MOT TEMP WRN; (10) MOT TEMP FLT; (11) ACS TEMP WRN; (12) ACS TEMP FLT; (13) FAULT/WARN; (14) WARNING; (15) REVERSED; (16) EXT CTRL; (17) REF 2 SEL; (18) CONST SPEED; (19) DC OVERVOLT; (20) DC UNDERVOL; (21) SPEED 1 LIM; (22) SPEED 2 LIM; (23) CURRENT LIM; (24) REF 1 LIM; (25) REF 2 LIM; (26) TORQUE 1 LIM; (27) TORQUE 2 LIM; (28) STARTED; (29) LOSS OF REF; (30) AT SPEED; (33) COMM MODULE; (34) POINTERx; (35) BRAKE CTRL Relay output 1 & 2: (31) ACT 1 LIM; (32) ACT 2 LIM Relay output 3: (31) MAGN READY; (32) USER 2 SEL 201 41401 (see Alternative Settings) 14.02 RELAY RO2 OUTPUT 202 41402 14.03 RELAY RO3 OUTPUT 203 41403 14.04 RO1 TON DELAY 0.0 to 3600.0 s 204 41404 10 = 1 s 14.05 RO1 TOFF DELAY 0.0 to 3600.0 s 205 41405 10 = 1 s 14.06 RO2 TON DELAY 0.0 to 3600.0 s 206 41406 10 = 1 s 14.07 RO2 TOFF DELAY 0.0 to 3600.0 s 207 41407 10 = 1 s 14.08 RO3 TON DELAY 0.0 to 3600.0 s 208 41408 10 = 1 s 14.09 RO3 TOFF DELAY 0.0 to 3600.0 s 209 41409 10 = 1 s 14.10 NDIO MOD1 RO1 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2 SEL; (6) AT SPEED; (7) POINTER1 210 41410 (see Alternative Settings) 14.11 NDIO MOD1 RO2 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2 SEL; (6) AT SPEED; (7) POINTER2 211 41411 (see Alternative Settings) 14.12 NDIO MOD2 RO1 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2 SEL; (6) AT SPEED; (7) POINTER3 212 41412 (see Alternative Settings) 14.13 NDIO MOD2 RO2 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2 SEL; (6) AT SPEED; (7) POINTER4 213 41413 (see Alternative Settings) 14.14 NDIO MOD3 RO1 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2 SEL; (6) AT SPEED; (7) POINTER5 214 41414 (see Alternative Settings) 14.15 NDIO MOD3 RO2 (1) READY; (2) RUNNING; (3) FAULT; (4) WARNING; (5) REF 2 SEL; (6) AT SPEED; (7) POINTER6 215 41415 (see Alternative Settings) 15 ANALOGUE OUTPUTS 15.01 ANALOGUE OUTPUT1 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY; (5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT; (9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE; (12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2; (15) COMM. MODULE; (16) M1 TEMP MEAS 226 41501 (see Alternative Settings) 15.02 INVERT AO1 (0) NO; (65535) YES 227 41502 (see Alternative Settings) 15.03 MINIMUM AO1 (1) 0 mA; (2) 4 mA 228 41503 (see Alternative Settings) Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 193. Appendix A – Complete Parameter Settings Firmware Manual A-7 15.04 FILTER AO1 0.00 s ... 10.00 s 229 41504 0 = 0 s 1000 = 10 s 15.05 SCALE AO1 10 % ... 1000 % 230 41505 100 = 10 % 10000 = 1000 % 15.06 ANALOGUE OUTPUT2 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY; (5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT; (9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE; (12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2; (15) COMM. MODULE 231 41506 (see Alternative Settings) 15.07 INVERT AO2 (0) NO; (65535) YES 232 41507 (see Alternative Settings) 15.08 MINIMUM AO2 (1) 0 mA; (2) 4 mA 233 41508 (see Alternative Settings) 15.09 FILTER AO2 0.00 s ... 10.00 s 234 41509 0 = 0 s 1000 = 10 s 15.10 SCALE AO2 10 % ... 1000 % 235 41510 100 = 10 % 10000 = 1000 % 16 SYSTEM CTR INPUTS 16.01 RUN ENABLE (1) YES; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5; (7) DI6; (8) COMM. MODULE; (9) DI7; (10) DI8; (11) DI9; (12) DI10; (13) DI11; (14) DI12 251 41601 (see Alternative Settings) 16.02 PARAMETER LOCK (0) OPEN; (65535) LOCKED 252 41602 (see Alternative Settings) 16.03 PASS CODE 0 ... 30000 253 41603 1 = 1 16.04 FAULT RESET SEL (1) NOT SEL; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5; (7) DI6; (8) ON STOP; (9) COMM. MODULE; (10) DI7; (11) DI8; (12) DI9; (13) DI10; (14) DI11; (15) DI12 254 41604 (see Alternative Settings) 16.05 USER MACRO IO CHG (1) NOT SEL; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5; (7) DI6; (8) DI7; (9) DI8; (10) DI9; (11) DI10; (12) DI11; (13) DI12 255 41605 (see Alternative Settings) 16.06 LOCAL LOCK (0) OFF; (65535) ON 256 41606 (see Alternative Settings) 16.07 PARAM SAVE (0) DONE; (1) SAVE.. 257 41607 (see Alternative Settings) 20 LIMITS 20.01 MINIMUM SPEED -18000/(number of pole pairs) rpm ... 20.2 MAXIMUM SPEED 351 42001 1 = 1 rpm 20.02 MAXIMUM SPEED 20.1 MINIMUM SPEED ... 18000/(number of pole pairs) rpm 352 42002 1 = 1 rpm 20.03 MAXIMUM CURRENT 0.0 % Ihd ... 200.0 % Ihd 353 42003 0 = 0 % 20000 = 200 % 20.04 MAXIMUM TORQUE 0.0 % ... 600.0 % 354 42004 100 = 1 % 20.05 OVERVOLTAGE CTRL (0) NO; (65535) YES 355 42005 (see Alternative Settings) 20.06 UNDERVOLTAGE CTRL (0) NO; (65535) YES 356 42006 (see Alternative Settings) 20.07 MINIMUM FREQ -300.00 Hz ... 50 Hz (visible only when the SCALAR motor control mode is selected) 357 42007 -30000 = -300 Hz 5000 = 50 Hz 20.08 MAXIMUM FREQ -50 Hz ... 300.00 Hz (visible only when the SCALAR motor control mode is selected) 358 42008 -5000 = -50 Hz 30000 = 300 Hz 20.09 MIN TORQ SELECTOR (0) -MAX TORQ; (65535) SET MIN TORQ 359 42009 (see Alternative Settings) 20.10 SET MIN TORQUE -600.0 % ... 0.0 % 360 42010 100 = 1% 20.11 P MOTORING LIMIT 0% ... 600% 361 42011 100 = 1% 20.12 P GENERATING LIMIT -600% ... 0% 362 42012 100 = 1% 21 START/STOP 21.01 START FUNCTION (1) AUTO; (2) DC MAGN; (3) CNST DC MAGN 376 42101 (see Alternative Settings) 21.02 CONST MAGN TIME 30.0 ms ... 10000.0 ms 377 42102 1 = 1 ms 21.03 STOP FUNCTION (1) COAST; (2) RAMP 378 42103 (see Alternative Settings) Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 194. Appendix A – Complete Parameter Settings A-8 Firmware Manual 21.04 DC HOLD (0) NO; (65535) YES 379 42104 (see Alternative Settings) 21.05 DC HOLD SPEED 0 rpm ... 3000 rpm 380 42105 1 = 1 rpm 21.06 DC HOLD CURR 0 % ... 100 % 381 42106 1 = 1 % 21.07 RUN ENABLE FUNC (1) RAMP STOP; (2) COAST STOP; (3) OFF2 STOP; (4) OFF3 STOP 382 42107 (see Alternative Settings) 21.08 SCALAR FLY START (0) NO; (1) YES 383 42108 22 ACCEL/DECEL 22.01 ACC/DEC 1/2 SEL (1) ACC/DEC 1; (2) ACC/DEC 2; (3) DI1; (4) DI2; (5) DI3; (6) DI4; (7) DI5; (8) DI6; (9) DI7; (10) DI8; (11) DI9; (12) DI10; (13) DI11; (14) DI12 401 42201 (see Alternative Settings) 22.02 ACCEL TIME 1 0.00 s ... 1800.00 s 402 42202 0 = 0 s 18000 = 1800 s 22.03 DECEL TIME 1 0.00 s ... 1800.00 s 403 42203 22.04 ACCEL TIME 2 0.00 s ... 1800.00 s 404 42204 22.05 DECEL TIME 2 0.00 s ... 1800.00 s 405 42205 22.06 ACC/DEC RAMP SHPE 0.00 s ... 1000.00 s 406 42206 100 = 1 s 22.07 EM STOP RAMP TIME 0.00 s ... 2000.00 s 407 42207 100 = 1 s 23 SPEED CTRL Visible only with 99.04 MOTOR CTRL MODE = DTC 23.01 GAIN 0.0 ... 200.0 426 42301 0 = 0 10000 = 100 23.02 INTEGRATION TIME 0.01 s ... 999.97 s 427 42302 1000 = 1 s 23.03 DERIVATION TIME 0.0 ms ... 9999.8 ms 428 42303 1 = 1 ms 23.04 ACC COMPENSATION 0.00 s ... 999.98 s 429 42304 0 = 0 s 1 = 0.1 s 23.05 SLIP GAIN 0.0 % ... 400.0 % 430 42305 1 = 1 % 23.06 AUTOTUNE RUN (0) NO; (65535) YES 431 42306 (see Alternative Settings) 24 TORQUE CTRL (Visible with 99.02 APPLICATION MACRO = T CTRL) 24.01 TORQ RAMP UP 0.00 s ... 120.00 s 451 42401 0 = 0 s 100 = 1 s 24.02 TORQ RAMP DOWN 0.00 s ... 120.00 s 452 42402 25 CRITICAL SPEEDS 25.01 CRIT SPEED SELECT (0) OFF; (65535) ON 476 42501 (see Alternative Settings) 25.02 CRIT SPEED 1 LOW 0 rpm ... 18000 rpm 477 42502 1 = 1 rpm 25.03 CRIT SPEED 1 HIGH 0 rpm ... 18000 rpm 478 42503 25.04 CRIT SPEED 2 LOW 0 rpm ... 18000 rpm 479 42504 25.05 CRIT SPEED 2 HIGH 0 rpm ... 18000 rpm 480 42505 25.06 CRIT SPEED 3 LOW 0 rpm ... 18000 rpm 481 42506 25.07 CRIT SPEED 3 HIGH 0 rpm ... 18000 rpm 482 42507 26 MOTOR CONTROL 26.01 FLUX OPTIMIZATION (0) NO; (65535) YES 501 42601 (see Alternative Settings) 26.02 FLUX BRAKING (0) NO; (65535) YES 502 42602 (see Alternative Settings) 26.03 IR COMPENSATION 0 % ... 30 % (visible only with 99.04 MOTOR CTRL MODE set to SCALAR) 503 42603 100 = 1 % 26.05 HEX FIELD WEAKEN (0) NO; (1) YES 504 42605 Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 195. Appendix A – Complete Parameter Settings Firmware Manual A-9 30 FAULT FUNCTIONS 30.01 AI<MIN FUNCTION (1) FAULT; (2) NO; (3) CONST SP 15; (4) LAST SPEED 601 43001 (see Alternative Settings) 30.02 PANEL LOSS (1) FAULT; (2) CONST SP 15; (3) LAST SPEED 602 43002 (see Alternative Settings) 30.03 EXTERNAL FAULT (1) NOT SEL; (2) DI1; (3) DI2; (4) DI3; (5) DI4; (6) DI5; (7) DI6; (8) DI7; (9) DI8; (10) DI9; (11) DI10; (12) DI11; (13) DI12 603 43003 (see Alternative Settings) 30.04 MOTOR THERM PROT (1) FAULT; (2) WARNING; (3) NO 604 43004 (see Alternative Settings) 30.05 MOT THERM P MODE (1) DTC; (2) USER MODE; (3) THERMISTOR 605 43005 (see Alternative Settings) 30.06 MOTOR THERM TIME 256.0 s ... 9999.8 s 606 43006 1 = 1 s 30.07 MOTOR LOAD CURVE 50.0 % ... 150.0 % 607 43007 1 = 1 % 30.08 ZERO SPEED LOAD 25.0 % ... 150.0 % 608 43008 1 = 1 % 30.09 BREAK POINT 1.0 Hz ... 300.0 Hz 609 43009 100 = 1 Hz 30000 = 300 Hz 30.10 STALL FUNCTION (1) FAULT; (2) WARNING; (3) NO 610 43010 (see Alternative Settings) 30.11 STALL FREQ HI 0.5 Hz ... 50.0 Hz 611 43011 50 = 0.5 Hz 5000 = 50 Hz 30.12 STALL TIME 10.00 s ... 400.00 s 612 43012 1 = 1 s 30.13 UNDERLOAD FUNC (1) NO; (2) WARNING; (3) FAULT 613 43013 (see Alternative Settings) 30.14 UNDERLOAD TIME 0 s ... 600 s 614 43014 1 = 1 s 30.15 UNDERLOAD CURVE 1 ... 5 615 43015 (see Alternative Settings) 30.16 MOTOR PHASE LOSS (0) NO; (65535) FAULT 616 43016 (see Alternative Settings) 30.17 EARTH FAULT (0) WARNING; (65535) FAULT 617 43017 (see Alternative Settings) 30.18 COMM FAULT FUNC (1) FAULT; (2) NO; (3) CONST SP 15; (4) LAST SPEED 618 43018 (see Alternative Settings) 30.19 MAIN ERF DS T-OUT 0.1 s ... 60.0 s 619 43019 10 = 0.1 s 6000 = 60 s 30.20 COMM FAULT RO/AO (0) ZER0; (65535) LAST VALUE 620 43020 (see Alternative Settings) 30.21 AUX DS T-OUT 0.1 s ... 60.0 s 621 43021 10 = 0.1 s 6000 = 60 s 30.22 IO CONF FUNC (1) NO; (2) WARNING 622 43022 (see Alternative Settings) 31 AUTOMATIC RESET 31.01 NUMBER OF TRIALS 0 ... 5 626 43101 31.02 TRIAL TIME 1.0 s ... 180.0 s 627 43102 100 = 1 s 18000 = 180 s 31.03 DELAY TIME 0.0 s ... 3.0 s 628 43103 0 = 0 s 300 = 3 s 31.04 OVERCURRENT (0) NO; (65535) YES 629 43104 (see Alternative Settings) 31.05 OVERVOLTAGE (0) NO; (65535) YES 630 43105 (see Alternative Settings) 31.06 UNDERVOLTAGE (0) NO; (65535) YES 631 43106 (see Alternative Settings) 31.07 AI SIGNAL<MIN (0) NO; (65535) YES 632 43107 (see Alternative Settings) 32 SUPERVISION 32.01 SPEED1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT; (4) ABS LOW LIMIT 651 43201 (see Alternative Settings) 32.02 SPEED1 LIMIT - 18000 rpm ... 18000 rpm 652 43202 1 = 1 rpm 32.03 SPEED2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT; (4) ABS LOW LIMIT 653 43203 (see Alternative Settings) 32.04 SPEED2 LIMIT - 18000 rpm ... 18000 rpm 654 43204 1 = 1 rpm 32.05 CURRENT FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 655 43205 (see Alternative Settings) 32.06 CURRENT LIMIT 0 ... 1000 A 656 43206 1 = 1 A Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 196. Appendix A – Complete Parameter Settings A-10 Firmware Manual 32.07 TORQUE 1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 657 43207 (see Alternative Settings) 32.08 TORQUE 1 LIMIT -400 % ... 400 % 658 43208 10 = 1 % 32.09 TORQUE 2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 659 43209 (see Alternative Settings) 32.10 TORQUE 2 LIMIT -400 % ... 400 % 660 43210 10 = 1 % 32.11 REF1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 661 43211 (see Alternative Settings) 32.12 REF1 LIMIT 0 rpm ... 18000 rpm 662 43212 1 = 1 rpm 32.13 REF2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 663 43213 (see Alternative Settings) 32.14 REF2 LIMIT 0 % ... 500 % 664 43214 10 = 1 % 32.15 ACT1 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 665 43215 (see Alternative Settings) 32.16 ACT1 LIMIT 0 % ... 200 % 666 43216 0 = 0 % 10 = 1 % 32.17 ACT2 FUNCTION (1) NO; (2) LOW LIMIT; (3) HIGH LIMIT 667 43217 (see Alternative Settings) 32.18 ACT2 LIMIT 0 % ... 200 % 668 43218 0 = 0 % 10 = 1% 33 INFORMATION 33.01 SOFTWARE VERSION (Version of the ACS 600 software) 676 43301 33.02 APPL SW VERSION (Version of the ACS 600 software) 677 43302 33.03 TEST DATE (Date Tested) 678 43303 34 PROCESS VARIABLE 34.01 SCALE 0.00 ... 100000.00 701 43401 1 = 1 34.02 P VAR UNIT (1) NO; (2) rpm; (3) %; (4) m/s; (5) A; (6) V; (7) Hz; (8) s; (9) h; (10) kh; (11) C; (12) lft; (13) mA; (14) mV; (15) kW; (16) W; (17) kWh; (18) F; (19) hp; (20) MWh; (21) m3h; (22) l/s; (23) bar; (24) kPa; (25) GPM; (26) PSI; (27) CFM; (28) ft; (29) MGD ; (30) iHg; (31) FPM; 702 43402 (see Alternative Settings) 34.03 SELECT P VAR 0 to 9999 703 43403 34.04 MOTOR SP FILT TIM 0 to 20000 ms 704 43404 1 = 1 34.05 TORQ ACT FILT TIM 0. to 20000 ms 705 43405 1 = 1 34.06 RESET RUN TIME (0) NO; (65535) YES 706 43406 (see Alternative Settings) 35 MOT TEMP MEAS 35.01 MOT 1 TEMP AI1 SEL (1) NOT IN USE; (2) 1XPT100; (3) 2XPT100, (4) 3XPT100, (5) 1..3 PTC 726 43501 (see Alternative Settings) 35.02 MOT 1 TEMP ALM L -10 to 5000 ohm/°C (PTC/Pt100) 727 43502 1 = 1 35.03 MOT 1 TEMP FLT L -10 to 5000 ohm/°C (PTC/Pt100) 728 43503 1 = 1 35.04 MOT 2 TEMP AI2 SEL (1) NOT IN USE; (2) 1XPT100; (3) 2XPT100; (4) 3XPT100; (5) 1..3 PTC 729 43504 (see Alternative Settings) 35.05 MOT 2 TEMP ALM L -10 ... 180°C (Pt 100) or 0 ... 5000 ohm (PTC) 730 43505 1 = 1 35.06 MOT 2 TEMP FLT L -10 ... 180°C (Pt 100) or 0 ... 5000 ohm (PTC) 731 43506 1 = 1 35.07 MOT MOD COMPENSAT (1) NO; (0) YES 732 43507 (see Alternative Settings) 40 PID CONTROL (40.14 TRIM MODE to 40.18 TRIM SELECTION: not visible with 99.02 APPLICATION MACRO = PID CTRL, 40.18 TRIM SELECTION: visible only when 99.02 APPLICATION MACRO = T CTRL, 40.20 SLEEP SELECTION to 40.24 WAKE UP DELAY: visible only when 99.02 APPLICATION MACRO = PID CTRL) 40.01 PID GAIN 0.1 ... 100.0 851 44001 10 = 0.1 10000 = 100 Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 197. Appendix A – Complete Parameter Settings Firmware Manual A-11 40.02 PID INTEG TIME 0.02 s ... 320.00 s 852 44002 2 = 0.02 s 32000 = 320 s 40.03 PID DERIV TIME 0.00 s ... 10.00 s 853 44003 0 = 0 s 1000 = 10 s 40.04 PID DERIV FILTER 0.04 s ... 10.00 s 854 44004 4 = 0.04 s 1000 = 10 s 40.05 ERROR VALUE INV (0) NO; (65535) YES 855 44005 (see Alternative Settings) 40.06 ACTUAL VALUE SEL (1) ACT1; (2) ACT1 - ACT2; (3) ACT1 + ACT2; (4) ACT1 * ACT2; (5) ACT1/ACT2; (6) MIN(A1,A2); (7) MAX(A1,A2); (8) sqrt(A1 - A2); (9) sqA1 + sqA2 856 44006 (see Alternative Settings) 40.07 ACTUAL1 INPUT SEL (1) AI1; (2) AI2; (3) AI3; (4) AI5; (5) AI6; (6) CURRENT; (7) TORQUE; (8) POWER 857 44007 (see Alternative Settings) 40.08 ACTUAL2 INPUT SEL (1) AI1; (2) AI2; (3) AI3; (4) AI5; (5) AI6; (6) CURRENT; (7) TORQUE; (8) POWER 858 44008 (see Alternative Settings) 40.09 ACT1 MINIMUM -1000 % ... 1000 % 859 44009 -10000 = -1000 % 10000 = 1000 % 40.10 ACT1 MAXIMUM -1000 % ... 1000 % 860 44010 40.11 ACT2 MINIMUM -1000 % ... 1000 % 861 44011 40.12 ACT2 MAXIMUM -1000 % ... 1000 % 862 44012 40.13 PID INTEGRATION (1) OFF; (2) ON 863 44013 (see Alternative Settings) 40.14 TRIM MODE (1) OFF; (2) PROPORTIONAL; (3) DIRECT 864 44014 (see Alternative Settings) 40.15 TRIM REF SEL (1) AI1; (2) AI2; (3) AI3; (4) AI5; (5) AI6; (6) PAR 40.16 865 44015 (see Alternative Settings) 40.16 TRIM REFERENCE -100.0% to 100.0% 866 44016 100 = 1% 40.17 TRIM RANGE ADJUST -100.0% to 100.0% 867 44017 100 = 1% 40.18 TRIM SELECTION (1) SPEED TRIM; (2) TORQUE TRIM 868 44018 (see Alternative Settings) 40.19 ACTUAL FILT TIME 0.04 s to 10.00s 869 44019 100 = 1 s 40.20 SLEEP SELECTION (1) OFF; (2) INTERNAL; (3) DI1; (4) DI2; (5) DI3; (6) DI4; (7) DI5; (8) DI6; (9) DI7; (10) DI8; (11) DI9; (12) DI10; (13) DI11; (14) DI12 870 44020 (see Alternative Settings) 40.21 SLEEP LEVEL 0.0 to 7200.0 rpm 871 44021 1 = 1 rpm 40.22 SLEEP DELAY 0.0 s to 3600.0 s 872 44022 10 = 1 s 40.23 WAKE UP LEVEL 0.0 % to 100.0 % 873 44023 100 = 1% 40.24 WAKE UP DELAY 0.0 s to 3600.0 s 874 44024 10 = 1 s 42 BRAKE CONTROL (Not accessible from Profibus) 42.01 BRAKE CTRL (1) OFF; (2) ON - 44201 (see Alternative Settings) 42.02 BRAKE ACKNOWLEDGE (1) OFF; (2) DI5; (3) DI6; (4) DI11; (5) DI12 - 44202 (see Alternative Settings) 42.03 BRAKE OPEN DELAY 0.0 to 5.0 s - 44203 100 = 1 s 42.04 BRAKE CLOSE DELAY 0.0 to 60.0 s - 44204 100 = 1 s 42.05 ABS BRAKE CLS SPD 0 to 1000 rpm - 44205 100 = 1 rpm 42.06 BRAKE FAULT FUNC (1) FAULT; (2) WARNING - 44206 (see Alternative Settings) 42.07 START TORQ REF SEL (1) NO; (2) AI1; (3) AI2; (4) AI3; (5) AI5; (6) AI6; (7) PAR 42.08 - 44207 (see Alternative Settings) 42.08 START TORQ REF -300 to 300% - 44208 100 = 1% Group 45 FUNCTION SELECTION (Not accessible from Profibus) 45.01 POINTER1 GRP+IND -9999 to 9999 - 1 = 1 45.02 POINTER1 BIT 0 to 15 - 1 = 1 45.03 POINTER2 GRP+IND -9999 to 9999 - 1 = 1 Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 198. Appendix A – Complete Parameter Settings A-12 Firmware Manual 45.04 POINTER2 BIT 0 to 15 - 1 = 1 45.05 POINTER3 GRP+IND -9999 to 9999 - 1 = 1 45.06 POINTER3 BIT 0 to 15 - 1 = 1 45.07 POINTER4 GRP+IND -9999 to 9999 - 1 = 1 45.08 POINTER4 BIT 0 to 15 - 1 = 1 45.09 POINTER5 GRP+IND -9999 to 9999 - 1 = 1 45.10 POINTER5 BIT 0 to 15 - 1 = 1 45.11 POINTER6 GRP+IND -9999 to 9999 - 1 = 1 45.12 POINTER6 BIT 0 to 15 - 1 = 1 50 ENCODER MODULE (Visible with 98.01 ENCODER MODULE set.) 50.01 PULSE NR 0 ... 29999 1001 45001 1 = 1 ppr 50.02 SPEED MEAS MODE (1) A - - B DIR ; (2) A- - - ; (3) A - - - B DIR ; (4) A - - - B - - - 1002 45002 (see Alternative Settings) 50.03 ENCODER FAULT (0) WARNING; (65535) FAULT 1003 45003 (see Alternative Settings) 50.04 ENCODER DELAY 5 ms... 50000 ms 1004 45004 1 = 1 ms 50.05 ENCODER CHANNEL (1) CHANNEL1; (2) CHANNEL 2 1005 45005 (see Alternative Settings) 50.06 SPEED FB SEL (0) INTERAL; (65535) ENCODER 1006 45006 (see Alternative Settings) 51 COMMUNICATION MODULE (Visible with 98.02 COMM. MODULE LINK set. See module manual.) 1026 ... 45101 ... 52 STANDARD MODBUS 52.01 STATION NUMBER 1 to 247 1051 45201 (see Alternative Settings) 52.02 BAUDRATE (1) 600; (2) 1200; (3) 2400; (4) 4800; (5) 9600; (6) 19200 1052 45202 (see Alternative Settings) 52.03 PARITY (1) NONE1STOPBIT; (2) NONE2STOPBIT; (3) ODD; (4) EVEN 1053 45203 (see Alternative Settings) 60 MASTER/FOLLOWER 60.01 MASTER LINK MODE (1) NOT IN USE; (2) MASTER; (3) FOLLOWER 1195 46001 (see Alternative Settings) 60.02 TORQUE SELECTOR (1) SPEED; (2) TORQUE; (3) MINIMUM; (4) MAXIMUM; (5) ADD; (6) ZERO (Visible if 99.02 APPLICATION MACRO is T CTRL) 1196 46002 60.03 WINDOW SEL ON (0) NO; (65535) YES (Visible if 99.02 APPLICATION MACRO is T CTRL) 1167 46003 (see Alternative Settings) 60.04 WINDOW WIDTH POS 0 to 1500 (Visible if 99.02 APPLICATION MACRO is T CTRL) 1198 46004 20000 = 1500 60.05 WINDOW WIDTH NEG 0 to 1500 (Visible if 99.02 APPLICATION MACRO is T CTRL) 1199 46005 20000 = 1500 60.06 DROOP RATE 0 to 100% 1200 46006 10 = 1% 60.07 MASTER SIGNAL 2 0000 to 9999 1201 46007 1 = 1 60.08 MASTER SIGNAL 3 0000 to 9999 1202 46008 1 = 1 70 DDCS CONTROL 70.01 CHANNEL 0 ADDR 1 ... 125 1375 47001 (see Alternative Settings) 70.02 CHANNEL 3 ADDR 1 ... 254 1376 47002 (see Alternative Settings) 70.03 CH1 BAUDRATE (0) 8Mbits; (1) 4 Mbits; (2) 2 Mbits; (3) 1 Mbits 1377 47003 (see Alternative Settings) 90 D SET REC ADDR 90.01 AUX DS REF3 0 ... 8999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1735 49001 (see Alternative Settings) Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 199. Appendix A – Complete Parameter Settings Firmware Manual A-13 90.02 AUX DS REF4 0 ... 8999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1736 49002 (see Alternative Settings) 90.03 AUX DS REF5 0 ... 8999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1737 49003 (see Alternative Settings) 90.04 MAIN DS SOURCE 1 ... 255 1738 49004 (see Alternative Settings) 90.05 AUX DS SOURCE 1 ... 255 1739 49005 (see Alternative Settings) 92 D SET TR ADDR 92.01 MAIN DS STATUS WORD Fixed to 302 (MAIN STATUS WORD), not visible 1771 49201 (see Alternative Settings) 92.02 MAIN DS ACT1 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1772 49202 (see Alternative Settings) 92.03 MAIN DS ACT2 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1773 49203 (see Alternative Settings) 92.04 AUX DS ACT3 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1774 49204 (see Alternative Settings) 92.05 AUX DS ACT4 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1775 49205 (see Alternative Settings) 92.06 AUX DS ACT5 0 ... 9999 (Format: (X)XYY, where (X)X = Parameter Group, YY = Parameter Index) 1776 49206 (see Alternative Settings) 96 EXTERNAL AO (Visible with 98.06 AI/O EXT MODULE set to UNIPOLAR PRG or BIPOLAR PRG) 96.01 EXT AO1 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY; (5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT; (9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE; (12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2; (15) COMM. MODULE 1843 49601 (see Alternative Settings) 96.02 INVERT EXT AO1 (0) NO; (65535) YES 1844 49602 (see Alternative Settings) 96.03 MINIMUM EXT AO1 (1) 0 mA; (2) 4 mA; (3) 10mA 1845 49603 (see Alternative Settings) 96.04 FILTER EXT AO1 0.00 s ... 10.00 s 1846 49604 0 = 0 s 1000 = 10 s 96.05 SCALE EXT AO1 10 % ... 1000 % 1847 49605 100 = 10 % 10000 = 1000 % 96.06 EXT AO2 (1) NOT USED; (2) P SPEED; (3) SPEED; (4) FREQUENCY; (5) CURRENT; (6) TORQUE; (7) POWER; (8) DC BUS VOLT; (9) OUTPUT VOLT; (10) APPL OUTPUT; (11) REFERENCE; (12) CONTROL DEV; (13) ACTUAL 1; (14) ACTUAL 2; (15) COMM. MODULE 1848 49606 (see Alternative Settings) 96.07 INVERT EXT AO2 (0) NO; (65535) YES 1849 49607 (see Alternative Settings) 96.08 MINIMUM EXT AO2 (1) 0 mA; (2) 4 mA; (3) 10mA 1850 49608 (see Alternative Settings) 96.09 FILTER EXT AO2 0.00 s ... 10.00 s 1851 49609 0 = 0 s 1000 = 10 s 96.10 SCALE EXT AO2 10 % ... 1000 % 1852 49610 100 = 10 % 10000 = 1000 % 98 OPTION MODULES 98.01 ENCODER MODULE (0) NO; (65535) YES 1901 49801 (see Alternative Settings) 98.02 COMM. MODULE LINK (1) NO; (2) FIELDBUS; (3) ADVANT; (4) STD MODBUS; (5) CUSTOMISED 1902 49802 (see Alternative Settings) 98.03 DI/O EXT MODULE 1 (0) NO; (65535) YES 1903 49803 (see Alternative Settings) 98.04 DI/O EXT MODULE 2 (0) NO; (65535) YES 1904 49804 (see Alternative Settings) 98.05 DI/O EXT MODULE 3 (0) NO; (65535) YES 1905 49805 (see Alternative Settings) Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 200. Appendix A – Complete Parameter Settings A-14 Firmware Manual 98.06 AI/O EXT MODULE (1) NO; (2) UNIPOLAR; (3) BIPOLAR; (4)UNIP AO PRG; (5) BIP AO PRG; (6)UNIP AIO PRG; (7) BIP AIO PRG 1906 49806 (see Alternative Settings) 98.07 COMM PROFILE (0) ABB DRIVES; (65535) CSA2.8/3.0 (visible only when Parameter 98.02 COMM. MODULE LINK is activated) 1907 49807 (see Alternative Settings) 98.08 NIOC-01 BOARD (1) NO; (2) YES 1908 49808 (see Alternative Settings) 98.09 NDIO1 DI FUNC (1) DI7,8; (2) REPL DI1,2 1909 49809 (see Alternative Settings) 98.10 NDIO2 DI FUNC (1) DI9.10; (2) REPL DI3,4 1910 49810 (see Alternative Settings) 98.11 NDIO3 DI FUNC (1) DI11,12; (2) REPL DI3,4 1911 49811 (see Alternative Settings) 98.12 AI/O MOTOR TEMP (1) NO; (2) UNIPOLAR 1912 49812 (see Alternative Settings) Parameter Alternative Settings ( ) Fieldbus Equivalent PROFIBUS Par.No. (Add4000in FMSMode) Modbus/ ModbusPlus Par.No. Scaling for Fieldbus
  • 201. Firmware Manual B-1 Appendix B – Default Settings of Application Macros The table in this appendix lists all the default parameter settings of all the ACS 600 Application Macros. Use this table as reference when you are selecting and customizing macros for your ACS 600 application. Table B-1 Default parameter settings of ACS 600 Application Macros. Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting ACTUAL SIGNALS (THREE DEFAULT SIGNALS IN THE ACTUAL SIGNAL DISPLAY MODE OF THE CONTROL PANEL) FREQ FREQ SPEED SPEED FREQ CURRENT CURRENT ACT VAL1 TORQUE CURRENT POWER CTRL LOC CONT DEV CTRL LOC POWER 99 START-UP DATA 99.01 LANGUAGE ENGLISH ENGLISH ENGLISH ENGLISH ENGLISH 99.02 APPLICATION MACRO FACTORY HAND/AUTO PID-CTRL T CTRL SEQ CTRL 99.03 APPLIC RESTORE NO NO NO NO NO 99.04 MOTOR CTRL MODE DTC DTC DTC DTC DTC 99.05 MOTOR NOM VOLTAGE 0 V 0 V 0 V 0 V 0 V 99.06 MOTOR NOM CURRENT 0.0 A 0.0 A 0.0 A 0.0 A 0.0 A 99.07 MOTOR NOM FREQ 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 99.08 MOTOR NOM SPEED 1 rpm 1 rpm 1 rpm 1 rpm 1 rpm 99.09 MOTOR NOM POWER 0.0 kW 0.0 kW 0.0 kW 0.0 kW 0.0 kW 99.10 MOTOR ID RUN NO NO NO NO NO 10 START/STOP/DIR 10.01 EXT1 STRT/STP/DIR DI1,2 DI1,2 DI1 DI1,2 DI1,2 10.02 EXT2 STRT/STP/DIR NOT SEL DI6,5 DI6 DI1,2 NOT SEL 10.03 DIRECTION FORWARD REQUEST FORWARD REQUEST REQUEST 11 REFERENCE SELECT 11.01 KEYPAD REF SEL REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) 11.02 EXT1/EXT2 SELECT EXT1 DI3 DI3 DI3 EXT1 11.03 EXT REF1 SELECT AI1 AI1 AI1 AI1 AI1 11.04 EXT REF1 MINIMUM 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 11.05 EXT REF1 MAXIMUM 1500 rpm 1500 rpm 1500 rpm 1500 rpm 1500 rpm 11.06 EXT REF2 SELECT KEYPAD AI2 AI1 AI2 AI1 11.07 EXT REF2 MINIMUM 0 % 0 % 0 % 0 % 0 % 11.08 EXT REF2 MAXIMUM 100 % 100 % 100 % 100 % 100 %
  • 202. Appendix B – Default Settings of Application Macros B-2 Firmware Manual 12 CONSTANT SPEEDS 12.01 CONST SPEED SEL DI5,6 DI4(SPEED4) DI4(SPEED4) DI4(SPEED4) DI4,5,6 12.02 CONST SPEED 1 300 rpm 300 rpm 300 rpm 300 rpm 300 rpm 12.03 CONST SPEED 2 600 rpm 600 rpm 600 rpm 600 rpm 600 rpm 12.04 CONST SPEED 3 900 rpm 900 rpm 900 rpm 900 rpm 900 rpm 12.05 CONST SPEED 4 300 rpm 300 rpm 300 rpm 300 rpm 1200 rpm 12.06 CONST SPEED 5 0 rpm 0 rpm 0 rpm 0 rpm 1500 rpm 12.07 CONST SPEED 6 0 rpm 0 rpm 0 rpm 0 rpm 2400 rpm 12.08 CONST SPEED 7 0 rpm 0 rpm 0 rpm 0 rpm 3000 rpm 12.09 CONST SPEED 8 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.10 CONST SPEED 9 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.11 CONST SPEED 10 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.12 CONST SPEED 11 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.13 CONST SPEED 12 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.14 CONST SPEED 13 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.15 CONST SPEED 14 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12.16 CONST SPEED 15 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 13 ANALOGUE INPUTS 13.01 MINIMUM AI1 0 V 0 V 0 V 0 V 0 V 13.02 MAXIMUM AI1 10 V 10 V 10 V 10 V 10 V 13.03 SCALE AI1 100 % 100 % 100 % 100 % 100 % 13.04 FILTER AI1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 13.05 INVERT AI1 NO NO NO NO NO 13.06 MINIMUM AI2 0 mA 0 mA 0 mA 0 mA 0 mA 13.07 MAXIMUM AI2 20 mA 20 mA 20 mA 20 mA 20 mA 13.08 SCALE AI2 100 % 100 % 100 % 100 % 100 % 13.09 FILTER AI2 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 13.10 INVERT AI2 NO NO NO NO NO 13.11 MINIMUM AI3 0 mA 0 mA 0 mA 0 mA 0 mA 13.12 MAXIMUM AI3 20 mA 20 mA 20 mA 20 mA 20 mA 13.13 SCALE AI3 100 % 100 % 100 % 100 % 100 % 13.14 FILTER AI3 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 13.15 INVERT AI3 NO NO NO NO NO 14 RELAY OUTPUTS 14.01 RELAY RO1 OUTPUT READY READY READY READY READY 14.02 RELAY RO2 OUTPUT RUNNING RUNNING RUNNING RUNNING RUNNING 14.03 RELAY RO3 OUTPUT FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) 14.04 RO1 TON DELAY 0.0s 0.0s 0.0s 0.0s 0.0s 14.05 RO1 TOFF DELAY 0.0s 0.0s 0.0s 0.0s 0.0s 14.06 RO2 TON DELAY 0.0s 0.0s 0.0s 0.0s 0.0s 14.07 RO2 TOFF DELAY 0.0s 0.0s 0.0s 0.0s 0.0s 14.08 RO3 TON DELAY 0.0s 0.0s 0.0s 0.0s 0.0s 14.09 RO3 TOFF DELAY 0.0s 0.0s 0.0s 0.0s 0.0s 14.10 NDIO MOD1 RO1 READY READY READY READY READY 14.11 NDIO MOD1 RO2 RUNNING RUNNING RUNNING RUNNING RUNNING 14.12 NDIO MOD2 RO1 FAULT FAULT FAULT FAULT FAULT Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 203. Appendix B – Default Settings of Application Macros Firmware Manual B-3 14.13 NDIO MOD2 RO2 WARNING WARNING WARNING WARNING WARNING 14.14 NDIO MOD3 RO1 REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL 14.15 NDIO MOD3 RO2 AT SPEED AT SPEED AT SPEED AT SPEED AT SPEED 15 ANALOGUE OUTPUTS 15.01 ANALOGUE OUTPUT 1 SPEED SPEED SPEED SPEED SPEED 15.02 INVERT AO1 NO NO NO NO NO 15.03 MINIMUM AO1 0 mA 0 mA 0 mA 0 mA 0 mA 15.04 FILTER AO1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 15.05 SCALE AO1 100 % 100 % 100 % 100 % 100 % 15.06 ANALOGUE OUTPUT 2 CURRENT CURRENT CURRENT CURRENT CURRENT 15.07 INVERT AO2 NO NO NO NO NO 15.08 MINIMUM AO2 0 mA 0 mA 0 mA 0 mA 0 mA 15.09 FILTER ON AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 15.10 SCALE AO2 100 % 100 % 100 % 100 % 100 % 16 SYSTEM CONTR INPUTS 16.01 RUN ENABLE YES YES DI5 DI6 YES 16.02 PARAMETER LOCK OPEN OPEN OPEN OPEN OPEN 16.03 PASS CODE 0 0 0 0 0 16.04 FAULT RESET SEL NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 16.05 USER MACRO IO CHG NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 16.06 LOCAL LOCK OFF OFF OFF OFF OFF 16.07 PARAM SAVE DONE DONE DONE DONE DONE 20 LIMITS 20.01 MINIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated) 20.02 MAXIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated) 20.03 MAXIMUM CURRENT 200.0 % Ihd 200.0 % Ihd 200.0 % Ihd 200.0 % Ihd 200.0 % Ihd 20.04 MAXIMUM TORQUE 300.0 % 300.0 % 300.0 % 300.0 % 300.0 % 20.05 OVERVOLTAGE CTRL YES YES YES YES YES 20.06 UNDERVOLTAGE CTRL YES YES YES YES YES 20.07 MINIMUM FREQ - 50 Hz - 50 Hz - 50 Hz - 50 Hz - 50 Hz 20.08 MAXIMUM FREQ 50 Hz 50 Hz 50 Hz 50 Hz 50 Hz 20.09 MIN TORQ SELECTOR -MAX TORQ -MAX TORQ -MAX TORQ -MAX TORQ -MAX TORQ 20.10 SET MIN TORQUE -300.0 % -300.0 % -300.0 % -300.0 % -300.0 % 20.11 P MOTORING LIMIT 300% 300% 300% 300% 300% 20.12 P GENERATING LIMIT -300% -300% -300% -300% -300% 21 START/STOP 21.01 START FUNCTION AUTO AUTO AUTO AUTO AUTO 21.02 CONST MAGN TIME 500.0 ms 500.0 ms 500.0 ms 500.0 ms 500.0 ms 21.03 STOP FUNCTION COAST COAST COAST COAST RAMP 21.04 DC HOLD NO NO NO NO NO 21.05 DC HOLD SPEED 5 rpm 5 rpm 5 rpm 5 rpm 5 rpm 21.06 DC HOLD CURR 30. 0 % 30. 0 % 30. 0 % 30. 0 % 30. 0 % 21.07 RUN ENABLE FUNC RAMP STOP RAMP STOP RAMP STOP RAMP STOP RAMP STOP 21.08 SCALAR FLY START NO NO NO NO NO Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 204. Appendix B – Default Settings of Application Macros B-4 Firmware Manual 22 ACCEL/DECEL 22.01 ACC/DEC 1/2 SEL DI4 ACC/DEC 1 ACC/DEC 1 DI5 DI3 22.02 ACCELER TIME 1 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 22.03 DECELER TIME 1 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 22.04 ACCELER TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 22.05 DECELER TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 22.06 ACC/DEC RAMP SHPE 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s 22.07 EM STOP RAMP TIME 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 23 SPEED CTRL 23.01 GAIN 10.0 10.0 10.0 10.0 10.0 23.02 INTEGRATION TIME 2.50 s 2.50 s 2.50 s 2.50 s 2.50 s 23.03 DERIVATION TIME 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 23.04 ACC COMPENSATION 0.00 s 0.00 s 0.00 s 0.00 s 0.12 s 23.05 SLIP GAIN 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 23.06 AUTOTUNE RUN NO NO NO NO NO 24 TORQUE CTRL 24.01 TORQ RAMP UP 0.00 s 24.02 TORQ RAMP DOWN 0.00 s 25 CRITICAL SPEEDS 25.01 CRIT SPEED SELECT OFF OFF - OFF OFF 25.02 CRIT SPEED 1 LOW 0 rpm 0 rpm - 0 rpm 0 rpm 25.03 CRIT SPEED 1 HIGH 0 rpm 0 rpm - 0 rpm 0 rpm 25.04 CRIT SPEED 2 LOW 0 rpm 0 rpm - 0 rpm 0 rpm 25.05 CRIT SPEED 2 HIGH 0 rpm 0 rpm - 0 rpm 0 rpm 25.06 CRIT SPEED 3 LOW 0 rpm 0 rpm - 0 rpm 0 rpm 25.07 CRIT SPEED 3 HIGH 0 rpm 0 rpm - 0 rpm 0 rpm 26 MOTOR CONTROL 26.01 FLUX OPTIMIZATION NO NO NO NO NO 26.02 FLUX BRAKING YES YES YES YES YES 26.03 IR COMPENSATION 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 26.05 HEX FIELD WEAKEN OFF OFF OFF OFF OFF 30 FAULT FUNCTIONS 30.01 AI<MIN FUNCTION FAULT FAULT FAULT FAULT FAULT 30.02 PANEL LOSS FAULT FAULT FAULT FAULT FAULT 30.03 EXTERNAL FAULT NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 30.04 MOT THERM PROT NO NO NO NO NO 30.05 MOTOR THERM P MODE DTC1) DTC1) DTC1) DTC1) DTC1) 30.06 MOTOR THERM TIME (calculated) (calculated) (calculated) (calculated) (calculated) 30.07 MOTOR LOAD CURVE 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 30.08 ZERO SPEED LOAD 74.0 % 74.0 % 74.0 % 74.0 % 74.0 % Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 205. Appendix B – Default Settings of Application Macros Firmware Manual B-5 30.09 BREAK POINT 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 30.10 STALL FUNCTION FAULT FAULT FAULT FAULT FAULT 30.11 STALL FREQ HI 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 30.12 STALL TIME 20.00 s 20.00 s 20.00 s 20.00 s 20.00 s 30.13 UNDERLOAD FUNC NO NO NO NO NO 30.14 UNDERLOAD TIME 600.0 s 600.0 s 600.0 s 600.0 s 600.0 s 30.15 UNDERLOAD CURVE 1 1 1 1 1 30.16 MOTOR PHASE LOSS NO NO NO NO NO 30.17 EARTH FAULT FAULT FAULT FAULT FAULT FAULT 30.18 COMM FAULT FUNC FAULT FAULT FAULT FAULT FAULT 30.19 MAIN REF DS T-OUT 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s 30.20 COMM FAULT RO/AO ZERO ZERO ZERO ZERO ZERO 30.21 AUX DS T-OUT 3.0 s 3.0 s 3.0 s 3.0 s 3.0 s 30.22 IO CONF FUNC WARNING WARNING WARNING WARNING WARNING 31 AUTOMATIC RESET 31.01 NUMBER OF TRIALS 0 0 0 0 0 31.02 TRIAL TIME 30.0 s 30.0 s 30.0 s 30.0 s 30.0 s 31.03 DELAY TIME 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 31.04 OVERCURRENT NO NO NO NO NO 31.05 OVERVOLTAGE NO NO NO NO NO 31.06 UNDERVOLTAGE NO NO NO NO NO 31.07 AI SIGNAL<MIN NO NO NO NO NO 32 SUPERVISION 32.01 SPEED1 FUNCTION NO NO NO NO NO 32.02 SPEED1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 32.03 SPEED2 FUNCTION NO NO NO NO NO 32.04 SPEED2 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 32.05 CURRENT FUNCTION NO NO NO NO NO 32.06 CURRENT LIMIT 0 A 0 A 0 A 0 A 0 A 32.07 TORQUE 1 FUNCTION NO NO NO NO NO 32.08 TORQUE 1 LIMIT 0 % 0 % 0 % 0 % 0 % 32.09 TORQUE 2 FUNCTION NO NO NO NO NO 32.10 TORQUE 2 LIMIT 0 % 0 % 0 % 0 % 0 % 32.11 REF1 FUNCTION NO NO NO NO NO 32.12 REF1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 32.13 REF2 FUNCTION NO NO NO NO NO 32.14 REF2 LIMIT 0 % 0 % 0 % 0 % 0 % 32.15 ACT1 FUNCTION NO NO NO NO NO 32.16 ACT1 LIMIT 0 % 0 % 0 % 0 % 0 % 32.17 ACT2 FUNCTION NO NO NO NO NO 32.18 ACT2 LIMIT 0 % 0 % 0 % 0 % 0 % 33 INFORMATION 33.01 SOFTWARE VERSION (Version) (Version) (Version) (Version) (Version) 33.02 APPL SW VERSION (Version) (Version) (Version) (Version) (Version) 33.03 TEST DATE (Date) (Date) (Date) (Date) (Date) Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 206. Appendix B – Default Settings of Application Macros B-6 Firmware Manual 34 PROCESS VARIABLE 34.01 SCALE 100.00 100.00 100.00 100.00 100.00 34.02 P VAR UNIT % % % % % 34.03 SELECT P VAR 142 142 142 142 142 34.04 MOTOR SP FILT TIM 500 ms 500 ms 500 ms 500 ms 500 ms 34.05 TORQ ACT FILT TIM 100 ms 100 ms 100 ms 100 ms 100 ms 34.06 RESET RUN TIME NO NO NO NO NO 35 MOT TEMP MEAS 35.01 MOT 1 TEMP AI1 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 35.02 MOT 1 TEMP ALM L 110 110 110 110 110 35.03 MOT 1 TEMP FLT L 130 130 130 130 130 35.04 MOT 2 TEMP AI2 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 35.05 MOT 2 TEMP ALM L 110 110 110 110 110 35.06 MOT 2 TEMP FLT L 130 130 130 130 130 35.07 MOT MOD COMPENSAT YES YES YES YES YES 40 PID CONTROL 40.01 PID GAIN 1.0 1.0 1.0 1.0 1.0 40.02 PID INTEG TIME 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 40.03 PID DERIV TIME 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s 40.04 PID DERIV FILTER 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s 40.05 ERROR VALUE INV NO NO NO NO NO 40.06 ACTUAL VALUE SEL ACT1 ACT1 ACT1 ACT1 ACT1 40.07 ACTUAL1 INPUT SEL AI2 AI2 AI2 AI2 AI2 40.08 ACTUAL2 INPUT SEL AI2 AI2 AI2 AI2 AI2 40.09 ACT1 MINIMUM 0 % 0 % 0 % 0 % 0 % 40.10 ACT1 MAXIMUM 100 % 100 % 100 % 100 % 100 % 40.11 ACT2 MINIMUM 0 % 0 % 0 % 0 % 0 % 40.12 ACT2 MAXIMUM 100 % 100 % 100 % 100 % 100 % 40.13 PID INTEGRATION ON ON ON ON ON 40.14 TRIM MODE OFF OFF OFF OFF 40.15 TRIM REF SEL AI1 AI1 AI1 AI1 40.16 TRIM REFERENCE 0.0% 0.0% 0.0% 0.0% 40.17 TRIM RANGE ADJUST 0.0% 0.0% 0.0% 0.0% 40.18 TRIM SELECTION SPEED TRIM 40.19 ACTUAL FILT TIME 0.04 s 0.04 s 0.04 s 0.04 s 0.04 s 40.20 SLEEP SELECTION OFF 40.21 SLEEP LEVEL 0.0 rpm 40.22 SLEEP DELAY 0.0 s 40.23 WAKE UP LEVEL 0.0 % 40.24 WAKE UP DELAY 0.0 s 42 BRAKE CONTROL 42.01 BRAKE CTRL OFF OFF OFF OFF OFF 42.02 BRAKE ACKNOWLEDGE OFF OFF OFF OFF OFF 42.03 BRAKE OPEN DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 207. Appendix B – Default Settings of Application Macros Firmware Manual B-7 42.04 BRAKE CLOSE DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 42.05 ABS BRAKE CLS SPD 100 rpm 100 rpm 100 rpm 100 rpm 100 rpm 42.06 BRAKE FAULT FUNC FAULT FAULT FAULT FAULT FAULT 42.07 START TORQ REF SEL NO NO NO NO NO 42.08 START TORQ REF 0% 0% 0% 0% 0% 50 ENCODER MODULE 50.01 PULSE NR 2048 2048 2048 2048 2048 50.02 SPEED MEAS MODE A - - - B - - - A - - - B - - - A - - - B - - - A - - - B - - - A - - - B - - - 50.03 ENCODER FAULT WARNING WARNING WARNING WARNING WARNING 50.04 ENCODER DELAY 1000 1000 1000 1000 1000 50.05 ENCODER CHANNEL CHANNEL 2 CHANNEL 2 CHANNEL 2 CHANNEL 2 CHANNEL 2 50.06 SPEED FB SEL INTERNAL INTERNAL INTERNAL INTERNAL INTERNAL 51 COMMUNICATION MODULE 52 STANDARD MODBUS 52.01 STATION NUMBER 1 1 1 1 1 52.02 BAUDRATE 9600 9600 9600 9600 9600 52.03 PARITY ODD ODD ODD ODD ODD 60 MASTER/FOLLOWER 60.01 MASTER LINK MODE NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 60.02 TORQUE SELECTOR not visible not visible not visible TORQUE not visible 60.03 WINDOW SEL ON not visible not visible not visible NO not visible 60.04 WINDOW WIDTH POS not visible not visible not visible 0 not visible 60.05 WINDOW WIDTH NEG not visible not visible not visible 0 not visible 60.06 DROOP RATE 0 to 100% 0% 0% 0% 0% 60.07 MASTER SIGNAL 2 0000 to 9999 202 202 202 202 60.08 MASTER SIGNAL 3 0000 to 9999 213 213 213 213 70 DDCS CONTROL 70.01 CHANNEL 0 ADDR 1 1 1 1 1 70.02 CHANNEL 3 ADDR 1 1 1 1 1 70.03 CH1 BAUDRATE 2 Mbits 2 Mbits 2 Mbits 2 Mbits 2 Mbits 90 D SET REC ADDR 90.01 AUX DS REF3 0 0 0 0 0 90.02 AUX DS REF4 0 0 0 0 0 90.03 AUX DS REF5 0 0 0 0 0 90.04 MAIN DS SOURCE 1 1 1 1 1 90.05 AUX DS SOURCE 3 3 3 3 3 92 D SET TR ADDR 92.01 MAIN STATUS WORD 302 302 302 302 302 FIXED 92.02 MAIN DS ACT1 102 102 102 102 102 92.03 MAIN DS ACT2 105 105 105 105 105 Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 208. Appendix B – Default Settings of Application Macros B-8 Firmware Manual 1) Parameter 30.05 MOTOR THERM P MODE: For units ACx 607-0400-3, -0490-3 -0490-6 and above, the default setting is USER MODE. 92.04 AUX DS ACT3 305 305 305 305 305 92.05 AUX DS ACT4 308 308 308 308 308 92.06 AUX DS ACT5 306 306 306 306 306 96 EXTERNAL AO 96.01 EXT AO1 SPEED SPEED SPEED SPEED SPEED 96.02 INVERT EXT AO1 NO NO NO NO NO 96.03 MINIMUM EXT AO1 0 mA 0 mA 0 mA 0 mA 0 mA 96.04 FILTER EXT AO1 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 96.05 SCALE EXT AO1 100 % 100 % 100 % 100 % 100 % 96.06 EXT AO2 CURRENT CURRENT CURRENT CURRENT CURRENT 96.07 INVERT EXT AO2 NO NO NO NO NO 96.08 MINIMUM EXT AO2 0 mA 0 mA 0 mA 0 mA 0 mA 96.09 FILTER EXT AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 96.10 SCALE EXT AO2 100 % 100 % 100 % 100 % 100 % 98 OPTION MODULES 98.01 ENCODER MODULE NO NO NO NO NO 98.02 COMM. MODULE LINK NO NO NO NO NO 98.03 DI/O EXT MODULE 1 NO NO NO NO NO 98.04 DI/O EXT MODULE 2 NO NO NO NO NO 98.05 DI/O EXT MODULE 3 NO NO NO NO NO 98.06 AI/O EXT MODULE NO NO NO NO NO 98.07 COMM PROFILE ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES 98.08 NIOC-01 BOARD YES YES YES YES YES 98.09 NDIO1 DI FUNC DI7,8 DI7,8 DI7,8 DI7,8 DI7,8 98.10 NDIO2 DI FUNC DI9.10 DI9.10 DI9.10 DI9.10 DI9.10 98.11 NDIO3 DI FUNC DI11,12 DI11,12 DI11,12 DI11,12 DI11,12 98.12 AI/O MOTOR TEMP NO NO NO NO NO Parameter Factory Hand/Auto PID Control Torque Control Sequential Control Custom Setting
  • 209. Firmware Manual C-1 Appendix C – Fieldbus Control Overview The ACS 600 can be connected to an external control system – usually a fieldbus – via an adapter module (connected to fibre optic channel CH0 on the NDCO board) and/or a Modbus-protocol RS-485 connection (on the NIOC-01 board). Figure C-1 Fieldbus control. The drive can be set to receive all of its control information from one fieldbus channel, or the control can be distributed between the two fieldbus channels and other available sources, e.g. digital and analogue inputs. Fieldbus Adapter Fieldbus Other devices Fieldbus Controller CH0 (DDCS) NBCI Standard Modbus Link (Modbus RTU) RS-485 NPCU RS-232 RS-485 Galvanically unisolated e.g. PC Serial Port Signal Source Selection Name: COMM.MODULE Control Word (CW) References (REF1…REF5) Data Flow Status Word (SW) Actual Values (ACT1…ACT5) Parameter R/W Requests/Responses Fieldbus Control or COMM. REF
  • 210. Appendix C – Fieldbus Control C-2 Firmware Manual Control via NDCO Board Channel CH0 The DDCS-protocol fibre optic channel CH0, located on the NDCO add-on communication board, is used for connecting the ACS 600 to a fieldbus adapter module. (The NDCO board may be ordered factory- installed or as an add-on kit. It is also installed at the factory if required by another option.) Channel CH0 is also used for connecting the ACS 600 to an Advant control system. From the drive’s point of view, Advant connection is similar to a fieldbus adapter connection. Fieldbus Adapter Communication Set-up Before configuring the ACS 600 for fieldbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the Hardware Manual of the drive and the module manual. The communication between the ACS 600 and the fieldbus adapter module is then activated by setting Parameter 98.02 COMM. MODULE LINK. After the communication is initialised, the configuration parameters of the module become available in the drive at Parameter Group 51. These parameters are specific to the module used; see its manual for information on the available settings. Table C-1 Communication set-up parameters for channel CH0 (for Fieldbus Adapter connection). After the parameters in Group 51 have been set, the drive control parameters (shown in Table C-4) must be checked and adjusted where necessary. Parameter Alternative Settings Setting for Control through CH0 Function/Information COMMUNICATION INITIALISATION 98.02 COMM. MODULE LINK NO; FIELDBUS; ADVANT; STD MODBUS; CUSTOMISED FIELDBUS Initialises communication between drive (fibre optic channel CH0) and fieldbus adapter module. Activates module parameters (Group 51). 98.07 COMM PROFILE ABB DRIVES; CSA 2.8/3.0 ABB DRIVES Selects the communication profile used by the drive. Affects both fieldbus channels (fibre optic channel CH0 and Standard Modbus Link). See section Communication Profiles later in this Appendix. ADAPTER MODULE CONFIGURATION (Module-specific; see module manual.) 51.01 (FIELDBUS PARAMETER 1) – • • • • • • • • • • • • 51.15 (FIELDBUS PARAMETER 15) –
  • 211. Appendix C – Fieldbus Control Firmware Manual C-3 AF 100 Connection The connection of an ACS 600 to an AF (Advant Fieldbus) 100 bus is similar to other fieldbusses, with the exception that one of the AF 100 interfaces listed below is substituted for the fieldbus adapter. As opposed to other fieldbusses, Parameter Group 51 contains no adjustable parameters. The drive (channel CH0) is connected to the AF 100 interface using fibre optic cables. The following is a list of suitable interfaces: • CI810A Fieldbus Communication Interface (FCI) TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required • Advant Controller 70 (AC 70) TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required • Advant Controller 80 (AC 80) Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required DriveBus connection: Connectible to NAMC-11 Board with NDCO-01 Communication Option. One of the above interfaces may already be present on the AF 100 bus. If not, an Advant Fieldbus 100 Adapter kit (NAFA-01) is separately available, containing the CI810A Fieldbus Communication Interface, TB810 and TB811 Optical ModuleBus Port Interfaces, and a TC505 Trunk Tap. (More information on these components is available from the S800 I/O User’s Guide, 3BSE 008 878 [ABB Industrial Systems, Västerås, Sweden]). Optical Component Types The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd optical components, while the TB810 has 10 MBd components. All optical components on a fibre optic link must be of the same type since 5 MBd components do not communicate with 10 MBd components. The choice between TB810 and TB811 depends on the equipment it is connected to. The TB811 (5 MBd) should be used when connecting to a drive with the following equipment: • NAMC-03 Board (not used with Std. Application Program 5.2 or later versions) • NAMC-11/51 Board with NDCO-02 Communication Option • NAMC-11/51 Board with NDCO-03 Communication Option • NAMC-22 Board. The TB810 (10 MBd) should be used when connecting to the following equipment: • NAMC-11/51 Board with NDCO-01 Communication Option • NAMC-21 Board • NDBU-85/95 DDCS Branching Units.
  • 212. Appendix C – Fieldbus Control C-4 Firmware Manual Communication Set-up The communication between the ACS 600 and the AF 100 interface is activated by setting Parameter 98.02 COMM. MODULE LINK to ADVANT. Table C-2 Communication set-up parameters for channel CH0 (For AF 100 connection). After the communication activation parameters have been set, the AF 100 interface must be programmed according to its documentation, and the drive control parameters (shown in Table C-4) checked and adjusted where necessary. In an Optical ModuleBus connection, the value for drive Parameter 70.01 CH0 NODE ADDRESS is calculated from the value of the POSITION terminal in the appropriate database element (for the AC 80, DRISTD) as follows: 1. Multiply the hundreds of the value of POSITION by 16. 2. Add the tens and ones of the value of POSITION to the result. For example, if the POSITION terminal of the DRISTD database element has the value of 110 (the tenth drive on the Optical ModuleBus ring), Parameter 70.01 must be set to 16 × 1 + 10 = 26. In an AC 80 DriveBus connection, the drives are addressed 1 to 12. The drive address (set with Parameter 70.01) is related to the value of the DRNR terminal of the ACSRX PC element. Parameter Alternative Settings Setting for Control through CH0 Function/Information COMMUNICATION INITIALISATION 98.02 COMM. MODULE LINK NO; FIELDBUS; ADVANT; STD MODBUS, CUSTOMISED ADVANT Initialises communication between drive (fibre optic channel CH0) and AF 100 interface. The transmission speed is 4 Mbit/s. 98.07 COMM PROFILE ABB DRIVES; CSA 2.8/3.0 ABB DRIVES Selects the communication profile used by the drive. Affects both fieldbus channels (fibre optic channel CH0 and Standard Modbus Link). See section Communication Profiles later in this Appendix.
  • 213. Appendix C – Fieldbus Control Firmware Manual C-5 Control through the Standard Modbus Link The modular jacks (X28 and X29) on the ACS 600 NIOC-01 board form the Standard Modbus Link. The Link can be used for external control by a Modbus RTU-protocol controller. The controller can be connected either directly or using an NBCI Panel Bus Connection Interface module to obtain galvanic isolation and parallel or long-distance connection of several drives. An RS-232 port (e.g. a serial port of a PC) can be connected to the Standard Modbus Link through an NPCU-01 PC Connection Unit, which provides galvanic isolation and RS-232/RS-485 conversion. (However, the DriveWindow Light PC tool can only be connected to the Control Panel connector on the NAMC board.) Communication Set-up The communication through the Standard Modbus Link is initialised by setting Parameter 98.02 COMM. MODULE LINK to STD MODBUS. Then, the communication parameters in Group 52 must be adjusted. See the following table. Table C-3 Communication set-up parameters for the Standard Modbus Link. After the parameters in Group 52 have been set, the drive control parameters (shown in Table C-4) should be checked and adjusted where necessary. Parameter Alternative Settings Setting for Control through the Standard Modbus Link Function/Information COMMUNICATION INITIALISATION 98.02 COMM. MODULE LINK NO; FIELDBUS; ADVANT; STD MODBUS; CUSTOMISED STD MODBUS Initialises communication between drive (Standard Modbus Link) and Modbus-protocol controller. Activates communication parameters in Group 52. 98.07 COMM PROFILE ABB DRIVES; CSA 2.8/3.0 ABB DRIVES Selects the communication profile used by the drive. Affects both fieldbus channels (fibre optic channel CH0 and Standard Modbus Link). See section Communication Profiles later in this Appendix. COMMUNICATION PARAMETERS 52.01 STATION NUMBER 1 to 247 – Specifies the station number of the drive on the Standard Modbus link. 52.02 BAUDRATE 600; 1200; 2400; 4800; 9600 – Communication speed for the Standard Modbus Link. 52.03 PARITY ODD; EVEN; NONE1STOPBIT; NONE2STOPBIT – Parity setting for the Standard Modbus Link.
  • 214. Appendix C – Fieldbus Control C-6 Firmware Manual Drive Control Parameters After the desired fieldbus channels have been set up, the drive control parameters listed below in Table C-4 below should be checked and adjusted where necessary. The Setting for Fieldbus Control column gives the value to use when either fieldbus channel (CH0 or Standard Modbus Link) is the desired source or destination for that particular signal. The Function/ Information column gives a description of the parameter. The fieldbus signal routes and message composition are explained later in this Appendix under The Fieldbus Control Interface. Further information on the alternative parameter settings is also given in Chapter 6. Table C-4 Drive control parameters to be checked and adjusted for fieldbus control. Parameter Setting for Fieldbus Control Function/Information CONTROL COMMAND SOURCE SELECTION 10.01 EXT1 STRT/STP/DIR COMM.MODULE Enables the fieldbus Control Word (except bit 11) when EXT1 is selected as control location. 10.02 EXT2 STRT/STP/DIR Enables the fieldbus Control Word (except bit 11) when EXT2 is selected as control location. 10.03 DIRECTION REQUEST Enables rotation direction control as defined by Parameters 10.01 and 10.02. 11.02 EXT1/EXT2 SELECT COMM.MODULE Enables EXT1/EXT2 selection by fieldbus Control Word bit 11 EXT CTRL LOC. 11.03 EXT REF1 SELECT COMM.REF, FAST COMM, COMM.REF+AI1, COMM.REF+AI5, COMM.REF*AI1 or COMM.REF*AI5 Fieldbus reference REF1 is used when EXT1 is selected as control location. See section References below for information on the alternative settings. 11.06 EXT REF2 SELECT Fieldbus reference REF2 is used when EXT2 is selected as control location. See section References below for information on the alternative settings. OUTPUT SIGNAL SOURCE SELECTION 14.01 RELAY RO1 OUTPUT COMM.MODULE Enables Relay output RO1 control by fieldbus reference REF3 bit 13. 14.02 RELAY RO2 OUTPUT Enables Relay output RO2 control by fieldbus reference REF3 bit 14. 14.03 RELAY RO3 OUTPUT Enables Relay output RO3 control by fieldbus reference REF3 bit 15. 15.01 ANALOGUE OUTPUT1 Directs the contents of fieldbus reference REF4 to Analogue output AO1. Scaling: 20000 = 20 mA 15.06 ANALOGUE OUTPUT2 Directs the contents of fieldbus reference REF5 to Analogue output AO2. Scaling: 20000 = 20 mA.
  • 215. Appendix C – Fieldbus Control Firmware Manual C-7 SYSTEM CONTROL INPUTS 16.01 RUN ENABLE COMM.MODULE Enables the control of the Run Enable signal through fieldbus Control Word bit 3. 16.04 FAULT RESET SEL Enables fault reset through fieldbus Control Word bit 7. 16.07 PARAM SAVE Saves parameter value changes (incl. those made through fieldbus control) to permanent memory. See Chapter 6 – Parameters. COMMUNICATION FAULT FUNCTIONS 30.18 COMM FAULT FUNC – Determines drive action in case fieldbus communication is lost. Note: The communication loss detection is based on monitoring of received Main and Auxiliary data sets (whose sources are selected with Parameters 90.04 and 90.05). 30.19 MAIN REF DS T-OUT Defines the time between Main Reference data set loss detection and the action selected with Parameter 30.18. 30.20 COMM FLT RO/AO Determines the position in which Relay outputs RO1 to RO3 and Analogue outputs AO1 and AO2 are left upon Auxiliary Reference data set loss. 30.21 AUX REF DS T-OUT Defines the time between Auxiliary Reference data set loss detection and the action selected with Parameter 30.18. Note: This supervision function is disabled if Pars. 90.01, 90.02 and 90.03 are set to 0. FIELDBUS REFERENCE TARGET SELECTION (Not visible when 98.02 is set to NO.) 90.01 AUX DS REF3 – Defines the drive parameter into which the value of fieldbus reference REF3 is written. Format: xxyy, where xx = Parameter Group (10 to 89), yy = Parameter Index. E.g. 3001 = Parameter 30.01. 90.02 AUX DS REF4 Defines the drive parameter into which the value of fieldbus reference REF4 is written. Format: see Parameter 90.01. 90.03 AUX DS REF5 Defines the drive parameter into which the value of fieldbus reference REF5 is written. Format: see Parameter 90.01. 90.04 MAIN DS SOURCE 1 or 81 If 98.02 COMM. MODULE LINK is CUSTOMISED this parameter selects the fieldbus channel from which the drive reads the Main Reference data set (comprising the fieldbus Control Word, fieldbus reference REF1, and fieldbus reference REF2). 90.05 AUX DS SRCE 3 or 83 If 98.02 COMM. MODULE LINK is CUSTOMISED this parameter selects the fieldbus channel from which the drive reads the Auxiliary Reference data set (comprising fieldbus references REF3, REF4 and REF5). Parameter Setting for Fieldbus Control Function/Information
  • 216. Appendix C – Fieldbus Control C-8 Firmware Manual ACTUAL SIGNAL SELECTION FOR FIELDBUS (Not visible when 98.02 is set to NO.) 92.01 MAIN DS STATUS WORD 302 (Fixed) The Status Word is transmitted to as the first word of the Main Actual Signal data set. 92.02 MAIN DS ACT1 – Selects the Actual signal or Parameter value to be transmitted as the second word (ACT1) of the Main Actual Signal data set. Format: (x)xyy, where (x)x = Actual Signal Group or Parameter Group, yy = Actual Signal or Parameter Index. E.g. 103 = Actual Signal 1.03 FREQUENCY; 2202 = Parameter 22.02 ACCEL TIME 1. 92.03 MAIN DS ACT2 Selects the Actual signal or Parameter value to be transmitted as the third word (ACT2) of the Main Actual Signal data set. Format: see Parameter 92.02. 92.04 AUX DS ACT3 Selects the Actual signal or Parameter value to be transmitted as the first word (ACT3) of the Auxiliary Actual Signal data set. Format: see Parameter 92.02. 92.05 AUX DS ACT4 Selects the Actual signal or Parameter value to be transmitted as the second word (ACT4) of the Auxiliary Actual Signal data set. Format: see Parameter 92.02. 92.06 AUX DS ACT5 Selects the Actual signal or Parameter value to be transmitted as the third word (ACT5) of the Auxiliary Actual Signal data set. Format: see Parameter 92.02. Parameter Setting for Fieldbus Control Function/Information
  • 217. Appendix C – Fieldbus Control Firmware Manual C-9 The Fieldbus Control Interface The communication between a fieldbus system and the ACS 600 employs data sets. One data set consists of three 16-bit words. The ACS 600 Standard Application Program supports the use of four data sets, two in each direction. The ACS 600 has a memory location for two control and two status data sets for each fieldbus channel (the fibre optic channel CH0 and the Standard Modbus Link), totalling 4 input and 4 output memory locations. Two out of the four input data sets are selected with Parameter 98.02 COMM. MODULE LINK, 90.04 MAIN REF DS SOURCE and 90.05 AUX REF DS SOURCE. The selected data sets form the Main Reference data set and the Auxiliary Reference data set which are used to control the drive. The status information transmitted by the drive is selected with Parameters 92.01 to 92.03 (the Main Actual Signal data set), and the 92.04 to 92.06 (the Auxiliary Actual Signal data set). The update time for the Main Reference and Main Actual Signal data sets is 12 milliseconds; for the Auxiliary Reference and Auxiliary Actual Signals, it is 100 milliseconds. Figure C-2 and Figure C-3 demonstrate the routes of input and output signals for fieldbus control. The Control Word and the Status Word The Control Word (CW) is the principal means for controlling the drive from a fieldbus system. It is effective when the current control location (EXT1 or EXT2, see Parameters 10.01 and 10.02) is set to COMM. MODULE. The Control Word (detailed in Table C-5) is sent by the fieldbus controller to the drive. The drive switches between its states (shown in Figure C-4) according to the bit-coded instructions of the Control Word. The Status Word (SW) is a word containing status information, sent by the drive to the fieldbus controller. The composition of the Status Word is explained in Table C-6. References References (REF) are 16-bit words comprising a sign bit and a 15-bit integer. A negative reference (indicating reversed direction of rotation) is formed by calculating the two’s complement from the corresponding positive reference value if the value of Parameter 10.01 EXT1 STRT/ STP/DIR or 10.02 EXT2 STRT/STP/DIR is COMM. MODULE. Fieldbus Reference Selection and Correction Fieldbus reference (called COMMREF in signal selection contexts) is selected by setting a Reference selection parameter – 11.03 EXT REF1 SELECT or 11.06 EXT REF2 SELECT – to COMM.REF, FAST COMM, COMM.REF+AI1, COMM.REF*AI1, COMM.REF+AI5, or COMM.REF*AI5. The latter four selections enable correction of the fieldbus reference using analogue inputs as shown below. (An optional NAIO-03 Analogue I/O Extension Module is required for use of Analogue input AI5).
  • 218. Appendix C – Fieldbus Control C-10 Firmware Manual COMM.REF The fieldbus reference is forwarded as such without correction. FAST COMM The fieldbus reference is forwarded as such without correction. The reference is read every 2 milliseconds if either of the following conditions is met: • Control location is EXT1, Par. 99.04 MOTOR CTRL MODE is DTC, and Par. 40.14 TRIM MODE is OFF • Control location is EXT2, Par. 99.04 MOTOR CTRL MODE is DTC, Par. 40.14 TRIM MODE is OFF, and a torque reference is used. In any other event, the fieldbus reference is read every 6 milliseconds. Note: The FAST COMM selection disables the critical speed function. COMM.REF+AI1; COMM.REF+AI5; COMM.REF*AI1; COMM.REF*AI5 These selections enable the correction of the fieldbus reference as follows: Parameter Setting Effect of AI1/AI5 Input Voltage on Fieldbus Reference COMMREF+AI1 COMMREF+AI5 COMMREF*AI1 COMMREF*AI5 (100 + 0.5 × [Par. 13.03])% 100% 0 AI1/AI5 Input Fieldbus Reference Correction Coefficient (100 – 0.5 × [Par. 13.03])% 5 V 10 V Voltage 100% 0 AI1/AI5 Input Fieldbus Reference Correction Coefficient 0% 50% 5 V 10 V Voltage
  • 219. Appendix C – Fieldbus Control Firmware Manual C-11 Fieldbus Reference Scaling Corrected (if correction is applied; see above) fieldbus references REF1 and REF2 are scaled as shown in the table below. Ref. No. Application Macro Used (Par. 99.02) Reference Type Range Scaling Notes REF1 (any) Speed or Frequency -32765 ... 32765 -20000 = -[Par. 11.05] 0 = 0 20000 = [Par. 11.05] Not limited by Pars. 11.04/11.05. Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency]. REF2 FACTORY, HAND/AUTO,or SEQ CTRL Speed or Frequency -32765 ... 32765 -20000 = -[Par. 11.08] 0 = 0 20000 = [Par. 11.08] Not limited by Pars. 11.07/11.08. Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency]. T CTRL or M/F (optional) Torque -32765 ... 32765 -10000 = -[Par. 11.08] 0 = 0 10000 = [Par. 11.08] Not limited by Pars. 11.07/11.08. Final reference limited by Par. 20.04. PID CTRL PID Reference -32765 ... 32765 -10000 = -[Par. 11.08] 0 = 0 10000 = [Par. 11.08] Not limited by Pars. 11.07/11.08.
  • 220. Appendix C – Fieldbus Control C-12 Firmware Manual How Direction of Rotation Is Determined in Fieldbus Control The control of rotation direction is configured for each control location (EXT1 and EXT2) using the parameters in Group 10. Fieldbus references are bipolar, ie. they can be negative or positive. The following diagrams illustrate how Group 10 parameters and the sign of the fieldbus reference interact. The diagrams below show the relation between the fieldbus reference and the resultant REF1/REF2 when – Parameter 10.01/10.02 EXTx STRT/STP/DIR = COMM. MODULE, OR – Parameter 11.03/11.06 EXT REFx SELECT is set to FAST COMM. Par. 10.03 DIRECTION = FORWARD Par. 10.03 DIRECTION = REVERSE Par. 10.03 DIRECTION = REQUEST *10000 if Reference Type is Torque or PID Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767
  • 221. Appendix C – Fieldbus Control Firmware Manual C-13 The following diagrams show the relation between the fieldbus reference and the resultant REF1/REF2 when – Par. 10.01/10.02 EXTx STRT/STP/DIR is not set to COMM.MODULE AND – Par. 11.03/11.06 EXT REFx SELECT is not set to FAST COMM. Direction received from source defined by Par. 10.01/10.02 EXTx STRT/STP/DIR = FORWARD Direction received from source defined by Par. 10.01/10.02 EXTx STRT/STP/DIR = REVERSE Par. 10.03 DIRECTION = FORWARD Par. 10.03 DIRECTION = REVERSE Par. 10.03 DIRECTION = REQUEST *10000 if Reference Type is Torque or PID Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767 Fieldbus -32767 [11.05/11.08] –[11.05/11.08] -20000* 20000* Ref. 1/2 Resultant REF1/2 32767
  • 222. Appendix C – Fieldbus Control C-14 Firmware Manual Actual Values Actual Values (ACT) are 16-bit words containing information on selected operations of the drive. The functions to be monitored are selected with the parameters in Group 92. The scaling of the integers sent to the master as Actual Values depends on the selected function; please refer to the Scaling for Fieldbus column in the tables of Appendix A. The contents of Group 3 Actual Signals are presented in this Appendix from Table C-7 onwards. (The Control and Status Words are also available as Actual Signals 3.01 and 3.02 respectively.) Modbus Addressing In the Modbus controller memory, the Control Word, the Status Word, the references, and the actual values are mapped as follows: More information on Modbus communication is available from the separate publication NMBA-01 Installation and Start-up Guide (3AFY 58919772 [English]; available from ABB Industry Oy, Helsinki, Finland) and the Modicon website http:www.modicon.com. Address Contents Address Contents 40001 Control Word 40004 Status Word 40002 REF1 40005 ACT1 40003 REF2 40006 ACT2 40007 REF3 40010 ACT3 40008 REF4 40011 ACT4 40009 REF5 40012 ACT5
  • 223. AppendixC–FieldbusControl FirmwareManualC-15 FigureC-2Controldatainputfromfieldbus. Standard CH0 DATA DS 1 DS 2 DS 3 DS 4 • • • DS 81 DS 82 DS 83 DS 84 MAIN DATA SET REFERENCE AUXILIARY REFERENCE FIELDBUS PARAMETER 10.01 10.02 • • • 89.99 TABLE (Fieldbus Adapter) Modbus Link 30.20 COMM FLT RO/AO 30.21 AUX REF DS T-OUT 90.01 90.02 90.03 • • • • • • 30.18 COMM FAULT FUNC Bits 13…15 CONTROL WORD REFERENCE REF1 REFERENCE REF2 See Control Source Selection Diagrams in Chapter 4 Analogue Output AO1 (see 15.01) Analogue Output AO2 (see 15.06) CW REF1 REF2 REF3 REF4 REF5 CW REF1 REF2 REF3 REF4 REF5 40001 40002 40003 40007 40008 40009 Modbus Controller SET TABLE NO FIELD- ADVANT STD CUSTOM- BUS MODBUS ISED 98.02 NO FIELD- ADVANT STD CUSTOM- BUS MODBUS ISED 98.02 CW REF1 REF2 REF3 REF4 REF5 DATA SET Relay Outputs (see 14.01…14.03) 90.04 1 • • • 255 30.18 COMM FAULT FUNC 30.19 MAIN REF DS T-OUT 90.05 1 • • • 255
  • 224. AppendixC–FieldbusControl C-16FirmwareManual FigureC-3Actualvalueselectionforfieldbus. ACTUAL SIGNAL/ 1.01 1.02 • • • 3.99 • • • PARAMETER TABLE 10.01 • • • 99.99 92.01* 92.02 STATUS WORD* ACT1 ACT2 MAIN DATA SET ACTUAL SIGNAL ACT3 ACT4 ACT5 AUXILIARY DATA SET ACTUAL SIGNAL DATA SET DS 1 DS 2 DS 3 DS 4 • • • DS 81 DS 82 DS 83 DS 84 TABLE • • • Standard CH0 (Fieldbus Adapter) Modbus Link 92.03 92.04 92.05 92.06 SW ACT1 ACT2 ACT3 ACT4 ACT5 SW ACT1 ACT2 ACT3 ACT4 ACT5 *Par. 92.01 is fixed to 3.02 MAIN STATUS WORD. 40004 40005 40006 40010 40011 40012 Modbus Controller
  • 225. Appendix C – Fieldbus Control Firmware Manual C-17 Communication Profiles Standard Application Program 5.0 (or later) supports the ABB Drives communication profile, which standardises the control interface (such as the Control and Status Words) among ABB drives. The ABB Drives profile derives from the PROFIBUS control interface and provides a variety of control and diagnostic functions (see Table C-5, Table C-6 and Figure C-4). In order to retain backward compatibility with Standard Application Program versions 2.8 and 3.0, a communication profile suitable for these versions (CSA 2.8/3.0) can be selected with Parameter 98.07 COMM INTERFACE. This eliminates the need for reprogramming the PLC when ACS 600 drives with program versions 2.8 or 3.0 are replaced. The Control and Status Words for the CSA 2.8/3.0 communication profile are detailed in Table C-19 and Table C-20 respectively. Note: The communication profile selector parameter 98.07 COMM PROFILE affects both the optical CH0 and the Standard Modbus channels.
  • 226. Appendix C – Fieldbus Control C-18 Firmware Manual Table C-5 The Control Word (Actual Signal 3.01) for the ABB Drives Communication Profile. The upper case boldface text refers to the states shown in Figure C-4. Bit Name Value Enter STATE/Description 0 ON 1 Enter READY TO OPERATE. OFF1 0 Emergency OFF, stop within time defined by Par. 22.07 EM STOP RAMP TIME. Enter OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active. 1 OFF2 1 Continue operation (OFF2 inactive). 0 Emergency OFF, coast to stop. Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED. 2 OFF3 1 Continue operation (OFF3 inactive). 0 Emergency stop, stop within time defined by Par. 22.07 EM STOP RAMP TIME. Enter OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED. Warning: Ensure motor and driven machine can be stopped using this stop mode. 3 START 1 Enter OPERATION ENABLED. (Note: The Run enable signal must be active; see Parameter 16.01. If Par. 16.01 is set to COMM. MODULE, this bit also activates the Run enable signal.) 0 Inhibit operation. Enter OPERATION INHIBITED. 4 RAMP_OUT_ ZERO 1 Normal operation. Enter RAMP FUNCTION GENERATOR: OUTPUT ENABLED. 0 Force Ramp Function Generator output to zero. Drive ramps to stop (current and DC voltage limits in force). 5 RAMP_HOLD 1 Enable ramp function. Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED. 0 Halt ramping (Ramp Function Generator output held). 6 RAMP_IN_ ZERO 1 Normal operation. Enter OPERATING. 0 Force Ramp Function Generator input to zero. 7 RESET 0 Þ 1 Fault reset if an active fault exists. Enter SWITCH-ON INHIBITED. 0 Continue normal operation. 8 INCHING_1 1 Not in use. 1 Þ 0 Not in use. 9 INCHING_2 1 Not in use. 1 Þ 0 Not in use. 10 REMOTE_CMD 1 Fieldbus control enabled. 0 Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference. Control Word = 0 and Reference = 0: Fieldbus control enabled. Reference and deceleration/acceleration ramp are locked. 11 EXT CTRL LOC 1 Select External Control Location 2 (EXT2). Effective if Par. 11.02 is set to COMM.MODULE. 0 Select External Control Location 1 (EXT1). Effective if Par. 11.02 is set to COMM.MODULE. 12 to 15 Reserved
  • 227. Appendix C – Fieldbus Control Firmware Manual C-19 Table C-6 The Status Word (Actual Signal 3.02) for the ABB Drives Communication Profile. The upper case boldface text refers to the states shown in Figure C-4. Bit Name Value STATE/Description 0 RDY_ON 1 READY TO SWITCH ON. 0 NOT READY TO SWITCH ON. 1 RDY_RUN 1 READY TO OPERATE. 0 OFF1 ACTIVE. 2 RDY_REF 1 OPERATION ENABLED. 0 OPERATION INHIBITED. 3 TRIPPED 1 FAULT. 0 No fault. 4 OFF_2_STA 1 OFF2 inactive. 0 OFF2 ACTIVE. 5 OFF_3_STA 1 OFF3 inactive. 0 OFF3 ACTIVE. 6 SWC_ON_INHIB 1 SWITCH-ON INHIBITED. 0 7 ALARM 1 Warning/Alarm. 0 No Warning/Alarm. 8 AT_SETPOINT 1 OPERATING. Actual value equals reference value (= is within tolerance limits). 0 Actual value differs from reference value (= is outside tolerance limits). 9 REMOTE 1 Drive control location: REMOTE (EXT1 or EXT2). 0 Drive control location: LOCAL. 10 ABOVE_LIMIT 1 Actual frequency or speed value equals or is greater than supervision limit (Par. 32.02). Valid in both rotation directions regardless of value of Par. 32.02. 0 Actual frequency or speed value is within supervision limit. 11 EXT CTRL LOC 1 External Control Location 2 (EXT2) selected. 0 External Control Location 1 (EXT1) selected. 12 EXT RUN ENABLE 1 External Run Enable signal received. 0 No External Run Enable received. 13 to 14 Reserved 15 1 Communication error detected by fieldbus adapter module (on fibre optic channel CH0). 0 Fieldbus adapter (CH0) communication OK.
  • 228. Appendix C – Fieldbus Control C-20 Firmware Manual Figure C-4 The ACS 600 State Machine for the Standard Application Program (ABB Drives Communication Profile), effective under fieldbus control. MAINS OFF Power ON (CW Bit0=0) SWITCH-ON INHIBITED (SW Bit6=1) NOT READY TO SWITCH ON (SW Bit0=0) READY TO SWITCH ON from any state (CW=xxxx x1xx xxxx x110) ACS 600 Std. Application State Machine READY TO OPERATE (SW Bit1=1) n(f)=0 / I=0 OPERATION INHIBITED (SW Bit2=0) A B C D (CW Bit3=0) operation inhibited OFF1 (CW Bit0=0) OFF1 ACTIVE (SW Bit1=0) (SW Bit0=1) (CW Bit3=1 and SW Bit12=1) C D (CW Bit5=0) OPERATION ENABLED (SW Bit2=1) (SW Bit5=0) from any state from any state Emergency Stop OFF3 (CW Bit2=0) n(f)=0 / I=0 OFF3 ACTIVE Emergency OFF OFF2 (CW Bit1=0) (SW Bit4=0) OFF2 ACTIVE RFG: OUTPUT ENABLED RFG: ACCELERATOR ENABLED OPERATING B B C D (CW Bit4=0) (CW=xxxx x1xx xxx1 1111) (CW=xxxx x1xx xx11 1111) D (CW Bit6=0) A C (CW=xxxx x1xx x111 1111) CW = Control Word SW = Status Word n = Speed I = Input Current (SW Bit8=1) RFG = Ramp Function Generator f = Frequency D from any state Fault (SW Bit3=1) FAULT (CW Bit7=1) (CW=xxxx x1xx xxxx x111) (CW=xxxx x1xx xxxx 1111 and SW Bit12=1)
  • 229. Appendix C – Fieldbus Control Firmware Manual C-21 Table C-7 The Auxiliary Status Word (Actual Signal 3.03). Table C-8 Limit Word 1 (Actual Signal 3.04). Bit Name Description 0 Reserved 1 OUT OF WINDOW Speed difference is out of the window (in speed control)*. 2 Reserved 3 MAGNETIZED Flux has been formed in the motor. 4 Reserved 5 SYNC RDY Position counter synchronised. 6 1 START NOT DONE Drive has not been started after changing the motor parameters in Group 99. 7 IDENTIF RUN DONE Motor ID Run successfully completed. 8 START INHIBITION Prevention of unexpected start-up active. 9 LIMITING Control at a limit. See Actual Signal 3.04 LIMIT WORD 1 below. 10 TORQ CONTROL Torque reference is followed*. 11 ZERO SPEED Absolute value of motor actual speed is below zero speed limit (4% of synchronous speed). 12 INTERNAL SPEED FB Internal speed feedback followed. 13 M/F COMM ERR Master/Follower link (on CH2) communication error*. 14 Reserved 15 Reserved *See Master/Follower Application Guide (3AFY 58962180 [English]). Bit Name Active Limit 0 TORQ MOTOR LIM Pull-out limit. 1 SPD_TOR_MIN_LIM Speed control torque min. limit. 2 SPD_TOR_MAX_LIM Speed control torque max. limit. 3 TORQ_USER_CUR_LIM User-defined current limit. 4 TORQ_INV_CUR_LIM Internal current limit. 5 TORQ_MIN_LIM Any torque min. limit. 6 TORQ_MAX_LIM Any torque max. limit. 7 TREF_TORQ_MIN_LIM Torque reference min. limit. 8 TREF_TORQ_MAX_LIM Torque reference max. limit. 9 FLUX_MIN_LIM Flux reference min. limit. 10 FREQ_MIN_LIMIT Speed/Frequency min. limit. 11 FREQ_MAX_LIMIT Speed/Frequency max. limit. 12 DC_UNDERVOLT DC undervoltage limit. 13 DC_OVERVOLT DC overvoltage limit. 14 TORQUE LIMIT Any torque limit. 15 FREQ_LIMIT Any speed/frequency limit.
  • 230. Appendix C – Fieldbus Control C-22 Firmware Manual Table C-9 Fault Word 1 (Actual Signal 3.05). Table C-10 Fault Word 2 (Actual Signal 3.06). Bit Name Description 0 SHORT CIRC For the possible causes and remedies, see Chapter 7 – Fault Tracing. 1 OVERCURRENT 2 DC OVERVOLT 3 ACx 600 TEMP 4 EARTH FAULT 5 THERMISTOR 6 MOTOR TEMP 7 SYSTEM_FAULT A fault is indicated by the System Fault Word (Actual Signal 3.07). 8 UNDERLOAD For the possible causes and remedies, see Chapter 7 – Fault Tracing.9 OVERFREQ 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved Bit Name Description 0 SUPPLY PHASE For the possible causes and remedies, see Chapter 7 – Fault Tracing. 1 NO MOT DATA 2 DC UNDERVOLT 3 Reserved 4 RUN DISABLED For the possible causes and remedies, see Chapter 7 – Fault Tracing. 5 ENCODER FLT 6 I/O COMM 7 AMBIENT TEMP 8 EXTERNAL FLT 9 OVER SWFREQ Switching overfrequency fault. 10 AI < MIN FUNC For the possible causes and remedies, see Chapter 7 – Fault Tracing. 11 PPCC LINK 12 COMM MODULE 13 PANEL LOSS 14 MOTOR STALL 15 MOTOR PHASE
  • 231. Appendix C – Fieldbus Control Firmware Manual C-23 Table C-11 The System Fault Word (Actual Signal 3.07). Table C-12 Alarm Word 1 (Actual Signal 3.08). Bit Name Description 0 FLT (F1_7) Factory default parameter file error. 1 USER MACRO User Macro file error. 2 FLT (F1_4) FPROM operating error. 3 FLT (F1_5) FPROM data error. 4 FLT (F2_12) Internal time level 2 overflow. 5 FLT (F2_13) Internal time level 3 overflow. 6 FLT (F2_14) Internal time level 4 overflow. 7 FLT (F2_15) Internal time level 5 overflow. 8 FLT (F2_16) State machine overflow. 9 FLT (F2_17) Application program execution error. 10 FLT (F2_18) Application program execution error. 11 FLT (F2_19) Illegal instruction. 12 FLT (F2_3) Register stack overflow. 13 FLT (F2_1) System stack overflow. 14 FLT (F2_0) System stack underflow. 15 Reserved Bit Name Description 0 START INHIBIT For the possible causes and remedies, see Chapter 7 – Fault Tracing. 1 Reserved 2 Reserved 3 MOTOR TEMP For the possible causes and remedies, see Chapter 7 – Fault Tracing. 4 ACx 600 TEMP 5 ENCODER ERR 6 T MEAS ALM 7 Reserved 8 Reserved 9 Reserved 10 Reserved 11 Reserved 12 COMM MODULE For the possible causes and remedies, see Chapter 7 – Fault Tracing. 13 THERMISTOR 14 EARTH FAULT 15 Reserved
  • 232. Appendix C – Fieldbus Control C-24 Firmware Manual Table C-13 Alarm Word 2 (Actual Signal 3.09). Bit Name Description 0 Reserved 1 UNDERLOAD For the possible causes and remedies, see Chapter 7 – Fault Tracing. 2 Reserved 3 DC UNDERVOLT For the possible causes and remedies, see Chapter 7 – Fault Tracing. 4 DC OVERVOLT 5 OVERCURRENT 6 OVERFREQ 7 ALM (A_16) Error in restoring POWERFAIL.DDF. 8 ALM (A_17) Error in restoring POWERDOWN.DDF. 9 MOTOR STALL For the possible causes and remedies, see Chapter 7 – Fault Tracing.10 AI < MIN FUNC 11 Reserved 12 Reserved 13 PANEL LOSS For the possible causes and remedies, see Chapter 7 – Fault Tracing. 14 Reserved 15 Reserved
  • 233. Appendix C – Fieldbus Control Firmware Manual C-25 Table C-14 The NINT Fault Info Word (Actual Signal 3.12). The Word includes information on the location of faults PPCC LINK, OVERCURRENT, EARTH FAULT and SHORT CIRCUIT (see Table C-9 Fault Word 1, Table C-10 Fault Word 2, and Chapter 7 – Fault Tracing). * In use only with parallel inverters. NINT 0 is connected to NPBU CH1, NINT 1 to CH2 etc. Bit Name Description 0 NINT 1 FLT NINT 1 board fault* 1 NINT 2 FLT NINT 2 board fault * 2 NINT 3 FLT NINT 3 board fault * 3 NINT 4 FLT NINT 4 board fault * 4 NPBU FLT NPBU board fault * 5 - Not in use 6 U-PH SC U Phase U upper-leg IGBT(s) short circuit 7 U-PH SC L Phase U lower-leg IGBT(s) short circuit 8 V-PH SC U Phase V upper-leg IGBT(s) short circuit 9 V-PH SC L Phase V lower-leg IGBT(s) short circuit 10 W-PH SC U Phase W upper-leg IGBT(s) short circuit 11 W-PH SC L Phase W lower-leg IGBT(s) short circuit 12 ... 15 Not in use U V W NINT Upper-leg IGBTs Lower-leg IGBTs Inverter Block Diagram U V W NINT U V W NINT U V W NINT ... NPBU 1 2 3 Inverter Unit Block Diagram (two to four parallel Inverters) CH1 CH2 CH3 NAMC NAMC NAMC Application and Motor Control Board NINT Main Circuit Interface Board NPBU PPCS Link Branching Unit
  • 234. Appendix C – Fieldbus Control C-26 Firmware Manual Table C-15 Auxiliary Status Word 3 (Actual Signal 3.13) Table C-16 Auxiliary Status Word 4 (Actual Signal 3.14) Bit Name Description 0 REVERSED Motor rotates in reverse direction. 1 EXT CTRL External control is selected. 2 REF 2 SEL Reference 2 is selected. 3 CONST SPEED A Constant Speed (1…15) is selected. 4 STARTED The ACS 600 has received a Start command. 5 USER 2 SEL User Macro 2 has been loaded. 6 OPEN BRAKE The Open Brake command is ON. See Group 42 BRAKE CONTROL. 7 LOSS OF REF The reference has been lost. 8 Reserved 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved Bit Name Description 0 SPEED 1 LIM Output speed has exceeded or fallen below supervision limit 1. See Group 32 SUPERVISION. 1 SPEED 2 LIM Output speed has exceeded or fallen below supervision limit 2. See Group 32 SUPERVISION. 2 CURRENT LIM Motor current has exceeded or fallen below set supervision limit. See Group 32 SUPERVISION. 3 REF 1 LIM Reference 1 has exceeded or fallen below the set supervision limit. See Group 32 SUPERVISION. 4 REF 2 LIM Reference 2 has exceeded or fallen below the set supervision limit. See Group 32 SUPERVISION. 5 TORQUE 1 LIM The motor torque has exceeded or fallen below the TORQUE1 supervision limit. See Group 32 SUPERVISION. 6 TORQUE 2 LIM The motor torque has exceeded or fallen below the TORQUE2 supervision limit. See Group 32 SUPERVISION. 7 ACT 1 LIM PID controller actual value 1 has exceeded or fallen below the set supervision limit. See Group 32 SUPERVISION. 8 ACT 2 LIM PID controller actual value 2 has exceeded or fallen below the set supervision limit. See Group 32 SUPERVISION. 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved
  • 235. Appendix C – Fieldbus Control Firmware Manual C-27 Table C-17 Fault Word 4 (Actual Signal 3.15) Table C-18 Alarm Word 4 (Actual Signal 3.16) Bit Name Description 0 Reserved 1 MOTOR 1 TEMP For the possible causes and remedies, see Chapter 7 – Fault Tracing. 2 MOTOR 2 TEMP 3 BRAKE ACKN 4 Reserved 5 Reserved 6 Reserved 7 Reserved 8 Reserved 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved Bit Name Description 0 Reserved 1 MOTOR 1 TEMP For the possible causes and remedies, see Chapter 7 – Fault Tracing. 2 MOTOR 2 TEMP 3 BRAKE ACKN 4 SLEEP MODE 5 Reserved 6 Reserved 7 Reserved 8 Reserved 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved
  • 236. Appendix C – Fieldbus Control C-28 Firmware Manual Table C-19 Control Word for the CSA 2.8/3.0 Communication Profile. Table C-20 Status Word for the CSA 2.8/3.0 Communication Profile. Bit Name Description 0 Reserved 1 ENABLE 1 = Enabled 0 = Coast to stop 2 Reserved 3 START/STOP 0®1 = Start 0 = Stop according to Parameter 21.03 STOP FUNCTION. 4 Reserved 5 CNTRL_MODE 1 = Select control mode 2 0 = Select control mode 1 6 Reserved 7 Reserved 8 RESET_FAULT 0®1 = Reset drive fault 9…15 Reserved Bit Name Description 0 READY 1 = Ready to start 0 = Initialising, or initialisation error 1 ENABLE 1 = Enabled 0 = Coast to stop 2 Reserved 3 RUNNING 1 = Running with selected reference 0 = Stopped 4 Reserved 5 REMOTE 1 = Drive in Remote Mode 0 = Drive in Local Mode 6 Reserved 7 AT_SETPOINT 1 = Drive at reference 0 = Drive not at reference 8 FAULTED 1 = A fault is active 0 = No active faults 9 WARNING 1 = A warning is active 0 = No active warnings 10 LIMIT 1 = Drive at a limit 0 = Drive at no limit 11…15 Reserved
  • 237. Firmware Manual D-1 Appendix D – Analogue Extension Module NAIO Speed Control Through NAIO This section describes the use of the Analogue Extension Module NAIO in speed control of the ACS 600 equipped with the Standard Application Program 6.0. Two variants are described: • Bipolar Input in Basic Speed Control • Bipolar Input in Joystick Mode Only the use of a bipolar input (± signal range) is covered here. The use of an unipolar input corresponds to that of a standard input when: • the settings described in sections Basic Checks and NAIO Settings are done (see below), and • the communication between the module and the drive is activated with Parameter 98.06 AI/O EXT MODULE. Basic Checks Ensure the ACS 600 is: • installed and commissioned, and • the external start and stop signals are connected. Ensure the NAIO Module: • settings are adjusted. (See the NAIO Settings below.) • is installed and reference signal is connected to AI1. • is connected to ACS 600. NAIO Settings Set the module node address to 5. Select the signal type for the input AI1 (DIP switch). Select the operation mode of the NAIO-03 module (DIP switch). In NAIO-01 and NAIO-02 module the modes are fixed. See the table below. Note: Ensure the drive parameter setting corresponds to the mode of the NAIO module (98.06 AI/O EXT MODULE). ACS 600 Parameter Settings Set the ACS 600 parameters (see the appropriate subsection on the following pages). Mode NAIO-01 NAIO-02 NAIO-03 Unipolar x - x Bipolar - x x
  • 238. Appendix D – Analogue Extension Module NAIO D-2 Firmware Manual Bipolar Input in Basic Speed Control The table below lists the parameters that affect the handling of the speed reference received through the NAIO module bipolar input AI1. 1) For the negative speed range, the drive must receive a separate reverse command. 2) Set if supervision of living zero is used. The figure below represents the speed reference corresponding to the NAIO module bipolar input AI1. Parameter Setting 98.06 AI/O EXT MODULE BIP AIO PRG; BIP AO PRG; BIPOLAR 10.03 DIRECTION FORWARD; REQUEST(1 ; REVERSE 11.02 EXT1/EXT2 SELECT (O) EXT1 11.03 EXT REF1 SELECT (O) AI2 11.04 EXT REF1 MINIMUM minREF1 11.05 EXT REF1 MAXIMUM maxREF1 13.06 MINIMUM AI2 minAI1 13.07 MAXIMUM AI2 maxAI1 13.08 SCALE AI2 100% 13.10 INVERT AI2 NO 30.01 AI<MIN FUNCTION (2 SpeedReference scaled minREF1 -minAI1 minAI1 maxAI1-maxAI1 -minREF1 -scaled 10.03 DIRECTION = FORWARD or REQUEST1) 10.03 DIRECTION = REVERSE or REQUEST1) Analogue Input Signal Operation Range minAI1 = 13.06 MINIMUM AI2 (i.e. NAIO AI1) maxAI1 = 13.07 MAXIMUM AI2 (i.e. NAIO AI1) scaled maxREF1 = 13.08 SCALE AI2 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM maxREF1 maxREF1
  • 239. Appendix D – Analogue Extension Module NAIO Firmware Manual D-3 Bipolar Input in Joystick Mode The table below lists the parameters that affect the handling of the speed and direction reference received through the NAIO module bipolar input AI1. 1) Enables the use of both positive and negative speed range. 2) Set if supervision of living zero is used. The figure below represents the speed reference corresponding to the NAIO module bipolar input AI1 in joystick mode. Parameter Setting 98.06 AI/O EXT MODULE BIP AIO PRG; BIP AO PRG; BIPOLAR 10.03 DIRECTION FORWARD; REQUEST(1 ; REVERSE 11.02 EXT1/EXT2 SELECT (O) EXT1 11.03 EXT REF1 SELECT (O) AI2/JOYST 11.04 EXT REF1 MINIMUM minREF1 11.05 EXT REF1 MAXIMUM maxREF1 13.06 MINIMUM AI2 minAI1 13.07 MAXIMUM AI2 maxAI1 13.08 SCALE AI2 100% 13.10 INVERT AI2 NO 30.01 AI<MIN FUNCTION (2 SpeedReference minAI1 = 13.06 MINIMUM AI2 (i.e. NAIO AI1) maxAI1 = 13.07 MAXIMUM AI2 (i.e. NAIO AI1) scaled maxREF1 = 13.08 SCALE AI2 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM scaled minREF1 -minAI1 minAI1 maxAI1-maxAI1 -minREF1 -scaled 10.03 DIRECTION = FORWARD or REQUEST1) 10.03 DIRECTION = REVERSE or REQUEST1) Analogue Input Signal Operation Range maxREF1 maxREF1
  • 240. Appendix D – Analogue Extension Module NAIO D-4 Firmware Manual
  • 241. Firmware Manual I-1 A ACC COMPENSATION 6-44 ACC/DEC RAMP SHPE 6-39 Actual Signals full name 2-5 AI MIN FUNCTION 6-53 APPL SW VERSION 6-66 C Constant speeds 5-16, 6-11 Not considered 4-5, 5-10, 5-14 Contrast setting 2-10 Control location indication on display 2-13 selecting 4-5 Control operation C-1, D-1 Control source selecting 4-5 CONTROL SW VERSION 6-66 D DC HOLD 6-35, 6-37 Direction 2-3, 6-4 E External control 2-13, 4-5, 6-2, 6-6 EXTERNAL FAULT 6-53 F Fault History 2-4, 4-4 Fault reset 2-4, 6-29 Faults 2-4, 7-1 Firmware version 6-66 First display 2-4 FLUX BRAKING 6-49 FLUX OPTIMIZATION 6-49 I ID-number 2-3 Integer scaling C-1, D-1 IR COMPENSATION 6-50, 6-51 K Keypad control 2-13 Keypad reference 6-5 L Language 3-2 Living zero 6-53 Local 2-3, 2-13, 4-4 M Motor ID Run 3-4, 3-5 Motor overload protection 6-54, 6-82, 6-85, 6- 86, 6-91 MOTOR PHASE LOSS 6-59 O OVERVOLTAGE CTRL 6-32 P PANEL LOSS 6-53 PARAMETER LOCK 6-28 Parameters changing value 2-8 copying 2-11 downloading 2-9 restoring 3-2 uploading 2-9 Program version 6-66 R Reference connection 6-6 setting 2-14 Remote 2-3, 2-13 S Serial communication 6-105, 6-106, 6-107 START FUNCTION 6-34 Starting the drive 2-13, 6-2 Status Row 2-3 Status row 2-3, 2-13 STOP FUNCTION 6-35 Stopping the drive 2-13, 6-2 Index
  • 242. I-2 Firmware Manual T TEST DATE 6-66 U UNDERLOAD FUNC 6-58 UNDERVOLTAGE CTRL 6-32 USER MACRO IO CHG 6-29 User unit 6-67 V Version 6-66 W Warnings 2-4, 7-1
  • 244. ABB Industry Oy Drives P.O. Box 184 FIN-00381 HELSINKI FINLAND Telephone: +358-10 22 2000 Telefax: +358-10-22 22681 Internet: http://www.abb.com/automation 3AFY61201441R0725EN EFFECTIVE:16.10.2000