SlideShare a Scribd company logo
Energy: Forms and Changes
Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind.
Nature of Energy You use energy when you: hit a softball. lift your book bag. compress a spring.
Nature of Energy Living organisms need energy for growth and movement.
Nature of Energy Energy is involved when: a bird flies. a bomb explodes. rain falls from the sky. electricity flows in a wire.
Nature of Energy What is energy that it can be involved in so many different activities? Energy can be defined as the ability to do work. If an object or organism does work (exerts a force over a distance to move an object) the object or organism uses energy.
Nature of Energy Because of the direct connection between energy and work, energy is measured in the same unit as work: joules (J). In addition to using energy to do work, objects gain energy because work is being done on them.
Forms of Energy The five main forms of energy are: Heat Chemical Electromagnetic Nuclear Mechanical
Heat Energy The internal motion of the atoms is called heat energy, because moving particles produce heat. Heat energy can be produced by friction. Heat energy causes changes in temperature and phase of any form of matter.
Chemical Energy Chemical Energy is required to bond atoms together. And when bonds are broken, energy is released.
Chemical Energy Fuel and food are forms of stored chemical energy .
Electromagnetic Energy Power lines carry electromagnetic energy into your home in the form of electricity.
Electromagnetic Energy Light is a form of electromagnetic energy. Each color of light (Roy G Bv) represents a different amount of electromagnetic energy. Electromagnetic Energy is also carried by X-rays, radio waves, and laser light.
Nuclear Energy The nucleus of an atom is the source of nuclear energy.
Nuclear Energy When the nucleus splits (fission), nuclear energy is released in the form of heat energy and light energy. Nuclear energy is also released when nuclei collide at high speeds and join (fuse).
Nuclear Energy The sun’s energy is produced from a nuclear fusion reaction in which hydrogen nuclei fuse to form helium nuclei.
Nuclear Energy Nuclear energy is the most concentrated form of energy. Most of us live within 10 miles of the Surry Nuclear Power Plant which converts nuclear energy into electromagnetic energy.
Mechanical Energy When work is done to an object, it acquires energy. The energy it acquires is known as mechanical energy.
Mechanical Energy When you kick a football, you give mechancal energy to the football to make it move.
Mechanical Energy When you throw a balling ball, you give it energy. When that bowling ball hits the pins, some of the energy is transferred to the pins (transfer of momentum).
Energy Conversion Energy can be changed from one form to another. Changes in the form of energy are called energy conversions.
Energy conversions All forms of energy can be converted into other forms. The sun’s energy through solar cells can be converted directly into electricity. Green plants convert the sun’s energy (electromagnetic) into starches and sugars (chemical energy).
Other energy conversions In an electric motor, electromagnetic energy is converted to mechanical energy. In a battery, chemical energy is converted into electromagnetic energy. The mechanical energy of a waterfall is converted to electrical energy in a generator.
Energy Conversions In an automobile engine, fuel is burned to convert chemical energy into heat energy. The heat energy is then changed into mechanical energy.
Chemical    Heat   Mechanical
States of Energy The most common energy conversion is the conversion between potential and kinetic energy. All forms of energy can be in either of two states: Potential Kinetic
States of Energy:  Kinetic and Potential Energy Kinetic Energy is the energy of motion. Potential Energy is stored energy .
Kinetic Energy The energy of motion is called kinetic energy. The faster an object moves, the more kinetic energy it has. The greater the mass of a moving object, the more kinetic energy it has. Kinetic energy depends on both mass and velocity.
Kinetic Energy K.E. =  mass x velocity 2 What has a greater affect of kinetic energy, mass or velocity? Why? 2
Potential Energy Potential Energy is stored energy. Stored chemically in fuel, the nucleus of atom, and in foods. Or stored because of the work done on it: Stretching a rubber band. Winding a watch. Pulling back on a bow’s arrow. Lifting a brick high in the air.
Gravitational Potential Energy Potential energy that is dependent on height is called gravitational potential energy.
Potential Energy Energy that is stored due to being stretched or compressed is called elastic potential energy.
Gravitational Potential Energy A waterfall, a suspension bridge, and a falling snowflake all have gravitational potential energy.
Gravitational Potential Energy If you stand on a 3-meter diving board, you have 3 times the G.P.E, than you had on a 1-meter diving board.
Gravitational Potential Energy “ The bigger they are the harder they fall” is not just a saying. It’s true. Objects with more mass have greater G.P.E. The formula to find G.P.E. is G.P.E. = Weight X Height.
Kinetic-Potential Energy Conversion Roller coasters work because of the energy that is built into the system. Initially, the cars are pulled mechanically up the tallest hill, giving them a great deal of potential energy. From that point, the conversion between potential and kinetic energy powers the cars throughout the entire ride.
Kinetic vs. Potential Energy At the point of maximum potential energy, the car has minimum kinetic energy.
Kinetic-Potential Energy Conversions As a basketball player throws the ball into the air, various energy conversions take place.
Ball slows down Ball speeds up
The Law of Conservation of Energy Energy can be neither created nor destroyed by ordinary means. It can only be converted from one form to another. If energy seems to disappear, then scientists look for it – leading to many important discoveries.
Law of Conservation of Energy In 1905, Albert Einstein said that mass and energy can be converted into each other.  He showed that if matter is destroyed, energy is created, and if energy is destroyed mass is created.  2 E = MC
Vocabulary Words energy mechanical energy heat energy chemical energy electromagnetic energy nuclear energy kinetic energy potential energy gravitational potential energy energy conversion Law of Conservation of Energy

More Related Content

PPT
Effects of Forces
PPTX
IGCSE Electric Charge.pptx
PPT
Acceleration due to gravity
PPTX
Work energy and power
PPTX
Energy, Work & Power
PPTX
23 p.10.1 forms of energy ppt (1) (1)
PDF
Introduction to Cosmology
PPTX
Newton's 1st law of motion ~by A.S.Khan
Effects of Forces
IGCSE Electric Charge.pptx
Acceleration due to gravity
Work energy and power
Energy, Work & Power
23 p.10.1 forms of energy ppt (1) (1)
Introduction to Cosmology
Newton's 1st law of motion ~by A.S.Khan

What's hot (20)

PPTX
Equilibrium
PPTX
Rest and motion ppt
PPT
Newton's Law of Universal Gravitation
PPT
Energy transformations and conservation
PPTX
Heat & internal energy
PPT
032616 week3 conservation of mechanical energy
PPTX
Mechanical energy
PPT
Atomic Structure
PPTX
PPTX
IGCSE PHYSICS: Equilibrium and Centre of Mass
PPT
Modern Physics
PPTX
Work, energy and power ppt
PPTX
Relativity
PPT
Centre of Gravity and Stability
PPTX
Electric Field Lines | Physics
PPSX
Electrostatics
PPT
Work in physics
PPTX
Specific heat capacity ppt
PPTX
Fundamental forces in nature
PPT
Work Done and Energy Transfer
Equilibrium
Rest and motion ppt
Newton's Law of Universal Gravitation
Energy transformations and conservation
Heat & internal energy
032616 week3 conservation of mechanical energy
Mechanical energy
Atomic Structure
IGCSE PHYSICS: Equilibrium and Centre of Mass
Modern Physics
Work, energy and power ppt
Relativity
Centre of Gravity and Stability
Electric Field Lines | Physics
Electrostatics
Work in physics
Specific heat capacity ppt
Fundamental forces in nature
Work Done and Energy Transfer
Ad

Similar to Energy forms and_changes (20)

PPT
Energy forms and_changes
PPT
Energy forms and_changes
PPT
Energy forms and_changes
PPT
Energy forms and_changes
PPT
Energy
DOCX
Energy
DOCX
Energy
PPT
Energy forms and_changes
PPT
Energy forms and_changes
PPT
energy_forms_and_changeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSs.ppt
PPT
energy_forms_and_changesasddasnjsdad.ppt
PPT
PPTX
Energy and its different types with applications.pptx
PPTX
Introduction to Energy: Energy and its types
PPT
energy_forms_and_changes.ppt
PPT
energy_forms_and_changes.ppt
PPT
Energy energy.ppt
PPT
energy_forms_and_changes.ppt
PPT
energy_forms_and_changes.ppt
PPT
Energy forms and_changes
Energy forms and_changes
Energy forms and_changes
Energy forms and_changes
Energy forms and_changes
Energy
Energy
Energy
Energy forms and_changes
Energy forms and_changes
energy_forms_and_changeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSs.ppt
energy_forms_and_changesasddasnjsdad.ppt
Energy and its different types with applications.pptx
Introduction to Energy: Energy and its types
energy_forms_and_changes.ppt
energy_forms_and_changes.ppt
Energy energy.ppt
energy_forms_and_changes.ppt
energy_forms_and_changes.ppt
Energy forms and_changes
Ad

More from David Genis (20)

PDF
WCRage Handbook
DOCX
Wc rage handbook
PDF
Metric conversion house
PDF
The everyday metric system
PDF
Experimental Design
PPT
Class policies and procedures
PPT
Class policies and procedures
PPT
Class policies and procedures
PPT
Class policies and procedures
PPT
PPT
Electricity
PPT
0708 types of_energy
PPT
PPT
PPT
Cub simple lesson01_presentation
PDF
Ttl7 09
PDF
Lightning noaa
PPT
Presentation3
PPT
Humidity
PPT
Air Masses
WCRage Handbook
Wc rage handbook
Metric conversion house
The everyday metric system
Experimental Design
Class policies and procedures
Class policies and procedures
Class policies and procedures
Class policies and procedures
Electricity
0708 types of_energy
Cub simple lesson01_presentation
Ttl7 09
Lightning noaa
Presentation3
Humidity
Air Masses

Energy forms and_changes

  • 2. Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind.
  • 3. Nature of Energy You use energy when you: hit a softball. lift your book bag. compress a spring.
  • 4. Nature of Energy Living organisms need energy for growth and movement.
  • 5. Nature of Energy Energy is involved when: a bird flies. a bomb explodes. rain falls from the sky. electricity flows in a wire.
  • 6. Nature of Energy What is energy that it can be involved in so many different activities? Energy can be defined as the ability to do work. If an object or organism does work (exerts a force over a distance to move an object) the object or organism uses energy.
  • 7. Nature of Energy Because of the direct connection between energy and work, energy is measured in the same unit as work: joules (J). In addition to using energy to do work, objects gain energy because work is being done on them.
  • 8. Forms of Energy The five main forms of energy are: Heat Chemical Electromagnetic Nuclear Mechanical
  • 9. Heat Energy The internal motion of the atoms is called heat energy, because moving particles produce heat. Heat energy can be produced by friction. Heat energy causes changes in temperature and phase of any form of matter.
  • 10. Chemical Energy Chemical Energy is required to bond atoms together. And when bonds are broken, energy is released.
  • 11. Chemical Energy Fuel and food are forms of stored chemical energy .
  • 12. Electromagnetic Energy Power lines carry electromagnetic energy into your home in the form of electricity.
  • 13. Electromagnetic Energy Light is a form of electromagnetic energy. Each color of light (Roy G Bv) represents a different amount of electromagnetic energy. Electromagnetic Energy is also carried by X-rays, radio waves, and laser light.
  • 14. Nuclear Energy The nucleus of an atom is the source of nuclear energy.
  • 15. Nuclear Energy When the nucleus splits (fission), nuclear energy is released in the form of heat energy and light energy. Nuclear energy is also released when nuclei collide at high speeds and join (fuse).
  • 16. Nuclear Energy The sun’s energy is produced from a nuclear fusion reaction in which hydrogen nuclei fuse to form helium nuclei.
  • 17. Nuclear Energy Nuclear energy is the most concentrated form of energy. Most of us live within 10 miles of the Surry Nuclear Power Plant which converts nuclear energy into electromagnetic energy.
  • 18. Mechanical Energy When work is done to an object, it acquires energy. The energy it acquires is known as mechanical energy.
  • 19. Mechanical Energy When you kick a football, you give mechancal energy to the football to make it move.
  • 20. Mechanical Energy When you throw a balling ball, you give it energy. When that bowling ball hits the pins, some of the energy is transferred to the pins (transfer of momentum).
  • 21. Energy Conversion Energy can be changed from one form to another. Changes in the form of energy are called energy conversions.
  • 22. Energy conversions All forms of energy can be converted into other forms. The sun’s energy through solar cells can be converted directly into electricity. Green plants convert the sun’s energy (electromagnetic) into starches and sugars (chemical energy).
  • 23. Other energy conversions In an electric motor, electromagnetic energy is converted to mechanical energy. In a battery, chemical energy is converted into electromagnetic energy. The mechanical energy of a waterfall is converted to electrical energy in a generator.
  • 24. Energy Conversions In an automobile engine, fuel is burned to convert chemical energy into heat energy. The heat energy is then changed into mechanical energy.
  • 25. Chemical  Heat  Mechanical
  • 26. States of Energy The most common energy conversion is the conversion between potential and kinetic energy. All forms of energy can be in either of two states: Potential Kinetic
  • 27. States of Energy: Kinetic and Potential Energy Kinetic Energy is the energy of motion. Potential Energy is stored energy .
  • 28. Kinetic Energy The energy of motion is called kinetic energy. The faster an object moves, the more kinetic energy it has. The greater the mass of a moving object, the more kinetic energy it has. Kinetic energy depends on both mass and velocity.
  • 29. Kinetic Energy K.E. = mass x velocity 2 What has a greater affect of kinetic energy, mass or velocity? Why? 2
  • 30. Potential Energy Potential Energy is stored energy. Stored chemically in fuel, the nucleus of atom, and in foods. Or stored because of the work done on it: Stretching a rubber band. Winding a watch. Pulling back on a bow’s arrow. Lifting a brick high in the air.
  • 31. Gravitational Potential Energy Potential energy that is dependent on height is called gravitational potential energy.
  • 32. Potential Energy Energy that is stored due to being stretched or compressed is called elastic potential energy.
  • 33. Gravitational Potential Energy A waterfall, a suspension bridge, and a falling snowflake all have gravitational potential energy.
  • 34. Gravitational Potential Energy If you stand on a 3-meter diving board, you have 3 times the G.P.E, than you had on a 1-meter diving board.
  • 35. Gravitational Potential Energy “ The bigger they are the harder they fall” is not just a saying. It’s true. Objects with more mass have greater G.P.E. The formula to find G.P.E. is G.P.E. = Weight X Height.
  • 36. Kinetic-Potential Energy Conversion Roller coasters work because of the energy that is built into the system. Initially, the cars are pulled mechanically up the tallest hill, giving them a great deal of potential energy. From that point, the conversion between potential and kinetic energy powers the cars throughout the entire ride.
  • 37. Kinetic vs. Potential Energy At the point of maximum potential energy, the car has minimum kinetic energy.
  • 38. Kinetic-Potential Energy Conversions As a basketball player throws the ball into the air, various energy conversions take place.
  • 39. Ball slows down Ball speeds up
  • 40. The Law of Conservation of Energy Energy can be neither created nor destroyed by ordinary means. It can only be converted from one form to another. If energy seems to disappear, then scientists look for it – leading to many important discoveries.
  • 41. Law of Conservation of Energy In 1905, Albert Einstein said that mass and energy can be converted into each other. He showed that if matter is destroyed, energy is created, and if energy is destroyed mass is created. 2 E = MC
  • 42. Vocabulary Words energy mechanical energy heat energy chemical energy electromagnetic energy nuclear energy kinetic energy potential energy gravitational potential energy energy conversion Law of Conservation of Energy