SlideShare a Scribd company logo
Engineering And Analyzing Multicellular Systems
Methods And Protocols 1st Edition Lianhong Sun
download
https://ebookbell.com/product/engineering-and-analyzing-
multicellular-systems-methods-and-protocols-1st-edition-lianhong-
sun-4683562
Explore and download more ebooks at ebookbell.com
Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Document Engineering Analyzing And Designing Documents For Business
Informatics Web Services Robert J Glushko Tim Mcgrath
https://ebookbell.com/product/document-engineering-analyzing-and-
designing-documents-for-business-informatics-web-services-robert-j-
glushko-tim-mcgrath-56636118
Document Engineering Analyzing And Designing Documents For Business
Informatics Web Services Robert J Glushko Tim Mcgrath
https://ebookbell.com/product/document-engineering-analyzing-and-
designing-documents-for-business-informatics-web-services-robert-j-
glushko-tim-mcgrath-4112052
Engineering Stochastic Local Search Algorithms Designing Implementing
And Analyzing Effective Heuristics Second International Workshop Sls
2009 Brussels Belgium September 34 2009 Proceedings 1st Edition
Bertrand Estellon
https://ebookbell.com/product/engineering-stochastic-local-search-
algorithms-designing-implementing-and-analyzing-effective-heuristics-
second-international-workshop-sls-2009-brussels-belgium-
september-34-2009-proceedings-1st-edition-bertrand-estellon-2529148
Engineering Stochastic Local Search Algorithms Designing Implementing
And Analyzing Effective Heuristics International Workshop Sls 2007
Brussels Belgium September 68 2007 Proceedings 1st Edition Arne
Lkketangen Auth
https://ebookbell.com/product/engineering-stochastic-local-search-
algorithms-designing-implementing-and-analyzing-effective-heuristics-
international-workshop-sls-2007-brussels-belgium-
september-68-2007-proceedings-1st-edition-arne-lkketangen-auth-4239994
Designing Engineering And Analyzing Reliable And Efficient Software
1st Edition Kulwant Kaur
https://ebookbell.com/product/designing-engineering-and-analyzing-
reliable-and-efficient-software-1st-edition-kulwant-kaur-4633616
Continuity Of Nasa Earth Observations From Space A Value Framework 1st
Edition And Medicine Engineering National Academies Of Sciences
Division On Engineering And Physical Sciences Space Studies Board
Committee On A Framework For Analyzing The Needs For Continuity Of
Nasasustained Remote Sensing Observations Of The Earth From Sp
https://ebookbell.com/product/continuity-of-nasa-earth-observations-
from-space-a-value-framework-1st-edition-and-medicine-engineering-
national-academies-of-sciences-division-on-engineering-and-physical-
sciences-space-studies-board-committee-on-a-framework-for-analyzing-
the-needs-for-continuity-of-nasasustained-remote-sensing-observations-
of-the-earth-from-sp-51983240
Analyzing And Applying Current Transformers Stanley E Zocholl
https://ebookbell.com/product/analyzing-and-applying-current-
transformers-stanley-e-zocholl-5440970
Mobile App Reverse Engineering Get Started With Discovering Analyzing
And Exploring The Internals Of Android And Ios Apps Abhinav Mishra
https://ebookbell.com/product/mobile-app-reverse-engineering-get-
started-with-discovering-analyzing-and-exploring-the-internals-of-
android-and-ios-apps-abhinav-mishra-43328124
Analyzing Future Applications Of Ai Sensors And Robotics In Society
Thomas Heinrich Musiolik Adrian David Cheok
https://ebookbell.com/product/analyzing-future-applications-of-ai-
sensors-and-robotics-in-society-thomas-heinrich-musiolik-adrian-david-
cheok-43717850
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
Engineering
andAnalyzing
Multicellular
Systems
Lianhong Sun
Wenying Shou Editors
Methods and Protocols
Methods in
Molecular Biology 1151
ME T H O D S I N MO L E C U L A R BI O LO G Y
Series Editor
John M. Walker
School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK
For further volumes:
http://www.springer.com/series/7651
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
Engineering and Analyzing
Multicellular Systems
Methods and Protocols
Edited by
Lianhong Sun
School of Life Sciences, University of Science & Technology of China,
Hefei,Anhui,People’sRepublicofChina
Wenying Shou
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
ISSN 1064-3745 ISSN 1940-6029 (electronic)
ISBN 978-1-4939-0553-9 ISBN 978-1-4939-0554-6 (eBook)
DOI 10.1007/978-1-4939-0554-6
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2014934331
© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Printed on acid-free paper
Humana Press is a brand of Springer
Springer is part of Springer Science+Business Media (www.springer.com)
Editors
Lianhong Sun
School of Life Sciences
University of Science & Technology of China
Hefei, Anhui, People’s Republic of China
Wenying Shou
Division of Basic Sciences
Fred Hutchinson Cancer Research Center
Seattle, WA, USA
v
Microbial ecosystems consist of many interacting microbial species. With synthetic biology
rapidly evolving from engineering genetic circuits within cells to manipulating cell–cell
interactions, several synthetic microbial communities have been constructed. Such
synthetic communities have been used in basic research to explore questions such as how
interactions within a community shape the stability, function, patterning, and evolution of
the community. In addition, synthetic communities have been constructed to solve chal-
lenging engineering problems in various fields. As a consequence, a framework of engineer-
ing synthetic microbial ecosystems/consortia is of importance to many users. Equally
important are the transcriptomic, genomic, cell biological, and chemical methods to char-
acterize communities. Ultimately, to quantitatively understand complex microbial commu-
nities, predictive mathematical models can be extremely useful. This volume of Methods in
Molecular Biology includes recent developments and a variety of examples on how to con-
struct, analyze, and mathematically model multicellular systems.
Hefei, People’s Republic of China Lianhong Sun
Seattle, WA, USA Wenying Shou
Preface
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
vii
Contents
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
PART I CONSTRUCTING MULTICELLULAR SYSTEMS
1 Recent Progress in Engineering Human-Associated Microbiomes . . . . . . . . . . 3
Stephanie J. Yaung, George M. Church, and Harris H. Wang
2 Constructing Synthetic Microbial Communities
to Explore the Ecology and Evolution of Symbiosis. . . . . . . . . . . . . . . . . . . . . 27
Adam James Waite and Wenying Shou
3 Combining Engineering and Evolution
to Create Novel Metabolic Mutualisms Between Species . . . . . . . . . . . . . . . . . 39
Lon Chubiz, Sarah Douglas, and William Harcombe
4 Design, Construction, and Characterization Methodologies
for Synthetic Microbial Consortia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Hans C. Bernstein and Ross P. Carlson
5 An Observation Method for Autonomous Signaling-Mediated Synthetic
Diversification in Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Ryoji Sekine, Shotaro Ayukawa, and Daisuke Kiga
6 Integration-Free Reprogramming of Human Somatic Cells
to Induced Pluripotent Stem Cells (iPSCs) Without Viral Vectors,
Recombinant DNA, and Genetic Modification . . . . . . . . . . . . . . . . . . . . . . . . 75
Boon Chin Heng and Martin Fussenegger
7 Transformation of Bacillus subtilis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Xiao-Zhou Zhang, Chun You, and Yi-Heng Percival Zhang
8 Culturing Anaerobes to Use as a Model System
for Studying the Evolution of Syntrophic Mutualism. . . . . . . . . . . . . . . . . . . . 103
Sujung Lim, Sergey Stolyar, and Kristina Hillesland
9 Therapeutic Microbes for Infectious Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Choon Kit Wong, Mui Hua Tan, Bahareh Haji Rasouliha,
In Young Hwang, Hua Ling, Chueh Loo Poh, and Matthew Wook Chang
PART II ANALYZING AND MODELING MULTICELLULAR SYSTEMS
10 Quantitative Measurement and Analysis
in a Synthetic Pattern Formation Multicellular System. . . . . . . . . . . . . . . . . . . 137
Xiongfei Fu and Wei Huang
11 Transcriptome Analysis of a Microbial Coculture
in which the Cell Populations Are Separated by a Membrane. . . . . . . . . . . . . . 151
Kazufumi Hosoda, Naoaki Ono, Shingo Suzuki, and Tetsuya Yomo
viii
12 Identification of Mutations in Laboratory-Evolved Microbes
from Next-Generation Sequencing Data Using breseq . . . . . . . . . . . . . . . . . . . . . 165
Daniel E. Deatherage and Jeffrey E. Barrick
13 3D-Fluorescence In Situ Hybridization of Intact, Anaerobic Biofilm . . . . . . . . 189
Kristen A. Brileya, Laura B. Camilleri, and Matthew W. Fields
14 The Characterization of Living Bacterial Colonies Using Nanospray
Desorption Electrospray Ionization Mass Spectrometry. . . . . . . . . . . . . . . . . . 199
Brandi S. Heath, Matthew J. Marshall, and Julia Laskin
15 Modeling Community Population Dynamics
with the Open-Source Language R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Robin Green and Wenying Shou
16 Simulating Microbial Community Patterning Using Biocellion. . . . . . . . . . . . . 233
Seunghwa Kang, Simon Kahan, and Babak Momeni
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Contents
ix
SHOTARO AYUKAWA • Academy of Computational Life Sciences, Tokyo Institute of Technology,
Kanagawa, Japan
JEFFREY E. BARRICK • Department of Molecular Biosciences, Center for Systems and Synthetic
Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular
and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
HANS C. BERNSTEIN • Department of Chemical and Biological Engineering,
Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
KRISTEN A. BRILEYA • Department of Microbiology, Center for Biofilm Engineering,
Montana State University, Bozeman, MT, USA
LAURA B. CAMILLERI • Department of Microbiology, Center for Biofilm Engineering,
Montana State University, Bozeman, MT, USA
ROSS P. CARLSON • Department of Chemical and Biological Engineering,
Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
MATTHEW WOOK CHANG • Department of Biochemistry, Yong Loo Lin School of Medicine,
National University of Singapore, Singapore, Singapore
LON CHUBIZ • Department of Organismic and Evolutionary Biology, Harvard University,
Cambridge, MA, USA
GEORGE M. CHURCH • Department of Genetics, Harvard Medical School, Boston, MA,
USA; Wyss Institute for Biologically Inspired Engineering, Harvard University,
Boston, MA, USA
DANIEL E. DEATHERAGE • Department of Molecular Biosciences, Center for Systems
and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute
for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
SARAH DOUGLAS • Department of Organismic and Evolutionary Biology,
Harvard University, Cambridge, MA, USA
MATTHEW W. FIELDS • Department of Microbiology, Center for Biofilm Engineering,
Montana State University, Bozeman, MT, USA
XIONGFEI FU • Department of Physics, The University of Hong Kong, Pokfulam,
Hong Kong, China
MARTIN FUSSENEGGER • Department of Biosystems Science and Engineering, ETH Zurich,
Basel, Switzerland
ROBIN GREEN • Molecular and Cellular Biology Program, University of Washington,
Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center,
Seattle, WA, USA
WILLIAM HARCOMBE • Department of Ecology, Evolution, and Behavior, University of
Minnesota, St. Paul, MN, USA
BRANDI S. HEATH • Physical Sciences Division, Pacific Northwest National Laboratory,
Richland, WA, USA
BOON CHIN HENG • Department of Biosystems Science and Engineering, ETH Zurich,
Basel, Switzerland
Contributors
x
KRISTINA HILLESLAND • Biological Sciences Division, School of STEM, UW Bothell,
Bothell, WA, USA
KAZUFUMI HOSODA • Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka, Japan
WEI HUANG • Department of Biology, South University of Science and Technology of China
Nanshan, Shenzhen, China; Department of Biochemistry, The University of Hong Kong,
Pokfulam, Hong Kong, China
IN YOUNG HWANG • Department of Biochemistry, Yong Loo Lin School of Medicine, National
University of Singapore, Singapore, Singapore
SIMON KAHAN • Northwest Institute for Advanced Computing, University of Washington,
Seattle, WA, USA
SEUNGHWA KANG • Pacific Northwest National Laboratory, Seattle, WA, USA
DAISUKE KIGA • Department of Computational Intelligence and Systems Science,
Tokyo Institute of Technology, Kanagawa, Japan
JULIA LASKIN • Physical Sciences Division, Pacific Northwest National Laboratory,
Richland, WA, USA
SUJUNG LIM • Biological Sciences Division, School of STEM, UW Bothell, Bothell, WA, USA
HUA LING • Department of Biochemistry, Yong Loo Lin School of Medicine, National
University of Singapore, Singapore, Singapore
CHUEH LOO POH • School of Chemical and Biomedical Engineering, Nanyang
Technological University, Singapore, Singapore
MATTHEW J. MARSHALL • Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
BABAK MOMENI • Division of Basic Sciences, Fred Hutchinson Cancer Research Center,
Seattle, WA, USA
NAOAKI ONO • Graduate School of Information Science, Nara Institute of Science
and Technology, Ikoma, Nara, Japan
BAHAREH HAJI RASOULIHA • School of Chemical and Biomedical Engineering, Nanyang
Technological University, Singapore, Singapore
RYOJI SEKINE • Department of Computational Intelligence and Systems Science,
Tokyo Institute of Technology, Kanagawa, Japan
WENYING SHOU • Division of Basic Sciences, Fred Hutchinson Cancer Research Center,
Seattle, WA, USA
SERGEY STOLYAR • Institute for Systems Biology, Seattle, WA, USA
SHINGO SUZUKI • RIKEN Quantitative Biology Center, Furuedai, Osaka, Japan
MUI HUA TAN • School of Chemical and Biomedical Engineering, Nanyang Technological
University, Singapore, Singapore
ADAM JAMES WAITE • Molecular and Cellular Biology Program, University of Washington,
Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center,
Seattle, WA, USA
HARRIS H. WANG • Department of Systems Biology, Columbia University Medical Center,
New York, NY, USA; Department of Pathology and Cell Biology, Columbia University
Medical Center, New York, NY, USA
CHOON KIT WONG • School of Chemical and Biomedical Engineering, Nanyang
Technological University, Singapore, Singapore
Contributors
xi
STEPHANIE J. YAUNG • Program in Medical Engineering Medical Physics,
Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA; Department of
Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically
Inspired Engineering, Harvard University, Boston, MA, USA
TETSUYA YOMO • Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Bioscience,
Osaka University, Suita, Osaka, Japan; Exploratory Research for Advanced Technology,
Suita, Osaka, Japan
CHUN YOU • Biological Systems Engineering Department, Virginia Tech,
Blacksburg, VA, USA
XIAO-ZHOU ZHANG • Biological Systems Engineering Department, Virginia Tech,
Blacksburg, VA, USA; Gate Fuels Inc., Blacksburg, VA, USA
YI-HENG PERCIVAL ZHANG • Biological Systems Engineering Department, Virginia Tech,
Blacksburg, VA, USA; Gate Fuels Inc., Blacksburg, VA, USA
Contributors
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
Part I
Constructing Multicellular Systems
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
3
Lianhong Sun and Wenying Shou (eds.), Engineering and Analyzing Multicellular Systems: Methods and Protocols,
Methods in Molecular Biology, vol. 1151, DOI 10.1007/978-1-4939-0554-6_1, © Springer Science+Business Media New York 2014
Chapter 1
Recent Progress in Engineering Human-Associated
Microbiomes
Stephanie J. Yaung, George M. Church, and Harris H. Wang
Abstract
Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of
biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside
on the human body, the human-associated microbiota, are particularly interesting as targets for forward
engineering and manipulation due to their relevance in health and disease. New technologies in analysis
and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against
diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer
to realizing the true potential of an engineered human-associated microbial community.
Key words Microbiome, Microbiota, Synthetic biology, Systems biology, Microbial engineering,
Functional metagenomics, Host–microbe interactions
1 Introduction
Of the 100 trillion cells in the human body, 90 % are microbes that
naturally inhabit various body sites, including the gastrointestinal
tract, nasal and oral cavities, urogenital area, and skin [1]. An indi-
vidual’s colon is home to 1011
–1012
microbial cells/mL, the greatest
density compared to any other microbial habitat characterized to
date [2]. Many studies, such as the Human Microbiome Project
and MetaHIT, have probed the vast effects of microbiota on
human health and disease [1, 3–5]. In addition to metagenomic
sequencing [6], traditional methods of studying cells in isolation
are important for elucidating molecular bases of microbial activity.
However, cells do not exist in single-species cultures in nature. In
fact, some species are only culturable in the presence of other
microorganisms [7]. This interdependence for survival amongst
microbial species in a community attests to the importance of
intercellular interactions, both microbe–microbe and host–
microbe. Despite the fact that the human microbiota is composed
of many individual microbes, these individuals work in concert to
4
perform tasks that rival in complexity to those of more sophisticated
multicellular systems. Thus, the human-associated microbiome
presents a ripe opportunity for forward engineering to potentially
improve human health (Fig. 1). Here, we review recent advances in
this area and outline potential avenues for future endeavors.
2 Microbiota, Host, and Disease
Contrary to traditional views, microbes are social organisms that
engage with the environment and other organisms in specific ways.
Microbes participate in intercellular communication through
contact-dependent signaling [8], quorum sensing [9], metabolic
cooperation or competition [5], spatiotemporal organization [10],
and horizontal gene transfer (HGT) [11]. Human-associated
microbes produce by-products that serve as substrates utilized by
other resident bacteria [12–14]. For instance, accumulated hydro-
gen gas from bacterial sugar fermentation is removed by acetogenic,
methanogenic, and sulfate-reducing gut bacteria [15]. In contrast to
cross-feeding relationships, microbes under stress can release bacte-
riocins to suppress the growth of competitors [16–18]. If microbes
are members of a biofilm community, they benefit from physical
protection from the environment, access to nutrients trapped and
distributed through channels in the biofilm, development of syn-
trophic relationships with other members, and the ability to share
and acquire genetic traits [19, 20]. Microbial populations also
Fig. 1 Engineering human-associated microbiota requires detailed understanding
of processes that govern the natural propagation and retention of microbes in the
host as well as environmental and adaptive pressures that drive the evolution of
cells and communities
Stephanie J. Yaung et al.
5
genetically diversify to insure against possible unstable environmen-
tal conditions [21, 22]. Moreover, multispecies communities harbor
a dynamic gene pool consisting of mobile genetic elements, such as
transposons, plasmids, and bacteriophages, which serve as a source
of HGT to share beneficial functions with neighbors to preserve
community stability [23–26]. Densely populated communities such
as the human gut are active sites for gene transfer and reservoirs for
antibiotic resistance genes [11, 27–29].
Beyond microbe–microbe interactions, the microbiota
coevolves with the host as it develops, driving microbial adaptation
[30–33]. Core functions of microbiota benefit the host, such as
extraction of otherwise inaccessible nutrients, immune system devel-
opment, and protection against pathogen colonization [2, 34–37].
Gut microbes are critical in intestinal angiogenesis, epithelial cell
maturation, and immunological homeostasis [37–40]. For exam-
ple, the commensal Bacteroides fragilis produces polysaccharide A,
which converts host CD4+
T cells into Foxp3+
Treg cells, producing
interleukin-10 (IL-10) and inducing mucosal tolerance [41]. Host
diet, inflammatory responses, and aging also affect microbial com-
munity composition and function [42–45] (Fig. 2). Indeed, aber-
rations in host genetics, immunology, and diet can lead to
Fig. 2 Composition of the human gut microbiome during development with
respect to microbial diversity and population stability. Data compiled from recent
studies from the literature: (a) Hong 2010 [169]; (b) Saulnier 2011 [170]; (c)
Claesson 2011 [171]; (d) Yatsunenko 2012 [172]; (e) Spor 2011 [173]
Engineering Human-Associated Microbiomes
6
microbiota-associated human diseases. Diet-induced obesity in mice
from a high-fat diet is characterized by enhanced energy harvest and
an increased Firmicutes-to-Bacteroidetes ratio [46, 47]. Furthermore,
disruptions in the homeostasis between gut microbial antigens and
host immunity can invoke allergy and autoimmunity, as in type 1
diabetes and multiple sclerosis [48–50]. It is thought that inflamma-
tory bowel disease (IBD) results from inappropriate immune
responses to intestinal bacteria; genes identified in genome-wide
association studies highlight the role of a host imbalance between
pro-inflammatory and regulatory states [48, 51].
While the host selects for microbial communities that harvest
nutrients and prime the immune system, irregular microbiota
composition may cause disease (Fig. 3), including IBD [52–54],
Host disease states
Inflammatory
bowel disease
in adults
Metabolic
syndrome
in adult
Healthy
Burkina Faso
childrena
Healthy
European
childrena
Host genetics and
environment (diet, lifestyle)
Actinobacteria
Bacteroidetes
Firmicutes
Proteobacteria
Spirochaetes
Other
Fusobacteria
Healthy Dental caries
Young adult salivag
Saliva Dental plaque
Oral microbiomef
Gut microbiome
Pediatric atopic dermatitisd
Baseline
Healthy childd
Flare Postflare
Healthy adulte
Skin microbiome
Fig. 3 Changes in the composition of human microbiota during disease states
compared to healthy states. Data compiled from recent studies from the literature:
(a) De Filippo 2010 [174]; (b) Peterson 2008 [175]; (c) Larsen 2010 [176]; (d) Kong
2012 [177]; (e) Gao 2012 [178]; (f ) Keijser 2008 [179]; (g) Yang 2012 [180]
Stephanie J. Yaung et al.
7
lactose intolerance [55, 56], obesity [57, 58], type I diabetes
[59], arthritis [60], myocardial infarction severity [61], and
opportunistic infections by pathogens such as Clostridium difficile
and HIV [62–65]. Microbial gut metabolism links host diet not
only to body composition and obesity [66] but also to chronic
inflammatory states, such as IBD, type 2 diabetes, and cardiovas-
cular disease [67–69]. Intestinal microbes are also important in
off-target drug metabolism, rendering digoxin, acetaminophen,
and irinotecan less effective or even toxic [70–72]. In the case of
irinotecan, a chemotherapeutic used mainly for colon cancer, the
drug is metabolized by β-glucuronidases of commensal gut bacte-
ria into a toxic form that damages the intestinal lining and causes
severe diarrhea. In the oral cavity, ecological shifts in dental plaque
microbiota lead to caries (cavities), gingivitis, and periodontitis
[73]. Dental caries arise from acidic environments generated by
acidogenic (acid-forming) and aciduric (acid-tolerant) bacteria,
which metabolize sugar from the host diet. Translocation of oral
bacteria into other tissues results in infections, and cytokines from
inflamed gums released into the bloodstream stimulate systemic
inflammation. Oral bacteria have been implicated in respiratory
[74, 75] and cardiovascular diseases [76–78], though mechanisms
remain unclear.
3 Enabling Tools for Engineering the Microbiota
The human-associated microbial community presents a vast reservoir
of nonmammalian genetic information that encodes for a variety of
functions essential to the mammalian host [79]. Next-generation
sequencing technologies have enabled us for the first time to sys-
tematically probe the genetic composition of these trillions of
microbes that reside on the human body [1]. The ongoing effort
by the Human Microbiome Project and MetaHIT to catalog dom-
inant microbial strains from different body sites has generated useful
reference genomes for many of the representative species [80].
Metagenomic shot-gun sequencing approaches of whole microbial
communities, such as those found in the gut, have yielded near-
complete gene catalogs that describe abundance and diversity of
genes that contribute to maintenance and metabolism of the
microbiota [6].
In order to determine functional relationships between
human-associated microbes and their concerted effect in the mam-
malian host, we rely on functional perturbation of the microbial
community. These investigative avenues include genome-scale per-
turbation assays, specified community reconstitutions, and directed
engineering through synthetic biology (Fig. 4). Each approach
provides us with a unique angle to attack an otherwise daunting
Engineering Human-Associated Microbiomes
8
challenge of de-convolving a highly intertwined set of microbial
interactions in a very heterogeneous environment and a difficult-
to-manipulate human host. Advances in both in vitro and in vivo
host models have thus also facilitated research endeavors in this
area, which we discuss in the following sections.
Fig. 4 General approaches to engineer the human microbiome through design, quantitative modeling, genome-
scale perturbation, and analysis in in vitro and in vivo models, with the ultimate goal of producing demand-
meeting applications to improve sensing, prevention, and treatment of diseases
Stephanie J. Yaung et al.
9
Approaches to study the function of human-associated microbes
by genetic manipulation rely on several fundamental capabilities,
which are often the largest practical barriers to manipulate microbes
genetically. First, individual microbes need to be isolated and cul-
tured in the laboratory. Because microbes have a myriad of physi-
ologies and require different nutritional supplement for growth,
different media compositions and growth conditions need to be
laboriously tested by trial and error to isolate and culture each
microbe. These microbial culturing techniques date back to the
times of Louis Pasteur and are still the dominant approach today.
More recent microbial cultivation techniques use microfluidics and
droplet technologies to enable the discovery of synergistic interac-
tions between natural microbes that allow otherwise “unculturable”
organisms to be grown in laboratory conditions [7, 81, 82].
Upon successful microbial cultivation, the next limiting step of
microbial genetic manipulation is the transformation of foreign DNA
into cells. The passage of foreign DNA (e.g., plasmids, recombinant
fragments) into the cell requires overcoming the physical barriers
presented by the cell wall or membrane. This task is accomplished in
nature through processes such as transduction by phage, conjugation
and mating, or natural competency and DNA uptake [83, 84].
Numerous laboratory techniques have been developed for microbial
transformation including electroporation [85], biolistics [86], soni-
cation [87], and chemical or heat disruption [88]. Electroporation,
the most common of the laboratory transformation techniques,
relies on high-voltage electrocution of the bacterial sample that is
thought to transiently induce pores on the cell membrane (hence
“electroporation”) that then enable extracellular DNA to diffuse
into the cell. Various protocols for electroporation of human-associ-
ated microbes have been described and are good starting points for
developing genetic systems in these microbes [89, 90].
Upon transformation of DNA into the cell, the DNA needs to
either stably propagate intracellularly or integrate into the micro-
bial host genome through recombination or other integration
strategies. Inside the cell, stable propagation of episomal DNA
such as plasmids requires DNA replication machinery that is com-
patible with the foreign DNA [83]. Additionally, cells often use
methylation and DNA modification and restriction systems to dis-
cern foreign versus host DNA through a primitive defensive mech-
anism that fights against viruses or other invading genetic elements.
Nonetheless, these promiscuous genetic elements can often be
used as a way to integrate foreign DNA into the chromosome and
are often used for large-scale functional genomics [91].
Taking all these parameters into consideration, we have
summarized (Fig. 5) the current genetic tractability of human-
associated microbes with respect to culturability, availability of full
genome sequences, transfection methods, and expression and
manipulation systems. Expansion of these basic genetic tools is
crucial for future functional studies of human microbiota.
3.1 Challenges
of Building New
Genetic System
Engineering Human-Associated Microbiomes
10
Fig. 5 Genetic tractability of abundant or relevant human-associated microbial genera, evaluated by the
availability of means to introduce genetic material (e.g., transformation, conjugation, or transduction), vectors,
expression systems, completed genomic sequences, and culturing methods. Circles of increasing sizes
indicate greater genetic tractability. Protocols and demonstrated methods for genetic manipulation
are listed as follows: (a) Clostridium: Phillips-Jones 1995, Jennert 2000, Young 1999, Bouillaut 2011
[181–184]; (b) Ruminococcus: Cocconcelli 1992 [185]; (c) Lactobacillus: van Pijkeren 2012, Ljungh 2009,
Damelin 2010, Sorvig 2005, Thompson 1996, Lizier 2010[107, 186–190]; (d) Enterococcus: Shepard 1995
[191]; (e) Lactococcus: Holo 1995, van Pijkeren 2012 [107, 192]; (f) Streptococcus: McLaughlin 1995, Biswas
2008 [193, 194]; (g) Staphlyococcus: Lee 1995 [195]; (h) Listeria: Alexander 1990 [196]; (i) Treponema:
Kuramitsu 2005 [197]; (j) Borrelia: Hyde 2011, Rosa 1999 [198, 199]; (k) Bifidobacterium: Mayo 2010 [200];
Stephanie J. Yaung et al.
11
Genome-scale perturbations are a class of genetic approaches that
disrupt or perturb the expression of functional genes that contribute
to relevant phenotypes by individual microbes. To dissect the func-
tion of different genes in the cell, we have relied heavily on the use
of transposons, which are selfish genetic elements that can splice
into and out of different locations of chromosomal DNA, thereby
disrupting the coding sequence [92]. This classical approach,
known as transposon mutagenesis, has allowed us to isolate many
genetic mutants whose disrupted genes give rise to interesting
phenotypes that reflect the importance of those genes to its physiol-
ogy. Next-generation DNA sequencing has now enabled multi-
plexed genotyping of pools of transposon mutants by using
molecular barcodes that then can be applied to measure the effect
of genome-scale perturbations in different environmental condi-
tions. For example, techniques such as insertion sequencing (INSeq)
[93] utilize the inverted repeat recognition of the Himar trans-
posase, which is one nucleotide change away from the restriction
site for type II restriction enzyme MmeI, to generate paired
16–17 bp flanking genomic sequences around the transposon that
can be sequenced in pools. Thus, the defined insertion location of
every transposon in the library can be determined. By sequencing
this pooled mutant library pre- and posttreatment with any number
of environmental perturbations, one can probe the effects of differ-
ent gene disruptions on the physiology of the cell in a multiplexed
fashion. Similar techniques using other transposon systems such as
transposon sequencing (Tn-seq) [94], high-throughput insertion
tracking by deep sequencing (HITS) [95], and transposon-directed
insertion-site sequencing (TraDIS) [96] have also been developed.
In addition to transposon-based systems, shotgun expression
libraries have been useful in discovering functional DNA elements
in genomic or metagenomic DNA. Shotgun expression libraries
rely on physical shearing or restriction digestion of a donor DNA
source into smaller DNA fragments that are then cloned into a gene
expression vector and transformed into a host strain for functional
analysis. A library of metagenomic DNA samples can for example be
extracted from an environment and cloned into plasmids that are
then expressed in E. coli. Selection and sequencing of the E. coli
population for heterologous DNA that enable new function lead
to discovery of novel gene elements that perform a particular
3.2 Genome-Scale
Perturbations
Fig. 5 (continued) (l) Actinomyces: Yeung 1994 [201]; (m) Mycobacterium: Parish 2009, Sassetti 2001 [202,
203]; (n) Proprionibacterium: Luijk 2002 [204]; (o) Chlamydia: Binet 2009 [205]; (p) Porphyromonas: Belanger
2007 [206]; (q) Prevotella: Flint 2000, Salyers 1992 [207, 208]; (r) Bacteroides: Salyers 1999, Smith 1995,
Bacic 2008 [209–211]; (s) Fusobacterium: Haake 2006 [212]; (t) Helicobacter: Taylor 1992, Segal 1995 [213,
214]; (u) Camplyobacter: Taylor 1992 [214]; (v) Rickettsia: Rachek 2000 [215]; (w) Brucella: McQuiston 1995
[216]; (x) Bordetella: Scarlato 1996 [217]; (y) Neisseria: O’Dwyer 2005, Bogdon 2002, Genco 1984 [218–220];
(z) Pseudomonas: Dennis 1995 [221]
Engineering Human-Associated Microbiomes
12
activity. This approach can easily identify activities such as antibiotic
resistance [97] but have yielded less success with other functions.
Towards forward engineering of human-associated microbes,
new genome engineering tools such as trackable multiplex recom-
bineering (TRMR) [98, 99] and multiplex automated genome
engineering (MAGE) enable efficient, site-specific modification of
the genome [100–103]. TRMR combines double-stranded
homologous recombination [104] and molecular barcodes synthe-
sized from DNA microarrays to generate populations of mutants
that are trackable by microarray or sequencing. MAGE relies on
introduction of pools of single-stranded oligonucleotides that tar-
get defined locations of the genome to introduce regulatory muta-
tions [102] or coding modifications [105]. These and other
recombineering technologies are now being developed for a variety
of other organisms including gram-negative bacteria [106], lactic
acidbacteria[107],Pseudomonassyringae[108],andMycobacterium
tuberculosis [109], and are likely to be very useful for engineering
human-associated microbes.
The community of microbes that make up the human microbiome
can be considered a “pseudo-organ” of its own. These microbes
interact with one another and the mammalian host in potentially
highly complex ways that may be difficult to decipher even with
tractable genetic systems [110]. A direct approach to study these
interactions is to build reconstituted communities of microbes
derived from monoculture isolates in defined combinations. This
de novo reconstitution approach to build synthetic communities
has significant advantages over attempts to deconvolute natural
communities. Reconstituted synthetic consortium presents a trac-
table level of complexity in terms of number of interacting micro-
bial species that can be tracked by sequencing and predicted with
quantitative models. In one such study, researchers inoculated
germ-free mice with ten representative strains of the human micro-
biota [111]. The mice were then fed with defined diets of macro-
nutrients consisting of proteins, fats, polysaccharides, and sugars.
By tracking the abundance of the ten-member microbial consor-
tium using high-throughput sequencing, the researchers could
predict over 60 % of the variation in species abundance as a result
of diet perturbations. This avenue of investigation presents a viable
approach to study the human microbiome and ways to analyze
synthetically engineered microbiota.
Engineered microbes have been utilized to reconstitute syn-
thetic communities to investigate the role of metabolic exchange.
One such important metabolic exchange is that of amino acids, as
they are the essential constituents of proteins. Various syntrophic
cross-feeding communities have been described using auxotrophic
E. coli and yeast strains that require different amino acid
supplementation for growth [112–114]. In these syntrophic
3.3 Reconstituted
Communities
Stephanie J. Yaung et al.
13
systems, metabolites that are exchanged across different biosynthetic
pathways promote more syntrophic growth than those that are
exchanged along the same pathway, which also relates to the cost
of biosynthesis of the amino acid metabolites. Amino acid
exchange is likely a large player in driving metabolism of microbial
communities as a substantial fraction of all microbes are missing
biosynthesis of various metabolites and thus require growth on
more rich and complex substrates that are found in the gut [115].
New approaches are now utilizing synthetic biology to engineer
human-associated microbiota to improve health and metabolism as
well as to monitor and fight diseases. These efforts focus on devel-
oping genetic circuits that actuate in an engineered host cell such
as E. coli that can sense and respond to changes to its environment
and in the presence of particular pathogens. For example, to detect
the human opportunistic pathogen Pseudomonas aeruginosa, which
often causes chronic cystic fibrosis infections and colonizes the gas-
trointestinal tract, E. coli was engineered to detect the small diffus-
ible molecule that is excreted by P. aeruginosa through the quorum
sensing pathway [116]. An engineered synthetic circuit was placed
in nonpathogenic E. coli, which when placed in the presence of
high-density P. aeruginosa triggered a self-lysis program that
released a narrow-spectrum bacteriocin that specifically killed the
P. aeruginosa strain. Similar strategies have also been demonstrated
to detect and respond to Vibrio cholera infection using engineered
E. coli that sense autoinducer-1 (AI1) molecules from V. cholera
quorum sensing pathway [117]. These strategies appear to yield
improved survival rates against microbial pathogenesis in murine
models [117]. Quorum sensing systems, which normally help
microbes detect local cell density, have been further enhanced to
improve robustness and performance to enable coupled short-range
and long-range feedback circuits that enable microbial communica-
tion across large distances in an engineered community.
Other microbes have been successfully engineered to perform
specific functions on human-associated surfaces such as the muco-
sal layer of the gut epithelium. Numerous diseases that occur along
the intestinal tract are targets of such engineered approaches. For
example, the probiotic strain Lactococcus lactis has been engineered
to secrete recombinant human IL-10 in the gastrointestinal tract
to reduce colitis [118, 119]. Other future applications of engi-
neered probiotics include enhancing catabolism of nutrients (e.g.,
lactose and gluten), modulation of the immune system, and
removal of pathogens by selective toxin release [116].
To probe and engineer the human-associated microbial commu-
nity, various in vitro models have been developed, ranging from
traditional batch culturing in chemostats to microfluidic systems
that incorporate host cells. Single-vessel chemostats inoculated
3.4 Microbial
Engineering Through
Synthetic Biology
3.5 In Vitro
Host Models
Engineering Human-Associated Microbiomes
14
with fecal samples from healthy individuals have helped identify
HGT [120] and selective bacterial colonization on different carbo-
hydrate substrates [121, 122]. A multichamber continuous culture
system mimicking spatial, nutritional, and pH properties of differ-
ent GI tract regions can be used to investigate stabilization dynam-
ics [123–125]. Similarly, the constant-depth film fermenter
resembles oral biofilm [126] and has enabled studies on biofilm for-
mation, antibiotic resistance [126], and HGT in a multispecies oral
community [127, 128]. To incorporate mammalian cells in study-
ing host–microbial interactions, organ-on-a-chip microfluidic
devices have been recently used. In one version of such a system, a
gut-on-a-chip device, the microfluidic channel is coated with extra-
cellular matrix and lined by human intestinal epithelial (Caco-2)
cells. This system mimics intestinal flow and peristaltic motion,
recapitulates columnar epithelium polarization and intestinal villi
formation, and supports the growth of commensal Lactobacillus
rhamnosus GG [129]. These microdevices offer an opportunity to
investigate host–microbiota interactions in a well-controlled man-
ner and in physiologically relevant conditions.
Inoculating with native microbiota samples provides a method
to overcome the un-cultivability of many microbes as well as to
study collective activity and discover novel functions without a
priori knowledge of community composition. However, starting
with a predefined microbial community allows a controlled setting
better suited for testing engineered systems. In one study analyz-
ing the dynamics of a community representing the four main gut
phyla in a chemostat, the authors propose that intrinsic microbial
interactions, rather than host selective pressure, play a role in the
observed colonization pattern, which was similar to what has been
documented in the human gut [130]. Similar models have been
developed for oral microbiota studies. The use of predefined oral
microbial inocula has helped elucidate metabolic cooperation in
batch culture [12] and community development in saliva-conditioned
flow cells [131].
In order to move into in vivo animal models that more closely
represent the physiology of the human host environment, researchers
have extensively utilized murine models including germ-free, gno-
tobiotic, and conventionally raised mice. Gnotobiotic animals are
born in aseptic conditions and reared in a sterile environment
where they are exposed only to known microbial species; techni-
cally, germ-free mice are a type of gnotobiotic mice that have not
been exposed to any microbes. Similar to in vitro systems, mice can
be inoculated with either a natural microbiota sample or a pre-
defined microbial community. Fecal samples, as well as oral swab
and saliva samples, can then be collected from gnotobiotic mice for
biochemical analysis and species quantification of gut and oral
cavity microbiota. In vivo models have been used to study the
3.6 In Vivo
Host Models
Stephanie J. Yaung et al.
15
transmission of antibiotic resistance in the mouse gut [132, 133]
and colonization resistance in the oral cavity [134]. Furthermore,
the choice of the inoculum donor offers opportunities to compare
different host selection pressures and microbial community
responses. Microbiota can be transplanted from conventionally
raised to germ-free animals of not only the same species but also
interspecies, as in human microbiota into mouse, called humanized
gnotobiotic mice [134]. In one study, transplants from zebrafish
gut microbiota into germ-free mice and mouse gut microbiota
into germ-free zebrafish revealed that the resulting community
conformed to the native host composition, demonstrating host
selection [135].
Altering host diet, environment, or genetic background can
also enable studies in host–microbiota interactions. One method
to gain insight into the role of microbial communities in disease is
to utilize mice with recapitulated pathologies. For example,
IL-10−/−
, ob−/−
, apoE−/−
, and TLR2−/−
or TLR5−/−
mice are models
for colitis, obesity, hypercholesterolemia, and metabolic syndrome,
respectively [46, 136–139]. To generate antigen- or pathogen-
specific phenotypes, mice can be infected with Salmonella
typhimurium to study colitis [140] or Citrobacter rodentium as a
model for attaching and effacing pathogens, such as enterohemor-
rhagic E. coli [141, 142]. Furthermore, murine models with chem-
ically induced inflammation can be tools to study chronic mucosal
inflammation; dextran sodium sulfate (DSS) can induce ulcerative
colitis, and trinitrobenzene sulfonic acid (TNBS) can stimulate
Crohn’s disease [143]. To investigate oral microbiota, there are
periodontal disease [144] and oral infection models [145, 146];
gnotobiotic rodents can also be fed a high-sucrose cariogenic diet
to promote plaque formation.
Germ-free mice inoculated with defined microbes are informa-
tive models for analyzing microbial colonization and metabolic
adaptation [147]. For example, resident bacteria and probiotic
strains adapt their substrate utilization: in the presence of
Bifidobacterium longum, Bifidobacterium animalis, or Lactobacillus
casei, Bacteroides thetaiotaomicron diversified its carbohydrate uti-
lization by shifting metabolism from mucosal glycans to dietary
plant polysaccharides [148]. Furthermore, the effect of different
diets on microbial community composition can be studied, as in
gnotobiotic mice inoculated with ten sequenced gut bacterial
species and fed with various levels of casein, cornstarch, sucrose,
and corn oil to represent protein, polysaccharide, sugar, and fat
content in the diet, respectively [111].
Over the past several decades, a large number of theoretical and
quantitative models have been developed to describe the cell and
its behavior. Constrain-based models are used to describe
metabolism of individual cells using stoichiometric representation
3.7 Computational
Frameworks for
Human Microbiomics
Engineering Human-Associated Microbiomes
16
of metabolic reactions and optimization constraints [149].
Approaches such as flux balance analysis (FBA) enable the analysis
of metabolism under steady-state assumptions by linear optimiza-
tion solution methods. These methods are now being scaled to
ecosystems of cells. Recent developments using multi-level objec-
tive optimization [150] and dynamic systems [151] enable the
modeling of synthetic ecosystems of three or more members.
Using metagenomic data of the gut microbiome, Greenblum
et al. generated a community-level metabolic reconstruction net-
work of the microbiota and discovered topological variations that
are associated with obesity and IBD, giving rise to low diversity
and differences in community composition [152]. For models
that account for systems dynamics, population abundance and
metabolite concentrations can be solved independently through
different FBA models that are iterated at each time step. This
approach called dynamic multi-species metabolic modeling
(DMMM) can capture scenarios of resource competition, leading
to the identification of limiting metabolites [153]. Other comple-
mentary models include elementary mode analysis (EMA) [154]
that enables quantitative analysis of microbial ecosystems in a mul-
ticellular fashion.
4 Perspectives
Reframing the microbiota community as a core set of genes, not a
core set of species, opens a new front to the microbiome engineering
design space. In a metagenomic study of 154 individuals, no single-
gut bacterial phylotype was detected at an abundant frequency
amongst all the samples, a finding that is consistent with the idea that
the core human gut microbiome may not be best defined by promi-
nent species but by abundantly shared genes and functions [155]. We
propose that manipulation at the gene, genome, and ultimately
metagenome level offers the ability for precise multicellular engineer-
ing of desirable traits in human-associated microbiota. Besides con-
trolledperturbationsofthemicrobiometoadvanceourunderstanding
of host–microbiota interactions, metagenome-scale tools enable
novel developments in diagnostics and therapeutics.
From biosensors on the skin to reporters in the gut, there are
several opportunities in monitoring the health and disease status of
the human host, such as sensing nutritional deficiencies, immune
imbalances,environmentaltoxins,orinvadingpathogens.Prophylactic
and therapeutic avenues for human microbiome engineering include
modifying community composition, tuning metabolic activity,
mediating microbe–microbe relationships, and modulating host–
microbe interactions. Two current microbiota-associated treatments
Stephanie J. Yaung et al.
17
have shown clinical efficacy: (1) fecal transplants for recurrent
Clostridium difficile infection [156] and (2) probiotics for pouchitis,
which is inflammation of the ileal pouch that is created after surgical
removal of the colon in ulcerative colitis patients [157–159]. The
main challenge is transmission of undesirable agents from donor feces
to the recipient gut in fecal transplants and native colonization resis-
tance that would impair infiltration and growth of new species in pro-
biotics [160, 161]. Nevertheless, these successful approaches
demonstrate the potential benefits of leveraging natural microorgan-
isms and entire microbial communities.
In fact, coupling organismal and functional gene-level
approaches would be a powerful way to engineer the native micro-
biota. Microbiome engineering enables multiscale system design
for the synthesis of nutrients and vitamins, enhanced digestion of
gluten and lactose, decreased acidity of the oral cavity, targeted
elimination of multidrug-resistant pathogens, and microbial mod-
ulation of the host immune system. As vehicles for drug delivery,
commensal bacteria designed to secrete heterologous genes have
been explored for treating cancer [162–164], diabetes [165],
HIV [166], and IBD [118]. For example, IL-10 has immuno-
modulatory effects in IBD but requires localized delivery at the
intestinal lining to avoid the toxic side effects and low efficacy of
systemic IL-10 injection. Ingestion of modified Lactococcus lactis
that secrete recombinant IL-10 is safe and effective in animal
models and has been promising in human clinical trials for IBD
[119, 167].
Finally, besides addressing clinical safety and efficacy criteria
for FDA regulatory approval [168], overall safety precautions
are critical considerations to minimize unintentional risks in
releasing genetically modified material into the natural environ-
ment. Rational design, such as creating auxotrophic microbes
[119], for robust stability, non-pathogenicity, and containment
of recombinant genetic systems will be essential in microbiome
engineering.
Acknowledgements
H.H.W. acknowledges the generous support from the National
Institutes of Health Director’s Early Independence Award (grant
1DP5OD009172-01). S.J.Y. acknowledges support from the
National Science Foundation Graduate Research Fellowship and
the MIT Neurometrix Presidential Graduate Fellowship. G.M.C.
acknowledges support from the Department of Energy Genomes
to Life Center (Grant DE-FG02-02ER63445).
Engineering Human-Associated Microbiomes
18
References
1. Huttenhower C, Gevers D, Knight R et al
(2012) Structure, function and diversity of
the healthy human microbiome. Nature
486:207–214
2. Ley RE, Peterson DA, Gordon JI (2006)
Ecological and evolutionary forces shaping
microbial diversity in the human intestine.
Cell 124:837–848
3. Turnbaugh PJ, Ley RE, Hamady M et al
(2007) The human microbiome project.
Nature 449:804–810
4. Nicholson JK, Holmes E, Wilson ID (2005)
Gut microorganisms, mammalian metabolism
and personalized health care. Nat Rev
Microbiol 3:431–438
5. Dethlefsen L, McFall-Ngai M, Relman DA
(2007) An ecological and evolutionary per-
spective on human-microbe mutualism and
disease. Nature 449:811–818
6. Qin J, Li R, Raes J et al (2010) A human gut
microbial gene catalogue established by
metagenomic sequencing. Nature 464:59–65
7. Kaeberlein T, Lewis K, Epstein SS (2002)
Isolating “uncultivable” microorganisms in
pure culture in a simulated natural environ-
ment. Science 296:1127–1129
8. Hayes CS, Aoki SK, Low DA (2010) Bacterial
contact-dependent delivery systems. Annu
Rev Genet 44:71–90
9. Bassler BL, Losick R (2006) Bacterially speak-
ing. Cell 125:237–246
10. Walker AW, Duncan SH, Harmsen HJ et al
(2008) The species composition of the human
intestinal microbiota differs between particle-
associated and liquid phase communities.
Environ Microbiol 10:3275–3283
11. Smillie CS, Smith MB, Friedman J et al
(2011) Ecology drives a global network of
gene exchange connecting the human micro-
biome. Nature 480:241–244
12. Bradshaw DJ, Homer KA, Marsh PD et al
(1994) Metabolic cooperation in oral micro-
bial communities during growth on mucin.
Microbiology 140:3407–3412
13. Falony G, Vlachou A, Verbrugghe K et al (2006)
Cross-feeding between Bifido-bacterium
longum BB536 and acetate-converting, butyr-
ate-producing colon bacteria during growth on
oligofructose. Appl Environ Microbiol
72:7835–7841
14. Salazar N, Gueimonde M, Hernández-Barranco
AM et al (2008) Exopolysaccharides produced
by intestinal Bifidobacterium strains act as fer-
mentable substrates for human intestinal bacte-
ria. Appl Environ Microbiol 74:4737–4745
15. Gibson GR, Cummings JH, Macfarlane GT
et al (1990) Alternative pathways for hydrogen
disposal during fermentation in the human
colon. Gut 31:679–683
16. Dabard J, Bridonneau C, Phillipe C et al
(2001) Ruminococcin A, a new lantibiotic
produced by a Ruminococcus gnavus strain
isolated from human feces. Appl Environ
Microbiol 67:4111–4118
17. Santagati M, Scillato M, Patanè F et al (2012)
Bacteriocin-producing oral streptococci and
inhibition of respiratory pathogens. FEMS
Immunol Med Microbiol 65:23–31
18. Gillor O, Etzion A, Riley MA (2008) The
dual role of bacteriocins as anti- and probiot-
ics. Appl Microbiol Biotechnol 81:591–606
19. Davey ME, O’toole GA (2000) Microbial
biofilms: from ecology to molecular genetics.
Microbiol Mol Biol Rev 64:847–867
20. Marsh PD, Moter A, Devine DA (2011)
Dental plaque biofilms: communities, conflict
and control. Periodontology 2000 2000(55):
16–35
21. Boles BR, Thoendel M, Singh PK (2004)
Self-generated diversity produces “insurance
effects” in biofilm communities. Proc Natl
Acad Sci U S A 101:16630–16635
22. Stewart PS, Franklin MJ (2008) Physiological
heterogeneity in biofilms. Nat Rev Microbiol
6:199–210
23. Frost LS, Leplae R, Summers AO et al (2005)
Mobile genetic elements: the agents of open
source evolution. Nat Rev Microbiol 3:
722–732
24. Gogarten JP, Townsend JP (2005)
Horizontal gene transfer, genome innova-
tion and evolution. Nat Rev Microbiol
3:679–687
25. Norman A, Hansen LH, Sørensen SJ (2009)
Conjugative plasmids: vessels of the commu-
nal gene pool. Philos Trans R Soc Lond B
Biol Sci 364:2275–2289
26. Jones BV, Marchesi JR (2007) Accessing the
mobile metagenome of the human gut micro-
biota. Mol Biosyst 3:749–758
27. Dobrindt U, Hochhut B, Hentschel U et al
(2004) Genomic islands in pathogenic and
environmental microorganisms. Nat Rev
Microbiol 2:414–424
28. Baquero F (2004) From pieces to patterns:
evolutionary engineering in bacterial patho-
gens. Nat Rev Microbiol 2:510–518
29. Salyers AA (1993) Gene transfer in the mam-
malian intestinal tract. Curr Opin Biotechnol
4:294–298
Stephanie J. Yaung et al.
19
30. Reid G, Younes JA, Van der Mei HC et al
(2010) Microbiota restoration: natural and
supplemented recovery of human microbial
communities. Nat Rev Microbiol 9:27–38
31. Koenig JE, Spor A, Scalfone N et al (2010)
Succession of microbial consortia in the
developing infant gut microbiome. Proc Natl
Acad Sci U S A 108(Suppl 1):4578–4585
32. Van den Abbeele P, Van de Wiele T, Verstraete
W et al (2011) The host selects mucosal and
luminal associations of coevolved gut micro-
organisms: a novel concept. FEMS Microbiol
Rev 35:681–704
33. Giraud A, Arous S, De Paepe M et al (2008)
Dissecting the genetic components of adapta-
tion of Escherichia coli to the mouse gut.
PLoS Genet 4:e2
34. Gill SR, Pop M, Deboy RT et al (2006)
Metagenomic analysis of the human distal gut
microbiome. Science 312:1355–1359
35. Bäckhed F, Ley RE, Sonnenburg JL et al
(2005) Host-bacterial mutualism in the
human intestine. Science 307:1915–1920
36. Guarner F, Malagelada J-R (2003) Gut flora
in health and disease. Lancet 361:512–519
37. Stappenbeck TS, Hooper LV, Gordon JI
(2002) Developmental regulation of intesti-
nal angiogenesis by indigenous microbes via
Paneth cells. Proc Natl Acad Sci U S A 99:
15451–15455
38. Rakoff-Nahoum S, Paglino J, Eslami-
Varzaneh F et al (2004) Recognition of com-
mensal microflora by toll-like receptors is
required for intestinal homeostasis. Cell 118:
229–241
39. Hooper LV (2004) Bacterial contributions to
mammalian gut development. Trends
Microbiol 12:129–134
40. Pryde SE, Duncan SH, Hold GL et al (2002)
The microbiology of butyrate formation in
the human colon. FEMS Microbiol Lett
217:133–139
41. Round JL, Mazmanian SK (2010) Inducible
Foxp3+ regulatory T-cell development by a
commensal bacterium of the intestinal micro-
biota. Proc Natl Acad Sci U S A 107:
12204–12209
42. Wu GD, Chen J, Hoffmann C et al (2011)
Linking long-term dietary patterns with gut
microbial enterotypes. Science 334:105–108
43. Serino M, Luche E, Gres S et al (2012)
Metabolic adaptation to a high-fat diet is asso-
ciated with a change in the gut microbiota. Gut
61:543–553
44. Honda K, Littman DR (2011) The Microbiome
in Infectious Disease and Inflammation. Annu
Rev Immunol 30:759–795
45. Ley RE, Bäckhed F, Turnbaugh P et al (2005)
Obesity alters gut microbial ecology. Proc
Natl Acad Sci U S A 102:11070–11075
46. Turnbaugh PJ, Bäckhed F, Fulton L et al
(2008) Diet-induced obesity is linked to
marked but reversible alterations in the mouse
distal gut microbiome. Cell Host Microbe
3:213–223
47. Murphy EF, Cotter PD, Healy S et al (2010)
Composition and energy harvesting capacity of
the gut microbiota: relationship to diet, obesity
and time in mouse models. Gut 59:1635–1642
48. Cerf-Bensussan N, Gaboriau-Routhiau V
(2010) The immune system and the gut
microbiota: friends or foes? Nat Rev Immunol
10:735–744
49. Wen L, Ley RE, Volchkov PY et al (2008)
Innate immunity and intestinal microbiota in
the development of Type 1 diabetes. Nature
455:1109–1113
50. Lee YK, Menezes JS, Umesaki Y et al (2010)
Proinflammatory T-cell responses to gut
microbiota promote experimental autoim-
mune encephalomyelitis. Proc Natl Acad Sci
U S A 108(Suppl 1):4615–4622
51. Abraham C, Cho JH (2009) Inflammatory
bowel disease. N Engl J Med 361:2066–2078
52. Nell S, Suerbaum S, Josenhans C (2010) The
impact of the microbiota on the pathogenesis
of IBD: lessons from mouse infection models.
Nat Rev Microbiol 8:564–577
53. Sokol H, Seksik P, Furet JP et al (2009) Low
counts of faecalibacterium prausnitzii in
colitis microbiota. Inflamm Bowel Dis
15:1183–1189
54. Manichanh C, Rigottier-Gois L, Bonnaud E
et al (2006) Reduced diversity of faecal micro-
biota in Crohn’s disease revealed by a metage-
nomic approach. Gut 55:205–211
55. He T, Venema K, Priebe MG et al (2008) The
role of colonic metabolism in lactose intoler-
ance. Eur J Clin Invest 38:541–547
56. He T, Priebe MG, Harmsen HJM et al (2006)
Colonic fermentation may play a role in lac-
tose intolerance in humans. J Nutr 136:58
57. Tehrani AB, Nezami BG, Gewirtz A et al
(2012) Obesity and its associated disease: a
role for microbiota? Neurogastroenterol Motil
24:305–311
58. Everard A, Lazarevic V, Derrien M et al
(2011) Responses of gut microbiota and glu-
cose and lipid metabolism to prebiotics in
genetic obese and diet-induced leptin-
resistant mice. Diabetes 60:2775–2786
59. Giongo A, Gano KA, Crabb DB et al (2010)
Toward defining the autoimmune microbiome
for type 1 diabetes. ISME J 5:82–91
Engineering Human-Associated Microbiomes
20
60. Wu H-J, Ivanov II, Darce J et al (2010)
Gut-residing segmented filamentous bacteria
drive autoimmune arthritis via T helper 17
cells. Immunity 32:815–827
61. Lam V, Su J, Koprowski S et al (2012)
Intestinal microbiota determine severity of
myocardial infarction in rats. FASEB J 26(4):
1727–1735
62. Wardwell LH, Huttenhower C, Garrett WS
(2011) Current concepts of the intestinal
microbiota and the pathogenesis of infection.
Curr Infect Dis Rep 13:28–34
63. Gori A, Tincati C, Rizzardini G et al (2008)
Early impairment of gut function and gut
flora supporting a role for alteration of gastro-
intestinal mucosa in human immunodefi-
ciency virus pathogenesis. J Clin Microbiol
46:757–758
64. Stecher B, Hardt W-D (2008) The role of
microbiota in infectious disease. Trends
Microbiol 16:107–114
65. Walk ST, Young VB (2008) Emerging insights
into antibiotic-associated diarrhea and clos-
tridium difficile infection through the lens of
microbial ecology. Interdiscip Perspect Infect
Dis 2008:125081
66. Vrieze A, Holleman F, Zoetendal EG et al
(2010) The environment within: how gut
microbiota may influence metabolism and
body composition. Diabetologia 53:606–613
67. Hou JK, Abraham B, El-Serag H (2011)
Dietary intake and risk of developing inflam-
matory bowel disease: a systematic review of
the literature. Am J Gastroenterol 106:
563–573
68. Fava F, Lovegrove JA, Gitau R et al (2006)
The gut microbiota and lipid metabolism:
implications for human health and coronary
heart disease. Curr Med Chem 13:3005–3021
69. Wang Z, Klipfell E, Bennett BJ et al (2011)
Gut flora metabolism of phosphatidylcholine
promotes cardiovascular disease. Nature
472:57–63
70. Dobkin JF, Saha JR, Butler VP et al (1983)
Digoxin-inactivating bacteria: identification
in human gut flora. Science 220:325–327
71. Clayton TA, Baker D, Lindon JC et al (2009)
Pharmacometabonomic identification of a
significant host-microbiome metabolic inter-
action affecting human drug metabolism.
Proc Natl Acad Sci U S A 106:14728–14733
72. Wallace BD, Wang H, Lane KT et al (2010)
Alleviating cancer drug toxicity by inhibiting
a bacterial enzyme. Science 330:831–835
73. Marsh PD (1994) Microbial ecology of dental
plaque and its significance in health and disease.
Adv Dent Res 8:263–271
74. Azarpazhooh A, Leake JL (2006) Systematic
review of the association between respiratory
diseases and oral health. J Periodontol
77:1465–1482
75. Ford PJ, Gemmell E, Timms P et al (2007)
Anti-P. gingivalis response correlates with
atherosclerosis. J Dent Res 86:35–40
76. Li L, Messas E, Batista EL et al (2002)
Porphyromonas gingivalis infection acceler-
ates the progression of atherosclerosis in a
heterozygous apolipoprotein e-deficient
murine model. Circulation 105:861–867
77. Koren O, Spor A, Felin J et al (2010) Human
oral, gut, and plaque microbiota in patients
with atherosclerosis. Proc Natl Acad Sci U S
A 108(Suppl 1):4592–4598
78. Haug MC, Tanner SA, Lacroix C et al (2011)
Monitoring horizontal antibiotic resistance
gene transfer in a colonic fermentation model.
FEMS Microbiol Ecol 78:210–219
79. Nelson KE, Weinstock GM, Highlander SK
et al (2010) A catalog of reference genomes
from the human microbiome. Science 328:
994–999
80. Methe BA, Nelson KE, Pop M et al (2012) A
framework for human microbiome research.
Nature 486:215–221
81. Park J, Kerner A, Burns MA et al (2011)
Microdroplet-enabled highly parallel co-
cultivation of microbial communities. PLoS
One 6:e17019
82. Bollmann A, Lewis K, Epstein SS (2007)
Incubation of environmental samples in a dif-
fusion chamber increases the diversity of
recovered isolates. Appl Environ Microbiol
73:6386–6390
83. Thomas CM, Nielsen KM (2005) Mechanisms
of, and barriers to, horizontal gene transfer
between bacteria. Nat Rev Microbiol 3:
711–721
84. Lorenz MG, Wackernagel W (1994) Bacterial
gene transfer by natural genetic transforma-
tion in the environment. Microbiol Rev
58:563–602
85. Wirth R, Friesenegger A, Fiedler S (1989)
Transformation of various species of gram-
negative bacteria belonging to 11 different
genera by electroporation. Mol Gen Genet
216:175–177
86. Sanford JC, Smith FD, Russell JA (1993)
Optimizing the biolistic process for different
biological applications. Methods Enzymol
217:483–509
87. Wyber JA, Andrews J, D’Emanuele A (1997)
The use of sonication for the efficient delivery
of plasmid DNA into cells. Pharm Res 14:
750–756
Stephanie J. Yaung et al.
21
88. Swords WE (2003) Chemical transformation
of E. coli. Methods Mol Biol 235:49–53
89. ThomsonAM,FlintHJ(1989)Electroporation
induced transformation of Bacteroides rumini-
cola and Bacteroides uniformis by plasmid
DNA. FEMS Microbiol Lett 52:101–104
90. Calvin NM, Hanawalt PC (1988) High-
efficiency transformation of bacterial cells by
electroporation. J Bacteriol 170:2796–2801
91. Goodman AL, McNulty NP, Zhao Y et al
(2009) Identifying genetic determinants
needed to establish a human gut symbiont in
its habitat. Cell Host Microbe 6:279–289
92. Kleckner N (1981) Transposable elements in
prokaryotes. Annu Rev Genet 15:341–404
93. Goodman AL, Wu M, Gordon JI (2011)
Identifying microbial fitness determinants by
insertion sequencing using genome-wide
transposon mutant libraries. Nat Protoc
6:1969–1980
94. van Opijnen T, Bodi KL, Camilli A (2009)
Tn-seq: high-throughput parallel sequenc-
ing for fitness and genetic interaction studies
in microorganisms. Nat Methods 6:
767–772
95. Gawronski JD, Wong SM, Giannoukos G
et al (2009) Tracking insertion mutants
within libraries by deep sequencing and a
genome-wide screen for Haemophilus genes
required in the lung. Proc Natl Acad Sci U S
A 106:16422–16427
96. Langridge GC, Phan MD, Turner DJ et al
(2009) Simultaneous assay of every Salmonella
Typhi gene using one million transposon
mutants. Genome Res 19:2308–2316
97. Sommer MO, Dantas G, Church GM (2009)
Functional characterization of the antibiotic
resistance reservoir in the human microflora.
Science 325:1128–1131
98. Warner JR, Reeder PJ, Karimpour-Fard A
et al (2010) Rapid profiling of a microbial
genome using mixtures of barcoded oligonu-
cleotides. Nat Biotechnol 28:856–862
99. Sandoval NR, Kim JY, Glebes TY et al (2012)
Strategy for directing combinatorial genome
engineering in Escherichia coli. Proc Natl
Acad Sci U S A 109:10540–10545
100. Wang HH, Isaacs FJ, Carr PA et al (2009)
Programming cells by multiplex genome
engineering and accelerated evolution.
Nature 460:894–898
101. Wang HH, Church GM (2011) Multiplexed
genome engineering and genotyping meth-
ods applications for synthetic biology and
metabolic engineering. Methods Enzymol
498:409–426
102. Wang HH, Kim H, Cong L et al (2012)
Genome-scale promoter engineering by cose-
lection MAGE. Nat Methods 9:591–593
103. Carr PA, Wang HH, Sterling B et al (2012)
Enhanced multiplex genome engineering
through co-operative oligonucleotide
co-selection. Nucleic Acids Res 40:e132
104. Sharan SK, Thomason LC, Kuznetsov SG
et al (2009) Recombineering: a homologous
recombination-based method of genetic engi-
neering. Nat Protoc 4:206–223
105. Isaacs FJ, Carr PA, Wang HH et al (2011)
Precise manipulation of chromosomes in vivo
enables genome-wide codon replacement.
Science 333:348–353
106. Swingle B, Markel E, Costantino N et al
(2010) Oligonucleotide recombination in
Gram-negative bacteria. Mol Microbiol
75:138–148
107. van Pijkeren J-P, Britton RA (2012) High
efficiency recombineering in lactic acid bacte-
ria. Nucleic Acids Res 40:e76
108. Swingle B, Bao Z, Markel E et al (2010)
Recombineering using RecTE from
Pseudomonas syringae. Appl Environ
Microbiol 76:4960–4968
109. van Kessel JC, Hatfull GF (2007)
Recombineering in Mycobacterium tubercu-
losis. Nat Methods 4:147–152
110. Sonnenburg JL, Angenent LT, Gordon JI (2004)
Getting a grip on things: how do communities of
bacterial symbionts become established in our
intestine? Nat Immunol 5:569–573
111. Faith JJ, McNulty NP, Rey FE et al (2011)
Predicting a human gut microbiota’s response
to diet in gnotobiotic mice. Science
333:101–104
112. Hosoda K, Suzuki S, Yamauchi Y et al (2011)
Cooperative adaptation to establishment of a
synthetic bacterial mutualism. PLoS One
6:e17105
113. Shou W, Ram S, Vilar JM (2007) Synthetic
cooperation in engineered yeast populations.
Proc Natl Acad Sci U S A 104:1877–1882
114. Wintermute EH, Silver PA (2010) Emergent
cooperation in microbial metabolism. Mol
Syst Biol 6:407
115. Mee JM, Wang HH (2012) Engineering eco-
systems and synthetic ecologies. Mol Biosyst
8:2470–2483
116. Saeidi N, Wong CK, Lo TM et al (2011)
Engineering microbes to sense and eradicate
Pseudomonas aeruginosa, a human pathogen.
Mol Syst Biol 7:521
117. Duan F, March JC (2010) Engineered bacte-
rial communication prevents Vibrio cholerae
Engineering Human-Associated Microbiomes
22
virulence in an infant mouse model. Proc Natl
Acad Sci U S A 107:11260–11264
118. Steidler L (2000) Treatment of murine colitis
by lactococcus lactis secreting interleukin-10.
Science 289:1352–1355
119. Steidler L, Rottiers P, Coulie B (2009)
Actobiotics as a novel method for cytokine
delivery. Ann N Y Acad Sci 1182:135–145
120. Duncan SH, Scott KP, Ramsay AG et al
(2003) Effects of alternative dietary substrates
on competition between human colonic bac-
teria in an anaerobic fermentor system. Appl
Environ Microbiol 69:1136–1142
121. Leitch ECM, Walker AW, Duncan SH et al
(2007) Selective colonization of insoluble
substrates by human faecal bacteria. Environ
Microbiol 9:667–679
122. Macfarlane GT, Hay S, Gibson GR (1989)
Influence of mucin on glycosidase, protease
and arylamidase activities of human gut bac-
teria grown in a 3-stage continuous culture
system. J Appl Bacteriol 66:407–417
123. Molly K, Woestyne M, Verstraete W (1993)
Development of a 5-step multi-chamber reac-
tor as a simulation of the human intestinal
microbial ecosystem. Appl Microbiol
Biotechnol 39:254–258
124. Possemiers S, Verthé K, Uyttendaele S et al
(2004) PCR-DGGE-based quantification of
stability of the microbial community in a sim-
ulator of the human intestinal microbial eco-
system. FEMS Microbiol Ecol 49:495–507
125. Pratten J (2007) Growing oral biofilms in a
constant depth film fermentor (CDFF). Curr
Protoc Microbiol Chapter 1, Unit 1B.5
126. Ready D (2002) Composition and antibiotic
resistance profile of microcosm dental plaques
before and after exposure to tetracycline.
J Antimicrob Chemother 49:769–775
127. Roberts AP, Pratten J, Wilson M et al (1999)
Transfer of a conjugative transposon, Tn5397
in a model oral biofilm. FEMS Microbiol Lett
177:63–66
128. Roberts AP, Cheah G, Ready D et al (2001)
Transfer of Tn916-like elements in micro-
cosm dental plaques. Antimicrob Agents
Chemother 45:2943–2946
129. Kim HJ, Huh D, Hamilton G et al (2012)
Human Gut-on-a-Chip inhabited by microbial
flora that experiences intestinal peristalsis-like
motions and flow. Lab Chip 12:2165–2174
130. Trosvik P, Rudi K, Strætkvern KO et al (2010)
Web of ecological interactions in an experi-
mental gut microbiota. Environ Microbiol
12:2677–2687
131. Foster JS, Kolenbrander PE (2004) Develop-
ment of a multispecies oral bacterial community
in a saliva-conditioned flow cell. Appl Environ
Microbiol 70:4340
132. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I
et al (1991) Inducible transfer of conjugative
transposon Tn1545 from Enterococcus faeca-
lis to Listeria monocytogenes in the digestive
tracts of gnotobiotic mice. Antimicrob Agents
Chemother 35:185–187
133. Launay A, Ballard SA, Johnson PDR et al
(2006) Transfer of vancomycin resistance
transposon Tn1549 from clostridium symbio-
sum to Enterococcus spp. in the gut of gno-
tobiotic mice. Antimicrob Agents Chemother
50:1054
134. Turnbaugh PJ, Ridaura VK, Faith JJ et al
(2009) The effect of diet on the human gut
microbiome: a metagenomic analysis in
humanized gnotobiotic mice. Sci Transl Med
1:6ra14
135. Rawls JF, Mahowald MA, Ley RE et al (2006)
Reciprocal gut microbiota transplants from
zebrafish and mice to germ-free recipients
reveal host habitat selection. Cell 127:
423–433
136. Sellon RK, Tonkonogy S, Schultz M et al
(1998) Resident enteric bacteria are necessary
for development of spontaneous colitis and
immune system activation in interleukin-10-
deficient mice. Infect Immun 66:5224–5231
137. Lalla E, Lamster IB, Hofmann MA et al
(2003) Oral infection with a periodontal
pathogen accelerates early atherosclerosis in
apolipoprotein E-null mice. Arterioscler
Thromb Vasc Biol 23:1405–1411
138. Caricilli AM, Picardi PK, de Abreu LL et al
(2011) Gut microbiota is a key modulator of
insulin resistance in TLR 2 knockout mice.
PLoS Biol 9:e1001212
139. Vijay-Kumar M, Aitken JD, Carvalho FA et al
(2010) Metabolic syndrome and altered gut
microbiota in mice lacking Toll-like receptor
5. Science 328:228–231
140. Hapfelmeier S, Hardt W-D (2005) A mouse
model for S. typhimurium-induced enteroco-
litis. Trends Microbiol 13:497–503
141. Deng W, Vallance BA, Li Y et al (2003)
Citrobacter rodentium translocated intimin
receptor (Tir) is an essential virulence factor
needed for actin condensation, intestinal col-
onization and colonic hyperplasia in mice.
Mol Microbiol 48:95–115
142. Newman JV, Zabel BA, Jha SS et al (1999)
Citrobacter rodentium espB is necessary for
signal transduction and for infection of labo-
ratory mice. Infect Immun 67:6019–6025
143. Alex P, Zachos NC, Nguyen T et al (2009)
Distinct cytokine patterns identified from
Stephanie J. Yaung et al.
23
multiplex profiles of murine DSS and TNBS-
induced colitis. Inflamm Bowel Dis
15:341–352
144. Oz HS, Puleo DA (2011) Animal models for
periodontal disease. J Biomed Biotechnol
2011:1–8
145. Naglik JR, Fidel PL, Odds FC (2008) Animal
models of mucosal Candida infection. FEMS
Microbiol Lett 283:129–139
146. Mcbride BC, van der Hoeven JS (1981) Role
of interbacterial adherence in colonization of
the oral cavities of gnotobiotic rats infected
with Streptococcus mutans and Veillonella
alcalescens. Infect Immun 33:467–472
147. Ma M, Rey FE, Seedorf H et al (2009)
Characterizing a model human gut microbi-
ota composed of members of its two domi-
nant bacterial phyla. Proc Natl Acad Sci U S A
106:5859–5864
148. Sonnenburg JL, Chen CTL, Gordon JI
(2006) Genomic and metabolic studies of the
impact of probiotics on a model gut symbiont
and host. PLoS Biol 4:e413
149. Lewis NE, Nagarajan H, Palsson BO (2012)
Constraining the metabolic genotype-
phenotype relationship using a phylogeny of
in silico methods. Nat Rev Microbiol
10:291–305
150. Zomorrodi AR, Maranas CD (2012)
OptCom: a multi-level optimization frame-
work for the metabolic modeling and analysis
of microbial communities. PLoS Comput
Biol 8:e1002363
151. Mahadevan R, Edwards JS, Doyle FJ 3rd
(2002) Dynamic flux balance analysis of
diauxic growth in Escherichia coli. Biophys J
83:1331–1340
152. Greenblum S, Turnbaugh PJ, Borenstein E
(2012) Metagenomic systems biology of the
human gut microbiome reveals topological
shifts associated with obesity and inflamma-
tory bowel disease. Proc Natl Acad Sci U S A
109:594–599
153. Zhuang K, Izallalen M, Mouser P et al (2011)
Genome-scale dynamic modeling of the com-
petition between Rhodoferax and Geobacter
in anoxic subsurface environments. ISME J
5:305–316
154. Taffs R, Aston JE, Brileya K et al (2009) In
silico approaches to study mass and energy
flows in microbial consortia: a syntrophic case
study. BMC Syst Biol 3:114
155. Turnbaugh PJ, Hamady M, Yatsunenko T
et al (2009) A core gut microbiome in obese
and lean twins. Nature 457:480–484
156. Rohlke F, Surawicz CM, Stollman N (2010)
Fecal flora reconstitution for recurrent
Clostridium difficile infection: results and
methodology. J Clin Gastroenterol 44:
567–570
157. Miele E, Pascarella F, Giannetti E et al (2009)
Effect of a probiotic preparation (VSL#3) on
induction and maintenance of remission in
children with ulcerative colitis. Am J
Gastroenterol 104:437–443
158. Gionchetti P, Rizzello F, Helwig U et al
(2003) Prophylaxis of pouchitis onset with
probiotic therapy: a double-blind, placebo-
controlled trial. Gastroenterology
124:1202–1209
159. Mimura T, Rizzello F, Helwig U et al (2004)
Once daily high dose probiotic therapy
(VSL#3) for maintaining remission in recur-
rent or refractory pouchitis. Gut 53:108–114
160. Culligan EP, Hill C, Sleator RD (2009)
Probiotics and gastrointestinal disease: suc-
cesses, problems and future prospects. Gut
Pathogens 1:19
161. Sartor RB (2004) Therapeutic manipulation of
the enteric microflora in inflammatory bowel
diseases: antibiotics, probiotics, and prebiotics.
Gastroenterology 126:1620–1633
162. Cronin M, Morrissey D, Rajendran S et al
(2010) Orally administered bifidobacteria as
vehicles for delivery of agents to systemic
tumors. Mol Ther 18:1397–1407
163. Fu G-F, Li X, Hou Y-Y et al (2005)
Bifidobacterium longum as an oral delivery
system of endostatin for gene therapy on solid
liver cancer. Cancer Gene Ther 12:133–140
164. Li X, Fu G-F, Fan Y-R et al (2003)
Bifidobacterium adolescentis as a delivery sys-
tem of endostatin for cancer gene therapy:
selective inhibitor of angiogenesis and hypoxic
tumor growth. Cancer Gene Ther 10:
105–111
165. Duan F, Curtis KL, March JC (2008)
Secretion of insulinotropic proteins by com-
mensal bacteria: rewiring the gut to treat
diabetes. Appl Environ Microbiol 74:
7437–7438
166. Rao S, Hu S, McHugh L et al (2005) Toward
a live microbial microbicide for HIV: com-
mensal bacteria secreting an HIV fusion
inhibitor peptide. Proc Natl Acad Sci U S A
102:11993–11998
167. Braat H, Rottiers P, Hommes DW et al
(2006) A phase I trial with transgenic bacteria
expressing interleukin-10 in Crohn’s disease.
Clin Gastroenterol Hepatol 4:754–759
168. Degnan FH (2008) The US Food and Drug
Administration and probiotics: regulatory
categorization. Clin Infect Dis 46(Suppl 2):
S133–S136, discussion S144–S151
Engineering Human-Associated Microbiomes
24
169. Hong P-Y, Lee BW, Aw M et al (2010)
Comparative analysis of fecal microbiota in infants
with and without eczema. PLoS One 5:e9964
170. Saulnier DM, Riehle K, Mistretta T-A et al
(2011) Gastrointestinal microbiome signa-
tures of pediatric patients with irritable bowel
syndrome. Gastroenterology 141:1782–1791
171. Claesson MJ, Cusack S, O’Sullivan O et al
(2011) Composition, variability, and tempo-
ral stability of the intestinal microbiota of the
elderly. Proc Natl Acad Sci U S A
108(Suppl):4586–4591
172. Yatsunenko T, Rey FE, Manary MJ et al
(2012) Human gut microbiome viewed across
age and geography. Nature 486:222–227
173. Spor A, Koren O, Ley R (2011) Unravelling
the effects of the environment and host geno-
type on the gut microbiome. Nat Rev
Microbiol 9:279–290
174. De Filippo C, Cavalieri D, Di Paola M et al
(2010) Impact of diet in shaping gut micro-
biota revealed by a comparative study in
children from Europe and rural Africa. Proc
Natl Acad Sci U S A 107:14691–14696
175. Peterson DA, Frank DN, Pace NR et al
(2008) Metagenomic approaches for defining
the pathogenesis of inflammatory bowel dis-
eases. Cell Host Microbe 3:417–427
176. Larsen N, Vogensen FK, van den Berg FWJ
et al (2010) Gut microbiota in human adults
with type 2 diabetes differs from non-diabetic
adults. PLoS One 5:e9085
177. Kong HH, Oh J, Deming C et al (2012)
Temporal shifts in the skin microbiome asso-
ciated with atopic dermatitis disease flares and
treatment. Genome Res 22(5):850–859
178. Gao Z, C-h T, Pei Z et al (2007) Molecular
analysis of human forearm superficial skin
bacterial biota. Proc Natl Acad Sci U S A
104:2927–2932
179. Keijser BJF, Zaura E, Huse SM et al (2008)
Pyrosequencing analysis of the Oral Microflora
of healthy adults. J Dent Res 87:1016–1020
180. Yang F, Zeng X, Ning K et al (2012) Saliva
microbiomes distinguish caries-active from
healthy human populations. ISME J 6:1–10
181. Phillips-Jones MK (1995) Introduction of
recombinant DNA into Clostridium spp.
Methods Mol Biol 47:227–235
182. Bouillaut L, McBride SM, Sorg JA (2011)
Genetic manipulation of Clostridium difficile.
Curr Protoc Microbiol Chapter 9, Unit 9A.2
183. Jennert KC, Tardif C, Young DI et al (2000) Gene
transfer to Clostridium cellulolyticum ATCC
35319. Microbiology 146(Pt 12):3071–3080
184. Young DI, Evans VJ, Jefferies JR et al (1999)
Genetic methods in clostridia. Method
Microbiol 29:191–207
185. Cocconcelli PS, Ferrari E, Rossi F et al (1992)
Plasmid transformation of Ruminococcus
albus by means of high-voltage electropora-
tion. FEMS Microbiol Lett 73:203–207
186. Damelin LH, Mavri-Damelin D, Klaenhammer
TR et al (2010) Plasmid transduction using
bacteriophage Phi(adh) for expression of CC
chemokines by Lactobacillus gasseri ADH.
Appl Environ Microbiol 76:3878–3885
187. Lizier M, Sarra PG, Cauda R et al (2010)
Comparison of expression vectors in
Lactobacillus reuteri strains. FEMS Microbiol
Lett 308:8–15
188. Ljungh A, Wadström T (eds) (2009)
Lactobacillus molecular biology: from
genomics to probiotics. Caister Academic
Press, Norfolk, UK
189. Sørvig E, Mathiesen G, Naterstad K et al
(2005) High-level, inducible gene expression
in Lactobacillus sakei and Lactobacillus
plantarum using versatile expression vectors.
Microbiology 151:2439–2449
190. Thompson K, Collins MA (1996)
Improvement in electroporation efficiency for
Lactobacillus plantarum by the inclusion of
high concentrations of glycine in the growth
medium. J Microbiol Methods 26:73–79
191. ShepardBD,GilmoreMS(1995)Electroporation
and efficient transformation of Enterococcus fae-
calis grown in high concentrations of glycine.
Methods Mol Biol 47:217–226
192. Holo H, Nes IF (1995) Transformation of
Lactococcus by electroporation. Methods
Mol Biol 47:195–199
193. Biswas I, Jha JK, Fromm N (2008) Shuttle
expression plasmids for genetic studies in
Streptococcus mutans. Microbiology 154:
2275–2282
194. McLaughlin RE, Ferretti JJ (1995)
Electrotransformation of Streptococci.
Methods Mol Biol 47:185–193
195. Lee JC (1995) Electrotransformation of
Staphylococci. Methods Mol Biol 47:
209–216
196. Alexander JE, Andrew PW, Jones D et al
(1990) Development of an optimized system
for electroporation of Listeria species. Lett
Appl Microbiol 10:179–181
197. Kuramitsu HK, Chi B, Ikegami A (2005)
Genetic manipulation of Treponema dentic-
ola. Curr Protoc Microbiol Chapter 12, Unit
12B.12
Stephanie J. Yaung et al.
25
198. Hyde JA, Weening EH, Skare JT (2011)
Genetic transformation of borrelia burgdorferi.
Curr Protoc Microbiol, Chapter 12, 1–17
199. Rosa P, Stevenson B, Tilly K (1999) Genetic
methods in Borrelia and other spirochaetes.
Method Microbiol 29:209–227
200. MayoB,vanSinderenD(2010)Bifidobacteria:
genomics and molecular aspects. Caister
Academic Press, Norfolk, UK
201. Yeung MK, Kozelsky CS (1994) Trans-
formation of Actinomyces spp. by a gram-neg-
ative broad-host-range plasmid. J Bacteriol
176:4173–4176
202. Miles R, Nicholas R (eds) (1998) Mycoplasma
protocols, vol 104, Methods Mol Biol.
Humana Press, Totowa, NJ
203. Sassetti CM, Boyd DH, Rubin EJ (2001)
Comprehensive identification of conditionally
essential genes in mycobacteria. Proc Natl
Acad Sci U S A 98:12712–12717
204. Luijk NV, Stierli MP, Schwenninger SM
(2002) Genetics and molecular biology of
propionibacteria. Lait 82:45–57
205. Binet R, Maurelli AT (2009) Transformation
and isolation of allelic exchange mutants of
Chlamydia psittaci using recombinant DNA
introduced by electroporation. Proc Natl
Acad Sci U S A 106:292–297
206. Bélanger M, Rodrigues P, Progulske-Fox A
(2007) Genetic manipulation of
Porphyromonas gingivalis. Curr Protoc
Microbiol Chapter 13, Unit 13C.12
207. Flint HJ, Martin JC, Thomson AM (2000)
Prevotella bryantii, P. ruminicola and bacte-
roides strains. In: Eynard N, Teissié J (eds)
Electrotransformation of bacteria. Springer,
Heidelberg, pp 140–149
208. Nikolich MP, Salyers AA, Shoemaker NB
(1994) Method and materials for introducing
dna into prevotella ruminicola. US Patent
5322784, Jun 21, 1994
209. Bacic MK, Smith CJ (2008) Laboratory
maintenance and cultivation of bacteroides
species. Curr Protoc Microbiol Chapter 13,
Unit 13C 11
210. Salyers AA, Shoemaker N, Cooper A et al
(1999) Genetic methods for bacteroides
species. Method Microbiol 29:229–249
211. Smith CJ (1995) Genetic transformation of
Bacteroides spp. using electroporation.
Methods Mol Biol 47:161–169
212. Kinder Haake S, Yoder S, Gerardo SH (2006)
Efficient gene transfer and targeted mutagen-
esis in Fusobacterium nucleatum. Plasmid
55:27–38
213. Segal ED (1995) Electroporation of
Helicobacter pylori. Methods Mol Biol
47:179–184
214. Taylor DE (1992) Genetics of campylobacter
and helicobacter. Annu Rev Microbiol
46:35–64
215. Rachek LI, Hines A, Tucker AM et al (2000)
Transformation of Rickettsia prowazekii to
erythromycin resistance encoded by the
Escherichia coli ereB gene. J Bacteriol 182:
3289–3291
216. McQuiston JR, Schurig GG, Sriranganathan
N et al (1995) Transformation of Brucella
species with suicide and broad host-range
plasmids. Methods Mol Biol 47:143–148
217. Scarlato V, Ricci S, Rappuoli R et al (1996)
Genetic manipulation of bordetella. In:
Adolph KW (ed) Microbial genome methods.
CRC Press, Boca Raton, FL, pp 247–262
218. Bogdan JA, Minetti CA, Blake MS (2002)
A one-step method for genetic transforma-
tion of non-piliated Neisseria meningitidis.
J Microbiol Methods 49:97–101
219. Genco CA, Knapp JS, Clark VL (1984)
Conjugation of plasmids of neisseria gonor-
rhoeae to other neisseria species: potential
reservoirs for the β-lactamase plasmid. J Infect
Dis 150:397–401
220. O’Dwyer CA, Langford PR, Kroll JS (2005)
A novel neisserial shuttle plasmid: a useful
new tool for meningococcal research. FEMS
Microbiol Lett 251:143–147
221. DennisJJ,SokolPA(1995)Electrotransformation
of Pseudomonas. Methods Mol Biol
47:125–133
Engineering Human-Associated Microbiomes
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
27
Lianhong Sun and Wenying Shou (eds.), Engineering and Analyzing Multicellular Systems: Methods and Protocols,
Methods in Molecular Biology, vol. 1151, DOI 10.1007/978-1-4939-0554-6_2, © Springer Science+Business Media New York 2014
Chapter 2
Constructing Synthetic Microbial Communities
to Explore the Ecology and Evolution of Symbiosis
Adam James Waite and Wenying Shou
Abstract
Synthetically engineered microbial communities based on model organisms provide a simplified model of
their naturally occurring counterparts while still retaining essential features of living organisms. The degree
of control afforded by this approach has been critical in understanding how similar types of natural com-
munities might have persisted and evolved. Here, we first discuss important considerations when designing
a synthetically engineered system. Then, we describe the steps required to create a two-partner cooperative
system based on the yeast Saccharomyces cerevisiae.
Key words Evolution, Ecology, Mutualism, Cooperation, Synthetic biology, S. cerevisiae
1 Introduction
From mediating biogeochemical cycles [1] to influencing human
health [2] and disease [3], microbial communities impact all
aspects of life on earth. However, the complexity of microbial com-
munities and the difficulty in isolating and culturing microbes [4]
pose serious challenges for decoding cell–cell and cell–environment
interactions. Moreover, the evolutionary histories of microbial
communities are difficult to retrace. Alternatively, communities of
model organisms engineered to engage in defined interactions can
be deployed to address fundamental questions in ecology and evolu-
tion, such as how species coexist and coevolve [5]. In this chapter,
we discuss several considerations when designing a synthetic
community, using the construction of a two-partner cooperative
yeast system as an example. Then, we describe the methodology
in detail.
The initial consideration is the choice of organisms. Genetic
tractability and short generation times facilitate strain construction
and experimentation, as well as the discovery and interpretation of
mutations during experimental evolution. Thus, well-studied model
organisms with reference genome sequences such as Escherichia coli
28
or Saccharomyces cerevisiae are ideal, although other species have
also been used [5]. While each model organism has its advantages
and disadvantages, we will use S. cerevisiae to highlight principles
that are applicable to any synthetically engineered community.
Sexual recombination is both a help and a hindrance to syn-
thetically engineered communities. On the one hand, sexual
recombination can radically simplify strain construction by allow-
ing genetic shuffling. For example, when a strain with genotype
AB is crossed with a strain of genotype ab, recombinant strains
Ab and aB can be generated. On the other hand, distinct popula-
tions in an engineered community should remain genetically
insulated from one another and therefore should not be allowed
to mate. An advantage of using S. cerevisiae is its ability to
undergo both sexual and asexual reproduction. Haploid yeast is
particularly suitable for evolution experiments since phenotypes
arising from recessive mutations are immediately apparent.
Haploid yeast can reproduce asexually as either of the two mating
types, “a” or “α.” Two cells of opposite mating type can mate to
produce an a/α diploid, which can reproduce either asexually as
diploids or sexually to form haploids. The final strains for an engi-
neered community should always be the same mating type to pre-
vent sexual recombination. However, haploid yeast switch mating
types spontaneously at very low frequency even when the gene
required for mating-type switching (HO) is defective (which is the
case for all commonly used laboratory strains). Thus, we have used
MATa cells in which the STE3 gene encoding the receptor for
MATa mating pheromone [6] is deleted. Thus, if a MATa ste3 cell
switches mating type to MATα ste3, it will fail to initiate the
mating process.
Ideally, all strains should be derived from an isogenic back-
ground so that the only mutations are the ones defined by the
researcher. We have used the strain S288C, which is one of the
common laboratory strains, and the wild vineyard isolate RM11-1a
(hereafter referred to as “RM11”). While S288C has its genome
fully annotated and easily accessible [7], it has a tendency to pro-
duce mitochondrially deficient “petite” cells [8], which are prone
to nuclear genome instability [9] and could potentially interfere
with evolution experiments. RM11 (genome sequence available at
http:/
/www.broadinstitute.org/annotation/genome/saccharomyces_
cerevisiae/) grows faster than S288C and produces very few
petites, but haploid daughter cells do not separate well from their
mothers unless the RM-11 AMN1 allele is replaced by the AMN1
allele from S288C [10]. Genetic manipulation in RM-11 is more
difficult due to its lower transformation efficiency compared to
S288C.
A major advantage of using model organisms is that they are
genetically modifiable. Foreign DNA can be transformed into yeast
as autonomously replicating and segregating circular plasmids or as
Adam James Waite and Wenying Shou
29
linear DNA if genomic integration is desired. Integration is more
stable than using a plasmid. Different populations can be marked
with, for example, different antibiotic resistances or fluorescent
proteins. Currently, at least six dominant antibiotic resistance genes
are in wide use with S. cerevisiae: kan, which confers resistance to
geneticin a.k.a. G418; hph, which confers resistance to hygromycin
B; nat, which confers resistance to nourseothricin (sold as clon-
NAT by Werner BioAgents); pat, which confers resistance to
phosphinothricin; ble, which confers resistance to phleomycin;
and AUR1-C, which confers resistance to Aureobasidin A (AbA).
All of these genes are available on plasmids [11–13]. Our lab has
used G418, hygromycin B, clonNAT, and AbA resistance markers.
Using antibiotic resistance to select a subpopulation from a
co-culture is especially useful if the subpopulation is very rare, as
tens of millions of cells can be assayed on a single plate. However,
plating on media supplemented with different drugs to determine
subpopulation abundance is time-delayed since it takes at least 1 day
for colonies to grow up. It is also of low throughput due to the
small number (hundreds) of individual colonies that can be counted
on a plate. In contrast, fluorescently tagged strains can be distin-
guished using flow cytometry, which allows tens of thousands of
cells to be counted in less than a minute. While fluorescence-
activated cell sorting (FACS) can also be used to isolate subpopula-
tions, it requires an expensive instrument and is less efficient when
isolating very rare subpopulations. A large number of fluorescent
proteins are available [14], although not all of them are bright
and/or resolvable from one another using standard filter sets.
In addition, the correct folding of fluorescent proteins requires
oxygen [15] and is therefore incompatible with strict anaerobes.
We have C-terminally tagged (Fig. 1) the highly abundant proteins
FBA1 or MET6 with different fluorescent proteins in yeast. Using
the appropriate combination of lasers and filter sets (Table 1),
we can resolve mixtures of cells expressing five different fluores-
cent proteins: CFP, GFP, YFP, mOrange, and mCherry as well as
the far-red nucleic acid dye TO-PRO-3 (Invitrogen) which can be
used to stain dead cells. Plasmids containing different combina-
tions of fluorescent proteins and selectable markers (i.e., genes
for nutrient biosynthesis or antibiotic resistance) [16] are readily
available from EUROSCARF (http:/
/web.uni-frankfurt.de/
fb15/mikro/euroscarf/).
Since deleting or inserting genes will usually be accomplished
by transformations (Fig. 1), which require selectable markers, it is
convenient to be able to reuse these markers. Plasmids containing
kanMX [17] and ble [18] flanked by loxP sites are available for this
purpose (for a comprehensive list of plasmids with removable
markers, see ref. 19). In the presence of Cre recombinase, the two
loxP sites recombine, removing the intervening marker and allow-
ing for its reuse in another round of manipulation. Our lab has
Constructing Synthetic Microbial Communities
30
modified these plasmids to contain nat (WSB116) and hph
(WSB117). We generally do not use auxotrophy (the inability to
synthesize an essential metabolite) to mark strains except when
both selection and counterselection are required. For example,
PCR
Marker
Transformation
+
Marker Marker
Gene X
Gene X Gene X
Gene replacement
Marker
Checking primer
45 bp homology sequence
Universal primer sequence
Genomic DNA
C-terminal tagging
Fig. 1 Schematic of gene replacement and C-terminal tagging. In both cases, the selectable “marker” is PCR
amplified off a plasmid using a pair of hybrid primers. The 3′ end of the primers contains sequences specific to
the plasmid (thin green lines) in a region ideally identical among a family of marker plasmids to achieve flexibility.
The 5′ end of the primers is 45 bp homologous to yeast genomic DNA (thick blue lines). For gene replacement,
the forward homology is to the region immediately 5′ of the start codon of the open reading frame (ORF) of the
gene of interest (“Gene X”), while the reverse homology is the reverse complement of the region immediately 3′
of the stop codon of the ORF. For C-terminal tagging, the reverse homology is the same as for gene replacement,
while the forward homology is the 45 bp leading up to but not including the stop codon of the ORF.After transfor-
mation, checking primers (thin black arrow lines) are used in colony PCR to verify proper integration of the DNA
fragment.One primer has homology to the plasmid sequence,while the other has homology specific to the region
outside of the 45 bp homology used for integration. For C-terminal tagging, the depicted location of checking
primers is preferred, as it results in a shorter (and therefore easier to amplify) PCR product
Table 1
Lasers and filter sets used to simultaneously resolve five fluorescent
proteins and one fluorescent dye
Laser (nm) Filtera
Fluorophore
405 450/50 CFP
488 505/10 GFP
530/30 YFP/citrine
561 590/20 mOrange
615/25 mCherry
639 660/16 TO-PRO-3
a
The number before the slash indicates the center wavelength in nanometers; the number
after the slash is the total bandwidth passed by the filter. For example, “450/50” indicates
a filter that passes wavelengths from 425 to 475 nm
Adam James Waite and Wenying Shou
31
integration of the loxP–drug–loxP cassette could be carried out in
a ura3 strain so that transformation of a URA3-marked plasmid
containing the Cre recombinase can be selected for. After induction
of Cre expression and removal of the drug marker, the URA3
plasmid can then be counterselected using 5-FOA, which only
allows survival of cells without the plasmid [20]. The uracil auxot-
rophy may then need to be removed via genetic crosses.
Alternatively, Cre expression plasmids containing antibiotic mark-
ers are also available [19].
Once the populations have been marked, interactions between
populations can be defined. Obviously, the possibilities are practi-
cally limitless, and the specifics must be left to the researcher.
We chose to base our two-partner cooperative system on comple-
mentary nutrient exchange [21].
In yeast, all of the manipulations described above can be achieved
through a small set of well-known methods [19]. These include
(1) transformation to insert or remove genetic material; (2) colony
PCR, a simple and rapid way to check whether transformation was
successful; and (3) mating, sporulation, tetrad dissection, and geno-
typing, which allows genetic features present in two different strains
to be recombined into one strain. Below we describe our current
protocols for each of these methods.
2 Materials
1. Plasmids containing genes encoding fluorescent proteins and/
or selectable markers.
2. Antibiotics: 1,000× stock G418 (200 mg/ml), 500x stock
hygromycin B (100 mg/ml), 1,000× stock clonNAT (100 mg/
ml), 1,000× stock AbA (0.5 mg/ml) (see Note 1).
3. YPD: 10 g/l Bacto-yeast extract, 20 g/l Bacto-peptone, and
bring to volume with diH2O to final 950 ml/l for later glucose
supplement. Add 20 g/l Bacto-agar (see Note 2) if making
plates. Add a magnetic stir bar, and autoclave. Using a flame to
ensure sterility, add 50 ml 40 % glucose per liter of medium and
the appropriate antibiotic, if necessary. Stir to mix. If multiple
liters of agar medium are prepared, they may be kept at 50 °C
water bath to prevent solidification of the agar.
4. SD: For liquid media, add 6.7 g/l Difco™ yeast nitrogen base
(YNB) with ammonium sulfate and without amino acids and
20 g/l glucose, and bring to volume with diH2O. Sterilize
using 0.22 μm filter. For plates, add 6.7 g/l YNB, 20 g/l
Bacto-agar, and a stir bar, and add diH2O to 950 ml/l.
Autoclave. Using sterile technique, add supplements as neces-
sary. Amino acid and nucleobase supplements can be mixed in
appropriate proportions [19] in their powder forms in a
2.1 Components for
Genetic Manipulation
Constructing Synthetic Microbial Communities
32
sterilized blender and stored at room temperature. Powdered
supplements can be weighed and directly added to the media.
Finally, add 50 ml 40 % glucose. Use the glucose to wash
down any residual supplement powder adhering to the vessel
wall and stir.
5. 50 % PEG 2000 (see Note 3): Dissolve 100 g PEG in 100 ml
diH2O. Bring to 200 ml with diH2O. Sterile filter.
6. 1 M LiAc: 102 g/l Lithium acetate dihydrate (102.02 g/mol).
Sterile filter.
7. 5 mg/ml Sheared salmon sperm DNA (SS-DNA) [22].
8. Autoclaved water, tubes, and tips.
1. Sporulation media: 3 g/l potassium acetate, 0.2 g/l raffinose,
bring to final volume with diH2O. Autoclave.
2. SCE buffer: 1 M D-sorbitol, 0.1 M sodium citrate (see Note 4),
60 mM EDTA. Adjust pH to 7.0 with 38 % HCl (see Note 5).
Autoclave using a 20′ sterilization cycle, and remove promptly
(see Note 6).
3. Zymolyase 20T: 30 mg zymolyase 20T dissolved in 10 ml SCE
(see Note 7).
3 Methods
1. Design primers: For gene replacement (Fig. 1), the forward
primer should contain 45 base pairs (bp) of homology to the
genomic region immediately upstream of the “ATG” codon of
the open reading frame (ORF) of the gene to be knocked out,
followed by the sequence for the universal forward adapter
appropriate for the particular set of plasmids being used.
The reverse primer should contain the reverse complement to
the 45 bp including and immediately downstream of the stop
codon of the target ORF, followed by the reverse complement
to the universal reverse adapter appropriate for the plasmid set.
For C-terminal tagging (Fig. 1), the reverse primer is designed
as in gene replacement, and the forward primer should contain
45 bp homology to the sequence just 5′ of the stop codon of
the gene of interest.
2. PCR amplify cassette (antibiotic resistance for gene replacement
or fluorescent protein plus selectable marker for C-terminal
tagging) off a plasmid (see Note 8). Check the length of the
PCR product using gel electrophoresis.
1. Inoculate 5 ml YPD culture per transformation and shake at
30 °C until the cell density is between 3×106
and 2×107
cells/ml
(see Note 10).
2.2 Components for
Mating, Sporulation,
and Tetrad Dissection
3.1 Primer Design
and Amplification
for Gene Tagging
or Replacement
3.2 Transformation
(See Note 9)
Adam James Waite and Wenying Shou
33
2. Prepare a boiling water bath for the SS-DNA. While the water
is warming up, harvest the culture in a sterile 50 ml centrifuge
tube at 425×g for 2 min.
3. Pour off the YPD medium, and resuspend the cells in 25 ml of
sterile water and centrifuge again.
4. Pour off the water, resuspend the cells in 100 μL 0.1 M LiAc,
and transfer the suspension to a 1.5 ml microfuge tube.
5. Pellet the cells at top speed for 15 s, and remove supernatant
with a micropipette.
6. Resuspend the cells in about 43 μl of 0.1 M LiAc to a final
volume of 50 μl (2×109
cells/ml) per transformation.
7. By now the water bath should be boiling. Boil SS-DNA (with
cap lock on) for 5 min, and then quickly transfer it to ice
(see Note 11). Vortex briefly to speed up cooling, and then
keep on ice.
8. Vortex the cell suspension and pipette 50 μl into 1.5 ml tubes.
Pellet the cells at top speed for 15 s, and remove supernatant
with a pipette. Vortex to loosen up the pellet.
9. Prepare the transformation mixture (TRAFO) master mix
(1.2× the total volume required so that pipetting errors can be
accommodated) and keep on ice (see Note 12): 240 μl
50 % w/v PEG (see Note 3), 36 μl 1.0 M LiAc, 20 μl 5 mg/ml
SS-DNA, and 64-x μl sterile dH2O per transformation, where
x μl is the volume of DNA to be added (see Note 13). Vortex
until completely homogenous (see Note 14).
10. Add 360-x μl TRAFO to each cell pellet (see Note 15), and
mix well by pipetting up and down (see Note 16). Add x μl
DNA, and mix well again by vortexing or pipetting.
11. Heat shock cells by placing the tubes in a 42 °C water bath for
40 min (see Note 17). Mix by inverting every ~10 min.
12. Centrifuge at 3,824×g for 15 s, and remove TRAFO with a
pipette or simply by decanting. Wash cells by resuspending the
pellet in 1 ml YPD. Spin again at 3,824×g for 15 s (see Note
18). Remove YPD, and pipette 1 ml fresh YPD into each tube.
Resuspend the pellet by pipetting it up and down gently.
13. If selection is on complementation of nutrient auxotrophy, cells
can be directly plated on selective medium. If selection is on
drug resistance, cells need to be incubated for ~2–3 h at 30 °C
in 1 ml YPD to express the resistance gene before being plated.
14. To plate, first centrifuge at 3,824×g for 15 s. Discard 700 μl of
the supernatant. Resuspend cells in the remaining 300 μl and
plate on 80 % of the surface. Use a sterile toothpick to streak
from the plated area to the empty area to maximize the chance
of obtaining single colonies.
15. Incubate at 30 °C. Colonies should be visible in 2–3 days.
Constructing Synthetic Microbial Communities
34
1. Design primers: One primer should be specific to the cassette
used for transformation (for example, the universal primer
sequence). The other primer should be outside the 45 bp
homology region used for integration (Fig. 1).
2. Using a sterile pipette tip, pick about half of a normal-sized
(~1.2 mm diameter) colony without touching the agar beneath
it. For S288C, place directly into 15 μl sterile water, vortex, and
use 1 μl in a 20 μl PCR (see Note 20). For RM11, transfer the
cells to 15 μl 0.25 % SDS (see Note 21). Vortex for 30 s, spin at
top speed (~17,949×g in a small centrifuge) for 1 min, and use
1 μl of the supernatant for a 20 μl PCR. This PCR mix must
contain a final concentration of 5 % Triton X-100 to neutralize
the protein-denaturing SDS [23]. An alternative, and more
reliable, method uses LiAc and SDS to lyse cells and requires
ethanol precipitation prior to PCR (see Note 19, ref. 22).
Specifically, cells are suspended in 100 μl 200 mM LiAc and
1 % SDS solution and incubated at 70 °C for 15 min. 300 μl
96 % ethanol is added to precipitate DNA. After brief vortexing,
DNA is collected by centrifugation at 15,000×g for 3 min.
Precipitated DNA is dissolved in 100 μl TE (10 mM Tris–HCl,
1 mM disodium EDTA, pH 8.0). After spinning cell debris down
at 15,000×g for 1 min, 1 μl supernatant is used for PCR.
1. Grow up a small patch of each haploid to be crossed towards
the top of a YPD plate (see Note 22).
2. Use a sterile toothpick to transfer a tiny amount of one strain
to an empty region of a YPD plate (see Note 23), making a
small spot (a few millimeters in diameter). With a fresh tooth-
pick, transfer a similarly tiny amount of the other strain to the
same spot and mix with the toothpick.
3. Incubate for 3.5 h (S288C) or 2.5 h (RM11) at 30 °C
(see Note 24).
4. Using a toothpick, touch the mixed spot and streak down
about a centimeter. Without re-touching the spot, make similar
streaks to the left and right of the original streak. This gives
three different dilutions of cells on the plate.
5. Use a yeast dissection microscope [19] to isolate diploids.
The cytoplasmic “bridge” between mated cells and a small bud
at its center is indicative of recently mated diploids.
1. Pre-sporulate by patching onto YPD and incubating at 30 °C
for ~10 h until a thin film of cells is formed (see Note 25).
2. Inoculate 2 ml sporulation media with about a match head’s
worth of cells. Incubate at room temperature on a rotator for
2–5 days. Check for tetrads using a light microscope using a
20–40× magnification objective [19].
3.3 Colony PCR
(See Note 19)
3.4 Mating and
Diploid Isolation
3.5 Sporulation,
Tetrad Dissection,
and Genotyping
Adam James Waite and Wenying Shou
35
3. Wash cells with 1 ml sterile water and resuspend in 1 ml sterile
water. Store at 4 °C.
4. When ready to dissect, spin down 20 μl of sporulated cells and
carefully remove supernatant with a pipette. Add 20 μl SCE,
and vortex to resuspend cells. If using RM11, sonicate for
1 min.
5. Add 4 μl zymolyase 20T, and mix by pipetting up and down
(see Note 26). Incubate at room temperature for 20 min
(S288C) or 2 h (RM11) (see Note 27).
6. Gently (to avoid breaking up tetrads) pipette up digested cell
suspension and spot onto the top portion of the center strip of
a YPD plate. Tilt plate down so that the liquid rolls down the
central strip, stopping before the liquid touches the plate wall.
Let dry.
7. Use a yeast dissection microscope to separate tetrads into indi-
vidual spores. Create a grid with a maximum of two tetrads per
row [19], one to the left and one to the right of the central
strip.
8. Incubate overnight at 30 °C. Use a flame-sterilized scalpel to
remove the strip of cells from the middle of the plate (see Note 28)
and return to incubator.
9. Once the spores have germinated and grown into colonies,
replica plate onto the appropriate selective media(s). Note that
a single genetic locus should, under most circumstances, seg-
regate 2:2 [19]. For instance, two spores will be MATa and
two will be MATα. Exceptions can be caused by, for exam-
ple, gene conversion or traits that are mediated by heritable
materials transmissible through the cytoplasm, such as
mitochondria.
10. Mating types can be tested using a pair of mating-type testers,
one of each mating type. If the entire collection of spores are
auxotrophic because of mutations in a set of genes, then the
testers should be auxotrophic due to mutation in a different
gene to ensure that the resulting diploids are prototrophic. In
this case, spread ~200 μl of a saturated culture of each tester
strain on its own YPD plate and let dry. Then, replica plate the
target strains onto each plate using a sterile velvet. After half a
day, replica each plate onto an SD plate. Growth will only
occur if the strains are able to mate. If spores are prototrophic,
they need to be separately mated to each of the two tester
strains, as described above for diploid isolation. Many crosses
can be set up on one YPD plate. The mating type of a strain is
revealed by the presence or the absence of fused diploids. If this
method is necessary, it is better to narrow down the number of
strains to be tested based on other markers first.
Constructing Synthetic Microbial Communities
36
4 Notes
1. Prepare stocks in deionized (di) H2O and sterile filter (except
for AbA, which should be made in ethanol and needs no sterile
filtration) and keep at −20 °C.
2. Not all sources of YNB and agar are appropriate for use with yeast.
For example, we have found that YNB and agar obtained from BD
biosciences work better than those obtained from USA Scientific.
3. The size of PEG is important. Transformation efficiency for
RM11 is very low if PEG 3500 is used. We use PEG3500 to
transform S288C, although PEG2000 should work as well.
4. NaH2PO4 can be used instead.
5. About 0.5 ml when making a final volume of 500 ml.
6. Ensure that the color of solution did not change during the
autoclave process.
7. Freeze down 1 ml aliquots at −20 °C. To use, thaw one tube and
make smaller aliquots. Store one at 4 °C for up to 2 months,
and freeze the rest for later use.
8. Always use a high-fidelity polymerase for PCR to minimize the
possibility of introducing mutations into the amplified fragment.
Here is a specific recipe for C-terminally tagging FBA1 using the
pKT plasmids [16] and KOD polymerase (EMD Millipore):
0.5 μl miniprep DNA (~100 ng), 5 μl 10x buffer, 4 μl 25 mM
MgSO4, 5 μl 8 mM dNTPs, 0.5 μl primer WSO178 (50 μM),
0.5 μl primer WSO179 (50 μM), 0.5 μl KOD
polymerase, 34 μl water (molecular biology grade). WSO178
sequence: 5′-AAGATCACCAAGTCTTTGGAAACTTTCC
G T A C C A C T A A C A C T T T A g g t g a c g g t g c t g g t t
ta-3′. WSO179 sequence: 5′-GATTCAATACTCATTAAAAA
ACTATATCAATTAATTTGAATTAACtcgatgaattcgagctcg-3′.
The 45 bp homology sequence is uppercase; the universal primer
sequence is lowercase. PCR settings: 94 °C for 2 min, 30 cycles
of {94 °C for 30 s, 55 °C for 30 s, and 70 °C for 3 min}, and
then 70 °C for 10 min. When nat is the template, it is essential
to add DMSO to a final concentration of 5 % [11].
9. Transformation is mutagenic. It is therefore best to transform
diploids and then sporulate, since one round of meiotic segrega-
tion reduces the probability of obtaining an undesired mutation
by 50 %. If multiple haploids of the desired genotype derived
from the same diploid behave similarly, then background muta-
tions are unlikely to be important. Alternatively, our lab has
found that Illumina deep sequencing can reveal the presence of
mutations caused by transformation.
10. To ensure that cultures are in exponential phase when it is
time to transform, pilot growth experiments may be helpful.
Wild-type RM11 grows very rapidly. If the density is >5×107
Adam James Waite and Wenying Shou
37
cells/ml, dilute to allow the cells to complete at least two
divisions in unsaturated conditions. Transformation efficiency
remains constant for 3–4 cell divisions.
11. Keep small aliquots of SS-DNA to limit the number of freeze–
thaw cycles. Keep on ice when out of the freezer.
12. Keeping the TRAFO master mix on ice is crucial for high
efficiency.
13. Use >100 ng DNA. In general, more DNA yields more transfor-
mants, but this relationship will likely saturate at some point.
14. This can be visually confirmed by ensuring that no visible
“strands” are present in the mixture.
15. TRAFO is very viscous, so pipette slowly to ensure that the
correct volume is transferred.
16. Mixing well ensures that the SS-DNA effectively blocks non-
specific DNA binding.
17. Adjusting the amount of time for heat shock may be necessary
to achieve maximum efficiency. However, 40 min works well
for S288C and RM11.
18. Be as gentle as possible at this step, as the cells are very fragile.
19. Colony PCR is quick but can be unreliable. When it fails to
work, we have found that a quick DNA extraction before PCR
gives reliable results [23].
20. The cell suspension should be turbid.
21. Unlike S288C, boiling of RM11 cells does not provide good tem-
plate for PCR, although we do not know why. Using detergent
effectively lyses the cells and releases their DNA into solution.
22. This can be done for as little as 3 h.
23. The amount should be small enough to not leave a visible film
on the plate after transfer.
24. Different strains may require more or less time. Cells should
show visible film of growth by this time.
25. Overgrowth will lead to a reduction in sporulation efficiency.
However, a suitable number of tetrads should be present even
after 12–14 h of pre-sporulation.
26. Vortexing can oxidize the zymolyase.
27. The four spores form a three-dimensional, tetrahedral shape if
the ascus wall is undigested. After sufficient digestion, the four
spores will have a flat, diamond shape. Underdigestion of the
ascus wall will make it difficult to separate the individual spores.
Overdigestion will result in tetrads that break apart easily,
increasing the chances that four spores in the correct diamond
shape are not products of the same meiosis. Overdigestion can
also reduce spore viability.
28. Otherwise, growth of this strip will slow down the growth of
the haploids nearest to it.
Constructing Synthetic Microbial Communities
Another Random Document on
Scribd Without Any Related Topics
XIV.
Dagene var begyndte at længes.
Fra tidlig om Morgenen, indtil Daglyset forsvandt, sad han ved
Staffeliet. — Han vilde.
Han havde tegnet tre eller fire Kartoner til et stort Figurbillede,
kasseret dem alle og saa taget fat paa den femte. Heller ikke den
var han tilfreds med, men han følte sin Uformuenhed til at gjøre det
bedre. Saa blot videre — videre. —
Han spændte Lærredet paa Blændrammen og tog fat paa at male
Billedet. Atter og atter smurte han det over igjen. Naar han havde
malet flittig hele Dagen og endelig syntes, at Gnisten var i Færd med
at komme, saa det ligesom lysnede op i ham, blev det kun endnu
værre, naar han den næste Morgen kom ind i Atelieret og saa
Resultatet af den foregaaende Dags Arbejde.
Hans Billede stod tungt og indholdsløst, uden Friskhed, uden Liv.
Saa kunde han sidde og falde helt sammen, med Hovedet begravet i
sine Hænder og med en forfærdelig knugende Følelse af, at Evnerne
svigtede ham. Og dermed var igjen mange Dages møjsommeligt
Arbejde spildt.
Til sine Tider forekom det ham, at han ikke havde en eneste frisk
eller ny Tanke, og at han ligesaa gjærne kunde opgive det hele. Til
andre Tider myldrede det med Ideer om, hvorledes han vilde male,
og hvorledes det skulde være — det stod altsammen saa klart for
ham — men naar han saa førte Penslen op til Lærredet, nægtede
Haanden at udføre sin Part, og hvad han malede blev tørt, kjedeligt
og haandværksmæssigt.
Men han vilde. Og han begyndte forfra og forfra igjen.
Omsider — en af de sidste Dage før Kunstnernes Arbejder skulde
være indleverede til den aarlige Foraarsudstilling — blev hans Billede
færdigt. Aldrig havde noget Arbejde kostet ham saa megen Kval.
Han gad ikke se det. Og han var bange for at se det. Han havde
vendt det om mod Væggen i Atelieret og lod det staa saaledes, indtil
Karlen kom, der skulde bringe det op paa Charlottenborg.
Og da det var borte, vidste han ikke rigtig, om han skulde føle sig
lettet derved eller endnu mere mismodig og tvivlende end i alle de
lange Arbejdsdage, da det havde staaet paa hans Staffeli.
Men han var sig bevidst, at han havde lagt alt det i Billedet, som han
havde evnet. Det kunde jo ogsaa være, at det var bedre, end han
selv troede. Maaske var det den trykkede Sindsstemning, hvori han
befandt sig, der fik ham til at se saa modfalden og utilfreds paa det.
Sikkert var det, at det vilde blive afgjørende for ham, om dette Billed
gjorde Lykke eller ikke. Han syntes næsten, at han maatte staa eller
falde med det.
Han havde med stor Spænding ventet paa Maleriernes Ophængning
for at se, hvorledes hans »Vesterhavs-Fiskere« vilde se ud ved Siden
af de andre Arbejder.
Han var deroppe Dagen før den sædvanlige Aabningshøjtidelighed
og traf sammen med adskillige af sine Kammerater. Men han havde
ikke behøvet at høre deres mere eller mindre skaansomme Ytringer
for at sige sig selv, at hans Arbejde var mislykket — en øjensynlig
Tilbagegang. Thi trods den svigtende Produktionsevne havde han
beholdt sit kritiske Blik baade for sig selv og andre. Han saa mere
tydelig, end nogen kunde fortælle ham det, at hans Arbejde var
forfejlet.
Den samme umandige Svaghed, denne Halvhed mellem Energi og
Uformuenhed, som han ofte var sig bevidst i sin Karakter som
Menneske, syntes at træde frem ogsaa i hans Værk. I hans Billede
var der en vis pedantisk Stivhed, blandet med et mislykket Forsøg
paa en kjækkere og friere Malemaade, og noget lignende gjorde sig
gjældende i selve Indholdet. Der var Tilløb til en sund, frisk
Friluftsstemning, men den knækkede over paa Halvvejen og blev til
sygelig Følsomhed.
Billedet var og blev mislykket.
Der var adskillige dygtige Arbejder af hans Kammerater — Billeder,
der vidnede om Udvikling og om voxende Kræfter. Han skammede
sig ved at mærke hos sig selv, at han misundte dem.
De andre gik frem. Skulde han være nødt til at opgive Kampen som
frugtesløs. — Var Gnisten virkelig haabløst slukket? Eller havde den
ikke været stærk nok til at blive andet for ham end en skuffende
Lygtemand?
Nej, det var umuligt. Han følte det saa sandt og vist hos sig selv, at
han havde baade Kunstnerens Øje og Sind. Livet og Naturen
aabenbarede sig villig for ham. Han var sig bevidst, at han forstod at
tyde dem, og selv i dette mismodige Øjeblik mærkede han,
hvorledes det gjærede i hans Sind med spirende Tanker og Syner. —
Det var umuligt, at han havde kunnet tage fejl af sit Kald — at han
kun skulde have Evne til at se og opfatte som Kunstneren, men ikke
den skabende Kraft. Men Paavirkningen — baade den indre og ydre
— havde manglet ham i altfor lang Tid.
Efter Mødet med Margrethe Aaby var der fulgt en Tomhed og
Sløvhed, som han ikke kunde faa Bugt med. Hun havde henvist ham
og sig selv til Pligtens lige Vej. Han gjorde sig Umage for at følge
den — og bildte sig ind, at det nærmest var, fordi han var for fejg til
at gjøre andet — men det skete med en underlig sløv Viljeløshed, thi
han havde vænnet sig til at se al Ting graat i graat. —
Og dog var Redning maaske mulig endnu. Kunde han komme bort,
rejse et Aars Tid, glemme en hel Del, som han gjærne vilde glemme,
og samle friske Tanker — saa vilde Gnisten muligvis blusse op igjen.
Men skulde han blive hjemme, tynget af sin huslige Misère, smaalige
Sorger for at leve — og de truede med at blive meget følelige,
saafremt han ikke fik sit Billede solgt — men først og fremmest med
den knugende Bevidsthed, at hans Evner ubarmhjærtig svigtede
ham, saa syntes han, at det maatte føre til haabløs Undergang.
Samme Dag, han havde indsendt sit Billede, havde han givet en
Ansøgning ind om et af Akademiets store Stipendier. Det var
bedrøveligt nok at tænke paa, at hans Fremtid paa en Maade syntes
at afhænge af, om han fik den lumpne Sum Penge eller ikke. Men de
»lumpne« Penge vilde sætte ham i Stand til at rejse ud og vinde
friske Kræfter, skabe et nyt Væld i den udtørrede Kilde, og derfor
blev det alligevel — hvor prosaisk det end var — et Livsspørgsmaal
for ham.
Men det havde de ærværdige Professorer næppe nogen Anelse om.
Naar hans Billede blev fundet utilfredsstillende, var det ikke rimeligt,
at han vilde faa Stipendiet.
Man vilde vistnok i alt Fald komme til det Resultat, at han havde
bedst af at vente et Par Aar paa en saadan Opmuntring. Og
imidlertid — men det var jo alligevel muligt, at det gik bedre, end
han troede.
Det var en kold, sludfuld Dag i Slutningen af April. En af de
gjækkende Dage, hvor Solen pludselig bryder frem mellem
regntunge Skyer og varsler om Foraar og Sommer for strax efter at
skjule sig igjen og lade det falske Smil efterfølge af stride
Regnstrømme og raslende Haglbyger.
Gader og Torve laa kølig forfriskede i et Regnbad, der havde
efterladt brede Vandpytter paa Stenbroen, og de letsindige
Indvaanere af begge Kjøn, der havde ladet sig friste af en Smule
blegnæbet Middagssol til altfor tidlig at stikke i Foraarstøjet, hastede
nu med blaalig anløbne Kinder og røde Næsetipper langs med
Husrækkerne, under ihærdige, men ofte frugtesløse Anstrængelser
for at holde Paraplyen stik mod Vinden. —
Henning havde taget en Beslutning. Han vilde tale med en af de
Professorer, der var beskikkede til at uddele Stipendierne. Han vilde
ærlig gjøre rede for, hvor magtpaaliggende det var ham at komme
ud for at modtage en befrugtende Paavirkning, som han følte, at han
trængte haardt til.
Det havde kostet ham en Del Overvindelse at holde fast ved dette
Forsæt og give sig i Færd med at udføre det, men der stod saa
meget paa Spil, at han ikke vilde lade noget Middel uforsøgt til at
rejse sig igjen efter det sidste Nederlag. —
Saa begav han sig hin sludfulde Aprildag paa Vejen til den velkjendte
Bygning, hvor Professoren havde Embedsbolig.
Det var henimod den Tid af Dagen, da Udstillingen lukkes, og i
Porten mødte han en Sværm af besøgende: kritisk udseende Herrer
og Damer, der stak deres Katalog og Blyantspen i Lommen, idet de
nærmede sig Udgangen; Gjæster fra Provinserne, der saa' saa ivrige
og travle ud, som om de endnu havde et Par Maleriudstillinger og
diverse Museer at støve igjennem, før de med en rolig Samvittighed
kunde lægge deres mødige Lemmer til Hvile i Hotellernes rummelige
Senge.
Nogle blev staaende i Porten med de allerede opslaaede Paraplyer
for at vente, til Bygen var trukken over, og i Sværmen saa Henning
et Par bekjendte Ansigter, som han skyndte sig forbi for ikke at blive
nødt til at indlade sig i en ligegyldig Samtale, som han ikke følte sig
videre oplagt til. —
Han skraaede over Gaarden, gik ind ad Porten til højre, hvor der
stod en Stabel Kasser, der havde gjemt eller endnu indeholdt
Billeder, bestemte til »anden Ophængning«, og stod i Begreb med at
gaa op ad den brede, snirklede Trappe, da han blev standset af et af
Akademiets Bude, gamle Blæsenberg, hvis ulastelige, sorte Frakke,
stive Halsbind og omhyggelig børstede Filthat havde et saa officielt
Præg, at ingen kongelig Kontorchef havde behøvet at skamme sig
ved at bytte Klæder med ham. Blæsenberg havde derfor ogsaa i
mange Aar gaaet under Hædersnavnet »Chefen« blandt Akademiets
Elever, der kjendte hans knirkende Støvler i halvtresindstyve Skridts
Afstand.
Denne indflydelsesrige Personlighed standsede Henning paa Trappen
med et fortroligt: »Goddag Hr. Bentsen! Det var grumme rart, jeg
traf Dem, for jeg gaar her med et Brev, som jeg skulde ha'e brungen
ud til Dem. Det var saa grumme heldigt. Værsgo', Hr. Bentsen!«
Med disse Ord leverede han Henning et stort, embedsmæssig
udseende Brev i blaa Konvolut, og da Henning modtog det uden at
synes tilbøjelig til at indlade sig i nærmere Samtale, gik Blæsenberg
videre efter at have gjort en kort Bemærkning om det grumme triste
Vejr. —
Henning blev staaende med Brevet i Haanden. Han havde paa
Fornemmelsen, hvad det indeholdt, men tøvede med at aabne det.
Saa rev han endelig Konvolutten op. — Skrivelsen var affattet i den
sædvanlige Kancellistil. Stipendiet var ikke tilstaaet ham. —
Han gik tilbage over Gaarden, ud gjennem Hovedporten, der
imidlertid var bleven rømmet af det udstillingsbesøgende Publikum.
Den smækkede i bag ved ham med et lydeligt Drøn, som om den for
evig Tid vilde lukke ham udenfor de indviede Mure.
Han blev staaende og saa ud over Torvet, der laa som en blinkende,
mørk Flade foran ham. Regnen piskede ned mod Brostenene og paa
de endnu bladløse Trær rundt om »Hesten«.
Sporvogne og drivvaade Drosker rullede forbi; Folk gik med
Paraplyen helt nede over Hovedet; Vandet sivede ud af Tagrenderne
med sit ensformige Prik-Prik. De røde Lygter blev satte udenfor
Theatret, og de første Theatergængere — Folk fra Provinsen, der
holdt sig til Plakaternes Bemærkning om, at »Indgangen aabnes Kl.
6½« — begyndte saa smaat at indfinde sig. —
Han blev staaende, uvis om, hvor han skulde gaa hen. Hjem gad
han ikke gaa. Dér ventede ham ingen Opmuntring.
Han tænkte paa, hvor helt anderledes det vilde have været, dersom
han hjemme havde fundet den Kjærlighed og Forstaaelse, som kan
hjælpe en Mand til at overvinde selv de største Hindringer og
forsone ham med de bitreste Skuffelser, han møder ude i Verden.
Men det nyttede ikke at gruble derover. Det var nu en Gang saa og
kunde ikke blive anderledes. Han følte ikke længere nogen Bitterhed
mod Minna, snarere en bedrøvelig Medynk baade med hende og sig
selv. Men Midlerne til at redde sig fra Skibbruddet — hvor skulde han
finde dem?
Saa faldt det ham pludselig ind at henvende sig til en af Stadens
Mæcenater, en Mand, der havde Ord for at have hjulpet mange unge
Kunstnere frem.
Han vilde forklare ham, hvorledes Sagerne stod — naturligvis med
Undtagelse af sine huslige Forhold — fortælle ham, at hans Fremtid
som Kunstner beroede paa, at han kunde komme bort et Aars Tid
for at faa friske Kræfter, og bede ham om de nødvendige Penge som
et Laan.
Hvad var et Par tusende Kroner for en Mand, der ejede flere
Millioner, og hvis Formue voxede hvert Aar med adskillige
Hundredetusender.
Men for ham, Henning, var den forholdsvis ubetydelige Sum
ensbetydende med nyt Liv og en ny Tilværelse.
Desuden mente han, at han kunde stille nogen Sikkerhed for et
saadant Beløb. Jo mere han tænkte derover, des mere sandsynligt
forekom det ham, at det kunde lykkes, og han fik omsider Mod til at
vove Forsøget. Da han først var kommen saa vidt, syntes han, at det
var bedst lige strax at sætte Beslutningen i Værk. —
Klokken var hen ved syv, altsaa ikke den Tid, man plejer at gjøre
Visit hos fornemme Folk. Men lige meget — han vilde ikke opsætte
det.
Han begav sig paa Vej til det Kvarter af Byen, hvor den store Mand
boede. Tjeneren, der modtog hans Kort, saa spørgende op og ned
ad ham og bemærkede, at Excellencen ikke modtog paa den Tid,
men han skulde gjærne aflevere Kortet. Dermed gik han og vendte
kort efter tilbage for at bede Henning træde ind. Excellencen skulde
strax være til Tjeneste.
Henning befandt sig i en rummelig Hjørnestue, halvt Bibliothek, halvt
Arbejdsværelse, udstyret i gammeldags Stil, med al den Luxus, som
en betydelig Formue i Forening med en fint udviklet Smag kan
tilvejebringe.
Over Skrivebordet hang en ægte Rembrandt, paa den modsatte Væg
nogle Stykker af gamle danske Mestere. — Overalt bløde, dæmpede
Farver, tunge, mørkerøde Silkegardiner, en mat bronceret Lysekrone,
Bøger, indbundne i brunt Maroquin; bredbladede, mørkegrønne
Planter i smagfulde Stativer, Stole med lave, magelige Sæder, et
Tigerskind med udstoppet Hoved inde under Skrivebordet. —
Der gik ti og atter ti Minuter. Henning hørte nu og da en fjærn
Klirren af Glas og andet Bordservice. Excellencen havde aabenbart
endnu ikke rejst sig fra Middagsbordet. — Folk plejer at være i en
blid og medgjørlig Stemning, naar de har spist godt. Han vilde
haabe, at Excellencen maatte være tilfreds med sin Middag. —
Saa ventede han endnu en halv Snes Minuter. Haglene piskede mod
Ruderne, og Lyset, der selv midt paa Dagen havde Møje med at
trænge ind mellem de folderige Gardiner, blev mere og mere
dæmpet.
Han havde sat sig paa en af de smaa Hjørnesofaer og lænede
Hovedet mod Rygstødet. Hans Blik strejfede ørkesløst de forskjellige
Gjenstande i Værelset, medens han forestillede sig, om Excellencen,
hvem han aldrig havde set personlig, var en høj, imponerende
Skikkelse eller en lille, tør, mager Mand; om hans Stemme var barsk
og bydende eller muligvis fin og sleben som en ægte Hofmands. —
Men lidt efter lidt forlod hans Tanker disse Enemærker og vandrede
langt bort fra den store Mand og hans Arbejdskabinet. Værelset var
opfyldt af en let, behagelig Vellugt, der blandede sig med den
stærke Varme fra en massiv Fajanceovn, og uden at han selv vidste
af det, faldt hans Hoved tilbage mod Sofaens Rygstød; de Billeder,
der drog forbi ham, antog mere og mere taageagtige Skikkelser. —
Et pludseligt Lysskær vækkede ham af den Døs, hvori Trætheden og
den lange Ventetid havde bragt ham. Han sprang op fra sin magelige
Stilling og gjorde et forvirret Buk for Excellencen, der var traadt ind i
Stuen, fulgt af en Tjener, som satte en Lampe hen paa Skrivebordet
og derpaa forsvandt.
»Jeg beder Dem — bliv kun siddende,« sagde Hs. Exc. med et fint,
maaske en lille Smule ironisk Smil. »Tør jeg spørge, hvormed jeg kan
være til Tjeneste? — Jeg mindes ikke før at have havt den
Fornøjelse ....«
»Jeg tør maaske antage, at mit Navn ikke er Deres Excellence helt
ubekjendt,« sagde Henning.
»Nej —« Excellencen raadførte sig med Visitkortet, som han endnu
havde i Haanden. — »De har vist flere Gange havt udstillet — ikke
sandt? Om jeg husker rigtig, har De ogsaa et Billede deroppe i Aar
— nogle Fiskere fra Vestkysten — tror jeg?«
»Ja desværre,« svarede Henning. »Det er et mislykket Arbejde, som
jeg ikke burde have udstillet. Jeg ...«
»Aa hvad — De er en ung Mand. Har De været mindre heldig i Aar,
kan De jo tage Revanche en anden Gang. De har jo Tiden for Dem.
— Men hvormed ...«
Excellencen kastede et Blik paa Uret ligesom for uden al Fortrydelse
at minde den unge Mand om, at hans Tid var mere kostbar, og at
han ikke havde den for sig i en tilsvarende Grad, hvad der kunde
være en hel Del i, naar man tog Hensyn til, at han var en meget
gammel Mand.
»Hvormed ...?«
Henning søgte med saa faa Ord som muligt at komme frem med,
hvad han havde paa Hjærte, og imidlertid sad den lille sirlige,
hvidhaarede Mand og hørte paa ham, stadig med samme
uforanderlige, halvt ironiske, halvt opmuntrende Smil.
»Det maa vistnok synes Dem underligt, at jeg kommer med en
saadan Anmodning uden at være personlig kjendt af Dem,« sluttede
Henning, »og jeg skulde sikkert heller ikke have gjort det, hvis jeg
ikke havde en saa bestemt Følelse af, at hele min Fremtid ...«
»Ja vist, ja vist,« afbrød den lille Excellence. »Saaledes er det med
dem alle — med dem alle. Det gjælder altid hele deres Fremtid. Men
det er umuligt at hjælpe enhver. Der stilles saa mange Krav. Man vil
gjærne gjøre, hvad man kan. — Men det er umuligt — ganske
umuligt. — Jeg forsikrer Dem, kjære unge Ven, at selv den største
Formue vilde spille Bankerot, hvis man skulde træde hjælpende til i
alle Tilfælde. Nej, det er umuligt — ganske umuligt.«
»Jeg havde ikke tænkt mig at modtage denne Sum som en Gave,«
sagde Henning, hvis Kinder begyndte at farves røde, ikke saa meget
af Fortrydelse over Afslaget, thi det kunde altid være lige saa vel
motiveret som hans Anmodning, og der var jo desuden en hel Del
Sandhed i, hvad den gamle Mand sagde — men fordi han mere og
mere følte det ydmygende i Situationen.
»— — Det var ikke min Mening at modtage det som Gave, men som
et Laan. Jeg havde tænkt at kunne give f. Ex. en Livspolice i
Sikkerhed, og ...« Han stammede lidt i det ... »naar jeg skaffede
behørig Sikkerhed for Præmiens Betaling, vilde Gjælden jo i værste
Tilfælde blive betalt ved min Død, og Deres Excellence eller Deres
eventuelle Arvinger vilde saaledes under ingen Omstændigheder
kunne gaa tabt af Kapitalen ...«
»Meget rigtigt — meget rigtigt. Men jeg beklager ikke at kunne
indlade mig paa den Slags Sager. — Det er jo muligt, at De kan faa
det ordnet saaledes i et eller andet Pengeinstitut ...«
Excellencen, der i de sidste Minuter utaalmodig havde ladet en
Papirkniv glide frem og tilbage mellem sine spidse, hvide Fingre,
hostede ganske sagte, og det opmuntrende Smil blev mere køligt.
»Saa maa jeg endnu blot bede Dem undskylde, at jeg har henvendt
mig til Dem,« sagde Henning og rejste sig. »Trods Deres Excellences
Bemærkning kan jeg ikke andet end gjentage, at jeg ikke vilde have
gjort dette Skridt, hvis jeg ikke havde været meget haardt tvungen
dertil.«
Den lille Mand saa op med et hastigt Glimt i sine skarpe, graa Øjne.
»Ja — det gjør mig meget ondt. Hermed kan jeg ikke være Dem til
Tjeneste. — Kan derimod et mindre Beløb muligvis hjælpe Dem i en
øjeblikkelig Forlegenhed, saa ...«
Han gjorde en Bevægelse med Haanden hen til Skrivebordsskuffen,
men Udtrykket i Hennings Ansigt overbeviste ham om, at han havde
misforstaaet hans sidste Ytring.
»Saa beklager jeg, at De maa gaa fra mig med uforrettet Sag. Altid
meget kjedeligt — meget kjedeligt for begge Parter.«
Henning bukkede tavs, og den lille Excellence fulgte ham med sin
aldrig svigtende, tilknappede Høflighed et Par Skridt henimod Døren.
—
Regnen og Haglbygerne var holdt op. Der viste sig en klar Lysning
mellem Skyerne, og Blæsten, der jog fejende omkring
Gadehjørnerne, havde tørret Fortovene, saa kun de større og mere
udholdende Vandpytter var blevne tilbage i Stenbroens ujævne
Fordybninger.
Henning gik langsomt hjemad, lige saa aandelig træt, som han var
det legemlig.
Den ydmygende Situation, han havde lagt bag ved sig, vedblev at
forfølge ham. Det var, ligesom den paanødte ham en Følelse af, hvor
lidet vidt han havde bragt det. I gamle Dage havde han fundet en
Slags Tilfredsstillelse i at anstille Beregninger over, at naar han blev
saa og saa gammel, skulde han være naaet saa eller saa langt frem.
Det var en Art Milepæle, han opstillede paa sin Fremtidsvej.
Men det opgav han nu. Der laa saa mange svigtede Forsætter bag
ved, at han blev led ved dem og ligesom undsaa sig ved at føje ny til
— for ogsaa at bryde dem.
Der havde været en Tid, hvor den Ydmygelse, han nylig havde lidt,
vilde have opflammet hans Energi og ægget ham til at trodse sine
Uheld. — Han kom til at tænke paa den Dag, da han som ganske
ungt Menneske — ikke stort mere end en Dreng — var kommen op
med sit Maleri til Fabriksinspektøren, der med saarende Ord havde
raadet ham til at slaa de Nykker af Hovedet. Den Gang var der
blevet vakt en saadan Trods i hans Sind, og han vidste af Erfaring, at
den kan hærde baade Vilje og Evner. Men ogsaa denne Følelse lod
nu til at være død for ham. Han kæmpede med sig selv for at kalde
den til Live igjen, men det vilde ikke lykkes.
Men han kunde saa tydelig se, hvorledes det altsammen var kommet
og maatte komme saaledes. Han var sig sine egne Fejl fuldkommen
bevidst, men alligevel formaaede han ikke at mande sig op til at
begynde Kampen forfra. Paavirkningen maatte komme ude fra.
Skæbnen maatte sende ham den, thi inde i ham selv var Visen
sungen til Ende. —
Han naaede omsider hjem, stadig forfulgt af de samme Tanker, der
atter og atter vendte tilbage i det samme ensformige Kredsløb. — Da
han havde spist til Aften med Minna, gik han ind i Atelieret og
kastede sig paa Sofaen uden at bryde sig om at tænde Lys. Han laa
og stirrede paa det tomme Staffeli, grundende over, naar han vel
vilde faa begyndt paa et nyt Arbejde.
Deres Sovekammer stødte op til den bageste Væg i Atelieret, og en
Tid lang kunde han høre Minna pusle derinde. Men lidt efter gik hun
ud af Stuen, og al Ting blev ganske stille.
Han havde vel ligget et Par Timers Tid paa Sofaen uden at sove,
men i en halvt drømmende Tilstand, under hvilken han maatte gjøre
Vold paa sig, naar han vilde knytte Tankerne sammenhængende til
hinanden, da han pludselig blev skræmmet op ved en kort, rallende
Hoste, der lød inde fra Sovekammeret.
Den varede kun et Øjeblik, men havde noget uhyggeligt ved sig,
lignede slet ikke den Maade, hvorpaa Børn undertiden hoster i
Søvne, og Henning, der bestandig, endog uden den mindste Grund,
plagedes af en overdreven, sygelig Ængstelse for Barnet, sprang
forskrækket op og ilede ind i Dagligstuen.
Men Minna, der havde været nærmere ved Sovekammeret, var
allerede kommen ham i Forkjøbet, havde været inde og taget Barnet
op og kom nu løbende ind, bærende det paa Armen.
»Men Gud — han kvæles — se — hvad fejler dog lille Aage?«
Hun stod og rystede over hele Kroppen, medens hun holdt Barnet,
hvis Bryst arbejdede med en krampagtig Stønnen. Dets Ansigt var
blegt, med et let blaaligt Anstrøg, og Øjnene havde et forpint Udtryk,
som om de ytrede en stum Bøn om Hjælp mod den usynlige Fjende,
der plagede det lille Legeme.
»Se — Henning — han kan ikke faa Luft!« skreg Minna.
Han var lige saa bleg og forskrækket som hun og famlede efter sin
Hat for at løbe efter Lægen.
Minna havde vendt Barnet om paa sin Arm og slog det i Ryggen for
at fremskynde en Opkastning, dersom det skulde have sunket noget.
Men derpaa fulgte den samme uhyggelige, rallende Hoste som første
Gang, kun mere besværlig og langvarig.
Henning vendte sig om i Døren og saa med et fortvivlet Blik hen paa
Moderen og Barnet. Han hørte endnu Minna skrige: »Aa Gud — det
kan da ikke være Strubehoste!« — Men derpaa fór han ned ad
Trappen, gjennem den lille Forhave og hen ad Vejen, som om han
havde havt Vinger. —
Han løb hele Vejen ind til Byen, saa hurtig som en ung kraftig Mand
kan løbe, naar det gjælder om at frelse et Liv, der er ham mere
dyrebart end hans eget.
Han løb, saa det peb og gispede i hans Bryst; sagtnede ikke et
eneste Sekund sin voldsomme Fart, pressede kun Haanden mod det
smertende Sting, han følte i Siden, og løb videre og videre uden at
ænse, hvorledes Blodet strømmede til hans Hoved og pressede
sammen om hans Hjærte.
Der var en dødelig Angst i hans Sind. Musklerne i hans Ansigt fortrak
sig i den stumme Smerte. Hans Øjne brændte, og han havde en tør,
kvælende Fornemmelse i Halsen.
Hans Søn — hans prægtige Dreng dø!
Hans hidsede Fantasi forestillede ham, at det allerede var sket. Han
saa den smukke, raske Dreng ligge Lig, med Ligets voxagtige
Bleghed over de elskede Træk. Han saa dem komme med Dødens
uhyggelige Attributer for at skrinlægge det kjæreste, han ejede. Han
hørte dem hugge Sømmene til — saa tydelig, at Nerverne i hans
Hoved dirrede derved. Hans Bryst snøredes sammen, og han løb —
løb som en afsindig. —
Lægen var heldigvis hjemme. Han forklarede ham, saa godt han
kunde, hvad der var sket, og et Par Minuter efter sad de i en Droske
og rullede afsted til hans Hjem.
De fandt Minna gaaende op og ned ad Gulvet med det syge Barn i
sine Arme. Lægen forlangte en Ske, som han holdt paa den lilles
Tunge for at se ham ned i Halsen.
Henning maatte holde Lyset imens. Doktoren rystede paa Hovedet,
spurgte, om Barnet havde været hæs i Løbet af Dagen.
Nej, lille Aage havde været fuldkommen rask og lige saa kvik og
munter, som han plejede. Kunde det være muligt, at det var den
skrækkelige Strubehoste?
Doktoren rystede atter paa Hovedet. Det var vanskeligt at afgjøre i
Øjeblikket. Det var muligt, at det kun var en Halskatarrh, et Tilfælde,
som man kaldte for falsk Strubehoste, og som tit plejede at angribe
Smaabørn ganske pludselig. Han bad dem berolige sig og haabe det
bedste. Barnet skulde have koghede Omslag om Halsen og hver
halve Time en Theskefuld af nogle Brystdraaber, paa hvilke de nu
skulde faa Recepten.
Henning løb hen paa Apotheket. Han ringede gjentagne Gange paa
Natklokken, før den vagthavende indfandt sig. Saa blev han lukket
ind i det kvalme Lokale med dets underlige krydrede Luft. Han
maatte vente, indtil den søvndrukne Apothekerlærling fik
Medikamentet tillavet, og de fem eller ti Minuter, der gik, forekom
ham som lige saa mange Aarhundreder.
Hans Søn — hans lille, prægtige Dreng! Det var de samme Ord,
formende det samme Billede, der atter og atter gjentog sig for ham.
Og paa samme Tid følte han en heftig Trang til at anraabe Gud om
at have Medlidenhed med hans Hjærteangst. Men han kunde ikke
føje Ord og Tanker sammen til en Bøn. Det var enkelte, forpinte
Skrig, der undslap hans Bryst og banede sig Vej did op, hvor der —
han mindedes det fra sin Børnelærdom — skal være idel Lys og
Retfærdighed.
Det blev ved at kæmpe og arbejde i ham, medens han skyndte sig
tilbage til sit Hjem, stadig med den samme kvælende hede
Fornemmelse i Brystet; med det samme Billede af hans lille Yndling
stillende sig frem for hans opskræmmede Tanker og med den
samme heftige, men afmægtige Trang til at give sin Fortvivlelse Luft
i Graad og Bøn. —
Derpaa fulgte Natten, den ubeskrivelig lange, kvalfulde Nat, medens
de begge sad oppe og vaagede hos det syge Barn, lyttende med
ængstelig Spænding til dets Aandedrag, stirrende ufravendt paa det,
saa længe det laa hensunket i et kort Blund, og begge to følende det
samme isnende Stik i Hjærtet, hver Gang Hosten kom igjen.
Var det en Straf for deres Vildfarelser, for deres Mangel paa
Kjærlighed og Overbærenhed med hinanden — for alt det stygge,
der havde været i deres Samliv? Kunde Skæbnen ville ramme dem
saa forfærdelig haardt?
Overfor den store Sorg, der truede Henning, forekom det ham, at alt
andet, hvad der havde brudt ham ned i de sidste Aar, blev saa
uendelig smaat og betydningsløst.
Dette var den første store Hjærtesorg, og den var kommen saa
pludselig og overvældende. Han foragtede sig selv, fordi han før var
falden sammen og havde bildt sig ind, at hans Liv var tomt og
indholdsløst, hans Kræfter opbrugte. Nu saa han først, at han kunde
lide et Tab, der var helt anderledes tungt. Maatte han dog blot blive
sparet for det. Alt andet kunde gjenoprettes. Kun ikke det — kun
ikke det. —
De laa paa Knæ, hver ved sin Side af Sofaen inde i Dagligstuen, hvor
der var blevet redt til det syge Barn. Lampen brændte paa Bordet og
kastede sit Skær hen paa det lille Ansigt, der fortrak sig urolig i
Søvne.
Hver Erindring, der knyttede sig til Barnet, kaldtes atter frem —
Erindringer, der vilde synes latterlig smaa for alle andre, men som fik
deres Hjærter til at bæve og snørede deres Bryst sammen i kvalt
Graad. De første, usikre Skridt paa egen Haand, de første,
stammende Ord, den første Fødselsdag og det første Stykke Legetøj.
Hvert lille Fremskridt, der var forekommet dem som et mærkeligt
Vidunder. Barnets pudsige Indfald, dets muntre Leg og dets ømme
Kjærtegn — denne friske Barnemund, der bød sig saa lokkende til
Kys, og disse runde, bløde Arme, der saa utallige Gange havde
slynget sig om deres Nakke med et Overmaal af barnlig Kjærlighed.
Og alt det skulde være forbi. Nej — nej. Kun ikke det — kun ikke
det!
Dagslyset begyndte at kæmpe med Skæret fra Lampen og fik mere
og mere Indpas gjennem de nedrullede Gardiner. Skyggerne, der
havde ligget og forstukket sig under Møblerne, trak sig længere og
længere tilbage og forsvandt tilsidst helt for den frembrydende
Morgendæmring. —
Det havde allerede en god Stund været saa lyst udenfor, at man
kunde have slukket Lampen og rullet Gardinerne op, men ingen af
dem havde Tanke derfor. Den fjedrede Befolkning i Træerne ude i
Alléen begyndte at istemme sin Morgenkoncert, først en enkelt
Sanger og derpaa hele Skaren. Men de hørte det ikke. Solen sendte
sine første smaa Lysglimt ind mellem Rullegardinet og
Vindueskarmen. De lagde ikke Mærke dertil.
Barnet var faldet i en fast Søvn; det syntes at trække Vejret lettere,
og den uhyggelige, rallende Lyd i Brystet og Struben kom svagere og
med længere Mellemrum; Farven lod ogsaa saa smaat til at vende
tilbage paa Kinderne.
De fulgte disse Symptomer, og Haabet begyndte at vaagne hos dem,
men de turde ikke stole paa det. De saa' spørgende paa hinanden,
vexlede nogle Ord med en Stemme, der dirrede af Bevægelse, og
bøjede sig hvert Minut over det slumrende Barn for at lytte til dets
Aandedrag, snart grebne af Uro over den lange Søvn, snart givende
sig mere og mere hen til Haabet om, at Faren var overstaaet. —
Pigen, der var bleven oppe for at hjælpe dem med at passe den lille
Patient, havde, uden at de vidste af det, lavet Kaffe ude i Køkkenet
og kom nu ind med en Præsenterbakke, som hun satte paa Bordet i
Dagligstuen. I det samme vaagnede den lille Dreng, smilede til dem
og rakte sine Arme frem.
Nattens frygtelige Angst og Spænding gjorde paa én Gang Plads for
en Følelse, saa glad og befriende, som de næppe før havde kjendt
den. De lagde sig paa Knæ ved Barnets Seng, bedækkede hans
Pande, Mund og Hænder med lidenskabelige Kys, saa at Drengen
saa' halvt forundret, halvt ængstelig paa dem.
»Lille Aage bliver snart rask — du skal ikke græde, søde Moder,«
stammede den lille Fyr.
Deres Blikke mødtes; stiltiende rakte de hinanden Haanden,
kæmpende hver paa sin Side for at skjule, hvorledes Graaden
stansede Ordene i deres Mund. Saa kastede Minna sig pludselig om
hans Hals med en lidenskabelig Hulken.
»Aa, Henning — Henning,« mumlede hun — »Vorherre har været
meget bedre mod mig, end jeg har fortjent — Gid jeg aldrig maa
glemme det ...«
Hun trykkede sit Hoved op til hans Bryst, og han bøjede sig ned og
kyssede hendes Pande.
Da Lægen kom igjen op ad Formiddagen, erklærede han, at der ikke
var nogen som helst Grund til yderligere Ængstelse. Det havde kun
været et Tilfælde af den omtalte, falske Strubehoste, hvis
Begyndelsessymptomer vanskelig lod sig skjelne fra den ægte.
XV.
Han var bleven revet ud af sin Sløvhed og mindet om, at han endnu
havde noget at leve og arbejde for.
Allerede et Par Dage efter, at lille Aage var bleven rask, stod der et
Udkast til et nyt Billede paa hans Staffeli, og han mærkede, at noget
af den gamle Arbejdslyst var kommet over ham igjen. — Han
arbejdede flittig, gjorde sig Umage for at jage alle Graavejrstanker
paa Flugt, om de end meldte sig nok saa paatrængende, og søgte
paany at afvinde sit Forhold til Minna de bedste og lyseste Sider.
Hun prøvede, saa godt hun kunde, paa at komme ham i Møde. De
vilde aabenbart begge to saa gjærne holde fast ved deres gode
Forsæt, naar det blot maatte lykkes.
I den første Tid gjorde hun Vold paa sig selv for at synes blidere og
mere tilfreds, end det laa i hendes Natur at være. Men hun forstod
ikke at forstille sig, og hun led ved denne Tvang. Det førte ikke til
andet end til en Slags kunstig tilvejebragt Vaabenstilstand, der var
lige saa trykkende som den tidligere aabenbare Krig, og det tjente
kun til endnu tydeligere at vise dem, hvor fjærnt de stod hinanden,
og hvor haabløst det var at tro paa, at det nogensinde kunde blive
anderledes. —
Og der var saa meget, i hvilket de kunde have trængt til at have en
Støtte i hinanden. Henning maatte prøve en hel Del af de
Ydmygelser, som Pengenød fører med sig, og Minna forstod ligesaa
lidt nu som tidligere at finde sig taalmodig i den Slags Ting.
Hun klagede bittert over alt det, de maatte gaa igjennem, drog
gjærne Sammenligninger med dem, om hvem hun mente, at de
havde det meget bedre end hun selv. — Kunde Henning ikke
begynde paa noget andet end at være Maler; det førte jo dog aldrig
til noget. Hun sagde det ikke i nogen ond Mening; kun fordi hun
hverken forstod ham eller hans Arbejde. Men det saarede ham, og
han tænkte med Bitterhed paa, hvem der vel skulde tro paa ham,
naar ikke en Gang hans Hustru gjorde det. —
Han havde sat al sin Arbejdsevne ind paa sit ny Billede.
»Enkens Søn« skulde det hedde; det forestillede en Moder ved sit
Barns, en halvvoxen Søns Dødsleje. Han arbejdede undertiden med
en overdreven Anspændelse af alle sine Evner og nærede en sygelig
Ængstelse for, at den Gnist, som han næsten med Vold og Magt
holdt fast, skulde svigte ham, før han blev færdig.
Saa var det ud paa Sommeren. De havde ikke havt Raad til nogen
længere Rejse, men for at bringe lidt Afvexling i den trykkende
Ensformighed havde Henning lejet en tarvelig Sommerbolig i et
Fiskerleje nogle Mil fra Hovedstaden.
De havde boet derude en Maaneds Tid, da Henning en Dag maatte
tage til Byen af den meget tvingende Aarsag, at de ikke havde flere
Penge i Huset.
Det var usædvanlig varmt Vejr. Luften havde lige fra tidlig om
Morgenen truet med Torden, og Brostenene inde i Byens Gader
brændte en under Fødderne.
Ude i Alléerne, hvor Træerne havde faaet det støvede og forjaskede
Udseende, der viser, at den smukkeste Del af Sommeren er forbi,
vandrede Folk i store Skarer afsted til de forskjellige
Forlystelsesanstalter uden at bryde sig om Tordenskyerne, der trak
sammen i stedse tættere Masser, medens nu og da en pludselig, let
Susen i Trætoppene spaaede om, hvad der var i Vente. —
Henning havde travet omkring i Byen fra tidlig paa Formiddagen. Og
da han omsider havde faaet udrettet, hvad han skulde, var det sidste
Tog og det sidste Dampskib afgaaet. Saa var der ikke andet for end
at overnatte i Byen.
Han var bleven uvant med at tilbringe en Aften paa egen Haand og
vidste ikke, hvorledes han bedst skulde faa Ende paa den. Det havde
stadig hørt med til Gaaderne i Minnas Karakter, at skjønt hun var
sær og uvenlig, naar han var hjemme, blev hun dog meget ilde til
Mode, naar han en Aften vilde gaa ud alene, og Henning, der
efterhaanden havde brudt fuldstændig med sin gamle
Omgangskreds, havde vænnet sig til at føje hende i dette Punkt. —
Han slæntrede langsomt ud ad Broen og Alléen, medens han med
en ørkesløs Mine betragtede de livlige Menneskegrupper, som
vandrede forbi ham med al den Travlhed, der er betegnende for
Kjøbenhavneren, naar han er ude for at more sig.
Før han rigtig vidste af det, var han kommen i Nærheden af
»Runddelen«. Han naaede det lille Forstadstheater, paa hvilket der
gives Forestillinger i Sommersæsonen, og i Mangel af bedre
Sysselsættelse gav han sig til at studere en af de gloende røde
Plakater, der var slaaet op paa hver sin Side af Indgangen.
Spasereturen gjennem den skyggefulde Allé, hvor det dæmrende
Halvmørke havde fortrængt Dagens brændende Solhede, og Synet
af den brogede Menneskesværm havde stemt ham lidt livligere, og
det faldt ham ind, at han lige saa gjærne kunde nyde sit
Aftensmaaltid i det lille Theater som paa ethvert andet Sted.
Han løste Billet og traadte ind paa Tilskuerpladsen, over hvilken der
hang en graalig Taage af Øl- og Tobaksdunster, som halvvejs skjulte
det talrig tilstedeværende Publikum, der havde grupperet sig
omkring de smaa firkantede, under Vægten af
Smørrebrødstallerkener, Iskageassietter, Ølkrus, Toddyglas og
Chokoladekopper bugnende Borde.
Tonerne fra Orkestret skar sig trangbrystet Vej gjennem den
øredøvende Summen af snadrende Stemmer, men forhindrede ikke
disse Stemmers Ejermænd i at forlange hvert eneste Musikstykke da
capo et Par Gange, saa lidt som den utrættelige Dirigent i at
efterkomme de for ham og hans Orkester saa smigrende
Opfordringer.
Skjønt der ikke lod til at være saa megen tom Plads i Salen, at man
kunde sætte sin Støvlehæl der, lykkedes det dog en Opvarter med
beundringsværdig Behændighed at bugsere Henning helt op foran
Scenen, hvor han med en lige saa utrolig taskenspilleragtig
Dygtighed tilvejebragte baade en Stol og et Bord.
Henning tog Plads for at nyde de Forfriskninger, han havde bestilt.
Han sad og kiggede i Programmet og tænkte allerede saa smaat paa
at gaa sin Vej, saa snart han var færdig med sit Smørrebrød og Øl,
thi Luften var saa trykkende hed og kvalm, at ikke en Gang
Programmets lovende Meddelelse om et nyt Stykke med en
Debutantinde indeholdt den allersvageste Fristelse for ham til at
blive. —
Men Tæppet gik op, før han kunde slippe ud, og han besluttede da
at finde sig taalmodig i sin Skæbne, til Stykket var spillet til Ende.
Imidlertid morede han sig med at betragte Tilskuernes Fysiognomier.
Der var smaa Sypiger og unge Kavallerer, hvis Bekjendtskab syntes
at grunde sig mere paa en hastig tilvejebragt Fortrolighed end paa
en langvarig Prøve. Der var ærbare Borgerfamilier med deres voxne
Døtre; unge, flot klædte Herrer, der aabenbart tjente den letfodede
Mercurius, og hvis støjende Bifaldsytringer dundrede gjennem Salen;
der var nylig indkaldte Jenser med deres Kjærester, og gamle
Pensionister, som tydelig nok hørte til de trofaste Stamgjæster, fordi
de mente, at de lige saa gjærne kunde drikke deres Øl her som et
hvert andet Sted. Der var solide og trivelige Madammer, der af
Hjærtens Lyst nød Komedien med den troskyldigste Andagt præget i
deres rødmussede Ansigter. Der var unge og gamle, blaserede
Herrer med Lorgnetten kneben ind foran det venstre Øje;
blegnæbede Fabrikpiger, som lo paafaldende højt og saa sig omkring
med udfordrende Blikke. Der var en og anden Skuespiller fra et af
Hovedstadstheatrene i Selskab med et Par Forfattere eller
Journalister. —
Henning, som havde været optagen af at udskille Bestanddelene i
det brogede Selskab, blev pludselig opmærksom paa, hvad der
foregik paa Scenen, ved at høre Klangen af en ualmindelig frisk og
klar Pigestemme, der lød paa en for Øret højst velgjørende Maade
mellem de andre Skuespilleres mere eller mindre falske og
forskregne Stemmer.
I det samme brød en vældig Bifaldssalve løs paa Tilskuerpladsen, og
nogle Buketter af den Slags, som bydes til Salg paa offentlige
Forlystelsessteder, kastedes op foran Lamperækken.
Det maatte vel være Debutantinden.
Han saa op og blev saa paa en Gang ved at stirre paa
Skuespillerinden.
Det var en endnu ganske ung Pige, paa højst en Snes Aar. Det
mørke, blanke Haar var strøget glat tilbage fra en ualmindelig smukt
formet Pande. Øjnene havde et ejendommelig alvorligt og behersket
Udtryk. Skikkelsen var rank og smækker. Den sorte Fløjls Spencer
sluttede om en Figur, som vilde have været værdig til at staa Model
for en Phidias' Fremstilling af klassisk Skjønhed.
Hun sang sin Kuplet med ukunstlet Fordringsløshed uden paa nogen
fremtrædende Maade at bejle til Publikums Gunst og tillige med et
musikalsk Foredrag, som disse Brædder vistnok sjældent var Vidne
til. Derpaa havde hun nogle Repliker, lige saa meningsløse som hele
Rollen og Stykket, men hun sagde dem med en Kvikhed, der
indbragte hende en ny, larmende Bifaldssalve fra Tilskuerne. —
Og dog var det intet af disse Fortrin hos Debutantinden, der i saa
høj Grad lagde Beslag paa Hennings Opmærksomhed. Men jo mere
han saa paa hende, des mere forbavset blev han over den skuffende
Lighed.
Det var, som om Margrethe Aaby var traadt lyslevende frem for ham
paa Forstadstheatrets Brædder, kun noget højere og rankere og med
en mere selvbevidst Holdning. Men Ansigtet, Udtrykket i Øjnene og
det lille kløgtige Træk om Munden syntes at være ganske det
samme.
Han saa' saa vedholdende paa hende, at han tilsidst fangede hendes
Blik, og det forekom ham, at hun i et Sekund saa' derned, hvor han
sad. Saa gik hun videre i Rollen, og han vedblev at stirre paa hende,
indtil hun havde sunget Slutningsverset, og Tæppet faldt. En
dundrende Applaus, forstærket med Banken af Stokke og Paraplyer
mod Borde og Gulv, attesterede Publikums Tilfredshed med den ny
Skuespillerinde.
Henning løb Programmet igjennem, og da han havde overtydet sig
om, at hun ikke optraadte mere den Aften, gik han hastig ud af
Salen.
Udenfor begyndte der at falde enkelte tunge Regndraaber, og han
indsugede begjærlig den kølige Luftning, der slog ham i Møde.
Han havde en Fornemmelse, som om han var vaagnet op af en
Drøm; var næsten tilbøjelig til at tro, at hans Fantasi havde spillet
ham et Puds. En saa mærkværdig Lighed mellem to Mennesker, der
ikke stod i den fjærneste Forbindelse med hinanden! —
Han tog Theaterprogrammet op af Lommen, og ved den første
Gaslygte, han kom til, blev han staaende for endnu en Gang at læse
hendes Navn.
Laura Schmidt stod der med ganske almindelige, prosaiske
Bogstaver. —
Han kunde ikke slippe Billedet af denne Dobbeltgængerske. Han
følte et heftigt Ønske om at se hende igjen for at overbevise sig om,
at Ligheden ikke var saa slaaende, som han fra først af havde troet.
Han dannede sig en uklar Forestilling om, at det ligesom vilde øve en
beroligende Virkning paa ham, hvis han kunde komme til et saadant
Resultat ved at se hende endnu en Gang.
Da han skulde til at rejse hjem den paafølgende Morgen, faldt det
ham et Øjeblik ind at telegrafere til Minna, at han blev en Dag
længere i Byen, men han opgav strax denne Plan. Han fandt, at det
dog næppe var den rette Maade til at gjenvinde sin Sindsligevægt.
Der var endnu Tid til at komme afsted med det først afgaaende Skib.
Saa skyndte han sig med sin Paaklædning og begav sig sporenstregs
til Dampskibsstationen for at vende tilbage til Fiskerlejet. —
Derude blev han med Minna og lille Aage en hel Maaned endnu.
Skjønt han flere Gange havde noget at besørge, undgik han at tage
til Byen.
Han havde troet, at det var lykkedes ham at trænge Erindringen om
Margrethe Aaby og deres sidste Møde i Baggrunden. Han havde i alt
Fald kæmpet ærlig for at gjøre det, og Bevidstheden om hans
Følelsers absolutte Haabløshed havde maaske tildels hjulpet ham
dertil.
Men nu kom det altsammen igjen med fornyet Styrke. —
Omsider var de sidste Landliggere og de sidste Badegjæster flyttede
ind til Byen, og Minna havde allerede en god Stund klaget over, at
hun kjedede sig ihjel i de ynkelige smaa Huller, der udgjorde deres
Sommerbolig. Naar man ikke havde Raad til at bo ordentlig, skulde
man hellere lade være at ligge paa Landet, sagde hun.
Saa flyttede de da hjem igjen. Den sidste Del af Sommeren var
gaaet, uden at han havde faaet noget videre bestilt, og det var paa
Tiden, at han atter tog alvorlig fat paa sit store Billede. —
Han malede flittig, efter at de var komne til Ro i deres gamle
Lejlighed, men hvor megen Umage han end gjorde sig for at fordybe
sig helt og holdent i sit Arbejde, kunde han dog ikke forhindre, at
hans Tanker med mere Haardnakkethed end nogensinde før vendte
tilbage til Margrethe Aaby eller lige saa ofte til Skuespillerinden ude
paa Forstadstheatret, saaledes at disse to smeltede sammen til én
og samme Skikkelse.
Et Par Gange prøvede han paa at nærme sig Minna, ligesom han
vilde søge Beskyttelse mod de Udskejelser, hans Fantasi tillod sig,
men Minna havde glemt sin alvorlige Gaaen i Rette med sig selv og
viste hans Tilnærmelser tilbage paa den gamle, saarende Maade.
Han blev tilsidst ked af sin frugtesløse Kamp og overtalte sig til at
tro, at han havde havt Ret i sin første Betragtning, og at han gjorde
bedst i at se denne Dobbeltgængerske endnu en Gang med
lysvaagne Øjne hellere end at lade hende regere uindskrænket i
hans Fantasi. —
Det var en sex Uger efter den første Aften, han havde spaseret ud til
Forstadstheatret. Den mellemliggende Tid havde jaget den korte
Sommer paa Flugt. Løvet havde faaet det første gullige Anstrøg, og
Bladene hvirvlede med et melankolsk Suk ned mod Jorden, hver
Gang Blæsten sendte et skarpt Pust gjennem de ærværdige gamle
Lindetrær. —
Men de mørke Aftener skræmmede ikke Folk fra at vandre i store
Skarer ud til Sommertheatret, hvis særlige Attraction var den aarlige
»Revue« med sine paa Øjeblikkets brændende Spørgsmaal møntede
Brandere.
Denne Sæson var Revuens Handling forlagt til Kina, og Theatrets ny
Primadonna optraadte i en af Hovedrollerne — som Prinsesse af det
himmelske Rige. —
Endog ved at se hende i dette fantastiske Kustume følte han sig
betagen af den frappante Lighed. Han lagde Mærke til — og det var
med en ubevidst Tilfredsstillelse — at hun holdt sit Spil indenfor
visse, af en naturlig god Smag afstukne Grændser, hvor meget
Rollen end indbød til allehaande sceniske Udskejelser.
Der var over hendes Person og Optræden udbredt en kvindelig
Anstand, som traadte endnu stærkere frem i disse Omgivelser, og
alligevel forstod hun at spille saaledes, at hun helt og holdent
erobrede det stærkt blandede Publikum.
Bifaldet, der lød, naar hun havde sunget en af sine Viser, var
ligefrem bedøvende. Men hun tog imod det paa en fuldkommen
rolig, lidt ringeagtende Maade.
Henning bestræbte sig for at forstørre ethvert Træk hos hende, som
kunde udvidske Ligheden med Margrethe. Der var Øjeblikke, hvor
den irriterede ham; hvor han følte Uvilje mod dette Pigebarn, der
understod sig i at ligne en Person, hvem hun rimeligvis stod saa dybt
under i alle andre Henseender end den tilfældige, ydre Lighed.
Men det vilde ikke lykkes ham. Han gjorde sig forgjæves Umage for
at aflure hende en uskjøn Bevægelse, et Blik eller et Smil, der kunde
virke frastødende paa ham — altsammen til ingen Nytte.
Saa bildte han sig tilsidst ind, at hele denne taabelige Illusion
beroede paa Lamperækkens skuffende Lys og den Frastand, hvori
han saa hende. Paa nært Hold vilde han sikkert faa et helt andet
Indtryk af hende, og dermed vilde Kogleriet være forbi.
Han fandt paa de mærkeligste Paaskud til at gaa hjemme fra, og
den ene Aften efter den anden tilbragte han nogle Timer ude i
Forstadstheatret. Det var et Par Gange forekommet ham, at hun
havde set ned paa den Plads, hvor han sad, og derpaa taget Øjnene
til sig med en Rødmen, der kom og forsvandt lige hastig. —
En Aften, da hun havde optraadt i det sidste Stykke før
Forestillingens Slutning, tog han sig for at skyde alle
Betænkeligheder til Side og gaa op bag Kulisserne. Han kjendte lidt
til Direktøren, der næppe vilde have noget imod at præsentere ham
for Theatrets Primadonna.
Gjennem en Bagdør og ad en skrøbelig Pindeværkstrappe kom han
op bag Scenen, omkring hvilken der løb en snæver Gang med Døre
ind til Skuespillernes Paaklædningsværelser. Luften, der slog ham i
Møde, var mættet af Gasos, Cigarrøg og en stærk,
gjennemtrængende Duft af Patchouli.
Døren til et af de smaa Rum, der gjorde Tjeneste som
Paaklædningsværelser, stod paa Klem og fremviste Reversen af en
Skuespiller i Skjorteærmer, der arbejdede ihærdig paa at fjærne
Sminken af sit Ansigt ved Hjælp af Fedt.
Medens Henning stod et Øjeblik i Tvivl om, hvad Vej han skulde gaa,
kom Direktøren ham i Møde i egen Person, endnu iført sit Kustume
som kinesisk Kejser og dampende af alle Kræfter paa en Cigaret.
»For Pokker — jeg syntes jo nok, jeg kjendte Dem. Værs'god, kom
indenfor. Det var pænt af Dem at se herop.«
Han førte Henning ind i et af de omtalte, smaa Rum, der laa
nærmest Trappen og benyttedes paa en Gang til Direktørens
Paaklædnings- og Arbejdsværelse.
Ved den ene Væg stod et langt Fyrretræs Bord; midt paa dette et
Toiletspejl med Gasblus paa hver Side, foruden Sminkekrukker,
Æsker med Pudder, Parykker, Skæg, fedtede Manuskripter,
Cigarstumper, et Par Bajerflasker, snavsede Flipper og Mansketter,
krøllede Slips, en sort Silkehat, Stumper af kulørt Tarlatan og Shirting
— hulter til bulter mellem hinanden.
Sofaen ved den modsatte Væg var skjult under en ligesaa broget
Mangfoldighed af de mest heterogene Beklædningsgjenstande,
ligefra kinesiske Mandarinkaaber til en moderne sort Selskabskjole.
Direktøren samlede det sammen i en mægtig Bylt, som han smed
hen i en Krog af Stuen, og bad derpaa Henning tage Plads, medens
han selv satte sig overskrævs paa en Stol, der stod foran et gammelt
Skrivebord henne ved Vinduet.
»Naa — hvad siger De om Revuen i Aar? Det er saagu' den bedste,
vi endnu har havt herude. Og den trækker voldsomt. Baade den og
vor ny Akkvisition blandt Damepersonalet. De kan tro, det har været
en brillant Sæson.«
»Javist —« sagde Henning lidt nervøst. »Hvor har De for Resten
faaet fat i Deres ny Primadonna?«
»Et rent Tilfælde, kjære Ven — et rent Tilfælde. Men hun er mageløs
— ikke sandt? Og saa en komplet Dame!« udbrød Direktøren
begejstret. »Sikke Bevægelser, sikke Manerer — kvikke og utvungne
og dog fuldkommen ladylike — det er saagu' det, man aldrig kan faa
dresseret de andre til, hvor meget man saa herser med dem.«
»Hun har vel tidligere optraadt i Provinserne?« spurgte Henning og
tændte med en ligegyldig Mine den Cigaret, Direktøren bød ham.
»Nej — Fanden heller. Aldrig før sat sine Fødder paa Brædderne.
Hun skulde have været til det kongelige til næste Sæson — jo, gu' er
det sandt,« forsikrede Direktøren med en stærk Gestus, da han
lagde Mærke til, at Henning saa' op med en vantro Mine. »Hun
havde allerede aflagt Prøve — glimrende Udfald — men saa blev
hendes gamle nok syg — hendes Fader er en gammel
Provinsskuespiller — og jeg fik at vide, at hun søgte Engagement for
Sommeren, fordi hun var nødt til at klare for dem derhjemme.
— Ja, ser De, — da jeg netop var svært i Knibe for en Primadonna,
og jeg havde hørt, at hun skulde være noget extra i Subrettefaget,
saa tilbød jeg hende Engagement herude paa saa glimrende Vilkaar,
forstaar De, at hun omsider slog til, skjønt — ærlig talt — jeg
mærkede nok, at hun gjorde det forbandet nødig.«
»Se se! Det lyder jo helt interessant. Naa — og hendes Rygte — det
er vel grundmuret?« — Henning havde lidt ondt ved at faa Ordene
frem i en let henkastet Tone.
»Hendes Rygte, min Fa'er!« — Direktøren gjorde atter sin
ejendommelige, store Gestus. — »Om det saa var min egen Datter,
kunde jeg ikke ønske hende et bedre Rygte. Hun møder præcis til
Prøver og Forestillinger, kan altid sine Roller, er høflig og tjenstvillig
mod de andre, men taaler ingen Næsvisheder. Kommer man hende
for nær, saa har hun saadan en egen energisk Maade at holde Folk
tre Skridt fra Livet, saa de skal nok tage sig i Agt for at komme igjen.
Om Aftenen efter Forestillingen kommer der et gammelt
Skabilkenhoved af en Tjenestepige og henter hende, og de kjører
hjem sammen. Det hører med til Engageringsvilkaarene, at der paa
Theatrets Regning holder en Droske og venter paa hende, naar
Forestillingen er forbi. Nej, min Fa'er, hun er sikker nok,« sluttede
Direktøren sin Lovtale, der var fremført med en Tungefærdighed,
som havde gjort ham helt stakaandet.
»En hel Sfinx, synes jeg,« bemærkede Henning. »Jeg skal for Resten
ganske oprigtig sige Dem, hvorfor jeg har fattet en vis Interesse for
Deres Vidunder. Hun ligner paafaldende en Dame, som jeg nærer
stor Agtelse for. ... Ved De hvad — kan De ikke præsentere mig for
hende?« tilføjede han lidt nølende.
»Pokker heller — De, krrrtsch — Gavstrik!« Med disse Ord gjorde
Direktøren et spøgefuldt Udfald med sin Pegefinger mod Hennings
Skjortekrave, men skiftede pludselig Tone og forsikrede med et
uhyre alvorligt Ansigt, at det var absolut umuligt. Han turde ligefrem
ikke.
»Aa Snak — det vilde jo være Snærperi,« paastod Henning, der blev
mere og mere ivrig. »Det skal naturligvis foregaa ligesom ganske
tilfældig. De beder hende under et eller andet Paaskud om at
komme herind; saa sidder jeg her, og det er da hverken mere eller
mindre end simpel Høflighed, at De præsenterer os for hinanden.«
»Naa ja — paa den Maade — lad gaa.«
Direktøren rejste sig, stak Hovedet ud af Døren og raabte ud over
Trappegelænderet: »Aa, Truelsen — vil De sige til Frøken Schmidt, at
jeg gjærne vil tale med hende, før hun gaar.«
»Javel, Hr. Direktør,« lød en Stemme nedefra.
Direktøren vendte tilbage til sin forrige Plads og underholdt Henning
med forskjellige interessante Historier fra Theaterverdenen. Men
Henning hørte kun det halve af dem, medens han i stærk Spænding
ventede paa hendes Indtrædelse.
Det varede en halv Snes Minuter. Saa lød der Skridt udenfor, en kort
Banken paa Døren, og hun traadte ind. —
Ligheden var endnu mere paafaldende, som hun stod der i en
simpel, men tækkelig, mørk Dragt, der fremhævede hendes
ungdommelige Skikkelse. Og hun forekom ham langt smukkere end
paa Scenen.
Han lagde Mærke til, at hendes Stemme havde en frisk, behagelig
Klang, da hun svarede Direktøren paa nogle Spørgsmaal om en
Rolle, han havde givet hende. Hun gjengjældte Hennings Hilsen,
men vendte sig strax igjen om til Direktøren, vexlede nogle
Bemærkninger med ham om det ny Stykke, hun skulde spille i, og
trak sig derpaa tilbage, hilsende begge Herrerne med en let
Hovedbøjning.
»Naa — det fik vi ikke megen Fornøjelse af,« udbrød Direktøren, da
hun var gaaet. »Hun er i Grunden forbandet kort for Hovedet, men
et mageløst Pigebarn alligevel — ikke sandt? Og der er Evner, min
Fa'er, virkelige Evner! Stop lidt — havde jeg bare tænkt paa det,
kunde jeg for Resten have skaffet Dem en bedre Lejlighed til at
gjøre hendes Bekjendtskab. Og De kunde med det samme have
gjort mig en stor Tjeneste ... Hvem Pokker skal jeg nu faa til det? ...
Det var da ogsaa nederdrægtig dumt — ne-derdrægtig!«
Direktøren kløede sig med en fortrædelig Mine bag Øret. Henning
spurgte, hvad det drejede sig om.
»Det skal jeg sige Dem. Vi indstuderer et Stykke, hvori der bruges et
Portræt i naturlig Størrelse af den Skuespillerinde, der spiller
Hovedrollen. I alt Fald for Kustumets Vedkommende er det
nødvendigt, at vi faar en nogenlunde korrekt Gjengivelse, ellers
kunde man jo leje et Portræt hos en eller anden Marskandiser. Naa,
det skal naturligvis være rent Hurtigmaleri, forstaar De; bare
Frisuren og de samme Farver, der er i Dragten. Det var rigtignok ikke
noget Arbejde for Dem, men det havde ellers været en ypperlig
Lejlighed til at studere Deres Sfinx — hvad? Og De havde oven i
Kjøbet gjort mig en stor Tjeneste dermed. Hun havde blot behøvet
at sidde for Dem en Times Tid ... Det var dog skammeligt, at jeg
ikke før tænkte paa det!«
Direktøren vedblev at klø sig i Nakken, medens Henning sad og
rokkede urolig frem og tilbage i Sofaen. Naar alt kom til alt, hvad
ondt var der saa i, at han portræterede den unge Skuespillerinde?
Skulde en Kunstner, fordi han var Ægtemand, ikke have Lov til at
male et kvindeligt Ansigt, der interesserede ham?
Tilsidst blev Fristelsen ham for stærk, og efter at Direktøren en rum
Tid havde kradset sig bag Øret og slaaet sig med den flade Haand
paa Panden for at fremkalde en Ide, der var lige saa god som den,
der var røget i Lyset, vendte Henning sig om mod ham og fremkom
med sit Forslag.
»Det er vel ikke for sent endnu, hvis De ønsker, at jeg skal male et
Portræt af Deres Primadonna,« sagde han lidt hastig.
»Nej — vil De virkelig?« Direktøren saa op med et glædestraalende
Blik. »De er en Perle! Saa skriver jeg endnu i Aften et Par Ord til
hende og siger, at jeg har faaet en af vore virkelige, anerkjendte
Kunstnere til at tage det omtalte Portræt af hende. De kan saa dejlig
sidde ovre i min Dagligstue; ikke en Sjæl skal forstyrre Dem. Det var
prægtigt!«
»Naar skal jeg komme?« spurgte Henning, stadig lidt febrilsk.
»Hvis det passer Dem, kan vi jo sætte i Morgen Formiddag Klokken
tolv? — Saa skal jeg sørge for, at Frøkenen venter paa Dem ovre hos
mig. Det er altsaa et Ord?«
»Ja.«
Direktøren trykkede varmt Hennings Haand med den Forsikring, at
han gjorde ham en knusende Tjeneste, og Henning skyndte sig bort
— i en noget urolig Stemning.
Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun
Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com

More Related Content

PDF
In Vitro Mutagenesis Protocols Third Edition Miguel Alcalde (Auth.)
PDF
Download full ebook of Recombineering 1st Christopher R Reisch instant downlo...
PDF
Environmental Microbiology For Engineers Ivanov Volodymyr
PDF
In Vitro Mutagenesis Protocols Third Edition Miguel Alcalde (Auth.)
PDF
Strain Engineering Methods and Protocols 1st Edition Jindan Zhou
PDF
Microbial Functional Genomics Zhou J Et Al
PDF
Strain Engineering Methods And Protocols 1st Edition Jindan Zhou
PDF
Microbial Environmental Genomics MEG 1st Edition Francis Martin
In Vitro Mutagenesis Protocols Third Edition Miguel Alcalde (Auth.)
Download full ebook of Recombineering 1st Christopher R Reisch instant downlo...
Environmental Microbiology For Engineers Ivanov Volodymyr
In Vitro Mutagenesis Protocols Third Edition Miguel Alcalde (Auth.)
Strain Engineering Methods and Protocols 1st Edition Jindan Zhou
Microbial Functional Genomics Zhou J Et Al
Strain Engineering Methods And Protocols 1st Edition Jindan Zhou
Microbial Environmental Genomics MEG 1st Edition Francis Martin

Similar to Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun (20)

PDF
Artificial Neural Networks Methods in Molecular Biology 2190 Hugh Cartwright...
PDF
Highthroughput Next Generation Sequencing Methods And Applications 1st Editio...
PDF
Bioprospecting Of Microbial Diversity Challenges And Applications In Biochemi...
PDF
Strain Engineering Methods and Protocols 1st Edition Jindan Zhou
PDF
Strain Engineering Methods and Protocols 1st Edition Jindan Zhou
PDF
Microbial Systems Biology Methods And Protocols 2nd Ed 2022 Ali Navid
PDF
In Vitro Mutagenesis Protocols Third Edition 3rd Edition Miguel Alcalde Auth
PDF
Accessing Uncultivated Microorganisms From The Environment To Organisms And G...
PDF
Accessing Uncultivated Microorganisms From The Environment To Organisms And G...
PDF
Microbial Environmental Genomics MEG 1st Edition Francis Martin
PDF
Microbial Transposon Mutagenesis Protocols And Applications 1st Ed Steven C R...
PDF
Synthetic Gene Networks Methods and Protocols 1st Edition Mario Andrea Marchi...
PDF
Microbial Metabolic Engineering Methods and Protocols Methods in Molecular Bi...
PDF
Horizontal Gene Transfer 1st Edition Fernando De La Cruz
PDF
Systems Biology Integrative Biology And Simulation Tools 1st Edition Stphane ...
PDF
Microbial Synthetic Biology 1st Edition Colin Harwood And Anil Wipat (Eds.)
PDF
Gene Drug And Tissue Engineering Glaucia C Pereira
PDF
Advances In Applied Microbiology 83 Sima Sariaslani And Geoffrey M Gadd Eds
PDF
Data Mining for Systems Biology Methods and Protocols 1st Edition Koji Tsuda
PPTX
Microbiome Engineering and Synthetic Microbiology.pptx
Artificial Neural Networks Methods in Molecular Biology 2190 Hugh Cartwright...
Highthroughput Next Generation Sequencing Methods And Applications 1st Editio...
Bioprospecting Of Microbial Diversity Challenges And Applications In Biochemi...
Strain Engineering Methods and Protocols 1st Edition Jindan Zhou
Strain Engineering Methods and Protocols 1st Edition Jindan Zhou
Microbial Systems Biology Methods And Protocols 2nd Ed 2022 Ali Navid
In Vitro Mutagenesis Protocols Third Edition 3rd Edition Miguel Alcalde Auth
Accessing Uncultivated Microorganisms From The Environment To Organisms And G...
Accessing Uncultivated Microorganisms From The Environment To Organisms And G...
Microbial Environmental Genomics MEG 1st Edition Francis Martin
Microbial Transposon Mutagenesis Protocols And Applications 1st Ed Steven C R...
Synthetic Gene Networks Methods and Protocols 1st Edition Mario Andrea Marchi...
Microbial Metabolic Engineering Methods and Protocols Methods in Molecular Bi...
Horizontal Gene Transfer 1st Edition Fernando De La Cruz
Systems Biology Integrative Biology And Simulation Tools 1st Edition Stphane ...
Microbial Synthetic Biology 1st Edition Colin Harwood And Anil Wipat (Eds.)
Gene Drug And Tissue Engineering Glaucia C Pereira
Advances In Applied Microbiology 83 Sima Sariaslani And Geoffrey M Gadd Eds
Data Mining for Systems Biology Methods and Protocols 1st Edition Koji Tsuda
Microbiome Engineering and Synthetic Microbiology.pptx
Ad

Recently uploaded (20)

PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
RMMM.pdf make it easy to upload and study
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Cell Structure & Organelles in detailed.
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Pharma ospi slides which help in ospi learning
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Basic Mud Logging Guide for educational purpose
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Lesson notes of climatology university.
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
Institutional Correction lecture only . . .
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Classroom Observation Tools for Teachers
Supply Chain Operations Speaking Notes -ICLT Program
RMMM.pdf make it easy to upload and study
O7-L3 Supply Chain Operations - ICLT Program
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Microbial diseases, their pathogenesis and prophylaxis
Cell Structure & Organelles in detailed.
102 student loan defaulters named and shamed – Is someone you know on the list?
Pharma ospi slides which help in ospi learning
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Basic Mud Logging Guide for educational purpose
STATICS OF THE RIGID BODIES Hibbelers.pdf
Lesson notes of climatology university.
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Renaissance Architecture: A Journey from Faith to Humanism
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Microbial disease of the cardiovascular and lymphatic systems
Institutional Correction lecture only . . .
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Classroom Observation Tools for Teachers
Ad

Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun

  • 1. Engineering And Analyzing Multicellular Systems Methods And Protocols 1st Edition Lianhong Sun download https://ebookbell.com/product/engineering-and-analyzing- multicellular-systems-methods-and-protocols-1st-edition-lianhong- sun-4683562 Explore and download more ebooks at ebookbell.com
  • 2. Here are some recommended products that we believe you will be interested in. You can click the link to download. Document Engineering Analyzing And Designing Documents For Business Informatics Web Services Robert J Glushko Tim Mcgrath https://ebookbell.com/product/document-engineering-analyzing-and- designing-documents-for-business-informatics-web-services-robert-j- glushko-tim-mcgrath-56636118 Document Engineering Analyzing And Designing Documents For Business Informatics Web Services Robert J Glushko Tim Mcgrath https://ebookbell.com/product/document-engineering-analyzing-and- designing-documents-for-business-informatics-web-services-robert-j- glushko-tim-mcgrath-4112052 Engineering Stochastic Local Search Algorithms Designing Implementing And Analyzing Effective Heuristics Second International Workshop Sls 2009 Brussels Belgium September 34 2009 Proceedings 1st Edition Bertrand Estellon https://ebookbell.com/product/engineering-stochastic-local-search- algorithms-designing-implementing-and-analyzing-effective-heuristics- second-international-workshop-sls-2009-brussels-belgium- september-34-2009-proceedings-1st-edition-bertrand-estellon-2529148 Engineering Stochastic Local Search Algorithms Designing Implementing And Analyzing Effective Heuristics International Workshop Sls 2007 Brussels Belgium September 68 2007 Proceedings 1st Edition Arne Lkketangen Auth https://ebookbell.com/product/engineering-stochastic-local-search- algorithms-designing-implementing-and-analyzing-effective-heuristics- international-workshop-sls-2007-brussels-belgium- september-68-2007-proceedings-1st-edition-arne-lkketangen-auth-4239994
  • 3. Designing Engineering And Analyzing Reliable And Efficient Software 1st Edition Kulwant Kaur https://ebookbell.com/product/designing-engineering-and-analyzing- reliable-and-efficient-software-1st-edition-kulwant-kaur-4633616 Continuity Of Nasa Earth Observations From Space A Value Framework 1st Edition And Medicine Engineering National Academies Of Sciences Division On Engineering And Physical Sciences Space Studies Board Committee On A Framework For Analyzing The Needs For Continuity Of Nasasustained Remote Sensing Observations Of The Earth From Sp https://ebookbell.com/product/continuity-of-nasa-earth-observations- from-space-a-value-framework-1st-edition-and-medicine-engineering- national-academies-of-sciences-division-on-engineering-and-physical- sciences-space-studies-board-committee-on-a-framework-for-analyzing- the-needs-for-continuity-of-nasasustained-remote-sensing-observations- of-the-earth-from-sp-51983240 Analyzing And Applying Current Transformers Stanley E Zocholl https://ebookbell.com/product/analyzing-and-applying-current- transformers-stanley-e-zocholl-5440970 Mobile App Reverse Engineering Get Started With Discovering Analyzing And Exploring The Internals Of Android And Ios Apps Abhinav Mishra https://ebookbell.com/product/mobile-app-reverse-engineering-get- started-with-discovering-analyzing-and-exploring-the-internals-of- android-and-ios-apps-abhinav-mishra-43328124 Analyzing Future Applications Of Ai Sensors And Robotics In Society Thomas Heinrich Musiolik Adrian David Cheok https://ebookbell.com/product/analyzing-future-applications-of-ai- sensors-and-robotics-in-society-thomas-heinrich-musiolik-adrian-david- cheok-43717850
  • 5. Engineering andAnalyzing Multicellular Systems Lianhong Sun Wenying Shou Editors Methods and Protocols Methods in Molecular Biology 1151
  • 6. ME T H O D S I N MO L E C U L A R BI O LO G Y Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651
  • 8. Engineering and Analyzing Multicellular Systems Methods and Protocols Edited by Lianhong Sun School of Life Sciences, University of Science & Technology of China, Hefei,Anhui,People’sRepublicofChina Wenying Shou Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
  • 9. ISSN 1064-3745 ISSN 1940-6029 (electronic) ISBN 978-1-4939-0553-9 ISBN 978-1-4939-0554-6 (eBook) DOI 10.1007/978-1-4939-0554-6 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014934331 © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Humana Press is a brand of Springer Springer is part of Springer Science+Business Media (www.springer.com) Editors Lianhong Sun School of Life Sciences University of Science & Technology of China Hefei, Anhui, People’s Republic of China Wenying Shou Division of Basic Sciences Fred Hutchinson Cancer Research Center Seattle, WA, USA
  • 10. v Microbial ecosystems consist of many interacting microbial species. With synthetic biology rapidly evolving from engineering genetic circuits within cells to manipulating cell–cell interactions, several synthetic microbial communities have been constructed. Such synthetic communities have been used in basic research to explore questions such as how interactions within a community shape the stability, function, patterning, and evolution of the community. In addition, synthetic communities have been constructed to solve chal- lenging engineering problems in various fields. As a consequence, a framework of engineer- ing synthetic microbial ecosystems/consortia is of importance to many users. Equally important are the transcriptomic, genomic, cell biological, and chemical methods to char- acterize communities. Ultimately, to quantitatively understand complex microbial commu- nities, predictive mathematical models can be extremely useful. This volume of Methods in Molecular Biology includes recent developments and a variety of examples on how to con- struct, analyze, and mathematically model multicellular systems. Hefei, People’s Republic of China Lianhong Sun Seattle, WA, USA Wenying Shou Preface
  • 12. vii Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix PART I CONSTRUCTING MULTICELLULAR SYSTEMS 1 Recent Progress in Engineering Human-Associated Microbiomes . . . . . . . . . . 3 Stephanie J. Yaung, George M. Church, and Harris H. Wang 2 Constructing Synthetic Microbial Communities to Explore the Ecology and Evolution of Symbiosis. . . . . . . . . . . . . . . . . . . . . 27 Adam James Waite and Wenying Shou 3 Combining Engineering and Evolution to Create Novel Metabolic Mutualisms Between Species . . . . . . . . . . . . . . . . . 39 Lon Chubiz, Sarah Douglas, and William Harcombe 4 Design, Construction, and Characterization Methodologies for Synthetic Microbial Consortia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Hans C. Bernstein and Ross P. Carlson 5 An Observation Method for Autonomous Signaling-Mediated Synthetic Diversification in Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Ryoji Sekine, Shotaro Ayukawa, and Daisuke Kiga 6 Integration-Free Reprogramming of Human Somatic Cells to Induced Pluripotent Stem Cells (iPSCs) Without Viral Vectors, Recombinant DNA, and Genetic Modification . . . . . . . . . . . . . . . . . . . . . . . . 75 Boon Chin Heng and Martin Fussenegger 7 Transformation of Bacillus subtilis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Xiao-Zhou Zhang, Chun You, and Yi-Heng Percival Zhang 8 Culturing Anaerobes to Use as a Model System for Studying the Evolution of Syntrophic Mutualism. . . . . . . . . . . . . . . . . . . . 103 Sujung Lim, Sergey Stolyar, and Kristina Hillesland 9 Therapeutic Microbes for Infectious Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Choon Kit Wong, Mui Hua Tan, Bahareh Haji Rasouliha, In Young Hwang, Hua Ling, Chueh Loo Poh, and Matthew Wook Chang PART II ANALYZING AND MODELING MULTICELLULAR SYSTEMS 10 Quantitative Measurement and Analysis in a Synthetic Pattern Formation Multicellular System. . . . . . . . . . . . . . . . . . . 137 Xiongfei Fu and Wei Huang 11 Transcriptome Analysis of a Microbial Coculture in which the Cell Populations Are Separated by a Membrane. . . . . . . . . . . . . . 151 Kazufumi Hosoda, Naoaki Ono, Shingo Suzuki, and Tetsuya Yomo
  • 13. viii 12 Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq . . . . . . . . . . . . . . . . . . . . . 165 Daniel E. Deatherage and Jeffrey E. Barrick 13 3D-Fluorescence In Situ Hybridization of Intact, Anaerobic Biofilm . . . . . . . . 189 Kristen A. Brileya, Laura B. Camilleri, and Matthew W. Fields 14 The Characterization of Living Bacterial Colonies Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. . . . . . . . . . . . . . . . . . 199 Brandi S. Heath, Matthew J. Marshall, and Julia Laskin 15 Modeling Community Population Dynamics with the Open-Source Language R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Robin Green and Wenying Shou 16 Simulating Microbial Community Patterning Using Biocellion. . . . . . . . . . . . . 233 Seunghwa Kang, Simon Kahan, and Babak Momeni Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Contents
  • 14. ix SHOTARO AYUKAWA • Academy of Computational Life Sciences, Tokyo Institute of Technology, Kanagawa, Japan JEFFREY E. BARRICK • Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA HANS C. BERNSTEIN • Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA KRISTEN A. BRILEYA • Department of Microbiology, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA LAURA B. CAMILLERI • Department of Microbiology, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA ROSS P. CARLSON • Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA MATTHEW WOOK CHANG • Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore LON CHUBIZ • Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA GEORGE M. CHURCH • Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA DANIEL E. DEATHERAGE • Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA SARAH DOUGLAS • Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA MATTHEW W. FIELDS • Department of Microbiology, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA XIONGFEI FU • Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China MARTIN FUSSENEGGER • Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland ROBIN GREEN • Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA WILLIAM HARCOMBE • Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA BRANDI S. HEATH • Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA BOON CHIN HENG • Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland Contributors
  • 15. x KRISTINA HILLESLAND • Biological Sciences Division, School of STEM, UW Bothell, Bothell, WA, USA KAZUFUMI HOSODA • Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan WEI HUANG • Department of Biology, South University of Science and Technology of China Nanshan, Shenzhen, China; Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China IN YOUNG HWANG • Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore SIMON KAHAN • Northwest Institute for Advanced Computing, University of Washington, Seattle, WA, USA SEUNGHWA KANG • Pacific Northwest National Laboratory, Seattle, WA, USA DAISUKE KIGA • Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa, Japan JULIA LASKIN • Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA SUJUNG LIM • Biological Sciences Division, School of STEM, UW Bothell, Bothell, WA, USA HUA LING • Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore CHUEH LOO POH • School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore MATTHEW J. MARSHALL • Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA BABAK MOMENI • Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA NAOAKI ONO • Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan BAHAREH HAJI RASOULIHA • School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore RYOJI SEKINE • Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa, Japan WENYING SHOU • Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA SERGEY STOLYAR • Institute for Systems Biology, Seattle, WA, USA SHINGO SUZUKI • RIKEN Quantitative Biology Center, Furuedai, Osaka, Japan MUI HUA TAN • School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore ADAM JAMES WAITE • Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA HARRIS H. WANG • Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA CHOON KIT WONG • School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore Contributors
  • 16. xi STEPHANIE J. YAUNG • Program in Medical Engineering Medical Physics, Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA TETSUYA YOMO • Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, Japan; Exploratory Research for Advanced Technology, Suita, Osaka, Japan CHUN YOU • Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA, USA XIAO-ZHOU ZHANG • Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA, USA; Gate Fuels Inc., Blacksburg, VA, USA YI-HENG PERCIVAL ZHANG • Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA, USA; Gate Fuels Inc., Blacksburg, VA, USA Contributors
  • 20. 3 Lianhong Sun and Wenying Shou (eds.), Engineering and Analyzing Multicellular Systems: Methods and Protocols, Methods in Molecular Biology, vol. 1151, DOI 10.1007/978-1-4939-0554-6_1, © Springer Science+Business Media New York 2014 Chapter 1 Recent Progress in Engineering Human-Associated Microbiomes Stephanie J. Yaung, George M. Church, and Harris H. Wang Abstract Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside on the human body, the human-associated microbiota, are particularly interesting as targets for forward engineering and manipulation due to their relevance in health and disease. New technologies in analysis and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer to realizing the true potential of an engineered human-associated microbial community. Key words Microbiome, Microbiota, Synthetic biology, Systems biology, Microbial engineering, Functional metagenomics, Host–microbe interactions 1 Introduction Of the 100 trillion cells in the human body, 90 % are microbes that naturally inhabit various body sites, including the gastrointestinal tract, nasal and oral cavities, urogenital area, and skin [1]. An indi- vidual’s colon is home to 1011 –1012 microbial cells/mL, the greatest density compared to any other microbial habitat characterized to date [2]. Many studies, such as the Human Microbiome Project and MetaHIT, have probed the vast effects of microbiota on human health and disease [1, 3–5]. In addition to metagenomic sequencing [6], traditional methods of studying cells in isolation are important for elucidating molecular bases of microbial activity. However, cells do not exist in single-species cultures in nature. In fact, some species are only culturable in the presence of other microorganisms [7]. This interdependence for survival amongst microbial species in a community attests to the importance of intercellular interactions, both microbe–microbe and host– microbe. Despite the fact that the human microbiota is composed of many individual microbes, these individuals work in concert to
  • 21. 4 perform tasks that rival in complexity to those of more sophisticated multicellular systems. Thus, the human-associated microbiome presents a ripe opportunity for forward engineering to potentially improve human health (Fig. 1). Here, we review recent advances in this area and outline potential avenues for future endeavors. 2 Microbiota, Host, and Disease Contrary to traditional views, microbes are social organisms that engage with the environment and other organisms in specific ways. Microbes participate in intercellular communication through contact-dependent signaling [8], quorum sensing [9], metabolic cooperation or competition [5], spatiotemporal organization [10], and horizontal gene transfer (HGT) [11]. Human-associated microbes produce by-products that serve as substrates utilized by other resident bacteria [12–14]. For instance, accumulated hydro- gen gas from bacterial sugar fermentation is removed by acetogenic, methanogenic, and sulfate-reducing gut bacteria [15]. In contrast to cross-feeding relationships, microbes under stress can release bacte- riocins to suppress the growth of competitors [16–18]. If microbes are members of a biofilm community, they benefit from physical protection from the environment, access to nutrients trapped and distributed through channels in the biofilm, development of syn- trophic relationships with other members, and the ability to share and acquire genetic traits [19, 20]. Microbial populations also Fig. 1 Engineering human-associated microbiota requires detailed understanding of processes that govern the natural propagation and retention of microbes in the host as well as environmental and adaptive pressures that drive the evolution of cells and communities Stephanie J. Yaung et al.
  • 22. 5 genetically diversify to insure against possible unstable environmen- tal conditions [21, 22]. Moreover, multispecies communities harbor a dynamic gene pool consisting of mobile genetic elements, such as transposons, plasmids, and bacteriophages, which serve as a source of HGT to share beneficial functions with neighbors to preserve community stability [23–26]. Densely populated communities such as the human gut are active sites for gene transfer and reservoirs for antibiotic resistance genes [11, 27–29]. Beyond microbe–microbe interactions, the microbiota coevolves with the host as it develops, driving microbial adaptation [30–33]. Core functions of microbiota benefit the host, such as extraction of otherwise inaccessible nutrients, immune system devel- opment, and protection against pathogen colonization [2, 34–37]. Gut microbes are critical in intestinal angiogenesis, epithelial cell maturation, and immunological homeostasis [37–40]. For exam- ple, the commensal Bacteroides fragilis produces polysaccharide A, which converts host CD4+ T cells into Foxp3+ Treg cells, producing interleukin-10 (IL-10) and inducing mucosal tolerance [41]. Host diet, inflammatory responses, and aging also affect microbial com- munity composition and function [42–45] (Fig. 2). Indeed, aber- rations in host genetics, immunology, and diet can lead to Fig. 2 Composition of the human gut microbiome during development with respect to microbial diversity and population stability. Data compiled from recent studies from the literature: (a) Hong 2010 [169]; (b) Saulnier 2011 [170]; (c) Claesson 2011 [171]; (d) Yatsunenko 2012 [172]; (e) Spor 2011 [173] Engineering Human-Associated Microbiomes
  • 23. 6 microbiota-associated human diseases. Diet-induced obesity in mice from a high-fat diet is characterized by enhanced energy harvest and an increased Firmicutes-to-Bacteroidetes ratio [46, 47]. Furthermore, disruptions in the homeostasis between gut microbial antigens and host immunity can invoke allergy and autoimmunity, as in type 1 diabetes and multiple sclerosis [48–50]. It is thought that inflamma- tory bowel disease (IBD) results from inappropriate immune responses to intestinal bacteria; genes identified in genome-wide association studies highlight the role of a host imbalance between pro-inflammatory and regulatory states [48, 51]. While the host selects for microbial communities that harvest nutrients and prime the immune system, irregular microbiota composition may cause disease (Fig. 3), including IBD [52–54], Host disease states Inflammatory bowel disease in adults Metabolic syndrome in adult Healthy Burkina Faso childrena Healthy European childrena Host genetics and environment (diet, lifestyle) Actinobacteria Bacteroidetes Firmicutes Proteobacteria Spirochaetes Other Fusobacteria Healthy Dental caries Young adult salivag Saliva Dental plaque Oral microbiomef Gut microbiome Pediatric atopic dermatitisd Baseline Healthy childd Flare Postflare Healthy adulte Skin microbiome Fig. 3 Changes in the composition of human microbiota during disease states compared to healthy states. Data compiled from recent studies from the literature: (a) De Filippo 2010 [174]; (b) Peterson 2008 [175]; (c) Larsen 2010 [176]; (d) Kong 2012 [177]; (e) Gao 2012 [178]; (f ) Keijser 2008 [179]; (g) Yang 2012 [180] Stephanie J. Yaung et al.
  • 24. 7 lactose intolerance [55, 56], obesity [57, 58], type I diabetes [59], arthritis [60], myocardial infarction severity [61], and opportunistic infections by pathogens such as Clostridium difficile and HIV [62–65]. Microbial gut metabolism links host diet not only to body composition and obesity [66] but also to chronic inflammatory states, such as IBD, type 2 diabetes, and cardiovas- cular disease [67–69]. Intestinal microbes are also important in off-target drug metabolism, rendering digoxin, acetaminophen, and irinotecan less effective or even toxic [70–72]. In the case of irinotecan, a chemotherapeutic used mainly for colon cancer, the drug is metabolized by β-glucuronidases of commensal gut bacte- ria into a toxic form that damages the intestinal lining and causes severe diarrhea. In the oral cavity, ecological shifts in dental plaque microbiota lead to caries (cavities), gingivitis, and periodontitis [73]. Dental caries arise from acidic environments generated by acidogenic (acid-forming) and aciduric (acid-tolerant) bacteria, which metabolize sugar from the host diet. Translocation of oral bacteria into other tissues results in infections, and cytokines from inflamed gums released into the bloodstream stimulate systemic inflammation. Oral bacteria have been implicated in respiratory [74, 75] and cardiovascular diseases [76–78], though mechanisms remain unclear. 3 Enabling Tools for Engineering the Microbiota The human-associated microbial community presents a vast reservoir of nonmammalian genetic information that encodes for a variety of functions essential to the mammalian host [79]. Next-generation sequencing technologies have enabled us for the first time to sys- tematically probe the genetic composition of these trillions of microbes that reside on the human body [1]. The ongoing effort by the Human Microbiome Project and MetaHIT to catalog dom- inant microbial strains from different body sites has generated useful reference genomes for many of the representative species [80]. Metagenomic shot-gun sequencing approaches of whole microbial communities, such as those found in the gut, have yielded near- complete gene catalogs that describe abundance and diversity of genes that contribute to maintenance and metabolism of the microbiota [6]. In order to determine functional relationships between human-associated microbes and their concerted effect in the mam- malian host, we rely on functional perturbation of the microbial community. These investigative avenues include genome-scale per- turbation assays, specified community reconstitutions, and directed engineering through synthetic biology (Fig. 4). Each approach provides us with a unique angle to attack an otherwise daunting Engineering Human-Associated Microbiomes
  • 25. 8 challenge of de-convolving a highly intertwined set of microbial interactions in a very heterogeneous environment and a difficult- to-manipulate human host. Advances in both in vitro and in vivo host models have thus also facilitated research endeavors in this area, which we discuss in the following sections. Fig. 4 General approaches to engineer the human microbiome through design, quantitative modeling, genome- scale perturbation, and analysis in in vitro and in vivo models, with the ultimate goal of producing demand- meeting applications to improve sensing, prevention, and treatment of diseases Stephanie J. Yaung et al.
  • 26. 9 Approaches to study the function of human-associated microbes by genetic manipulation rely on several fundamental capabilities, which are often the largest practical barriers to manipulate microbes genetically. First, individual microbes need to be isolated and cul- tured in the laboratory. Because microbes have a myriad of physi- ologies and require different nutritional supplement for growth, different media compositions and growth conditions need to be laboriously tested by trial and error to isolate and culture each microbe. These microbial culturing techniques date back to the times of Louis Pasteur and are still the dominant approach today. More recent microbial cultivation techniques use microfluidics and droplet technologies to enable the discovery of synergistic interac- tions between natural microbes that allow otherwise “unculturable” organisms to be grown in laboratory conditions [7, 81, 82]. Upon successful microbial cultivation, the next limiting step of microbial genetic manipulation is the transformation of foreign DNA into cells. The passage of foreign DNA (e.g., plasmids, recombinant fragments) into the cell requires overcoming the physical barriers presented by the cell wall or membrane. This task is accomplished in nature through processes such as transduction by phage, conjugation and mating, or natural competency and DNA uptake [83, 84]. Numerous laboratory techniques have been developed for microbial transformation including electroporation [85], biolistics [86], soni- cation [87], and chemical or heat disruption [88]. Electroporation, the most common of the laboratory transformation techniques, relies on high-voltage electrocution of the bacterial sample that is thought to transiently induce pores on the cell membrane (hence “electroporation”) that then enable extracellular DNA to diffuse into the cell. Various protocols for electroporation of human-associ- ated microbes have been described and are good starting points for developing genetic systems in these microbes [89, 90]. Upon transformation of DNA into the cell, the DNA needs to either stably propagate intracellularly or integrate into the micro- bial host genome through recombination or other integration strategies. Inside the cell, stable propagation of episomal DNA such as plasmids requires DNA replication machinery that is com- patible with the foreign DNA [83]. Additionally, cells often use methylation and DNA modification and restriction systems to dis- cern foreign versus host DNA through a primitive defensive mech- anism that fights against viruses or other invading genetic elements. Nonetheless, these promiscuous genetic elements can often be used as a way to integrate foreign DNA into the chromosome and are often used for large-scale functional genomics [91]. Taking all these parameters into consideration, we have summarized (Fig. 5) the current genetic tractability of human- associated microbes with respect to culturability, availability of full genome sequences, transfection methods, and expression and manipulation systems. Expansion of these basic genetic tools is crucial for future functional studies of human microbiota. 3.1 Challenges of Building New Genetic System Engineering Human-Associated Microbiomes
  • 27. 10 Fig. 5 Genetic tractability of abundant or relevant human-associated microbial genera, evaluated by the availability of means to introduce genetic material (e.g., transformation, conjugation, or transduction), vectors, expression systems, completed genomic sequences, and culturing methods. Circles of increasing sizes indicate greater genetic tractability. Protocols and demonstrated methods for genetic manipulation are listed as follows: (a) Clostridium: Phillips-Jones 1995, Jennert 2000, Young 1999, Bouillaut 2011 [181–184]; (b) Ruminococcus: Cocconcelli 1992 [185]; (c) Lactobacillus: van Pijkeren 2012, Ljungh 2009, Damelin 2010, Sorvig 2005, Thompson 1996, Lizier 2010[107, 186–190]; (d) Enterococcus: Shepard 1995 [191]; (e) Lactococcus: Holo 1995, van Pijkeren 2012 [107, 192]; (f) Streptococcus: McLaughlin 1995, Biswas 2008 [193, 194]; (g) Staphlyococcus: Lee 1995 [195]; (h) Listeria: Alexander 1990 [196]; (i) Treponema: Kuramitsu 2005 [197]; (j) Borrelia: Hyde 2011, Rosa 1999 [198, 199]; (k) Bifidobacterium: Mayo 2010 [200]; Stephanie J. Yaung et al.
  • 28. 11 Genome-scale perturbations are a class of genetic approaches that disrupt or perturb the expression of functional genes that contribute to relevant phenotypes by individual microbes. To dissect the func- tion of different genes in the cell, we have relied heavily on the use of transposons, which are selfish genetic elements that can splice into and out of different locations of chromosomal DNA, thereby disrupting the coding sequence [92]. This classical approach, known as transposon mutagenesis, has allowed us to isolate many genetic mutants whose disrupted genes give rise to interesting phenotypes that reflect the importance of those genes to its physiol- ogy. Next-generation DNA sequencing has now enabled multi- plexed genotyping of pools of transposon mutants by using molecular barcodes that then can be applied to measure the effect of genome-scale perturbations in different environmental condi- tions. For example, techniques such as insertion sequencing (INSeq) [93] utilize the inverted repeat recognition of the Himar trans- posase, which is one nucleotide change away from the restriction site for type II restriction enzyme MmeI, to generate paired 16–17 bp flanking genomic sequences around the transposon that can be sequenced in pools. Thus, the defined insertion location of every transposon in the library can be determined. By sequencing this pooled mutant library pre- and posttreatment with any number of environmental perturbations, one can probe the effects of differ- ent gene disruptions on the physiology of the cell in a multiplexed fashion. Similar techniques using other transposon systems such as transposon sequencing (Tn-seq) [94], high-throughput insertion tracking by deep sequencing (HITS) [95], and transposon-directed insertion-site sequencing (TraDIS) [96] have also been developed. In addition to transposon-based systems, shotgun expression libraries have been useful in discovering functional DNA elements in genomic or metagenomic DNA. Shotgun expression libraries rely on physical shearing or restriction digestion of a donor DNA source into smaller DNA fragments that are then cloned into a gene expression vector and transformed into a host strain for functional analysis. A library of metagenomic DNA samples can for example be extracted from an environment and cloned into plasmids that are then expressed in E. coli. Selection and sequencing of the E. coli population for heterologous DNA that enable new function lead to discovery of novel gene elements that perform a particular 3.2 Genome-Scale Perturbations Fig. 5 (continued) (l) Actinomyces: Yeung 1994 [201]; (m) Mycobacterium: Parish 2009, Sassetti 2001 [202, 203]; (n) Proprionibacterium: Luijk 2002 [204]; (o) Chlamydia: Binet 2009 [205]; (p) Porphyromonas: Belanger 2007 [206]; (q) Prevotella: Flint 2000, Salyers 1992 [207, 208]; (r) Bacteroides: Salyers 1999, Smith 1995, Bacic 2008 [209–211]; (s) Fusobacterium: Haake 2006 [212]; (t) Helicobacter: Taylor 1992, Segal 1995 [213, 214]; (u) Camplyobacter: Taylor 1992 [214]; (v) Rickettsia: Rachek 2000 [215]; (w) Brucella: McQuiston 1995 [216]; (x) Bordetella: Scarlato 1996 [217]; (y) Neisseria: O’Dwyer 2005, Bogdon 2002, Genco 1984 [218–220]; (z) Pseudomonas: Dennis 1995 [221] Engineering Human-Associated Microbiomes
  • 29. 12 activity. This approach can easily identify activities such as antibiotic resistance [97] but have yielded less success with other functions. Towards forward engineering of human-associated microbes, new genome engineering tools such as trackable multiplex recom- bineering (TRMR) [98, 99] and multiplex automated genome engineering (MAGE) enable efficient, site-specific modification of the genome [100–103]. TRMR combines double-stranded homologous recombination [104] and molecular barcodes synthe- sized from DNA microarrays to generate populations of mutants that are trackable by microarray or sequencing. MAGE relies on introduction of pools of single-stranded oligonucleotides that tar- get defined locations of the genome to introduce regulatory muta- tions [102] or coding modifications [105]. These and other recombineering technologies are now being developed for a variety of other organisms including gram-negative bacteria [106], lactic acidbacteria[107],Pseudomonassyringae[108],andMycobacterium tuberculosis [109], and are likely to be very useful for engineering human-associated microbes. The community of microbes that make up the human microbiome can be considered a “pseudo-organ” of its own. These microbes interact with one another and the mammalian host in potentially highly complex ways that may be difficult to decipher even with tractable genetic systems [110]. A direct approach to study these interactions is to build reconstituted communities of microbes derived from monoculture isolates in defined combinations. This de novo reconstitution approach to build synthetic communities has significant advantages over attempts to deconvolute natural communities. Reconstituted synthetic consortium presents a trac- table level of complexity in terms of number of interacting micro- bial species that can be tracked by sequencing and predicted with quantitative models. In one such study, researchers inoculated germ-free mice with ten representative strains of the human micro- biota [111]. The mice were then fed with defined diets of macro- nutrients consisting of proteins, fats, polysaccharides, and sugars. By tracking the abundance of the ten-member microbial consor- tium using high-throughput sequencing, the researchers could predict over 60 % of the variation in species abundance as a result of diet perturbations. This avenue of investigation presents a viable approach to study the human microbiome and ways to analyze synthetically engineered microbiota. Engineered microbes have been utilized to reconstitute syn- thetic communities to investigate the role of metabolic exchange. One such important metabolic exchange is that of amino acids, as they are the essential constituents of proteins. Various syntrophic cross-feeding communities have been described using auxotrophic E. coli and yeast strains that require different amino acid supplementation for growth [112–114]. In these syntrophic 3.3 Reconstituted Communities Stephanie J. Yaung et al.
  • 30. 13 systems, metabolites that are exchanged across different biosynthetic pathways promote more syntrophic growth than those that are exchanged along the same pathway, which also relates to the cost of biosynthesis of the amino acid metabolites. Amino acid exchange is likely a large player in driving metabolism of microbial communities as a substantial fraction of all microbes are missing biosynthesis of various metabolites and thus require growth on more rich and complex substrates that are found in the gut [115]. New approaches are now utilizing synthetic biology to engineer human-associated microbiota to improve health and metabolism as well as to monitor and fight diseases. These efforts focus on devel- oping genetic circuits that actuate in an engineered host cell such as E. coli that can sense and respond to changes to its environment and in the presence of particular pathogens. For example, to detect the human opportunistic pathogen Pseudomonas aeruginosa, which often causes chronic cystic fibrosis infections and colonizes the gas- trointestinal tract, E. coli was engineered to detect the small diffus- ible molecule that is excreted by P. aeruginosa through the quorum sensing pathway [116]. An engineered synthetic circuit was placed in nonpathogenic E. coli, which when placed in the presence of high-density P. aeruginosa triggered a self-lysis program that released a narrow-spectrum bacteriocin that specifically killed the P. aeruginosa strain. Similar strategies have also been demonstrated to detect and respond to Vibrio cholera infection using engineered E. coli that sense autoinducer-1 (AI1) molecules from V. cholera quorum sensing pathway [117]. These strategies appear to yield improved survival rates against microbial pathogenesis in murine models [117]. Quorum sensing systems, which normally help microbes detect local cell density, have been further enhanced to improve robustness and performance to enable coupled short-range and long-range feedback circuits that enable microbial communica- tion across large distances in an engineered community. Other microbes have been successfully engineered to perform specific functions on human-associated surfaces such as the muco- sal layer of the gut epithelium. Numerous diseases that occur along the intestinal tract are targets of such engineered approaches. For example, the probiotic strain Lactococcus lactis has been engineered to secrete recombinant human IL-10 in the gastrointestinal tract to reduce colitis [118, 119]. Other future applications of engi- neered probiotics include enhancing catabolism of nutrients (e.g., lactose and gluten), modulation of the immune system, and removal of pathogens by selective toxin release [116]. To probe and engineer the human-associated microbial commu- nity, various in vitro models have been developed, ranging from traditional batch culturing in chemostats to microfluidic systems that incorporate host cells. Single-vessel chemostats inoculated 3.4 Microbial Engineering Through Synthetic Biology 3.5 In Vitro Host Models Engineering Human-Associated Microbiomes
  • 31. 14 with fecal samples from healthy individuals have helped identify HGT [120] and selective bacterial colonization on different carbo- hydrate substrates [121, 122]. A multichamber continuous culture system mimicking spatial, nutritional, and pH properties of differ- ent GI tract regions can be used to investigate stabilization dynam- ics [123–125]. Similarly, the constant-depth film fermenter resembles oral biofilm [126] and has enabled studies on biofilm for- mation, antibiotic resistance [126], and HGT in a multispecies oral community [127, 128]. To incorporate mammalian cells in study- ing host–microbial interactions, organ-on-a-chip microfluidic devices have been recently used. In one version of such a system, a gut-on-a-chip device, the microfluidic channel is coated with extra- cellular matrix and lined by human intestinal epithelial (Caco-2) cells. This system mimics intestinal flow and peristaltic motion, recapitulates columnar epithelium polarization and intestinal villi formation, and supports the growth of commensal Lactobacillus rhamnosus GG [129]. These microdevices offer an opportunity to investigate host–microbiota interactions in a well-controlled man- ner and in physiologically relevant conditions. Inoculating with native microbiota samples provides a method to overcome the un-cultivability of many microbes as well as to study collective activity and discover novel functions without a priori knowledge of community composition. However, starting with a predefined microbial community allows a controlled setting better suited for testing engineered systems. In one study analyz- ing the dynamics of a community representing the four main gut phyla in a chemostat, the authors propose that intrinsic microbial interactions, rather than host selective pressure, play a role in the observed colonization pattern, which was similar to what has been documented in the human gut [130]. Similar models have been developed for oral microbiota studies. The use of predefined oral microbial inocula has helped elucidate metabolic cooperation in batch culture [12] and community development in saliva-conditioned flow cells [131]. In order to move into in vivo animal models that more closely represent the physiology of the human host environment, researchers have extensively utilized murine models including germ-free, gno- tobiotic, and conventionally raised mice. Gnotobiotic animals are born in aseptic conditions and reared in a sterile environment where they are exposed only to known microbial species; techni- cally, germ-free mice are a type of gnotobiotic mice that have not been exposed to any microbes. Similar to in vitro systems, mice can be inoculated with either a natural microbiota sample or a pre- defined microbial community. Fecal samples, as well as oral swab and saliva samples, can then be collected from gnotobiotic mice for biochemical analysis and species quantification of gut and oral cavity microbiota. In vivo models have been used to study the 3.6 In Vivo Host Models Stephanie J. Yaung et al.
  • 32. 15 transmission of antibiotic resistance in the mouse gut [132, 133] and colonization resistance in the oral cavity [134]. Furthermore, the choice of the inoculum donor offers opportunities to compare different host selection pressures and microbial community responses. Microbiota can be transplanted from conventionally raised to germ-free animals of not only the same species but also interspecies, as in human microbiota into mouse, called humanized gnotobiotic mice [134]. In one study, transplants from zebrafish gut microbiota into germ-free mice and mouse gut microbiota into germ-free zebrafish revealed that the resulting community conformed to the native host composition, demonstrating host selection [135]. Altering host diet, environment, or genetic background can also enable studies in host–microbiota interactions. One method to gain insight into the role of microbial communities in disease is to utilize mice with recapitulated pathologies. For example, IL-10−/− , ob−/− , apoE−/− , and TLR2−/− or TLR5−/− mice are models for colitis, obesity, hypercholesterolemia, and metabolic syndrome, respectively [46, 136–139]. To generate antigen- or pathogen- specific phenotypes, mice can be infected with Salmonella typhimurium to study colitis [140] or Citrobacter rodentium as a model for attaching and effacing pathogens, such as enterohemor- rhagic E. coli [141, 142]. Furthermore, murine models with chem- ically induced inflammation can be tools to study chronic mucosal inflammation; dextran sodium sulfate (DSS) can induce ulcerative colitis, and trinitrobenzene sulfonic acid (TNBS) can stimulate Crohn’s disease [143]. To investigate oral microbiota, there are periodontal disease [144] and oral infection models [145, 146]; gnotobiotic rodents can also be fed a high-sucrose cariogenic diet to promote plaque formation. Germ-free mice inoculated with defined microbes are informa- tive models for analyzing microbial colonization and metabolic adaptation [147]. For example, resident bacteria and probiotic strains adapt their substrate utilization: in the presence of Bifidobacterium longum, Bifidobacterium animalis, or Lactobacillus casei, Bacteroides thetaiotaomicron diversified its carbohydrate uti- lization by shifting metabolism from mucosal glycans to dietary plant polysaccharides [148]. Furthermore, the effect of different diets on microbial community composition can be studied, as in gnotobiotic mice inoculated with ten sequenced gut bacterial species and fed with various levels of casein, cornstarch, sucrose, and corn oil to represent protein, polysaccharide, sugar, and fat content in the diet, respectively [111]. Over the past several decades, a large number of theoretical and quantitative models have been developed to describe the cell and its behavior. Constrain-based models are used to describe metabolism of individual cells using stoichiometric representation 3.7 Computational Frameworks for Human Microbiomics Engineering Human-Associated Microbiomes
  • 33. 16 of metabolic reactions and optimization constraints [149]. Approaches such as flux balance analysis (FBA) enable the analysis of metabolism under steady-state assumptions by linear optimiza- tion solution methods. These methods are now being scaled to ecosystems of cells. Recent developments using multi-level objec- tive optimization [150] and dynamic systems [151] enable the modeling of synthetic ecosystems of three or more members. Using metagenomic data of the gut microbiome, Greenblum et al. generated a community-level metabolic reconstruction net- work of the microbiota and discovered topological variations that are associated with obesity and IBD, giving rise to low diversity and differences in community composition [152]. For models that account for systems dynamics, population abundance and metabolite concentrations can be solved independently through different FBA models that are iterated at each time step. This approach called dynamic multi-species metabolic modeling (DMMM) can capture scenarios of resource competition, leading to the identification of limiting metabolites [153]. Other comple- mentary models include elementary mode analysis (EMA) [154] that enables quantitative analysis of microbial ecosystems in a mul- ticellular fashion. 4 Perspectives Reframing the microbiota community as a core set of genes, not a core set of species, opens a new front to the microbiome engineering design space. In a metagenomic study of 154 individuals, no single- gut bacterial phylotype was detected at an abundant frequency amongst all the samples, a finding that is consistent with the idea that the core human gut microbiome may not be best defined by promi- nent species but by abundantly shared genes and functions [155]. We propose that manipulation at the gene, genome, and ultimately metagenome level offers the ability for precise multicellular engineer- ing of desirable traits in human-associated microbiota. Besides con- trolledperturbationsofthemicrobiometoadvanceourunderstanding of host–microbiota interactions, metagenome-scale tools enable novel developments in diagnostics and therapeutics. From biosensors on the skin to reporters in the gut, there are several opportunities in monitoring the health and disease status of the human host, such as sensing nutritional deficiencies, immune imbalances,environmentaltoxins,orinvadingpathogens.Prophylactic and therapeutic avenues for human microbiome engineering include modifying community composition, tuning metabolic activity, mediating microbe–microbe relationships, and modulating host– microbe interactions. Two current microbiota-associated treatments Stephanie J. Yaung et al.
  • 34. 17 have shown clinical efficacy: (1) fecal transplants for recurrent Clostridium difficile infection [156] and (2) probiotics for pouchitis, which is inflammation of the ileal pouch that is created after surgical removal of the colon in ulcerative colitis patients [157–159]. The main challenge is transmission of undesirable agents from donor feces to the recipient gut in fecal transplants and native colonization resis- tance that would impair infiltration and growth of new species in pro- biotics [160, 161]. Nevertheless, these successful approaches demonstrate the potential benefits of leveraging natural microorgan- isms and entire microbial communities. In fact, coupling organismal and functional gene-level approaches would be a powerful way to engineer the native micro- biota. Microbiome engineering enables multiscale system design for the synthesis of nutrients and vitamins, enhanced digestion of gluten and lactose, decreased acidity of the oral cavity, targeted elimination of multidrug-resistant pathogens, and microbial mod- ulation of the host immune system. As vehicles for drug delivery, commensal bacteria designed to secrete heterologous genes have been explored for treating cancer [162–164], diabetes [165], HIV [166], and IBD [118]. For example, IL-10 has immuno- modulatory effects in IBD but requires localized delivery at the intestinal lining to avoid the toxic side effects and low efficacy of systemic IL-10 injection. Ingestion of modified Lactococcus lactis that secrete recombinant IL-10 is safe and effective in animal models and has been promising in human clinical trials for IBD [119, 167]. Finally, besides addressing clinical safety and efficacy criteria for FDA regulatory approval [168], overall safety precautions are critical considerations to minimize unintentional risks in releasing genetically modified material into the natural environ- ment. Rational design, such as creating auxotrophic microbes [119], for robust stability, non-pathogenicity, and containment of recombinant genetic systems will be essential in microbiome engineering. Acknowledgements H.H.W. acknowledges the generous support from the National Institutes of Health Director’s Early Independence Award (grant 1DP5OD009172-01). S.J.Y. acknowledges support from the National Science Foundation Graduate Research Fellowship and the MIT Neurometrix Presidential Graduate Fellowship. G.M.C. acknowledges support from the Department of Energy Genomes to Life Center (Grant DE-FG02-02ER63445). Engineering Human-Associated Microbiomes
  • 35. 18 References 1. Huttenhower C, Gevers D, Knight R et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214 2. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848 3. Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project. Nature 449:804–810 4. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438 5. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary per- spective on human-microbe mutualism and disease. Nature 449:811–818 6. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 7. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environ- ment. Science 296:1127–1129 8. Hayes CS, Aoki SK, Low DA (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet 44:71–90 9. Bassler BL, Losick R (2006) Bacterially speak- ing. Cell 125:237–246 10. Walker AW, Duncan SH, Harmsen HJ et al (2008) The species composition of the human intestinal microbiota differs between particle- associated and liquid phase communities. Environ Microbiol 10:3275–3283 11. Smillie CS, Smith MB, Friedman J et al (2011) Ecology drives a global network of gene exchange connecting the human micro- biome. Nature 480:241–244 12. Bradshaw DJ, Homer KA, Marsh PD et al (1994) Metabolic cooperation in oral micro- bial communities during growth on mucin. Microbiology 140:3407–3412 13. Falony G, Vlachou A, Verbrugghe K et al (2006) Cross-feeding between Bifido-bacterium longum BB536 and acetate-converting, butyr- ate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841 14. Salazar N, Gueimonde M, Hernández-Barranco AM et al (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fer- mentable substrates for human intestinal bacte- ria. Appl Environ Microbiol 74:4737–4745 15. Gibson GR, Cummings JH, Macfarlane GT et al (1990) Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31:679–683 16. Dabard J, Bridonneau C, Phillipe C et al (2001) Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 67:4111–4118 17. Santagati M, Scillato M, Patanè F et al (2012) Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol Med Microbiol 65:23–31 18. Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiot- ics. Appl Microbiol Biotechnol 81:591–606 19. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 20. Marsh PD, Moter A, Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontology 2000 2000(55): 16–35 21. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635 22. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210 23. Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3: 722–732 24. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innova- tion and evolution. Nat Rev Microbiol 3:679–687 25. Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the commu- nal gene pool. Philos Trans R Soc Lond B Biol Sci 364:2275–2289 26. Jones BV, Marchesi JR (2007) Accessing the mobile metagenome of the human gut micro- biota. Mol Biosyst 3:749–758 27. Dobrindt U, Hochhut B, Hentschel U et al (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424 28. Baquero F (2004) From pieces to patterns: evolutionary engineering in bacterial patho- gens. Nat Rev Microbiol 2:510–518 29. Salyers AA (1993) Gene transfer in the mam- malian intestinal tract. Curr Opin Biotechnol 4:294–298 Stephanie J. Yaung et al.
  • 36. 19 30. Reid G, Younes JA, Van der Mei HC et al (2010) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9:27–38 31. Koenig JE, Spor A, Scalfone N et al (2010) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585 32. Van den Abbeele P, Van de Wiele T, Verstraete W et al (2011) The host selects mucosal and luminal associations of coevolved gut micro- organisms: a novel concept. FEMS Microbiol Rev 35:681–704 33. Giraud A, Arous S, De Paepe M et al (2008) Dissecting the genetic components of adapta- tion of Escherichia coli to the mouse gut. PLoS Genet 4:e2 34. Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359 35. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920 36. Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361:512–519 37. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intesti- nal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99: 15451–15455 38. Rakoff-Nahoum S, Paglino J, Eslami- Varzaneh F et al (2004) Recognition of com- mensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241 39. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12:129–134 40. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139 41. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal micro- biota. Proc Natl Acad Sci U S A 107: 12204–12209 42. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108 43. Serino M, Luche E, Gres S et al (2012) Metabolic adaptation to a high-fat diet is asso- ciated with a change in the gut microbiota. Gut 61:543–553 44. Honda K, Littman DR (2011) The Microbiome in Infectious Disease and Inflammation. Annu Rev Immunol 30:759–795 45. Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075 46. Turnbaugh PJ, Bäckhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223 47. Murphy EF, Cotter PD, Healy S et al (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–1642 48. Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10:735–744 49. Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113 50. Lee YK, Menezes JS, Umesaki Y et al (2010) Proinflammatory T-cell responses to gut microbiota promote experimental autoim- mune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622 51. Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078 52. Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8:564–577 53. Sokol H, Seksik P, Furet JP et al (2009) Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189 54. Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of faecal micro- biota in Crohn’s disease revealed by a metage- nomic approach. Gut 55:205–211 55. He T, Venema K, Priebe MG et al (2008) The role of colonic metabolism in lactose intoler- ance. Eur J Clin Invest 38:541–547 56. He T, Priebe MG, Harmsen HJM et al (2006) Colonic fermentation may play a role in lac- tose intolerance in humans. J Nutr 136:58 57. Tehrani AB, Nezami BG, Gewirtz A et al (2012) Obesity and its associated disease: a role for microbiota? Neurogastroenterol Motil 24:305–311 58. Everard A, Lazarevic V, Derrien M et al (2011) Responses of gut microbiota and glu- cose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin- resistant mice. Diabetes 60:2775–2786 59. Giongo A, Gano KA, Crabb DB et al (2010) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91 Engineering Human-Associated Microbiomes
  • 37. 20 60. Wu H-J, Ivanov II, Darce J et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827 61. Lam V, Su J, Koprowski S et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(4): 1727–1735 62. Wardwell LH, Huttenhower C, Garrett WS (2011) Current concepts of the intestinal microbiota and the pathogenesis of infection. Curr Infect Dis Rep 13:28–34 63. Gori A, Tincati C, Rizzardini G et al (2008) Early impairment of gut function and gut flora supporting a role for alteration of gastro- intestinal mucosa in human immunodefi- ciency virus pathogenesis. J Clin Microbiol 46:757–758 64. Stecher B, Hardt W-D (2008) The role of microbiota in infectious disease. Trends Microbiol 16:107–114 65. Walk ST, Young VB (2008) Emerging insights into antibiotic-associated diarrhea and clos- tridium difficile infection through the lens of microbial ecology. Interdiscip Perspect Infect Dis 2008:125081 66. Vrieze A, Holleman F, Zoetendal EG et al (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613 67. Hou JK, Abraham B, El-Serag H (2011) Dietary intake and risk of developing inflam- matory bowel disease: a systematic review of the literature. Am J Gastroenterol 106: 563–573 68. Fava F, Lovegrove JA, Gitau R et al (2006) The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr Med Chem 13:3005–3021 69. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63 70. Dobkin JF, Saha JR, Butler VP et al (1983) Digoxin-inactivating bacteria: identification in human gut flora. Science 220:325–327 71. Clayton TA, Baker D, Lindon JC et al (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic inter- action affecting human drug metabolism. Proc Natl Acad Sci U S A 106:14728–14733 72. Wallace BD, Wang H, Lane KT et al (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835 73. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271 74. Azarpazhooh A, Leake JL (2006) Systematic review of the association between respiratory diseases and oral health. J Periodontol 77:1465–1482 75. Ford PJ, Gemmell E, Timms P et al (2007) Anti-P. gingivalis response correlates with atherosclerosis. J Dent Res 86:35–40 76. Li L, Messas E, Batista EL et al (2002) Porphyromonas gingivalis infection acceler- ates the progression of atherosclerosis in a heterozygous apolipoprotein e-deficient murine model. Circulation 105:861–867 77. Koren O, Spor A, Felin J et al (2010) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 108(Suppl 1):4592–4598 78. Haug MC, Tanner SA, Lacroix C et al (2011) Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. FEMS Microbiol Ecol 78:210–219 79. Nelson KE, Weinstock GM, Highlander SK et al (2010) A catalog of reference genomes from the human microbiome. Science 328: 994–999 80. Methe BA, Nelson KE, Pop M et al (2012) A framework for human microbiome research. Nature 486:215–221 81. Park J, Kerner A, Burns MA et al (2011) Microdroplet-enabled highly parallel co- cultivation of microbial communities. PLoS One 6:e17019 82. Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a dif- fusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390 83. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3: 711–721 84. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transforma- tion in the environment. Microbiol Rev 58:563–602 85. Wirth R, Friesenegger A, Fiedler S (1989) Transformation of various species of gram- negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216:175–177 86. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509 87. Wyber JA, Andrews J, D’Emanuele A (1997) The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res 14: 750–756 Stephanie J. Yaung et al.
  • 38. 21 88. Swords WE (2003) Chemical transformation of E. coli. Methods Mol Biol 235:49–53 89. ThomsonAM,FlintHJ(1989)Electroporation induced transformation of Bacteroides rumini- cola and Bacteroides uniformis by plasmid DNA. FEMS Microbiol Lett 52:101–104 90. Calvin NM, Hanawalt PC (1988) High- efficiency transformation of bacterial cells by electroporation. J Bacteriol 170:2796–2801 91. Goodman AL, McNulty NP, Zhao Y et al (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–289 92. Kleckner N (1981) Transposable elements in prokaryotes. Annu Rev Genet 15:341–404 93. Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 6:1969–1980 94. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequenc- ing for fitness and genetic interaction studies in microorganisms. Nat Methods 6: 767–772 95. Gawronski JD, Wong SM, Giannoukos G et al (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 106:16422–16427 96. Langridge GC, Phan MD, Turner DJ et al (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19:2308–2316 97. Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131 98. Warner JR, Reeder PJ, Karimpour-Fard A et al (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonu- cleotides. Nat Biotechnol 28:856–862 99. Sandoval NR, Kim JY, Glebes TY et al (2012) Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci U S A 109:10540–10545 100. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898 101. Wang HH, Church GM (2011) Multiplexed genome engineering and genotyping meth- ods applications for synthetic biology and metabolic engineering. Methods Enzymol 498:409–426 102. Wang HH, Kim H, Cong L et al (2012) Genome-scale promoter engineering by cose- lection MAGE. Nat Methods 9:591–593 103. Carr PA, Wang HH, Sterling B et al (2012) Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res 40:e132 104. Sharan SK, Thomason LC, Kuznetsov SG et al (2009) Recombineering: a homologous recombination-based method of genetic engi- neering. Nat Protoc 4:206–223 105. Isaacs FJ, Carr PA, Wang HH et al (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353 106. Swingle B, Markel E, Costantino N et al (2010) Oligonucleotide recombination in Gram-negative bacteria. Mol Microbiol 75:138–148 107. van Pijkeren J-P, Britton RA (2012) High efficiency recombineering in lactic acid bacte- ria. Nucleic Acids Res 40:e76 108. Swingle B, Bao Z, Markel E et al (2010) Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol 76:4960–4968 109. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tubercu- losis. Nat Methods 4:147–152 110. Sonnenburg JL, Angenent LT, Gordon JI (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5:569–573 111. Faith JJ, McNulty NP, Rey FE et al (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333:101–104 112. Hosoda K, Suzuki S, Yamauchi Y et al (2011) Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS One 6:e17105 113. Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882 114. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407 115. Mee JM, Wang HH (2012) Engineering eco- systems and synthetic ecologies. Mol Biosyst 8:2470–2483 116. Saeidi N, Wong CK, Lo TM et al (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521 117. Duan F, March JC (2010) Engineered bacte- rial communication prevents Vibrio cholerae Engineering Human-Associated Microbiomes
  • 39. 22 virulence in an infant mouse model. Proc Natl Acad Sci U S A 107:11260–11264 118. Steidler L (2000) Treatment of murine colitis by lactococcus lactis secreting interleukin-10. Science 289:1352–1355 119. Steidler L, Rottiers P, Coulie B (2009) Actobiotics as a novel method for cytokine delivery. Ann N Y Acad Sci 1182:135–145 120. Duncan SH, Scott KP, Ramsay AG et al (2003) Effects of alternative dietary substrates on competition between human colonic bac- teria in an anaerobic fermentor system. Appl Environ Microbiol 69:1136–1142 121. Leitch ECM, Walker AW, Duncan SH et al (2007) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9:667–679 122. Macfarlane GT, Hay S, Gibson GR (1989) Influence of mucin on glycosidase, protease and arylamidase activities of human gut bac- teria grown in a 3-stage continuous culture system. J Appl Bacteriol 66:407–417 123. Molly K, Woestyne M, Verstraete W (1993) Development of a 5-step multi-chamber reac- tor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258 124. Possemiers S, Verthé K, Uyttendaele S et al (2004) PCR-DGGE-based quantification of stability of the microbial community in a sim- ulator of the human intestinal microbial eco- system. FEMS Microbiol Ecol 49:495–507 125. Pratten J (2007) Growing oral biofilms in a constant depth film fermentor (CDFF). Curr Protoc Microbiol Chapter 1, Unit 1B.5 126. Ready D (2002) Composition and antibiotic resistance profile of microcosm dental plaques before and after exposure to tetracycline. J Antimicrob Chemother 49:769–775 127. Roberts AP, Pratten J, Wilson M et al (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:63–66 128. Roberts AP, Cheah G, Ready D et al (2001) Transfer of Tn916-like elements in micro- cosm dental plaques. Antimicrob Agents Chemother 45:2943–2946 129. Kim HJ, Huh D, Hamilton G et al (2012) Human Gut-on-a-Chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174 130. Trosvik P, Rudi K, Strætkvern KO et al (2010) Web of ecological interactions in an experi- mental gut microbiota. Environ Microbiol 12:2677–2687 131. Foster JS, Kolenbrander PE (2004) Develop- ment of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340 132. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I et al (1991) Inducible transfer of conjugative transposon Tn1545 from Enterococcus faeca- lis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 35:185–187 133. Launay A, Ballard SA, Johnson PDR et al (2006) Transfer of vancomycin resistance transposon Tn1549 from clostridium symbio- sum to Enterococcus spp. in the gut of gno- tobiotic mice. Antimicrob Agents Chemother 50:1054 134. Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14 135. Rawls JF, Mahowald MA, Ley RE et al (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127: 423–433 136. Sellon RK, Tonkonogy S, Schultz M et al (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10- deficient mice. Infect Immun 66:5224–5231 137. Lalla E, Lamster IB, Hofmann MA et al (2003) Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 23:1405–1411 138. Caricilli AM, Picardi PK, de Abreu LL et al (2011) Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 9:e1001212 139. Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–231 140. Hapfelmeier S, Hardt W-D (2005) A mouse model for S. typhimurium-induced enteroco- litis. Trends Microbiol 13:497–503 141. Deng W, Vallance BA, Li Y et al (2003) Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal col- onization and colonic hyperplasia in mice. Mol Microbiol 48:95–115 142. Newman JV, Zabel BA, Jha SS et al (1999) Citrobacter rodentium espB is necessary for signal transduction and for infection of labo- ratory mice. Infect Immun 67:6019–6025 143. Alex P, Zachos NC, Nguyen T et al (2009) Distinct cytokine patterns identified from Stephanie J. Yaung et al.
  • 40. 23 multiplex profiles of murine DSS and TNBS- induced colitis. Inflamm Bowel Dis 15:341–352 144. Oz HS, Puleo DA (2011) Animal models for periodontal disease. J Biomed Biotechnol 2011:1–8 145. Naglik JR, Fidel PL, Odds FC (2008) Animal models of mucosal Candida infection. FEMS Microbiol Lett 283:129–139 146. Mcbride BC, van der Hoeven JS (1981) Role of interbacterial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens. Infect Immun 33:467–472 147. Ma M, Rey FE, Seedorf H et al (2009) Characterizing a model human gut microbi- ota composed of members of its two domi- nant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864 148. Sonnenburg JL, Chen CTL, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4:e413 149. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype- phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305 150. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization frame- work for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8:e1002363 151. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340 152. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflamma- tory bowel disease. Proc Natl Acad Sci U S A 109:594–599 153. Zhuang K, Izallalen M, Mouser P et al (2011) Genome-scale dynamic modeling of the com- petition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316 154. Taffs R, Aston JE, Brileya K et al (2009) In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. BMC Syst Biol 3:114 155. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484 156. Rohlke F, Surawicz CM, Stollman N (2010) Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. J Clin Gastroenterol 44: 567–570 157. Miele E, Pascarella F, Giannetti E et al (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104:437–443 158. Gionchetti P, Rizzello F, Helwig U et al (2003) Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo- controlled trial. Gastroenterology 124:1202–1209 159. Mimura T, Rizzello F, Helwig U et al (2004) Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recur- rent or refractory pouchitis. Gut 53:108–114 160. Culligan EP, Hill C, Sleator RD (2009) Probiotics and gastrointestinal disease: suc- cesses, problems and future prospects. Gut Pathogens 1:19 161. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633 162. Cronin M, Morrissey D, Rajendran S et al (2010) Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18:1397–1407 163. Fu G-F, Li X, Hou Y-Y et al (2005) Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther 12:133–140 164. Li X, Fu G-F, Fan Y-R et al (2003) Bifidobacterium adolescentis as a delivery sys- tem of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther 10: 105–111 165. Duan F, Curtis KL, March JC (2008) Secretion of insulinotropic proteins by com- mensal bacteria: rewiring the gut to treat diabetes. Appl Environ Microbiol 74: 7437–7438 166. Rao S, Hu S, McHugh L et al (2005) Toward a live microbial microbicide for HIV: com- mensal bacteria secreting an HIV fusion inhibitor peptide. Proc Natl Acad Sci U S A 102:11993–11998 167. Braat H, Rottiers P, Hommes DW et al (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759 168. Degnan FH (2008) The US Food and Drug Administration and probiotics: regulatory categorization. Clin Infect Dis 46(Suppl 2): S133–S136, discussion S144–S151 Engineering Human-Associated Microbiomes
  • 41. 24 169. Hong P-Y, Lee BW, Aw M et al (2010) Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One 5:e9964 170. Saulnier DM, Riehle K, Mistretta T-A et al (2011) Gastrointestinal microbiome signa- tures of pediatric patients with irritable bowel syndrome. Gastroenterology 141:1782–1791 171. Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and tempo- ral stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl):4586–4591 172. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227 173. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host geno- type on the gut microbiome. Nat Rev Microbiol 9:279–290 174. De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut micro- biota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696 175. Peterson DA, Frank DN, Pace NR et al (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel dis- eases. Cell Host Microbe 3:417–427 176. Larsen N, Vogensen FK, van den Berg FWJ et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085 177. Kong HH, Oh J, Deming C et al (2012) Temporal shifts in the skin microbiome asso- ciated with atopic dermatitis disease flares and treatment. Genome Res 22(5):850–859 178. Gao Z, C-h T, Pei Z et al (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104:2927–2932 179. Keijser BJF, Zaura E, Huse SM et al (2008) Pyrosequencing analysis of the Oral Microflora of healthy adults. J Dent Res 87:1016–1020 180. Yang F, Zeng X, Ning K et al (2012) Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6:1–10 181. Phillips-Jones MK (1995) Introduction of recombinant DNA into Clostridium spp. Methods Mol Biol 47:227–235 182. Bouillaut L, McBride SM, Sorg JA (2011) Genetic manipulation of Clostridium difficile. Curr Protoc Microbiol Chapter 9, Unit 9A.2 183. Jennert KC, Tardif C, Young DI et al (2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146(Pt 12):3071–3080 184. Young DI, Evans VJ, Jefferies JR et al (1999) Genetic methods in clostridia. Method Microbiol 29:191–207 185. Cocconcelli PS, Ferrari E, Rossi F et al (1992) Plasmid transformation of Ruminococcus albus by means of high-voltage electropora- tion. FEMS Microbiol Lett 73:203–207 186. Damelin LH, Mavri-Damelin D, Klaenhammer TR et al (2010) Plasmid transduction using bacteriophage Phi(adh) for expression of CC chemokines by Lactobacillus gasseri ADH. Appl Environ Microbiol 76:3878–3885 187. Lizier M, Sarra PG, Cauda R et al (2010) Comparison of expression vectors in Lactobacillus reuteri strains. FEMS Microbiol Lett 308:8–15 188. Ljungh A, Wadström T (eds) (2009) Lactobacillus molecular biology: from genomics to probiotics. Caister Academic Press, Norfolk, UK 189. Sørvig E, Mathiesen G, Naterstad K et al (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151:2439–2449 190. Thompson K, Collins MA (1996) Improvement in electroporation efficiency for Lactobacillus plantarum by the inclusion of high concentrations of glycine in the growth medium. J Microbiol Methods 26:73–79 191. ShepardBD,GilmoreMS(1995)Electroporation and efficient transformation of Enterococcus fae- calis grown in high concentrations of glycine. Methods Mol Biol 47:217–226 192. Holo H, Nes IF (1995) Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199 193. Biswas I, Jha JK, Fromm N (2008) Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology 154: 2275–2282 194. McLaughlin RE, Ferretti JJ (1995) Electrotransformation of Streptococci. Methods Mol Biol 47:185–193 195. Lee JC (1995) Electrotransformation of Staphylococci. Methods Mol Biol 47: 209–216 196. Alexander JE, Andrew PW, Jones D et al (1990) Development of an optimized system for electroporation of Listeria species. Lett Appl Microbiol 10:179–181 197. Kuramitsu HK, Chi B, Ikegami A (2005) Genetic manipulation of Treponema dentic- ola. Curr Protoc Microbiol Chapter 12, Unit 12B.12 Stephanie J. Yaung et al.
  • 42. 25 198. Hyde JA, Weening EH, Skare JT (2011) Genetic transformation of borrelia burgdorferi. Curr Protoc Microbiol, Chapter 12, 1–17 199. Rosa P, Stevenson B, Tilly K (1999) Genetic methods in Borrelia and other spirochaetes. Method Microbiol 29:209–227 200. MayoB,vanSinderenD(2010)Bifidobacteria: genomics and molecular aspects. Caister Academic Press, Norfolk, UK 201. Yeung MK, Kozelsky CS (1994) Trans- formation of Actinomyces spp. by a gram-neg- ative broad-host-range plasmid. J Bacteriol 176:4173–4176 202. Miles R, Nicholas R (eds) (1998) Mycoplasma protocols, vol 104, Methods Mol Biol. Humana Press, Totowa, NJ 203. Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98:12712–12717 204. Luijk NV, Stierli MP, Schwenninger SM (2002) Genetics and molecular biology of propionibacteria. Lait 82:45–57 205. Binet R, Maurelli AT (2009) Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc Natl Acad Sci U S A 106:292–297 206. Bélanger M, Rodrigues P, Progulske-Fox A (2007) Genetic manipulation of Porphyromonas gingivalis. Curr Protoc Microbiol Chapter 13, Unit 13C.12 207. Flint HJ, Martin JC, Thomson AM (2000) Prevotella bryantii, P. ruminicola and bacte- roides strains. In: Eynard N, Teissié J (eds) Electrotransformation of bacteria. Springer, Heidelberg, pp 140–149 208. Nikolich MP, Salyers AA, Shoemaker NB (1994) Method and materials for introducing dna into prevotella ruminicola. US Patent 5322784, Jun 21, 1994 209. Bacic MK, Smith CJ (2008) Laboratory maintenance and cultivation of bacteroides species. Curr Protoc Microbiol Chapter 13, Unit 13C 11 210. Salyers AA, Shoemaker N, Cooper A et al (1999) Genetic methods for bacteroides species. Method Microbiol 29:229–249 211. Smith CJ (1995) Genetic transformation of Bacteroides spp. using electroporation. Methods Mol Biol 47:161–169 212. Kinder Haake S, Yoder S, Gerardo SH (2006) Efficient gene transfer and targeted mutagen- esis in Fusobacterium nucleatum. Plasmid 55:27–38 213. Segal ED (1995) Electroporation of Helicobacter pylori. Methods Mol Biol 47:179–184 214. Taylor DE (1992) Genetics of campylobacter and helicobacter. Annu Rev Microbiol 46:35–64 215. Rachek LI, Hines A, Tucker AM et al (2000) Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J Bacteriol 182: 3289–3291 216. McQuiston JR, Schurig GG, Sriranganathan N et al (1995) Transformation of Brucella species with suicide and broad host-range plasmids. Methods Mol Biol 47:143–148 217. Scarlato V, Ricci S, Rappuoli R et al (1996) Genetic manipulation of bordetella. In: Adolph KW (ed) Microbial genome methods. CRC Press, Boca Raton, FL, pp 247–262 218. Bogdan JA, Minetti CA, Blake MS (2002) A one-step method for genetic transforma- tion of non-piliated Neisseria meningitidis. J Microbiol Methods 49:97–101 219. Genco CA, Knapp JS, Clark VL (1984) Conjugation of plasmids of neisseria gonor- rhoeae to other neisseria species: potential reservoirs for the β-lactamase plasmid. J Infect Dis 150:397–401 220. O’Dwyer CA, Langford PR, Kroll JS (2005) A novel neisserial shuttle plasmid: a useful new tool for meningococcal research. FEMS Microbiol Lett 251:143–147 221. DennisJJ,SokolPA(1995)Electrotransformation of Pseudomonas. Methods Mol Biol 47:125–133 Engineering Human-Associated Microbiomes
  • 44. 27 Lianhong Sun and Wenying Shou (eds.), Engineering and Analyzing Multicellular Systems: Methods and Protocols, Methods in Molecular Biology, vol. 1151, DOI 10.1007/978-1-4939-0554-6_2, © Springer Science+Business Media New York 2014 Chapter 2 Constructing Synthetic Microbial Communities to Explore the Ecology and Evolution of Symbiosis Adam James Waite and Wenying Shou Abstract Synthetically engineered microbial communities based on model organisms provide a simplified model of their naturally occurring counterparts while still retaining essential features of living organisms. The degree of control afforded by this approach has been critical in understanding how similar types of natural com- munities might have persisted and evolved. Here, we first discuss important considerations when designing a synthetically engineered system. Then, we describe the steps required to create a two-partner cooperative system based on the yeast Saccharomyces cerevisiae. Key words Evolution, Ecology, Mutualism, Cooperation, Synthetic biology, S. cerevisiae 1 Introduction From mediating biogeochemical cycles [1] to influencing human health [2] and disease [3], microbial communities impact all aspects of life on earth. However, the complexity of microbial com- munities and the difficulty in isolating and culturing microbes [4] pose serious challenges for decoding cell–cell and cell–environment interactions. Moreover, the evolutionary histories of microbial communities are difficult to retrace. Alternatively, communities of model organisms engineered to engage in defined interactions can be deployed to address fundamental questions in ecology and evolu- tion, such as how species coexist and coevolve [5]. In this chapter, we discuss several considerations when designing a synthetic community, using the construction of a two-partner cooperative yeast system as an example. Then, we describe the methodology in detail. The initial consideration is the choice of organisms. Genetic tractability and short generation times facilitate strain construction and experimentation, as well as the discovery and interpretation of mutations during experimental evolution. Thus, well-studied model organisms with reference genome sequences such as Escherichia coli
  • 45. 28 or Saccharomyces cerevisiae are ideal, although other species have also been used [5]. While each model organism has its advantages and disadvantages, we will use S. cerevisiae to highlight principles that are applicable to any synthetically engineered community. Sexual recombination is both a help and a hindrance to syn- thetically engineered communities. On the one hand, sexual recombination can radically simplify strain construction by allow- ing genetic shuffling. For example, when a strain with genotype AB is crossed with a strain of genotype ab, recombinant strains Ab and aB can be generated. On the other hand, distinct popula- tions in an engineered community should remain genetically insulated from one another and therefore should not be allowed to mate. An advantage of using S. cerevisiae is its ability to undergo both sexual and asexual reproduction. Haploid yeast is particularly suitable for evolution experiments since phenotypes arising from recessive mutations are immediately apparent. Haploid yeast can reproduce asexually as either of the two mating types, “a” or “α.” Two cells of opposite mating type can mate to produce an a/α diploid, which can reproduce either asexually as diploids or sexually to form haploids. The final strains for an engi- neered community should always be the same mating type to pre- vent sexual recombination. However, haploid yeast switch mating types spontaneously at very low frequency even when the gene required for mating-type switching (HO) is defective (which is the case for all commonly used laboratory strains). Thus, we have used MATa cells in which the STE3 gene encoding the receptor for MATa mating pheromone [6] is deleted. Thus, if a MATa ste3 cell switches mating type to MATα ste3, it will fail to initiate the mating process. Ideally, all strains should be derived from an isogenic back- ground so that the only mutations are the ones defined by the researcher. We have used the strain S288C, which is one of the common laboratory strains, and the wild vineyard isolate RM11-1a (hereafter referred to as “RM11”). While S288C has its genome fully annotated and easily accessible [7], it has a tendency to pro- duce mitochondrially deficient “petite” cells [8], which are prone to nuclear genome instability [9] and could potentially interfere with evolution experiments. RM11 (genome sequence available at http:/ /www.broadinstitute.org/annotation/genome/saccharomyces_ cerevisiae/) grows faster than S288C and produces very few petites, but haploid daughter cells do not separate well from their mothers unless the RM-11 AMN1 allele is replaced by the AMN1 allele from S288C [10]. Genetic manipulation in RM-11 is more difficult due to its lower transformation efficiency compared to S288C. A major advantage of using model organisms is that they are genetically modifiable. Foreign DNA can be transformed into yeast as autonomously replicating and segregating circular plasmids or as Adam James Waite and Wenying Shou
  • 46. 29 linear DNA if genomic integration is desired. Integration is more stable than using a plasmid. Different populations can be marked with, for example, different antibiotic resistances or fluorescent proteins. Currently, at least six dominant antibiotic resistance genes are in wide use with S. cerevisiae: kan, which confers resistance to geneticin a.k.a. G418; hph, which confers resistance to hygromycin B; nat, which confers resistance to nourseothricin (sold as clon- NAT by Werner BioAgents); pat, which confers resistance to phosphinothricin; ble, which confers resistance to phleomycin; and AUR1-C, which confers resistance to Aureobasidin A (AbA). All of these genes are available on plasmids [11–13]. Our lab has used G418, hygromycin B, clonNAT, and AbA resistance markers. Using antibiotic resistance to select a subpopulation from a co-culture is especially useful if the subpopulation is very rare, as tens of millions of cells can be assayed on a single plate. However, plating on media supplemented with different drugs to determine subpopulation abundance is time-delayed since it takes at least 1 day for colonies to grow up. It is also of low throughput due to the small number (hundreds) of individual colonies that can be counted on a plate. In contrast, fluorescently tagged strains can be distin- guished using flow cytometry, which allows tens of thousands of cells to be counted in less than a minute. While fluorescence- activated cell sorting (FACS) can also be used to isolate subpopula- tions, it requires an expensive instrument and is less efficient when isolating very rare subpopulations. A large number of fluorescent proteins are available [14], although not all of them are bright and/or resolvable from one another using standard filter sets. In addition, the correct folding of fluorescent proteins requires oxygen [15] and is therefore incompatible with strict anaerobes. We have C-terminally tagged (Fig. 1) the highly abundant proteins FBA1 or MET6 with different fluorescent proteins in yeast. Using the appropriate combination of lasers and filter sets (Table 1), we can resolve mixtures of cells expressing five different fluores- cent proteins: CFP, GFP, YFP, mOrange, and mCherry as well as the far-red nucleic acid dye TO-PRO-3 (Invitrogen) which can be used to stain dead cells. Plasmids containing different combina- tions of fluorescent proteins and selectable markers (i.e., genes for nutrient biosynthesis or antibiotic resistance) [16] are readily available from EUROSCARF (http:/ /web.uni-frankfurt.de/ fb15/mikro/euroscarf/). Since deleting or inserting genes will usually be accomplished by transformations (Fig. 1), which require selectable markers, it is convenient to be able to reuse these markers. Plasmids containing kanMX [17] and ble [18] flanked by loxP sites are available for this purpose (for a comprehensive list of plasmids with removable markers, see ref. 19). In the presence of Cre recombinase, the two loxP sites recombine, removing the intervening marker and allow- ing for its reuse in another round of manipulation. Our lab has Constructing Synthetic Microbial Communities
  • 47. 30 modified these plasmids to contain nat (WSB116) and hph (WSB117). We generally do not use auxotrophy (the inability to synthesize an essential metabolite) to mark strains except when both selection and counterselection are required. For example, PCR Marker Transformation + Marker Marker Gene X Gene X Gene X Gene replacement Marker Checking primer 45 bp homology sequence Universal primer sequence Genomic DNA C-terminal tagging Fig. 1 Schematic of gene replacement and C-terminal tagging. In both cases, the selectable “marker” is PCR amplified off a plasmid using a pair of hybrid primers. The 3′ end of the primers contains sequences specific to the plasmid (thin green lines) in a region ideally identical among a family of marker plasmids to achieve flexibility. The 5′ end of the primers is 45 bp homologous to yeast genomic DNA (thick blue lines). For gene replacement, the forward homology is to the region immediately 5′ of the start codon of the open reading frame (ORF) of the gene of interest (“Gene X”), while the reverse homology is the reverse complement of the region immediately 3′ of the stop codon of the ORF. For C-terminal tagging, the reverse homology is the same as for gene replacement, while the forward homology is the 45 bp leading up to but not including the stop codon of the ORF.After transfor- mation, checking primers (thin black arrow lines) are used in colony PCR to verify proper integration of the DNA fragment.One primer has homology to the plasmid sequence,while the other has homology specific to the region outside of the 45 bp homology used for integration. For C-terminal tagging, the depicted location of checking primers is preferred, as it results in a shorter (and therefore easier to amplify) PCR product Table 1 Lasers and filter sets used to simultaneously resolve five fluorescent proteins and one fluorescent dye Laser (nm) Filtera Fluorophore 405 450/50 CFP 488 505/10 GFP 530/30 YFP/citrine 561 590/20 mOrange 615/25 mCherry 639 660/16 TO-PRO-3 a The number before the slash indicates the center wavelength in nanometers; the number after the slash is the total bandwidth passed by the filter. For example, “450/50” indicates a filter that passes wavelengths from 425 to 475 nm Adam James Waite and Wenying Shou
  • 48. 31 integration of the loxP–drug–loxP cassette could be carried out in a ura3 strain so that transformation of a URA3-marked plasmid containing the Cre recombinase can be selected for. After induction of Cre expression and removal of the drug marker, the URA3 plasmid can then be counterselected using 5-FOA, which only allows survival of cells without the plasmid [20]. The uracil auxot- rophy may then need to be removed via genetic crosses. Alternatively, Cre expression plasmids containing antibiotic mark- ers are also available [19]. Once the populations have been marked, interactions between populations can be defined. Obviously, the possibilities are practi- cally limitless, and the specifics must be left to the researcher. We chose to base our two-partner cooperative system on comple- mentary nutrient exchange [21]. In yeast, all of the manipulations described above can be achieved through a small set of well-known methods [19]. These include (1) transformation to insert or remove genetic material; (2) colony PCR, a simple and rapid way to check whether transformation was successful; and (3) mating, sporulation, tetrad dissection, and geno- typing, which allows genetic features present in two different strains to be recombined into one strain. Below we describe our current protocols for each of these methods. 2 Materials 1. Plasmids containing genes encoding fluorescent proteins and/ or selectable markers. 2. Antibiotics: 1,000× stock G418 (200 mg/ml), 500x stock hygromycin B (100 mg/ml), 1,000× stock clonNAT (100 mg/ ml), 1,000× stock AbA (0.5 mg/ml) (see Note 1). 3. YPD: 10 g/l Bacto-yeast extract, 20 g/l Bacto-peptone, and bring to volume with diH2O to final 950 ml/l for later glucose supplement. Add 20 g/l Bacto-agar (see Note 2) if making plates. Add a magnetic stir bar, and autoclave. Using a flame to ensure sterility, add 50 ml 40 % glucose per liter of medium and the appropriate antibiotic, if necessary. Stir to mix. If multiple liters of agar medium are prepared, they may be kept at 50 °C water bath to prevent solidification of the agar. 4. SD: For liquid media, add 6.7 g/l Difco™ yeast nitrogen base (YNB) with ammonium sulfate and without amino acids and 20 g/l glucose, and bring to volume with diH2O. Sterilize using 0.22 μm filter. For plates, add 6.7 g/l YNB, 20 g/l Bacto-agar, and a stir bar, and add diH2O to 950 ml/l. Autoclave. Using sterile technique, add supplements as neces- sary. Amino acid and nucleobase supplements can be mixed in appropriate proportions [19] in their powder forms in a 2.1 Components for Genetic Manipulation Constructing Synthetic Microbial Communities
  • 49. 32 sterilized blender and stored at room temperature. Powdered supplements can be weighed and directly added to the media. Finally, add 50 ml 40 % glucose. Use the glucose to wash down any residual supplement powder adhering to the vessel wall and stir. 5. 50 % PEG 2000 (see Note 3): Dissolve 100 g PEG in 100 ml diH2O. Bring to 200 ml with diH2O. Sterile filter. 6. 1 M LiAc: 102 g/l Lithium acetate dihydrate (102.02 g/mol). Sterile filter. 7. 5 mg/ml Sheared salmon sperm DNA (SS-DNA) [22]. 8. Autoclaved water, tubes, and tips. 1. Sporulation media: 3 g/l potassium acetate, 0.2 g/l raffinose, bring to final volume with diH2O. Autoclave. 2. SCE buffer: 1 M D-sorbitol, 0.1 M sodium citrate (see Note 4), 60 mM EDTA. Adjust pH to 7.0 with 38 % HCl (see Note 5). Autoclave using a 20′ sterilization cycle, and remove promptly (see Note 6). 3. Zymolyase 20T: 30 mg zymolyase 20T dissolved in 10 ml SCE (see Note 7). 3 Methods 1. Design primers: For gene replacement (Fig. 1), the forward primer should contain 45 base pairs (bp) of homology to the genomic region immediately upstream of the “ATG” codon of the open reading frame (ORF) of the gene to be knocked out, followed by the sequence for the universal forward adapter appropriate for the particular set of plasmids being used. The reverse primer should contain the reverse complement to the 45 bp including and immediately downstream of the stop codon of the target ORF, followed by the reverse complement to the universal reverse adapter appropriate for the plasmid set. For C-terminal tagging (Fig. 1), the reverse primer is designed as in gene replacement, and the forward primer should contain 45 bp homology to the sequence just 5′ of the stop codon of the gene of interest. 2. PCR amplify cassette (antibiotic resistance for gene replacement or fluorescent protein plus selectable marker for C-terminal tagging) off a plasmid (see Note 8). Check the length of the PCR product using gel electrophoresis. 1. Inoculate 5 ml YPD culture per transformation and shake at 30 °C until the cell density is between 3×106 and 2×107 cells/ml (see Note 10). 2.2 Components for Mating, Sporulation, and Tetrad Dissection 3.1 Primer Design and Amplification for Gene Tagging or Replacement 3.2 Transformation (See Note 9) Adam James Waite and Wenying Shou
  • 50. 33 2. Prepare a boiling water bath for the SS-DNA. While the water is warming up, harvest the culture in a sterile 50 ml centrifuge tube at 425×g for 2 min. 3. Pour off the YPD medium, and resuspend the cells in 25 ml of sterile water and centrifuge again. 4. Pour off the water, resuspend the cells in 100 μL 0.1 M LiAc, and transfer the suspension to a 1.5 ml microfuge tube. 5. Pellet the cells at top speed for 15 s, and remove supernatant with a micropipette. 6. Resuspend the cells in about 43 μl of 0.1 M LiAc to a final volume of 50 μl (2×109 cells/ml) per transformation. 7. By now the water bath should be boiling. Boil SS-DNA (with cap lock on) for 5 min, and then quickly transfer it to ice (see Note 11). Vortex briefly to speed up cooling, and then keep on ice. 8. Vortex the cell suspension and pipette 50 μl into 1.5 ml tubes. Pellet the cells at top speed for 15 s, and remove supernatant with a pipette. Vortex to loosen up the pellet. 9. Prepare the transformation mixture (TRAFO) master mix (1.2× the total volume required so that pipetting errors can be accommodated) and keep on ice (see Note 12): 240 μl 50 % w/v PEG (see Note 3), 36 μl 1.0 M LiAc, 20 μl 5 mg/ml SS-DNA, and 64-x μl sterile dH2O per transformation, where x μl is the volume of DNA to be added (see Note 13). Vortex until completely homogenous (see Note 14). 10. Add 360-x μl TRAFO to each cell pellet (see Note 15), and mix well by pipetting up and down (see Note 16). Add x μl DNA, and mix well again by vortexing or pipetting. 11. Heat shock cells by placing the tubes in a 42 °C water bath for 40 min (see Note 17). Mix by inverting every ~10 min. 12. Centrifuge at 3,824×g for 15 s, and remove TRAFO with a pipette or simply by decanting. Wash cells by resuspending the pellet in 1 ml YPD. Spin again at 3,824×g for 15 s (see Note 18). Remove YPD, and pipette 1 ml fresh YPD into each tube. Resuspend the pellet by pipetting it up and down gently. 13. If selection is on complementation of nutrient auxotrophy, cells can be directly plated on selective medium. If selection is on drug resistance, cells need to be incubated for ~2–3 h at 30 °C in 1 ml YPD to express the resistance gene before being plated. 14. To plate, first centrifuge at 3,824×g for 15 s. Discard 700 μl of the supernatant. Resuspend cells in the remaining 300 μl and plate on 80 % of the surface. Use a sterile toothpick to streak from the plated area to the empty area to maximize the chance of obtaining single colonies. 15. Incubate at 30 °C. Colonies should be visible in 2–3 days. Constructing Synthetic Microbial Communities
  • 51. 34 1. Design primers: One primer should be specific to the cassette used for transformation (for example, the universal primer sequence). The other primer should be outside the 45 bp homology region used for integration (Fig. 1). 2. Using a sterile pipette tip, pick about half of a normal-sized (~1.2 mm diameter) colony without touching the agar beneath it. For S288C, place directly into 15 μl sterile water, vortex, and use 1 μl in a 20 μl PCR (see Note 20). For RM11, transfer the cells to 15 μl 0.25 % SDS (see Note 21). Vortex for 30 s, spin at top speed (~17,949×g in a small centrifuge) for 1 min, and use 1 μl of the supernatant for a 20 μl PCR. This PCR mix must contain a final concentration of 5 % Triton X-100 to neutralize the protein-denaturing SDS [23]. An alternative, and more reliable, method uses LiAc and SDS to lyse cells and requires ethanol precipitation prior to PCR (see Note 19, ref. 22). Specifically, cells are suspended in 100 μl 200 mM LiAc and 1 % SDS solution and incubated at 70 °C for 15 min. 300 μl 96 % ethanol is added to precipitate DNA. After brief vortexing, DNA is collected by centrifugation at 15,000×g for 3 min. Precipitated DNA is dissolved in 100 μl TE (10 mM Tris–HCl, 1 mM disodium EDTA, pH 8.0). After spinning cell debris down at 15,000×g for 1 min, 1 μl supernatant is used for PCR. 1. Grow up a small patch of each haploid to be crossed towards the top of a YPD plate (see Note 22). 2. Use a sterile toothpick to transfer a tiny amount of one strain to an empty region of a YPD plate (see Note 23), making a small spot (a few millimeters in diameter). With a fresh tooth- pick, transfer a similarly tiny amount of the other strain to the same spot and mix with the toothpick. 3. Incubate for 3.5 h (S288C) or 2.5 h (RM11) at 30 °C (see Note 24). 4. Using a toothpick, touch the mixed spot and streak down about a centimeter. Without re-touching the spot, make similar streaks to the left and right of the original streak. This gives three different dilutions of cells on the plate. 5. Use a yeast dissection microscope [19] to isolate diploids. The cytoplasmic “bridge” between mated cells and a small bud at its center is indicative of recently mated diploids. 1. Pre-sporulate by patching onto YPD and incubating at 30 °C for ~10 h until a thin film of cells is formed (see Note 25). 2. Inoculate 2 ml sporulation media with about a match head’s worth of cells. Incubate at room temperature on a rotator for 2–5 days. Check for tetrads using a light microscope using a 20–40× magnification objective [19]. 3.3 Colony PCR (See Note 19) 3.4 Mating and Diploid Isolation 3.5 Sporulation, Tetrad Dissection, and Genotyping Adam James Waite and Wenying Shou
  • 52. 35 3. Wash cells with 1 ml sterile water and resuspend in 1 ml sterile water. Store at 4 °C. 4. When ready to dissect, spin down 20 μl of sporulated cells and carefully remove supernatant with a pipette. Add 20 μl SCE, and vortex to resuspend cells. If using RM11, sonicate for 1 min. 5. Add 4 μl zymolyase 20T, and mix by pipetting up and down (see Note 26). Incubate at room temperature for 20 min (S288C) or 2 h (RM11) (see Note 27). 6. Gently (to avoid breaking up tetrads) pipette up digested cell suspension and spot onto the top portion of the center strip of a YPD plate. Tilt plate down so that the liquid rolls down the central strip, stopping before the liquid touches the plate wall. Let dry. 7. Use a yeast dissection microscope to separate tetrads into indi- vidual spores. Create a grid with a maximum of two tetrads per row [19], one to the left and one to the right of the central strip. 8. Incubate overnight at 30 °C. Use a flame-sterilized scalpel to remove the strip of cells from the middle of the plate (see Note 28) and return to incubator. 9. Once the spores have germinated and grown into colonies, replica plate onto the appropriate selective media(s). Note that a single genetic locus should, under most circumstances, seg- regate 2:2 [19]. For instance, two spores will be MATa and two will be MATα. Exceptions can be caused by, for exam- ple, gene conversion or traits that are mediated by heritable materials transmissible through the cytoplasm, such as mitochondria. 10. Mating types can be tested using a pair of mating-type testers, one of each mating type. If the entire collection of spores are auxotrophic because of mutations in a set of genes, then the testers should be auxotrophic due to mutation in a different gene to ensure that the resulting diploids are prototrophic. In this case, spread ~200 μl of a saturated culture of each tester strain on its own YPD plate and let dry. Then, replica plate the target strains onto each plate using a sterile velvet. After half a day, replica each plate onto an SD plate. Growth will only occur if the strains are able to mate. If spores are prototrophic, they need to be separately mated to each of the two tester strains, as described above for diploid isolation. Many crosses can be set up on one YPD plate. The mating type of a strain is revealed by the presence or the absence of fused diploids. If this method is necessary, it is better to narrow down the number of strains to be tested based on other markers first. Constructing Synthetic Microbial Communities
  • 53. 36 4 Notes 1. Prepare stocks in deionized (di) H2O and sterile filter (except for AbA, which should be made in ethanol and needs no sterile filtration) and keep at −20 °C. 2. Not all sources of YNB and agar are appropriate for use with yeast. For example, we have found that YNB and agar obtained from BD biosciences work better than those obtained from USA Scientific. 3. The size of PEG is important. Transformation efficiency for RM11 is very low if PEG 3500 is used. We use PEG3500 to transform S288C, although PEG2000 should work as well. 4. NaH2PO4 can be used instead. 5. About 0.5 ml when making a final volume of 500 ml. 6. Ensure that the color of solution did not change during the autoclave process. 7. Freeze down 1 ml aliquots at −20 °C. To use, thaw one tube and make smaller aliquots. Store one at 4 °C for up to 2 months, and freeze the rest for later use. 8. Always use a high-fidelity polymerase for PCR to minimize the possibility of introducing mutations into the amplified fragment. Here is a specific recipe for C-terminally tagging FBA1 using the pKT plasmids [16] and KOD polymerase (EMD Millipore): 0.5 μl miniprep DNA (~100 ng), 5 μl 10x buffer, 4 μl 25 mM MgSO4, 5 μl 8 mM dNTPs, 0.5 μl primer WSO178 (50 μM), 0.5 μl primer WSO179 (50 μM), 0.5 μl KOD polymerase, 34 μl water (molecular biology grade). WSO178 sequence: 5′-AAGATCACCAAGTCTTTGGAAACTTTCC G T A C C A C T A A C A C T T T A g g t g a c g g t g c t g g t t ta-3′. WSO179 sequence: 5′-GATTCAATACTCATTAAAAA ACTATATCAATTAATTTGAATTAACtcgatgaattcgagctcg-3′. The 45 bp homology sequence is uppercase; the universal primer sequence is lowercase. PCR settings: 94 °C for 2 min, 30 cycles of {94 °C for 30 s, 55 °C for 30 s, and 70 °C for 3 min}, and then 70 °C for 10 min. When nat is the template, it is essential to add DMSO to a final concentration of 5 % [11]. 9. Transformation is mutagenic. It is therefore best to transform diploids and then sporulate, since one round of meiotic segrega- tion reduces the probability of obtaining an undesired mutation by 50 %. If multiple haploids of the desired genotype derived from the same diploid behave similarly, then background muta- tions are unlikely to be important. Alternatively, our lab has found that Illumina deep sequencing can reveal the presence of mutations caused by transformation. 10. To ensure that cultures are in exponential phase when it is time to transform, pilot growth experiments may be helpful. Wild-type RM11 grows very rapidly. If the density is >5×107 Adam James Waite and Wenying Shou
  • 54. 37 cells/ml, dilute to allow the cells to complete at least two divisions in unsaturated conditions. Transformation efficiency remains constant for 3–4 cell divisions. 11. Keep small aliquots of SS-DNA to limit the number of freeze– thaw cycles. Keep on ice when out of the freezer. 12. Keeping the TRAFO master mix on ice is crucial for high efficiency. 13. Use >100 ng DNA. In general, more DNA yields more transfor- mants, but this relationship will likely saturate at some point. 14. This can be visually confirmed by ensuring that no visible “strands” are present in the mixture. 15. TRAFO is very viscous, so pipette slowly to ensure that the correct volume is transferred. 16. Mixing well ensures that the SS-DNA effectively blocks non- specific DNA binding. 17. Adjusting the amount of time for heat shock may be necessary to achieve maximum efficiency. However, 40 min works well for S288C and RM11. 18. Be as gentle as possible at this step, as the cells are very fragile. 19. Colony PCR is quick but can be unreliable. When it fails to work, we have found that a quick DNA extraction before PCR gives reliable results [23]. 20. The cell suspension should be turbid. 21. Unlike S288C, boiling of RM11 cells does not provide good tem- plate for PCR, although we do not know why. Using detergent effectively lyses the cells and releases their DNA into solution. 22. This can be done for as little as 3 h. 23. The amount should be small enough to not leave a visible film on the plate after transfer. 24. Different strains may require more or less time. Cells should show visible film of growth by this time. 25. Overgrowth will lead to a reduction in sporulation efficiency. However, a suitable number of tetrads should be present even after 12–14 h of pre-sporulation. 26. Vortexing can oxidize the zymolyase. 27. The four spores form a three-dimensional, tetrahedral shape if the ascus wall is undigested. After sufficient digestion, the four spores will have a flat, diamond shape. Underdigestion of the ascus wall will make it difficult to separate the individual spores. Overdigestion will result in tetrads that break apart easily, increasing the chances that four spores in the correct diamond shape are not products of the same meiosis. Overdigestion can also reduce spore viability. 28. Otherwise, growth of this strip will slow down the growth of the haploids nearest to it. Constructing Synthetic Microbial Communities
  • 55. Another Random Document on Scribd Without Any Related Topics
  • 56. XIV. Dagene var begyndte at længes. Fra tidlig om Morgenen, indtil Daglyset forsvandt, sad han ved Staffeliet. — Han vilde. Han havde tegnet tre eller fire Kartoner til et stort Figurbillede, kasseret dem alle og saa taget fat paa den femte. Heller ikke den var han tilfreds med, men han følte sin Uformuenhed til at gjøre det bedre. Saa blot videre — videre. — Han spændte Lærredet paa Blændrammen og tog fat paa at male Billedet. Atter og atter smurte han det over igjen. Naar han havde malet flittig hele Dagen og endelig syntes, at Gnisten var i Færd med at komme, saa det ligesom lysnede op i ham, blev det kun endnu værre, naar han den næste Morgen kom ind i Atelieret og saa Resultatet af den foregaaende Dags Arbejde. Hans Billede stod tungt og indholdsløst, uden Friskhed, uden Liv. Saa kunde han sidde og falde helt sammen, med Hovedet begravet i sine Hænder og med en forfærdelig knugende Følelse af, at Evnerne svigtede ham. Og dermed var igjen mange Dages møjsommeligt Arbejde spildt. Til sine Tider forekom det ham, at han ikke havde en eneste frisk eller ny Tanke, og at han ligesaa gjærne kunde opgive det hele. Til andre Tider myldrede det med Ideer om, hvorledes han vilde male, og hvorledes det skulde være — det stod altsammen saa klart for ham — men naar han saa førte Penslen op til Lærredet, nægtede Haanden at udføre sin Part, og hvad han malede blev tørt, kjedeligt og haandværksmæssigt.
  • 57. Men han vilde. Og han begyndte forfra og forfra igjen. Omsider — en af de sidste Dage før Kunstnernes Arbejder skulde være indleverede til den aarlige Foraarsudstilling — blev hans Billede færdigt. Aldrig havde noget Arbejde kostet ham saa megen Kval. Han gad ikke se det. Og han var bange for at se det. Han havde vendt det om mod Væggen i Atelieret og lod det staa saaledes, indtil Karlen kom, der skulde bringe det op paa Charlottenborg. Og da det var borte, vidste han ikke rigtig, om han skulde føle sig lettet derved eller endnu mere mismodig og tvivlende end i alle de lange Arbejdsdage, da det havde staaet paa hans Staffeli. Men han var sig bevidst, at han havde lagt alt det i Billedet, som han havde evnet. Det kunde jo ogsaa være, at det var bedre, end han selv troede. Maaske var det den trykkede Sindsstemning, hvori han befandt sig, der fik ham til at se saa modfalden og utilfreds paa det. Sikkert var det, at det vilde blive afgjørende for ham, om dette Billed gjorde Lykke eller ikke. Han syntes næsten, at han maatte staa eller falde med det. Han havde med stor Spænding ventet paa Maleriernes Ophængning for at se, hvorledes hans »Vesterhavs-Fiskere« vilde se ud ved Siden af de andre Arbejder. Han var deroppe Dagen før den sædvanlige Aabningshøjtidelighed og traf sammen med adskillige af sine Kammerater. Men han havde ikke behøvet at høre deres mere eller mindre skaansomme Ytringer for at sige sig selv, at hans Arbejde var mislykket — en øjensynlig Tilbagegang. Thi trods den svigtende Produktionsevne havde han beholdt sit kritiske Blik baade for sig selv og andre. Han saa mere tydelig, end nogen kunde fortælle ham det, at hans Arbejde var forfejlet. Den samme umandige Svaghed, denne Halvhed mellem Energi og Uformuenhed, som han ofte var sig bevidst i sin Karakter som Menneske, syntes at træde frem ogsaa i hans Værk. I hans Billede var der en vis pedantisk Stivhed, blandet med et mislykket Forsøg
  • 58. paa en kjækkere og friere Malemaade, og noget lignende gjorde sig gjældende i selve Indholdet. Der var Tilløb til en sund, frisk Friluftsstemning, men den knækkede over paa Halvvejen og blev til sygelig Følsomhed. Billedet var og blev mislykket. Der var adskillige dygtige Arbejder af hans Kammerater — Billeder, der vidnede om Udvikling og om voxende Kræfter. Han skammede sig ved at mærke hos sig selv, at han misundte dem. De andre gik frem. Skulde han være nødt til at opgive Kampen som frugtesløs. — Var Gnisten virkelig haabløst slukket? Eller havde den ikke været stærk nok til at blive andet for ham end en skuffende Lygtemand? Nej, det var umuligt. Han følte det saa sandt og vist hos sig selv, at han havde baade Kunstnerens Øje og Sind. Livet og Naturen aabenbarede sig villig for ham. Han var sig bevidst, at han forstod at tyde dem, og selv i dette mismodige Øjeblik mærkede han, hvorledes det gjærede i hans Sind med spirende Tanker og Syner. — Det var umuligt, at han havde kunnet tage fejl af sit Kald — at han kun skulde have Evne til at se og opfatte som Kunstneren, men ikke den skabende Kraft. Men Paavirkningen — baade den indre og ydre — havde manglet ham i altfor lang Tid. Efter Mødet med Margrethe Aaby var der fulgt en Tomhed og Sløvhed, som han ikke kunde faa Bugt med. Hun havde henvist ham og sig selv til Pligtens lige Vej. Han gjorde sig Umage for at følge den — og bildte sig ind, at det nærmest var, fordi han var for fejg til at gjøre andet — men det skete med en underlig sløv Viljeløshed, thi han havde vænnet sig til at se al Ting graat i graat. — Og dog var Redning maaske mulig endnu. Kunde han komme bort, rejse et Aars Tid, glemme en hel Del, som han gjærne vilde glemme, og samle friske Tanker — saa vilde Gnisten muligvis blusse op igjen.
  • 59. Men skulde han blive hjemme, tynget af sin huslige Misère, smaalige Sorger for at leve — og de truede med at blive meget følelige, saafremt han ikke fik sit Billede solgt — men først og fremmest med den knugende Bevidsthed, at hans Evner ubarmhjærtig svigtede ham, saa syntes han, at det maatte føre til haabløs Undergang. Samme Dag, han havde indsendt sit Billede, havde han givet en Ansøgning ind om et af Akademiets store Stipendier. Det var bedrøveligt nok at tænke paa, at hans Fremtid paa en Maade syntes at afhænge af, om han fik den lumpne Sum Penge eller ikke. Men de »lumpne« Penge vilde sætte ham i Stand til at rejse ud og vinde friske Kræfter, skabe et nyt Væld i den udtørrede Kilde, og derfor blev det alligevel — hvor prosaisk det end var — et Livsspørgsmaal for ham. Men det havde de ærværdige Professorer næppe nogen Anelse om. Naar hans Billede blev fundet utilfredsstillende, var det ikke rimeligt, at han vilde faa Stipendiet. Man vilde vistnok i alt Fald komme til det Resultat, at han havde bedst af at vente et Par Aar paa en saadan Opmuntring. Og imidlertid — men det var jo alligevel muligt, at det gik bedre, end han troede. Det var en kold, sludfuld Dag i Slutningen af April. En af de gjækkende Dage, hvor Solen pludselig bryder frem mellem regntunge Skyer og varsler om Foraar og Sommer for strax efter at skjule sig igjen og lade det falske Smil efterfølge af stride Regnstrømme og raslende Haglbyger. Gader og Torve laa kølig forfriskede i et Regnbad, der havde efterladt brede Vandpytter paa Stenbroen, og de letsindige Indvaanere af begge Kjøn, der havde ladet sig friste af en Smule blegnæbet Middagssol til altfor tidlig at stikke i Foraarstøjet, hastede nu med blaalig anløbne Kinder og røde Næsetipper langs med
  • 60. Husrækkerne, under ihærdige, men ofte frugtesløse Anstrængelser for at holde Paraplyen stik mod Vinden. — Henning havde taget en Beslutning. Han vilde tale med en af de Professorer, der var beskikkede til at uddele Stipendierne. Han vilde ærlig gjøre rede for, hvor magtpaaliggende det var ham at komme ud for at modtage en befrugtende Paavirkning, som han følte, at han trængte haardt til. Det havde kostet ham en Del Overvindelse at holde fast ved dette Forsæt og give sig i Færd med at udføre det, men der stod saa meget paa Spil, at han ikke vilde lade noget Middel uforsøgt til at rejse sig igjen efter det sidste Nederlag. — Saa begav han sig hin sludfulde Aprildag paa Vejen til den velkjendte Bygning, hvor Professoren havde Embedsbolig. Det var henimod den Tid af Dagen, da Udstillingen lukkes, og i Porten mødte han en Sværm af besøgende: kritisk udseende Herrer og Damer, der stak deres Katalog og Blyantspen i Lommen, idet de nærmede sig Udgangen; Gjæster fra Provinserne, der saa' saa ivrige og travle ud, som om de endnu havde et Par Maleriudstillinger og diverse Museer at støve igjennem, før de med en rolig Samvittighed kunde lægge deres mødige Lemmer til Hvile i Hotellernes rummelige Senge. Nogle blev staaende i Porten med de allerede opslaaede Paraplyer for at vente, til Bygen var trukken over, og i Sværmen saa Henning et Par bekjendte Ansigter, som han skyndte sig forbi for ikke at blive nødt til at indlade sig i en ligegyldig Samtale, som han ikke følte sig videre oplagt til. — Han skraaede over Gaarden, gik ind ad Porten til højre, hvor der stod en Stabel Kasser, der havde gjemt eller endnu indeholdt Billeder, bestemte til »anden Ophængning«, og stod i Begreb med at gaa op ad den brede, snirklede Trappe, da han blev standset af et af Akademiets Bude, gamle Blæsenberg, hvis ulastelige, sorte Frakke, stive Halsbind og omhyggelig børstede Filthat havde et saa officielt
  • 61. Præg, at ingen kongelig Kontorchef havde behøvet at skamme sig ved at bytte Klæder med ham. Blæsenberg havde derfor ogsaa i mange Aar gaaet under Hædersnavnet »Chefen« blandt Akademiets Elever, der kjendte hans knirkende Støvler i halvtresindstyve Skridts Afstand. Denne indflydelsesrige Personlighed standsede Henning paa Trappen med et fortroligt: »Goddag Hr. Bentsen! Det var grumme rart, jeg traf Dem, for jeg gaar her med et Brev, som jeg skulde ha'e brungen ud til Dem. Det var saa grumme heldigt. Værsgo', Hr. Bentsen!« Med disse Ord leverede han Henning et stort, embedsmæssig udseende Brev i blaa Konvolut, og da Henning modtog det uden at synes tilbøjelig til at indlade sig i nærmere Samtale, gik Blæsenberg videre efter at have gjort en kort Bemærkning om det grumme triste Vejr. — Henning blev staaende med Brevet i Haanden. Han havde paa Fornemmelsen, hvad det indeholdt, men tøvede med at aabne det. Saa rev han endelig Konvolutten op. — Skrivelsen var affattet i den sædvanlige Kancellistil. Stipendiet var ikke tilstaaet ham. — Han gik tilbage over Gaarden, ud gjennem Hovedporten, der imidlertid var bleven rømmet af det udstillingsbesøgende Publikum. Den smækkede i bag ved ham med et lydeligt Drøn, som om den for evig Tid vilde lukke ham udenfor de indviede Mure. Han blev staaende og saa ud over Torvet, der laa som en blinkende, mørk Flade foran ham. Regnen piskede ned mod Brostenene og paa de endnu bladløse Trær rundt om »Hesten«. Sporvogne og drivvaade Drosker rullede forbi; Folk gik med Paraplyen helt nede over Hovedet; Vandet sivede ud af Tagrenderne med sit ensformige Prik-Prik. De røde Lygter blev satte udenfor Theatret, og de første Theatergængere — Folk fra Provinsen, der holdt sig til Plakaternes Bemærkning om, at »Indgangen aabnes Kl. 6½« — begyndte saa smaat at indfinde sig. —
  • 62. Han blev staaende, uvis om, hvor han skulde gaa hen. Hjem gad han ikke gaa. Dér ventede ham ingen Opmuntring. Han tænkte paa, hvor helt anderledes det vilde have været, dersom han hjemme havde fundet den Kjærlighed og Forstaaelse, som kan hjælpe en Mand til at overvinde selv de største Hindringer og forsone ham med de bitreste Skuffelser, han møder ude i Verden. Men det nyttede ikke at gruble derover. Det var nu en Gang saa og kunde ikke blive anderledes. Han følte ikke længere nogen Bitterhed mod Minna, snarere en bedrøvelig Medynk baade med hende og sig selv. Men Midlerne til at redde sig fra Skibbruddet — hvor skulde han finde dem? Saa faldt det ham pludselig ind at henvende sig til en af Stadens Mæcenater, en Mand, der havde Ord for at have hjulpet mange unge Kunstnere frem. Han vilde forklare ham, hvorledes Sagerne stod — naturligvis med Undtagelse af sine huslige Forhold — fortælle ham, at hans Fremtid som Kunstner beroede paa, at han kunde komme bort et Aars Tid for at faa friske Kræfter, og bede ham om de nødvendige Penge som et Laan. Hvad var et Par tusende Kroner for en Mand, der ejede flere Millioner, og hvis Formue voxede hvert Aar med adskillige Hundredetusender. Men for ham, Henning, var den forholdsvis ubetydelige Sum ensbetydende med nyt Liv og en ny Tilværelse. Desuden mente han, at han kunde stille nogen Sikkerhed for et saadant Beløb. Jo mere han tænkte derover, des mere sandsynligt forekom det ham, at det kunde lykkes, og han fik omsider Mod til at vove Forsøget. Da han først var kommen saa vidt, syntes han, at det var bedst lige strax at sætte Beslutningen i Værk. — Klokken var hen ved syv, altsaa ikke den Tid, man plejer at gjøre Visit hos fornemme Folk. Men lige meget — han vilde ikke opsætte
  • 63. det. Han begav sig paa Vej til det Kvarter af Byen, hvor den store Mand boede. Tjeneren, der modtog hans Kort, saa spørgende op og ned ad ham og bemærkede, at Excellencen ikke modtog paa den Tid, men han skulde gjærne aflevere Kortet. Dermed gik han og vendte kort efter tilbage for at bede Henning træde ind. Excellencen skulde strax være til Tjeneste. Henning befandt sig i en rummelig Hjørnestue, halvt Bibliothek, halvt Arbejdsværelse, udstyret i gammeldags Stil, med al den Luxus, som en betydelig Formue i Forening med en fint udviklet Smag kan tilvejebringe. Over Skrivebordet hang en ægte Rembrandt, paa den modsatte Væg nogle Stykker af gamle danske Mestere. — Overalt bløde, dæmpede Farver, tunge, mørkerøde Silkegardiner, en mat bronceret Lysekrone, Bøger, indbundne i brunt Maroquin; bredbladede, mørkegrønne Planter i smagfulde Stativer, Stole med lave, magelige Sæder, et Tigerskind med udstoppet Hoved inde under Skrivebordet. — Der gik ti og atter ti Minuter. Henning hørte nu og da en fjærn Klirren af Glas og andet Bordservice. Excellencen havde aabenbart endnu ikke rejst sig fra Middagsbordet. — Folk plejer at være i en blid og medgjørlig Stemning, naar de har spist godt. Han vilde haabe, at Excellencen maatte være tilfreds med sin Middag. — Saa ventede han endnu en halv Snes Minuter. Haglene piskede mod Ruderne, og Lyset, der selv midt paa Dagen havde Møje med at trænge ind mellem de folderige Gardiner, blev mere og mere dæmpet. Han havde sat sig paa en af de smaa Hjørnesofaer og lænede Hovedet mod Rygstødet. Hans Blik strejfede ørkesløst de forskjellige Gjenstande i Værelset, medens han forestillede sig, om Excellencen, hvem han aldrig havde set personlig, var en høj, imponerende Skikkelse eller en lille, tør, mager Mand; om hans Stemme var barsk og bydende eller muligvis fin og sleben som en ægte Hofmands. —
  • 64. Men lidt efter lidt forlod hans Tanker disse Enemærker og vandrede langt bort fra den store Mand og hans Arbejdskabinet. Værelset var opfyldt af en let, behagelig Vellugt, der blandede sig med den stærke Varme fra en massiv Fajanceovn, og uden at han selv vidste af det, faldt hans Hoved tilbage mod Sofaens Rygstød; de Billeder, der drog forbi ham, antog mere og mere taageagtige Skikkelser. — Et pludseligt Lysskær vækkede ham af den Døs, hvori Trætheden og den lange Ventetid havde bragt ham. Han sprang op fra sin magelige Stilling og gjorde et forvirret Buk for Excellencen, der var traadt ind i Stuen, fulgt af en Tjener, som satte en Lampe hen paa Skrivebordet og derpaa forsvandt. »Jeg beder Dem — bliv kun siddende,« sagde Hs. Exc. med et fint, maaske en lille Smule ironisk Smil. »Tør jeg spørge, hvormed jeg kan være til Tjeneste? — Jeg mindes ikke før at have havt den Fornøjelse ....« »Jeg tør maaske antage, at mit Navn ikke er Deres Excellence helt ubekjendt,« sagde Henning. »Nej —« Excellencen raadførte sig med Visitkortet, som han endnu havde i Haanden. — »De har vist flere Gange havt udstillet — ikke sandt? Om jeg husker rigtig, har De ogsaa et Billede deroppe i Aar — nogle Fiskere fra Vestkysten — tror jeg?« »Ja desværre,« svarede Henning. »Det er et mislykket Arbejde, som jeg ikke burde have udstillet. Jeg ...« »Aa hvad — De er en ung Mand. Har De været mindre heldig i Aar, kan De jo tage Revanche en anden Gang. De har jo Tiden for Dem. — Men hvormed ...« Excellencen kastede et Blik paa Uret ligesom for uden al Fortrydelse at minde den unge Mand om, at hans Tid var mere kostbar, og at han ikke havde den for sig i en tilsvarende Grad, hvad der kunde være en hel Del i, naar man tog Hensyn til, at han var en meget gammel Mand.
  • 65. »Hvormed ...?« Henning søgte med saa faa Ord som muligt at komme frem med, hvad han havde paa Hjærte, og imidlertid sad den lille sirlige, hvidhaarede Mand og hørte paa ham, stadig med samme uforanderlige, halvt ironiske, halvt opmuntrende Smil. »Det maa vistnok synes Dem underligt, at jeg kommer med en saadan Anmodning uden at være personlig kjendt af Dem,« sluttede Henning, »og jeg skulde sikkert heller ikke have gjort det, hvis jeg ikke havde en saa bestemt Følelse af, at hele min Fremtid ...« »Ja vist, ja vist,« afbrød den lille Excellence. »Saaledes er det med dem alle — med dem alle. Det gjælder altid hele deres Fremtid. Men det er umuligt at hjælpe enhver. Der stilles saa mange Krav. Man vil gjærne gjøre, hvad man kan. — Men det er umuligt — ganske umuligt. — Jeg forsikrer Dem, kjære unge Ven, at selv den største Formue vilde spille Bankerot, hvis man skulde træde hjælpende til i alle Tilfælde. Nej, det er umuligt — ganske umuligt.« »Jeg havde ikke tænkt mig at modtage denne Sum som en Gave,« sagde Henning, hvis Kinder begyndte at farves røde, ikke saa meget af Fortrydelse over Afslaget, thi det kunde altid være lige saa vel motiveret som hans Anmodning, og der var jo desuden en hel Del Sandhed i, hvad den gamle Mand sagde — men fordi han mere og mere følte det ydmygende i Situationen. »— — Det var ikke min Mening at modtage det som Gave, men som et Laan. Jeg havde tænkt at kunne give f. Ex. en Livspolice i Sikkerhed, og ...« Han stammede lidt i det ... »naar jeg skaffede behørig Sikkerhed for Præmiens Betaling, vilde Gjælden jo i værste Tilfælde blive betalt ved min Død, og Deres Excellence eller Deres eventuelle Arvinger vilde saaledes under ingen Omstændigheder kunne gaa tabt af Kapitalen ...« »Meget rigtigt — meget rigtigt. Men jeg beklager ikke at kunne indlade mig paa den Slags Sager. — Det er jo muligt, at De kan faa det ordnet saaledes i et eller andet Pengeinstitut ...«
  • 66. Excellencen, der i de sidste Minuter utaalmodig havde ladet en Papirkniv glide frem og tilbage mellem sine spidse, hvide Fingre, hostede ganske sagte, og det opmuntrende Smil blev mere køligt. »Saa maa jeg endnu blot bede Dem undskylde, at jeg har henvendt mig til Dem,« sagde Henning og rejste sig. »Trods Deres Excellences Bemærkning kan jeg ikke andet end gjentage, at jeg ikke vilde have gjort dette Skridt, hvis jeg ikke havde været meget haardt tvungen dertil.« Den lille Mand saa op med et hastigt Glimt i sine skarpe, graa Øjne. »Ja — det gjør mig meget ondt. Hermed kan jeg ikke være Dem til Tjeneste. — Kan derimod et mindre Beløb muligvis hjælpe Dem i en øjeblikkelig Forlegenhed, saa ...« Han gjorde en Bevægelse med Haanden hen til Skrivebordsskuffen, men Udtrykket i Hennings Ansigt overbeviste ham om, at han havde misforstaaet hans sidste Ytring. »Saa beklager jeg, at De maa gaa fra mig med uforrettet Sag. Altid meget kjedeligt — meget kjedeligt for begge Parter.« Henning bukkede tavs, og den lille Excellence fulgte ham med sin aldrig svigtende, tilknappede Høflighed et Par Skridt henimod Døren. — Regnen og Haglbygerne var holdt op. Der viste sig en klar Lysning mellem Skyerne, og Blæsten, der jog fejende omkring Gadehjørnerne, havde tørret Fortovene, saa kun de større og mere udholdende Vandpytter var blevne tilbage i Stenbroens ujævne Fordybninger. Henning gik langsomt hjemad, lige saa aandelig træt, som han var det legemlig. Den ydmygende Situation, han havde lagt bag ved sig, vedblev at forfølge ham. Det var, ligesom den paanødte ham en Følelse af, hvor lidet vidt han havde bragt det. I gamle Dage havde han fundet en
  • 67. Slags Tilfredsstillelse i at anstille Beregninger over, at naar han blev saa og saa gammel, skulde han være naaet saa eller saa langt frem. Det var en Art Milepæle, han opstillede paa sin Fremtidsvej. Men det opgav han nu. Der laa saa mange svigtede Forsætter bag ved, at han blev led ved dem og ligesom undsaa sig ved at føje ny til — for ogsaa at bryde dem. Der havde været en Tid, hvor den Ydmygelse, han nylig havde lidt, vilde have opflammet hans Energi og ægget ham til at trodse sine Uheld. — Han kom til at tænke paa den Dag, da han som ganske ungt Menneske — ikke stort mere end en Dreng — var kommen op med sit Maleri til Fabriksinspektøren, der med saarende Ord havde raadet ham til at slaa de Nykker af Hovedet. Den Gang var der blevet vakt en saadan Trods i hans Sind, og han vidste af Erfaring, at den kan hærde baade Vilje og Evner. Men ogsaa denne Følelse lod nu til at være død for ham. Han kæmpede med sig selv for at kalde den til Live igjen, men det vilde ikke lykkes. Men han kunde saa tydelig se, hvorledes det altsammen var kommet og maatte komme saaledes. Han var sig sine egne Fejl fuldkommen bevidst, men alligevel formaaede han ikke at mande sig op til at begynde Kampen forfra. Paavirkningen maatte komme ude fra. Skæbnen maatte sende ham den, thi inde i ham selv var Visen sungen til Ende. — Han naaede omsider hjem, stadig forfulgt af de samme Tanker, der atter og atter vendte tilbage i det samme ensformige Kredsløb. — Da han havde spist til Aften med Minna, gik han ind i Atelieret og kastede sig paa Sofaen uden at bryde sig om at tænde Lys. Han laa og stirrede paa det tomme Staffeli, grundende over, naar han vel vilde faa begyndt paa et nyt Arbejde. Deres Sovekammer stødte op til den bageste Væg i Atelieret, og en Tid lang kunde han høre Minna pusle derinde. Men lidt efter gik hun ud af Stuen, og al Ting blev ganske stille.
  • 68. Han havde vel ligget et Par Timers Tid paa Sofaen uden at sove, men i en halvt drømmende Tilstand, under hvilken han maatte gjøre Vold paa sig, naar han vilde knytte Tankerne sammenhængende til hinanden, da han pludselig blev skræmmet op ved en kort, rallende Hoste, der lød inde fra Sovekammeret. Den varede kun et Øjeblik, men havde noget uhyggeligt ved sig, lignede slet ikke den Maade, hvorpaa Børn undertiden hoster i Søvne, og Henning, der bestandig, endog uden den mindste Grund, plagedes af en overdreven, sygelig Ængstelse for Barnet, sprang forskrækket op og ilede ind i Dagligstuen. Men Minna, der havde været nærmere ved Sovekammeret, var allerede kommen ham i Forkjøbet, havde været inde og taget Barnet op og kom nu løbende ind, bærende det paa Armen. »Men Gud — han kvæles — se — hvad fejler dog lille Aage?« Hun stod og rystede over hele Kroppen, medens hun holdt Barnet, hvis Bryst arbejdede med en krampagtig Stønnen. Dets Ansigt var blegt, med et let blaaligt Anstrøg, og Øjnene havde et forpint Udtryk, som om de ytrede en stum Bøn om Hjælp mod den usynlige Fjende, der plagede det lille Legeme. »Se — Henning — han kan ikke faa Luft!« skreg Minna. Han var lige saa bleg og forskrækket som hun og famlede efter sin Hat for at løbe efter Lægen. Minna havde vendt Barnet om paa sin Arm og slog det i Ryggen for at fremskynde en Opkastning, dersom det skulde have sunket noget. Men derpaa fulgte den samme uhyggelige, rallende Hoste som første Gang, kun mere besværlig og langvarig. Henning vendte sig om i Døren og saa med et fortvivlet Blik hen paa Moderen og Barnet. Han hørte endnu Minna skrige: »Aa Gud — det kan da ikke være Strubehoste!« — Men derpaa fór han ned ad Trappen, gjennem den lille Forhave og hen ad Vejen, som om han havde havt Vinger. —
  • 69. Han løb hele Vejen ind til Byen, saa hurtig som en ung kraftig Mand kan løbe, naar det gjælder om at frelse et Liv, der er ham mere dyrebart end hans eget. Han løb, saa det peb og gispede i hans Bryst; sagtnede ikke et eneste Sekund sin voldsomme Fart, pressede kun Haanden mod det smertende Sting, han følte i Siden, og løb videre og videre uden at ænse, hvorledes Blodet strømmede til hans Hoved og pressede sammen om hans Hjærte. Der var en dødelig Angst i hans Sind. Musklerne i hans Ansigt fortrak sig i den stumme Smerte. Hans Øjne brændte, og han havde en tør, kvælende Fornemmelse i Halsen. Hans Søn — hans prægtige Dreng dø! Hans hidsede Fantasi forestillede ham, at det allerede var sket. Han saa den smukke, raske Dreng ligge Lig, med Ligets voxagtige Bleghed over de elskede Træk. Han saa dem komme med Dødens uhyggelige Attributer for at skrinlægge det kjæreste, han ejede. Han hørte dem hugge Sømmene til — saa tydelig, at Nerverne i hans Hoved dirrede derved. Hans Bryst snøredes sammen, og han løb — løb som en afsindig. — Lægen var heldigvis hjemme. Han forklarede ham, saa godt han kunde, hvad der var sket, og et Par Minuter efter sad de i en Droske og rullede afsted til hans Hjem. De fandt Minna gaaende op og ned ad Gulvet med det syge Barn i sine Arme. Lægen forlangte en Ske, som han holdt paa den lilles Tunge for at se ham ned i Halsen. Henning maatte holde Lyset imens. Doktoren rystede paa Hovedet, spurgte, om Barnet havde været hæs i Løbet af Dagen. Nej, lille Aage havde været fuldkommen rask og lige saa kvik og munter, som han plejede. Kunde det være muligt, at det var den skrækkelige Strubehoste?
  • 70. Doktoren rystede atter paa Hovedet. Det var vanskeligt at afgjøre i Øjeblikket. Det var muligt, at det kun var en Halskatarrh, et Tilfælde, som man kaldte for falsk Strubehoste, og som tit plejede at angribe Smaabørn ganske pludselig. Han bad dem berolige sig og haabe det bedste. Barnet skulde have koghede Omslag om Halsen og hver halve Time en Theskefuld af nogle Brystdraaber, paa hvilke de nu skulde faa Recepten. Henning løb hen paa Apotheket. Han ringede gjentagne Gange paa Natklokken, før den vagthavende indfandt sig. Saa blev han lukket ind i det kvalme Lokale med dets underlige krydrede Luft. Han maatte vente, indtil den søvndrukne Apothekerlærling fik Medikamentet tillavet, og de fem eller ti Minuter, der gik, forekom ham som lige saa mange Aarhundreder. Hans Søn — hans lille, prægtige Dreng! Det var de samme Ord, formende det samme Billede, der atter og atter gjentog sig for ham. Og paa samme Tid følte han en heftig Trang til at anraabe Gud om at have Medlidenhed med hans Hjærteangst. Men han kunde ikke føje Ord og Tanker sammen til en Bøn. Det var enkelte, forpinte Skrig, der undslap hans Bryst og banede sig Vej did op, hvor der — han mindedes det fra sin Børnelærdom — skal være idel Lys og Retfærdighed. Det blev ved at kæmpe og arbejde i ham, medens han skyndte sig tilbage til sit Hjem, stadig med den samme kvælende hede Fornemmelse i Brystet; med det samme Billede af hans lille Yndling stillende sig frem for hans opskræmmede Tanker og med den samme heftige, men afmægtige Trang til at give sin Fortvivlelse Luft i Graad og Bøn. — Derpaa fulgte Natten, den ubeskrivelig lange, kvalfulde Nat, medens de begge sad oppe og vaagede hos det syge Barn, lyttende med ængstelig Spænding til dets Aandedrag, stirrende ufravendt paa det, saa længe det laa hensunket i et kort Blund, og begge to følende det samme isnende Stik i Hjærtet, hver Gang Hosten kom igjen.
  • 71. Var det en Straf for deres Vildfarelser, for deres Mangel paa Kjærlighed og Overbærenhed med hinanden — for alt det stygge, der havde været i deres Samliv? Kunde Skæbnen ville ramme dem saa forfærdelig haardt? Overfor den store Sorg, der truede Henning, forekom det ham, at alt andet, hvad der havde brudt ham ned i de sidste Aar, blev saa uendelig smaat og betydningsløst. Dette var den første store Hjærtesorg, og den var kommen saa pludselig og overvældende. Han foragtede sig selv, fordi han før var falden sammen og havde bildt sig ind, at hans Liv var tomt og indholdsløst, hans Kræfter opbrugte. Nu saa han først, at han kunde lide et Tab, der var helt anderledes tungt. Maatte han dog blot blive sparet for det. Alt andet kunde gjenoprettes. Kun ikke det — kun ikke det. — De laa paa Knæ, hver ved sin Side af Sofaen inde i Dagligstuen, hvor der var blevet redt til det syge Barn. Lampen brændte paa Bordet og kastede sit Skær hen paa det lille Ansigt, der fortrak sig urolig i Søvne. Hver Erindring, der knyttede sig til Barnet, kaldtes atter frem — Erindringer, der vilde synes latterlig smaa for alle andre, men som fik deres Hjærter til at bæve og snørede deres Bryst sammen i kvalt Graad. De første, usikre Skridt paa egen Haand, de første, stammende Ord, den første Fødselsdag og det første Stykke Legetøj. Hvert lille Fremskridt, der var forekommet dem som et mærkeligt Vidunder. Barnets pudsige Indfald, dets muntre Leg og dets ømme Kjærtegn — denne friske Barnemund, der bød sig saa lokkende til Kys, og disse runde, bløde Arme, der saa utallige Gange havde slynget sig om deres Nakke med et Overmaal af barnlig Kjærlighed. Og alt det skulde være forbi. Nej — nej. Kun ikke det — kun ikke det! Dagslyset begyndte at kæmpe med Skæret fra Lampen og fik mere og mere Indpas gjennem de nedrullede Gardiner. Skyggerne, der
  • 72. havde ligget og forstukket sig under Møblerne, trak sig længere og længere tilbage og forsvandt tilsidst helt for den frembrydende Morgendæmring. — Det havde allerede en god Stund været saa lyst udenfor, at man kunde have slukket Lampen og rullet Gardinerne op, men ingen af dem havde Tanke derfor. Den fjedrede Befolkning i Træerne ude i Alléen begyndte at istemme sin Morgenkoncert, først en enkelt Sanger og derpaa hele Skaren. Men de hørte det ikke. Solen sendte sine første smaa Lysglimt ind mellem Rullegardinet og Vindueskarmen. De lagde ikke Mærke dertil. Barnet var faldet i en fast Søvn; det syntes at trække Vejret lettere, og den uhyggelige, rallende Lyd i Brystet og Struben kom svagere og med længere Mellemrum; Farven lod ogsaa saa smaat til at vende tilbage paa Kinderne. De fulgte disse Symptomer, og Haabet begyndte at vaagne hos dem, men de turde ikke stole paa det. De saa' spørgende paa hinanden, vexlede nogle Ord med en Stemme, der dirrede af Bevægelse, og bøjede sig hvert Minut over det slumrende Barn for at lytte til dets Aandedrag, snart grebne af Uro over den lange Søvn, snart givende sig mere og mere hen til Haabet om, at Faren var overstaaet. — Pigen, der var bleven oppe for at hjælpe dem med at passe den lille Patient, havde, uden at de vidste af det, lavet Kaffe ude i Køkkenet og kom nu ind med en Præsenterbakke, som hun satte paa Bordet i Dagligstuen. I det samme vaagnede den lille Dreng, smilede til dem og rakte sine Arme frem. Nattens frygtelige Angst og Spænding gjorde paa én Gang Plads for en Følelse, saa glad og befriende, som de næppe før havde kjendt den. De lagde sig paa Knæ ved Barnets Seng, bedækkede hans Pande, Mund og Hænder med lidenskabelige Kys, saa at Drengen saa' halvt forundret, halvt ængstelig paa dem. »Lille Aage bliver snart rask — du skal ikke græde, søde Moder,« stammede den lille Fyr.
  • 73. Deres Blikke mødtes; stiltiende rakte de hinanden Haanden, kæmpende hver paa sin Side for at skjule, hvorledes Graaden stansede Ordene i deres Mund. Saa kastede Minna sig pludselig om hans Hals med en lidenskabelig Hulken. »Aa, Henning — Henning,« mumlede hun — »Vorherre har været meget bedre mod mig, end jeg har fortjent — Gid jeg aldrig maa glemme det ...« Hun trykkede sit Hoved op til hans Bryst, og han bøjede sig ned og kyssede hendes Pande. Da Lægen kom igjen op ad Formiddagen, erklærede han, at der ikke var nogen som helst Grund til yderligere Ængstelse. Det havde kun været et Tilfælde af den omtalte, falske Strubehoste, hvis Begyndelsessymptomer vanskelig lod sig skjelne fra den ægte.
  • 74. XV. Han var bleven revet ud af sin Sløvhed og mindet om, at han endnu havde noget at leve og arbejde for. Allerede et Par Dage efter, at lille Aage var bleven rask, stod der et Udkast til et nyt Billede paa hans Staffeli, og han mærkede, at noget af den gamle Arbejdslyst var kommet over ham igjen. — Han arbejdede flittig, gjorde sig Umage for at jage alle Graavejrstanker paa Flugt, om de end meldte sig nok saa paatrængende, og søgte paany at afvinde sit Forhold til Minna de bedste og lyseste Sider. Hun prøvede, saa godt hun kunde, paa at komme ham i Møde. De vilde aabenbart begge to saa gjærne holde fast ved deres gode Forsæt, naar det blot maatte lykkes. I den første Tid gjorde hun Vold paa sig selv for at synes blidere og mere tilfreds, end det laa i hendes Natur at være. Men hun forstod ikke at forstille sig, og hun led ved denne Tvang. Det førte ikke til andet end til en Slags kunstig tilvejebragt Vaabenstilstand, der var lige saa trykkende som den tidligere aabenbare Krig, og det tjente kun til endnu tydeligere at vise dem, hvor fjærnt de stod hinanden, og hvor haabløst det var at tro paa, at det nogensinde kunde blive anderledes. — Og der var saa meget, i hvilket de kunde have trængt til at have en Støtte i hinanden. Henning maatte prøve en hel Del af de Ydmygelser, som Pengenød fører med sig, og Minna forstod ligesaa lidt nu som tidligere at finde sig taalmodig i den Slags Ting. Hun klagede bittert over alt det, de maatte gaa igjennem, drog gjærne Sammenligninger med dem, om hvem hun mente, at de havde det meget bedre end hun selv. — Kunde Henning ikke
  • 75. begynde paa noget andet end at være Maler; det førte jo dog aldrig til noget. Hun sagde det ikke i nogen ond Mening; kun fordi hun hverken forstod ham eller hans Arbejde. Men det saarede ham, og han tænkte med Bitterhed paa, hvem der vel skulde tro paa ham, naar ikke en Gang hans Hustru gjorde det. — Han havde sat al sin Arbejdsevne ind paa sit ny Billede. »Enkens Søn« skulde det hedde; det forestillede en Moder ved sit Barns, en halvvoxen Søns Dødsleje. Han arbejdede undertiden med en overdreven Anspændelse af alle sine Evner og nærede en sygelig Ængstelse for, at den Gnist, som han næsten med Vold og Magt holdt fast, skulde svigte ham, før han blev færdig. Saa var det ud paa Sommeren. De havde ikke havt Raad til nogen længere Rejse, men for at bringe lidt Afvexling i den trykkende Ensformighed havde Henning lejet en tarvelig Sommerbolig i et Fiskerleje nogle Mil fra Hovedstaden. De havde boet derude en Maaneds Tid, da Henning en Dag maatte tage til Byen af den meget tvingende Aarsag, at de ikke havde flere Penge i Huset. Det var usædvanlig varmt Vejr. Luften havde lige fra tidlig om Morgenen truet med Torden, og Brostenene inde i Byens Gader brændte en under Fødderne. Ude i Alléerne, hvor Træerne havde faaet det støvede og forjaskede Udseende, der viser, at den smukkeste Del af Sommeren er forbi, vandrede Folk i store Skarer afsted til de forskjellige Forlystelsesanstalter uden at bryde sig om Tordenskyerne, der trak sammen i stedse tættere Masser, medens nu og da en pludselig, let Susen i Trætoppene spaaede om, hvad der var i Vente. — Henning havde travet omkring i Byen fra tidlig paa Formiddagen. Og da han omsider havde faaet udrettet, hvad han skulde, var det sidste Tog og det sidste Dampskib afgaaet. Saa var der ikke andet for end at overnatte i Byen.
  • 76. Han var bleven uvant med at tilbringe en Aften paa egen Haand og vidste ikke, hvorledes han bedst skulde faa Ende paa den. Det havde stadig hørt med til Gaaderne i Minnas Karakter, at skjønt hun var sær og uvenlig, naar han var hjemme, blev hun dog meget ilde til Mode, naar han en Aften vilde gaa ud alene, og Henning, der efterhaanden havde brudt fuldstændig med sin gamle Omgangskreds, havde vænnet sig til at føje hende i dette Punkt. — Han slæntrede langsomt ud ad Broen og Alléen, medens han med en ørkesløs Mine betragtede de livlige Menneskegrupper, som vandrede forbi ham med al den Travlhed, der er betegnende for Kjøbenhavneren, naar han er ude for at more sig. Før han rigtig vidste af det, var han kommen i Nærheden af »Runddelen«. Han naaede det lille Forstadstheater, paa hvilket der gives Forestillinger i Sommersæsonen, og i Mangel af bedre Sysselsættelse gav han sig til at studere en af de gloende røde Plakater, der var slaaet op paa hver sin Side af Indgangen. Spasereturen gjennem den skyggefulde Allé, hvor det dæmrende Halvmørke havde fortrængt Dagens brændende Solhede, og Synet af den brogede Menneskesværm havde stemt ham lidt livligere, og det faldt ham ind, at han lige saa gjærne kunde nyde sit Aftensmaaltid i det lille Theater som paa ethvert andet Sted. Han løste Billet og traadte ind paa Tilskuerpladsen, over hvilken der hang en graalig Taage af Øl- og Tobaksdunster, som halvvejs skjulte det talrig tilstedeværende Publikum, der havde grupperet sig omkring de smaa firkantede, under Vægten af Smørrebrødstallerkener, Iskageassietter, Ølkrus, Toddyglas og Chokoladekopper bugnende Borde. Tonerne fra Orkestret skar sig trangbrystet Vej gjennem den øredøvende Summen af snadrende Stemmer, men forhindrede ikke disse Stemmers Ejermænd i at forlange hvert eneste Musikstykke da capo et Par Gange, saa lidt som den utrættelige Dirigent i at
  • 77. efterkomme de for ham og hans Orkester saa smigrende Opfordringer. Skjønt der ikke lod til at være saa megen tom Plads i Salen, at man kunde sætte sin Støvlehæl der, lykkedes det dog en Opvarter med beundringsværdig Behændighed at bugsere Henning helt op foran Scenen, hvor han med en lige saa utrolig taskenspilleragtig Dygtighed tilvejebragte baade en Stol og et Bord. Henning tog Plads for at nyde de Forfriskninger, han havde bestilt. Han sad og kiggede i Programmet og tænkte allerede saa smaat paa at gaa sin Vej, saa snart han var færdig med sit Smørrebrød og Øl, thi Luften var saa trykkende hed og kvalm, at ikke en Gang Programmets lovende Meddelelse om et nyt Stykke med en Debutantinde indeholdt den allersvageste Fristelse for ham til at blive. — Men Tæppet gik op, før han kunde slippe ud, og han besluttede da at finde sig taalmodig i sin Skæbne, til Stykket var spillet til Ende. Imidlertid morede han sig med at betragte Tilskuernes Fysiognomier. Der var smaa Sypiger og unge Kavallerer, hvis Bekjendtskab syntes at grunde sig mere paa en hastig tilvejebragt Fortrolighed end paa en langvarig Prøve. Der var ærbare Borgerfamilier med deres voxne Døtre; unge, flot klædte Herrer, der aabenbart tjente den letfodede Mercurius, og hvis støjende Bifaldsytringer dundrede gjennem Salen; der var nylig indkaldte Jenser med deres Kjærester, og gamle Pensionister, som tydelig nok hørte til de trofaste Stamgjæster, fordi de mente, at de lige saa gjærne kunde drikke deres Øl her som et hvert andet Sted. Der var solide og trivelige Madammer, der af Hjærtens Lyst nød Komedien med den troskyldigste Andagt præget i deres rødmussede Ansigter. Der var unge og gamle, blaserede Herrer med Lorgnetten kneben ind foran det venstre Øje; blegnæbede Fabrikpiger, som lo paafaldende højt og saa sig omkring med udfordrende Blikke. Der var en og anden Skuespiller fra et af Hovedstadstheatrene i Selskab med et Par Forfattere eller Journalister. —
  • 78. Henning, som havde været optagen af at udskille Bestanddelene i det brogede Selskab, blev pludselig opmærksom paa, hvad der foregik paa Scenen, ved at høre Klangen af en ualmindelig frisk og klar Pigestemme, der lød paa en for Øret højst velgjørende Maade mellem de andre Skuespilleres mere eller mindre falske og forskregne Stemmer. I det samme brød en vældig Bifaldssalve løs paa Tilskuerpladsen, og nogle Buketter af den Slags, som bydes til Salg paa offentlige Forlystelsessteder, kastedes op foran Lamperækken. Det maatte vel være Debutantinden. Han saa op og blev saa paa en Gang ved at stirre paa Skuespillerinden. Det var en endnu ganske ung Pige, paa højst en Snes Aar. Det mørke, blanke Haar var strøget glat tilbage fra en ualmindelig smukt formet Pande. Øjnene havde et ejendommelig alvorligt og behersket Udtryk. Skikkelsen var rank og smækker. Den sorte Fløjls Spencer sluttede om en Figur, som vilde have været værdig til at staa Model for en Phidias' Fremstilling af klassisk Skjønhed. Hun sang sin Kuplet med ukunstlet Fordringsløshed uden paa nogen fremtrædende Maade at bejle til Publikums Gunst og tillige med et musikalsk Foredrag, som disse Brædder vistnok sjældent var Vidne til. Derpaa havde hun nogle Repliker, lige saa meningsløse som hele Rollen og Stykket, men hun sagde dem med en Kvikhed, der indbragte hende en ny, larmende Bifaldssalve fra Tilskuerne. — Og dog var det intet af disse Fortrin hos Debutantinden, der i saa høj Grad lagde Beslag paa Hennings Opmærksomhed. Men jo mere han saa paa hende, des mere forbavset blev han over den skuffende Lighed. Det var, som om Margrethe Aaby var traadt lyslevende frem for ham paa Forstadstheatrets Brædder, kun noget højere og rankere og med en mere selvbevidst Holdning. Men Ansigtet, Udtrykket i Øjnene og
  • 79. det lille kløgtige Træk om Munden syntes at være ganske det samme. Han saa' saa vedholdende paa hende, at han tilsidst fangede hendes Blik, og det forekom ham, at hun i et Sekund saa' derned, hvor han sad. Saa gik hun videre i Rollen, og han vedblev at stirre paa hende, indtil hun havde sunget Slutningsverset, og Tæppet faldt. En dundrende Applaus, forstærket med Banken af Stokke og Paraplyer mod Borde og Gulv, attesterede Publikums Tilfredshed med den ny Skuespillerinde. Henning løb Programmet igjennem, og da han havde overtydet sig om, at hun ikke optraadte mere den Aften, gik han hastig ud af Salen. Udenfor begyndte der at falde enkelte tunge Regndraaber, og han indsugede begjærlig den kølige Luftning, der slog ham i Møde. Han havde en Fornemmelse, som om han var vaagnet op af en Drøm; var næsten tilbøjelig til at tro, at hans Fantasi havde spillet ham et Puds. En saa mærkværdig Lighed mellem to Mennesker, der ikke stod i den fjærneste Forbindelse med hinanden! — Han tog Theaterprogrammet op af Lommen, og ved den første Gaslygte, han kom til, blev han staaende for endnu en Gang at læse hendes Navn. Laura Schmidt stod der med ganske almindelige, prosaiske Bogstaver. — Han kunde ikke slippe Billedet af denne Dobbeltgængerske. Han følte et heftigt Ønske om at se hende igjen for at overbevise sig om, at Ligheden ikke var saa slaaende, som han fra først af havde troet. Han dannede sig en uklar Forestilling om, at det ligesom vilde øve en beroligende Virkning paa ham, hvis han kunde komme til et saadant Resultat ved at se hende endnu en Gang. Da han skulde til at rejse hjem den paafølgende Morgen, faldt det ham et Øjeblik ind at telegrafere til Minna, at han blev en Dag
  • 80. længere i Byen, men han opgav strax denne Plan. Han fandt, at det dog næppe var den rette Maade til at gjenvinde sin Sindsligevægt. Der var endnu Tid til at komme afsted med det først afgaaende Skib. Saa skyndte han sig med sin Paaklædning og begav sig sporenstregs til Dampskibsstationen for at vende tilbage til Fiskerlejet. — Derude blev han med Minna og lille Aage en hel Maaned endnu. Skjønt han flere Gange havde noget at besørge, undgik han at tage til Byen. Han havde troet, at det var lykkedes ham at trænge Erindringen om Margrethe Aaby og deres sidste Møde i Baggrunden. Han havde i alt Fald kæmpet ærlig for at gjøre det, og Bevidstheden om hans Følelsers absolutte Haabløshed havde maaske tildels hjulpet ham dertil. Men nu kom det altsammen igjen med fornyet Styrke. — Omsider var de sidste Landliggere og de sidste Badegjæster flyttede ind til Byen, og Minna havde allerede en god Stund klaget over, at hun kjedede sig ihjel i de ynkelige smaa Huller, der udgjorde deres Sommerbolig. Naar man ikke havde Raad til at bo ordentlig, skulde man hellere lade være at ligge paa Landet, sagde hun. Saa flyttede de da hjem igjen. Den sidste Del af Sommeren var gaaet, uden at han havde faaet noget videre bestilt, og det var paa Tiden, at han atter tog alvorlig fat paa sit store Billede. — Han malede flittig, efter at de var komne til Ro i deres gamle Lejlighed, men hvor megen Umage han end gjorde sig for at fordybe sig helt og holdent i sit Arbejde, kunde han dog ikke forhindre, at hans Tanker med mere Haardnakkethed end nogensinde før vendte tilbage til Margrethe Aaby eller lige saa ofte til Skuespillerinden ude paa Forstadstheatret, saaledes at disse to smeltede sammen til én og samme Skikkelse. Et Par Gange prøvede han paa at nærme sig Minna, ligesom han vilde søge Beskyttelse mod de Udskejelser, hans Fantasi tillod sig,
  • 81. men Minna havde glemt sin alvorlige Gaaen i Rette med sig selv og viste hans Tilnærmelser tilbage paa den gamle, saarende Maade. Han blev tilsidst ked af sin frugtesløse Kamp og overtalte sig til at tro, at han havde havt Ret i sin første Betragtning, og at han gjorde bedst i at se denne Dobbeltgængerske endnu en Gang med lysvaagne Øjne hellere end at lade hende regere uindskrænket i hans Fantasi. — Det var en sex Uger efter den første Aften, han havde spaseret ud til Forstadstheatret. Den mellemliggende Tid havde jaget den korte Sommer paa Flugt. Løvet havde faaet det første gullige Anstrøg, og Bladene hvirvlede med et melankolsk Suk ned mod Jorden, hver Gang Blæsten sendte et skarpt Pust gjennem de ærværdige gamle Lindetrær. — Men de mørke Aftener skræmmede ikke Folk fra at vandre i store Skarer ud til Sommertheatret, hvis særlige Attraction var den aarlige »Revue« med sine paa Øjeblikkets brændende Spørgsmaal møntede Brandere. Denne Sæson var Revuens Handling forlagt til Kina, og Theatrets ny Primadonna optraadte i en af Hovedrollerne — som Prinsesse af det himmelske Rige. — Endog ved at se hende i dette fantastiske Kustume følte han sig betagen af den frappante Lighed. Han lagde Mærke til — og det var med en ubevidst Tilfredsstillelse — at hun holdt sit Spil indenfor visse, af en naturlig god Smag afstukne Grændser, hvor meget Rollen end indbød til allehaande sceniske Udskejelser. Der var over hendes Person og Optræden udbredt en kvindelig Anstand, som traadte endnu stærkere frem i disse Omgivelser, og alligevel forstod hun at spille saaledes, at hun helt og holdent erobrede det stærkt blandede Publikum. Bifaldet, der lød, naar hun havde sunget en af sine Viser, var ligefrem bedøvende. Men hun tog imod det paa en fuldkommen
  • 82. rolig, lidt ringeagtende Maade. Henning bestræbte sig for at forstørre ethvert Træk hos hende, som kunde udvidske Ligheden med Margrethe. Der var Øjeblikke, hvor den irriterede ham; hvor han følte Uvilje mod dette Pigebarn, der understod sig i at ligne en Person, hvem hun rimeligvis stod saa dybt under i alle andre Henseender end den tilfældige, ydre Lighed. Men det vilde ikke lykkes ham. Han gjorde sig forgjæves Umage for at aflure hende en uskjøn Bevægelse, et Blik eller et Smil, der kunde virke frastødende paa ham — altsammen til ingen Nytte. Saa bildte han sig tilsidst ind, at hele denne taabelige Illusion beroede paa Lamperækkens skuffende Lys og den Frastand, hvori han saa hende. Paa nært Hold vilde han sikkert faa et helt andet Indtryk af hende, og dermed vilde Kogleriet være forbi. Han fandt paa de mærkeligste Paaskud til at gaa hjemme fra, og den ene Aften efter den anden tilbragte han nogle Timer ude i Forstadstheatret. Det var et Par Gange forekommet ham, at hun havde set ned paa den Plads, hvor han sad, og derpaa taget Øjnene til sig med en Rødmen, der kom og forsvandt lige hastig. — En Aften, da hun havde optraadt i det sidste Stykke før Forestillingens Slutning, tog han sig for at skyde alle Betænkeligheder til Side og gaa op bag Kulisserne. Han kjendte lidt til Direktøren, der næppe vilde have noget imod at præsentere ham for Theatrets Primadonna. Gjennem en Bagdør og ad en skrøbelig Pindeværkstrappe kom han op bag Scenen, omkring hvilken der løb en snæver Gang med Døre ind til Skuespillernes Paaklædningsværelser. Luften, der slog ham i Møde, var mættet af Gasos, Cigarrøg og en stærk, gjennemtrængende Duft af Patchouli. Døren til et af de smaa Rum, der gjorde Tjeneste som Paaklædningsværelser, stod paa Klem og fremviste Reversen af en
  • 83. Skuespiller i Skjorteærmer, der arbejdede ihærdig paa at fjærne Sminken af sit Ansigt ved Hjælp af Fedt. Medens Henning stod et Øjeblik i Tvivl om, hvad Vej han skulde gaa, kom Direktøren ham i Møde i egen Person, endnu iført sit Kustume som kinesisk Kejser og dampende af alle Kræfter paa en Cigaret. »For Pokker — jeg syntes jo nok, jeg kjendte Dem. Værs'god, kom indenfor. Det var pænt af Dem at se herop.« Han førte Henning ind i et af de omtalte, smaa Rum, der laa nærmest Trappen og benyttedes paa en Gang til Direktørens Paaklædnings- og Arbejdsværelse. Ved den ene Væg stod et langt Fyrretræs Bord; midt paa dette et Toiletspejl med Gasblus paa hver Side, foruden Sminkekrukker, Æsker med Pudder, Parykker, Skæg, fedtede Manuskripter, Cigarstumper, et Par Bajerflasker, snavsede Flipper og Mansketter, krøllede Slips, en sort Silkehat, Stumper af kulørt Tarlatan og Shirting — hulter til bulter mellem hinanden. Sofaen ved den modsatte Væg var skjult under en ligesaa broget Mangfoldighed af de mest heterogene Beklædningsgjenstande, ligefra kinesiske Mandarinkaaber til en moderne sort Selskabskjole. Direktøren samlede det sammen i en mægtig Bylt, som han smed hen i en Krog af Stuen, og bad derpaa Henning tage Plads, medens han selv satte sig overskrævs paa en Stol, der stod foran et gammelt Skrivebord henne ved Vinduet. »Naa — hvad siger De om Revuen i Aar? Det er saagu' den bedste, vi endnu har havt herude. Og den trækker voldsomt. Baade den og vor ny Akkvisition blandt Damepersonalet. De kan tro, det har været en brillant Sæson.« »Javist —« sagde Henning lidt nervøst. »Hvor har De for Resten faaet fat i Deres ny Primadonna?«
  • 84. »Et rent Tilfælde, kjære Ven — et rent Tilfælde. Men hun er mageløs — ikke sandt? Og saa en komplet Dame!« udbrød Direktøren begejstret. »Sikke Bevægelser, sikke Manerer — kvikke og utvungne og dog fuldkommen ladylike — det er saagu' det, man aldrig kan faa dresseret de andre til, hvor meget man saa herser med dem.« »Hun har vel tidligere optraadt i Provinserne?« spurgte Henning og tændte med en ligegyldig Mine den Cigaret, Direktøren bød ham. »Nej — Fanden heller. Aldrig før sat sine Fødder paa Brædderne. Hun skulde have været til det kongelige til næste Sæson — jo, gu' er det sandt,« forsikrede Direktøren med en stærk Gestus, da han lagde Mærke til, at Henning saa' op med en vantro Mine. »Hun havde allerede aflagt Prøve — glimrende Udfald — men saa blev hendes gamle nok syg — hendes Fader er en gammel Provinsskuespiller — og jeg fik at vide, at hun søgte Engagement for Sommeren, fordi hun var nødt til at klare for dem derhjemme. — Ja, ser De, — da jeg netop var svært i Knibe for en Primadonna, og jeg havde hørt, at hun skulde være noget extra i Subrettefaget, saa tilbød jeg hende Engagement herude paa saa glimrende Vilkaar, forstaar De, at hun omsider slog til, skjønt — ærlig talt — jeg mærkede nok, at hun gjorde det forbandet nødig.« »Se se! Det lyder jo helt interessant. Naa — og hendes Rygte — det er vel grundmuret?« — Henning havde lidt ondt ved at faa Ordene frem i en let henkastet Tone. »Hendes Rygte, min Fa'er!« — Direktøren gjorde atter sin ejendommelige, store Gestus. — »Om det saa var min egen Datter, kunde jeg ikke ønske hende et bedre Rygte. Hun møder præcis til Prøver og Forestillinger, kan altid sine Roller, er høflig og tjenstvillig mod de andre, men taaler ingen Næsvisheder. Kommer man hende for nær, saa har hun saadan en egen energisk Maade at holde Folk tre Skridt fra Livet, saa de skal nok tage sig i Agt for at komme igjen. Om Aftenen efter Forestillingen kommer der et gammelt Skabilkenhoved af en Tjenestepige og henter hende, og de kjører
  • 85. hjem sammen. Det hører med til Engageringsvilkaarene, at der paa Theatrets Regning holder en Droske og venter paa hende, naar Forestillingen er forbi. Nej, min Fa'er, hun er sikker nok,« sluttede Direktøren sin Lovtale, der var fremført med en Tungefærdighed, som havde gjort ham helt stakaandet. »En hel Sfinx, synes jeg,« bemærkede Henning. »Jeg skal for Resten ganske oprigtig sige Dem, hvorfor jeg har fattet en vis Interesse for Deres Vidunder. Hun ligner paafaldende en Dame, som jeg nærer stor Agtelse for. ... Ved De hvad — kan De ikke præsentere mig for hende?« tilføjede han lidt nølende. »Pokker heller — De, krrrtsch — Gavstrik!« Med disse Ord gjorde Direktøren et spøgefuldt Udfald med sin Pegefinger mod Hennings Skjortekrave, men skiftede pludselig Tone og forsikrede med et uhyre alvorligt Ansigt, at det var absolut umuligt. Han turde ligefrem ikke. »Aa Snak — det vilde jo være Snærperi,« paastod Henning, der blev mere og mere ivrig. »Det skal naturligvis foregaa ligesom ganske tilfældig. De beder hende under et eller andet Paaskud om at komme herind; saa sidder jeg her, og det er da hverken mere eller mindre end simpel Høflighed, at De præsenterer os for hinanden.« »Naa ja — paa den Maade — lad gaa.« Direktøren rejste sig, stak Hovedet ud af Døren og raabte ud over Trappegelænderet: »Aa, Truelsen — vil De sige til Frøken Schmidt, at jeg gjærne vil tale med hende, før hun gaar.« »Javel, Hr. Direktør,« lød en Stemme nedefra. Direktøren vendte tilbage til sin forrige Plads og underholdt Henning med forskjellige interessante Historier fra Theaterverdenen. Men Henning hørte kun det halve af dem, medens han i stærk Spænding ventede paa hendes Indtrædelse. Det varede en halv Snes Minuter. Saa lød der Skridt udenfor, en kort Banken paa Døren, og hun traadte ind. —
  • 86. Ligheden var endnu mere paafaldende, som hun stod der i en simpel, men tækkelig, mørk Dragt, der fremhævede hendes ungdommelige Skikkelse. Og hun forekom ham langt smukkere end paa Scenen. Han lagde Mærke til, at hendes Stemme havde en frisk, behagelig Klang, da hun svarede Direktøren paa nogle Spørgsmaal om en Rolle, han havde givet hende. Hun gjengjældte Hennings Hilsen, men vendte sig strax igjen om til Direktøren, vexlede nogle Bemærkninger med ham om det ny Stykke, hun skulde spille i, og trak sig derpaa tilbage, hilsende begge Herrerne med en let Hovedbøjning. »Naa — det fik vi ikke megen Fornøjelse af,« udbrød Direktøren, da hun var gaaet. »Hun er i Grunden forbandet kort for Hovedet, men et mageløst Pigebarn alligevel — ikke sandt? Og der er Evner, min Fa'er, virkelige Evner! Stop lidt — havde jeg bare tænkt paa det, kunde jeg for Resten have skaffet Dem en bedre Lejlighed til at gjøre hendes Bekjendtskab. Og De kunde med det samme have gjort mig en stor Tjeneste ... Hvem Pokker skal jeg nu faa til det? ... Det var da ogsaa nederdrægtig dumt — ne-derdrægtig!« Direktøren kløede sig med en fortrædelig Mine bag Øret. Henning spurgte, hvad det drejede sig om. »Det skal jeg sige Dem. Vi indstuderer et Stykke, hvori der bruges et Portræt i naturlig Størrelse af den Skuespillerinde, der spiller Hovedrollen. I alt Fald for Kustumets Vedkommende er det nødvendigt, at vi faar en nogenlunde korrekt Gjengivelse, ellers kunde man jo leje et Portræt hos en eller anden Marskandiser. Naa, det skal naturligvis være rent Hurtigmaleri, forstaar De; bare Frisuren og de samme Farver, der er i Dragten. Det var rigtignok ikke noget Arbejde for Dem, men det havde ellers været en ypperlig Lejlighed til at studere Deres Sfinx — hvad? Og De havde oven i Kjøbet gjort mig en stor Tjeneste dermed. Hun havde blot behøvet at sidde for Dem en Times Tid ... Det var dog skammeligt, at jeg ikke før tænkte paa det!«
  • 87. Direktøren vedblev at klø sig i Nakken, medens Henning sad og rokkede urolig frem og tilbage i Sofaen. Naar alt kom til alt, hvad ondt var der saa i, at han portræterede den unge Skuespillerinde? Skulde en Kunstner, fordi han var Ægtemand, ikke have Lov til at male et kvindeligt Ansigt, der interesserede ham? Tilsidst blev Fristelsen ham for stærk, og efter at Direktøren en rum Tid havde kradset sig bag Øret og slaaet sig med den flade Haand paa Panden for at fremkalde en Ide, der var lige saa god som den, der var røget i Lyset, vendte Henning sig om mod ham og fremkom med sit Forslag. »Det er vel ikke for sent endnu, hvis De ønsker, at jeg skal male et Portræt af Deres Primadonna,« sagde han lidt hastig. »Nej — vil De virkelig?« Direktøren saa op med et glædestraalende Blik. »De er en Perle! Saa skriver jeg endnu i Aften et Par Ord til hende og siger, at jeg har faaet en af vore virkelige, anerkjendte Kunstnere til at tage det omtalte Portræt af hende. De kan saa dejlig sidde ovre i min Dagligstue; ikke en Sjæl skal forstyrre Dem. Det var prægtigt!« »Naar skal jeg komme?« spurgte Henning, stadig lidt febrilsk. »Hvis det passer Dem, kan vi jo sætte i Morgen Formiddag Klokken tolv? — Saa skal jeg sørge for, at Frøkenen venter paa Dem ovre hos mig. Det er altsaa et Ord?« »Ja.« Direktøren trykkede varmt Hennings Haand med den Forsikring, at han gjorde ham en knusende Tjeneste, og Henning skyndte sig bort — i en noget urolig Stemning.
  • 89. Welcome to our website – the perfect destination for book lovers and knowledge seekers. We believe that every book holds a new world, offering opportunities for learning, discovery, and personal growth. That’s why we are dedicated to bringing you a diverse collection of books, ranging from classic literature and specialized publications to self-development guides and children's books. More than just a book-buying platform, we strive to be a bridge connecting you with timeless cultural and intellectual values. With an elegant, user-friendly interface and a smart search system, you can quickly find the books that best suit your interests. Additionally, our special promotions and home delivery services help you save time and fully enjoy the joy of reading. Join us on a journey of knowledge exploration, passion nurturing, and personal growth every day! ebookbell.com