SlideShare a Scribd company logo
1
EQUATIONS OF MOTION OF A
VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
SOLO HERMELIN
http://www.solohermelin.com
2
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
• Simplified Particle Approach (see Power Point Presentation)
The equations of motion can be developed using
At a given time t the system has
v (t) – system volume.
m (t) – system mass.
S (t) – system boundary surface.
• Reynolds’ Transport Theorem Approach (see Power Point Presentation)
• Lagrangian Approach (this Power Point Presentation)
3
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
TABLE OF CONTENT
• Generalized Forces
Joseph-Louis Lagrange
1736-1813
• Lagrange’s Equations of Motion
• Principal Coordinate Frames
• Inertial Coordinate Frame
• Body Coordinate Frame
• Body Mean System Axes
• Orientation of Body Frame
• Kinetic Energy of the System
• Potential Energy of the System
• Elastic Potential Energy
• Gravitational Potential Energy
• Computation of Lagrange’s Equations in Body Coordinates
• Derivation of Equations of Motion
• Summary of the Equations of Motion of a Variable Mass System
• References
• Appendix A: Lagrange Equations
4
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Lagrange’s Equations of Motion
The Lagrange’s Equations of Motion for a dynamic system are:
i
iii
Q
UTT
td
d
=





∂
∂
+





∂
∂
−





∂
∂
ξξξ
- system kinetic energy.T
- system potential energy.U
- generalized coordinates (i=1,2,…, number of degrees of freedom of the system).iξ
- generalized force along the generalized coordinate given by.iξiQ
( )
( )i
i
W
Q
ξδ
δ
∂
∂
=
-virtual work done on the system by all external forces/moments (excluding
those accounted for in the potential energy term) during virtual displacement
along all the generalized coordinates.
Wδ
Table of Contents
5
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames
R

- Position of the mass element dm relative to I.
I
td
Rd
V


= - Velocity of the mass element dm relative to I.
II
td
Rd
td
Vd
a 2
2


== - Acceleration of the mass element dm relative to I.
Inertial Coordinate Frame
(vector form) orIzIyIx zRyRxRR ˆˆˆ ++=

IzIyIx
I
zRyRxR
td
Rd
V ˆˆˆ 


++== (vector form) or
(vector form) orIzIyIx
II
zRyRxR
td
Rd
td
Vd
a ˆˆˆ2
2



++===
{ }T
zyx RRRR ,,=

(matrix form)
( )
{ }T
zyx
I
RRRV 

,,= (matrix form)
( )
{ }T
zyx
I
RRRa 
,,= (matrix form)
Table of Contents
6
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames (continue - 1)
Cr,

- Position of the mass element dm relative to C.
Body Coordinate Frame
The origin of the Body Frame (B) is located at the
instantaneous Centroid (C) of the system.
0,

=∫
m
C mdr
R

- Position of the mass element dm relative to I.
CR

- Position of the centroid C relative to I.
CC rRR ,

+=
0,Cr

- Position of the same mass element dm in the un-deformed system, relative to C.
e

- Change in position of the mass element dm due to elastic deformation of the system.
err CC

+= 0,,
Table of Contents
7
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames (continue - 2)
Body Mean System Axes
Mean Body System Axes are defined such that the
relative linear and angular momentum, due to
elastic deformation, are zero at every instant.
The Body Mean Axes must satisfy the following:
0

=∫ md
td
ed
Bm
0,


=∫ × md
td
ed
r
B
m
C
0,
=∫ ⋅ md
td
ed
td
rd
B
m
B
C

Table of Contents
8
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Structural Model of the System
Assume that the elastic deformations are small, and can be
represented in terms the normal un-damped modes of vibration.
( ) ( )∑=
∞
=1i
ii tRe ηφ

- are mode shape functions that depend on the position of the mass element of the system.( )Ri

φ
- are generalized coordinates giving the magnitude of the modal displacements and are
functions of time.
( )tiη
Structural Dynamic Analysis (e.g. final element method) provides the mode shape
functions component of each element of the system, as well as the vacuo modal
frequencies ( ) , for a selected number of modes.
( )Ri

φ
iω
ii
i
td
d
ηω
η 2
2
2
−=
The mode shape functions are orthogonal.
0
ji
m
ji md
≠
=⋅∫ φφ

i
m
ii Mmd =∫ φφ

MV
Bx
By
Bz
Wz
Wy
Wx
α
β
α
β
Bp
Wp
Bq
WqBr
Wr
FIRST ELASTIC MODE
SECOND ELASTIC MODE
9
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames (continue - 3)
Orientation of the Body Frame
The orientation of the Body Frame relative to the
Inertial Frame has three degrees of freedom.
We will use 3 Euler Angles that define the orientation
by three consecutive rotations around the consecutive
frame axes.
[ ]










−
=
11
1111
0
0
001
:
θθ
θθθ
cs
sc
[ ]









 −
=
22
22
22
0
010
0
:
θθ
θθ
θ
cs
sc
[ ]










−=
100
0
0
: 33
33
33 θθ
θθ
θ cs
sc
The three basic Euler rotations around
axes are described by the rotation matrices:
,3ˆ,2ˆ,1ˆ
10
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames (continue - 4)
Orientation of the Body Frame (continue – 1)
Using the basic Euler Angles we can define the
following 12 different rotations:
(a) six rotations around three different axes:
321 →→ 231 →→ 312 →→ 132 →→ 213 →→ 123 →→
(b) six rotations such that the first and third are around the sam axes, but the second
is different:
121 →→ 131 →→ 212 →→ 232 →→ 313 →→ 323 →→
Suppose that the Transfer Matrix from Inertia to Body is defined by three
consecutive Euler Angles: around (unit vector in Inertial Frame),
around (unit vector in intermediate frame), around (unit vector
in Body Frame).
B
IC
iθ Iiˆ
jθ
Interjˆ
kθ Bkˆ
[ ] [ ] [ ] [ ] [ ]TB
I
B
I
I
B
I
B
B
Ikkjjii
B
I CCCICCC ==→==
−1
&θθθ
11
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames (continue - 5)
Orientation of the Body Frame (continue – 2)
The angular velocity vector of rotation of the Body frame
relative to Inertia frame is:
kIjIntriBIB kji θθθω  ˆˆˆ ++=←
In Body frame this is:
( ) ( ) ( ) ( ) ( )
[ ] ( )
[ ] [ ] ( )
k
I
Ijjiij
Intr
Intriii
B
Bk
B
Ij
B
Intri
B
B
B
IB kjikji θθθθθθθθθω  ˆˆˆˆˆˆ ++=++=←
[ ] ( )
[ ] ( )
[ ] [ ] ( )
[ ] { } { } { }[ ]










=










=










=←
k
j
i
k
j
i
I
Ijjii
Intr
Intrii
B
B
B
IB DDDkji
r
q
p
θ
θ
θ
θ
θ
θ
θθθω









321
ˆˆˆ:
{ } ( )
( ){ } ( )
[ ] ( )
( ){ } ( )
[ ] [ ] ( )
{ } { } { }[ ]321
321
:
ˆˆ:,&ˆˆ:&ˆ:
DDDD
kkDjjDconstiD
I
Ijjii
B
Iji
Intr
Intrii
B
Intri
B
B
=
======
→
θθθθθθ
( )
[ ] [ ] ( )
{ } { } { }[ ]










=




















==










=










=←
k
j
i
k
j
i
E
k
j
i
B
IB DDD
DDD
DDD
DDD
DD
r
q
p
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
ω












321
333231
232221
131211
:
where:
or
12
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Principal Coordinate Frames (continue - 6)
Orientation of the Body Frame (continue – 3)
The velocity vector of the system centroid C is given by:
( )
[ ] ( )




















==










=










=
Cz
Cy
Cx
I
C
Cz
Cy
Cx
B
I
B
C
R
R
R
CCC
CCC
CCC
RC
R
R
R
C
w
v
u
V








333231
232221
131211
:
The following relations will be useful:
and
( )










=
k
j
i
E
θ
θ
θ
θ : andwhere [ ] ( )










−
−
−
=×←
0
0
0
:
pq
pr
qr
B
IBω

Table of Contents
( )
{ }
( ) [ ] ( )B
IB
T
E
TB
IB
T
D
td
Dd
×+
∂
∂
= ←
←
ω
θ
ω  Appendix
[ ] [ ] [ ] ( )B
IB
TB
I
TB
I CC
td
d
×= ←ω

Appendix
13
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Kinetic Energy of the System
( )
∫ ⋅=
tm II
md
td
Rd
td
Rd
T

2
1
Kinetic Energy of the System
We have:
We can write
( )
∫ 







+⋅








+=
tm
I
C
C
I
C
C md
td
rd
V
td
rd
VT ,,
2
1




( ) ( ) ( ) ( )
∫ ⋅+∫+∫⋅=
tm
I
C
I
C
tm
I
C
C
tm
CC md
td
rd
td
rd
md
td
rd
VmdVV ,,,
2
1
2
1


(a) (b) (c)
Let develop each of the three parts of this expression
erRrRR CCCC

++=+= 0,,
I
C
C
I
C
I
C
I
td
rd
V
td
rd
td
Rd
td
Rd ,,



+=+=
14
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Kinetic Energy of the System (continue – 1)
(a)
( ) ( )
( ) mVVmdVV CC
tm
CC

⋅=∫⋅
2
1
2
1
(b)
Use Reynolds’ Transport Theorem when we differentiate
( )
0,

=∫
tm
C mdr
Therefore
( )
∑∫ −=
openings
i
ifluidCiopen
tm
B
C
mrmd
td
rd



,
, ˆ
and
( ) ( )
∫ 







×+⋅=∫⋅ ←
tm
CIB
B
C
C
tm
I
C
C mdr
td
rd
Vmd
td
rd
V ,
,, 




ω
( ) ( ) ( )
∑∫∑ ∫∫∫∫ +=+=





=
openings
ifluidCiopen
tm
B
C
i S
C
tm
B
C
REYNOLDS
B
tm
C mrmd
td
rd
mdrmd
td
rd
mdr
td
d
iopen







,
,
,
,
,
ˆ0
( ) ( )
∑⋅−=∫⋅=∫⋅
openings
ifluidCiopenC
tm
B
C
C
tm
I
C
C mrVmd
td
rd
Vmd
td
rd
V 





,
,, ˆ
( ) ( ) ( )
∫∫∫ ⋅=












×⋅+⋅= ←
tm
B
C
C
tm
CIBC
tm
B
C
C
md
td
rd
VmdrVmd
td
rd
V ,
0
,
,







ω
15
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Kinetic Energy of the System (continue – 2)
(c)
( ) ( )
∫ 







×+⋅








×+=∫ ⋅ ←←
tm
CIB
B
C
CIB
B
C
tm
I
C
I
C
mdr
td
rd
r
td
rd
md
td
rd
td
rd
,
,
,
,,,
2
1
2
1 



ωω
( )
∫ ⋅=
tm
B
C
B
C
md
td
rd
td
rd ,,
2
1

(c1)
( )
( )
∫ ×⋅








+ ←
tm
CIB
B
C
mdr
td
rd
,
, 

ω
(c2)
( ) ( )
( )
∫ ×⋅×+ ←←
tm
CIBCIB mdrr ,,
2
1 
ωω
(c3)
(c1)
( ) ( )
∫ 







+⋅








+∫ =⋅
tm
BB
C
BB
C
tm
B
C
B
C
md
td
ed
td
rd
td
ed
td
rd
md
td
rd
td
rd

0,0,,,
2
1
2
1
( ) ( ) ( )
∫ 







⋅








+∫ 







⋅








∫ +⋅=
tm
BB
tm
BB
C
tm
B
C
B
C
md
td
ed
td
ed
md
td
ed
td
rd
md
td
rd
td
rd

  

2
1
2
1
0
0,0,0,
( )
( ) ( )∑ ∫ ×⋅×+∫ ⋅= ←←
rotors m
CjrotorBjrotorCjrotorBjrotor
tm
FrozenRotors
B
C
FrozenRotors
B
C
jrotor
mdrrmd
td
rd
td
rd
,,
,,
2
1
2
1 

ωω
( )
( )∑ ∫ 







⋅×+∫ 







⋅+ ←
rotors m
B
CjrotorBjrotor
tm
BFrozenRotors
B
C
jrotor
md
td
ed
rmd
td
ed
td
rd
  


  

0
,
0
,
ω
( )
∫ 







⋅








+
tm BB
md
td
ed
td
ed

2
1
( )
∫ ⋅=
tm
FrozenRotors
B
C
FrozenRotors
B
C
md
td
rd
td
rd ,,
2
1

( )∑ 





∫ ××−⋅+
←⋅
←←
rotors
I
m
BjrotorCjrotorCjrotorBjrotor
BjrotorCjrotor
jrotor
mdrr
  


ω
ωω
,
,,
2
1
( )
∫ ∑∑
∞
=
∞
=
+
tm
j
i j
i
ji md
td
d
td
d ηη
φφ
1 12
1 
16
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
( )( )
∑ ⋅⋅+∫ ∫ ⋅=⋅ ←←
rotors
BjrotorCjrotorBjrotor
tm tm
FrozenRotors
B
C
FrozenRotors
B
C
B
C
B
C
Imd
td
rd
td
rd
md
td
rd
td
rd
ωω


,
,,,,
2
1
2
1
2
1
Kinetic Energy of the System (continue – 3)
(c3)
(c2)
( )
∫ ∑
∞
=






+
tm i
i
i md
td
d
1
2
2
2
1 η
φ
( )[ ]∫ −⋅=
jrotorm
CjrotorCjrotorCjrotorCjrotorCjrotor mdrrrrI ,,,,, 1:

where
Second Moment of Inertia
Dyadic of the Rotor j Relative to C
( )
( )
( )
( ) ( )
∫ 







×⋅=∫ 







⋅×=∫ ×⋅








←←←
tm
B
C
CIB
tm
B
C
CIB
tm
CIB
B
C
md
td
rd
rmd
td
rd
rmdr
td
rd ,
,
,
,,
,





ωωω
( ) ( )
  




0
,
0,
, ∫ 







×⋅+∫ 







×⋅= ←←
tm
B
CIB
tm
B
C
CIB md
td
ed
rmd
td
rd
r ωω
( )
( )( )∑ ∫ ××⋅+∫








×⋅= ←←←
rotors m
CjrotorBjrotorCjrotorIB
tm
FrozenRotors
B
C
CIB mdrrmd
td
rd
r ,,
,
,



ωωω
( )
[ ] [ ] Bjrotor
rotors m
CjrotorCjrotorIB
tm
FrozenRotors
B
C
CIB mdrrmd
td
rd
r ←←← ∑ 





∫ ××−⋅+∫








×⋅= ωωω



,,
,
,
( )
[ ]∑⋅+∫








×⋅= ←←←
rotors
BjrotorCrotorjIB
tm
FrozenRotors
B
C
CIB Imd
td
rd
r ωωω



,
,
,
17
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Kinetic Energy of the System (continue – 4)
(c3)
( )[ ]
( )
∫ −⋅=
tm
OOOOO mdrrrrI ,,,,, 1:

where Second Moment of Inertia Dyadic of
the System Relative to O
( ) ( )
( )
[ ] [ ]
( )
IB
tm
CCIB
tm
CIBCIB mdrrmdrr ←←←← 





∫ ××−⋅=∫ ×⋅× ωωωω

,,,,
2
1
2
1
IBCIB I ←← ⋅⋅= ωω

,
2
1
18
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Kinetic Energy of the System (continue – 5)
To summarize, the Kinetic Energy of the system is given by
( ) ( ) ( ) ( )
∫ ⋅+∫⋅+∫⋅=
tm
I
C
I
C
tm
I
C
C
tm
CC md
td
rd
td
rd
md
td
rd
VmdVVT ,,,
2
1
2
1


( ) ∑⋅−⋅=
openings
i
ifluidCiopenCCC mrVmVV 

,
ˆ
2
1
IBCIB I ←← ⋅⋅+ ωω

,
2
1
( )
∑ ⋅⋅+∫ ⋅+ ←←
rotors
BjrotorCrotorjBjrotor
tm
FrozenRotors
B
C
FrozenRotors
B
C
Imd
td
rd
td
rd
ωω


,
,,
2
1
2
1
∑
∞
=






+
1
2
2
1
i
i
i
M
td
dη
( )
∑ ⋅⋅+∫








×⋅+ ←←←
rotors
BjrotorCrotorjIB
tm
FrozenRotors
B
C
CIB Imd
td
rd
r ωωω



,
,
,
Table of Contents
19
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Potential Energy of the System
We consider only
(Electromagnetic, Chemical Potentials are not considered)
ge UUU +=
Elastic Deformation Potential eU
Gravitational Field Potential gU
Table of Contents
20
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Potential Energy of the System
Elastic Deformation Potential eU
( ) ( )∑
∞
=
=
1i
iii tle ηφ

ii
i
td
d
ηω
η 2
2
2
−= i
m
ii Mmd =∫ φφ

0
ji
m
ji md
≠
=∫ φφ

∫ ∑∑∫ 













−⋅







−=








⋅−=
∞
=
∞
=m i
iii
j
jj
m B
e mdmd
td
ed
eU
1
2
1
2
2
2
1
2
1
ηωφηφ


( ) ( ) ∑∑ ∫∑∑ ∫
∞
=
∞
=
∞
=
∞
=
=







⋅=







⋅=
1
22
1
22
1 1
2
2
1
2
1
2
1
i
iii
i
ii
m
ii
j i
jii
m
ij Mmdmd ηωηωφφηηωφφ

iii
i
e
M
U
ηω
η
2
=
∂
∂
From
We obtain
From this we obtain
Table of Contents
21
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Potential Energy of the System (continue – 1)
Gravitational Field Potential gU
( ) 2
2
01
E
Earth
EE
R
R
gRRg

−=
22
0 sec/17.32sec/78.9 ftmg ==
where
mREarth 135.378.6=
( ) ( )
( ) 2/1
2
0
2
02
2
0
2
0
2
2
0
1
1
CECE
Earth
CE
Earth
m
CE
CE
Earth
CE
Earth
m E
Earth
ECCE
m
CCEg
RR
R
gm
R
R
gmmdrR
R
R
g
R
R
gm
md
R
R
gRrRmdgrRU



⋅
==⋅+=
⋅+−=⋅+=
∫
∫∫
( ) CE
CE
CE
Earth
CE
CECE
Earth
C
g
R
R
R
R
gmR
RR
R
gm
R
U


 2
2
02/3
2
0 2
2
1
−=
⋅
−=
∂
∂
( )CECE
CE
Earth
C
g
RgmR
R
R
gm
R
U 
 =−=
∂
∂
12
2
0
From this we obtain
or
Table of Contents
22
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces
- generalized force along the generalized coordinate given by.iξiQ
( )
( )i
i
W
Q
ξδ
δ
∂
∂
=
-virtual work done on the system by all external forces/moments (excluding
those accounted for in the potential energy term) during virtual displacement
along all the generalized coordinates.
Wδ
The generalized forces are:
PQ - due to position change, relative to inertial system ( )
[ ]T
zyx
I
P RRRR ==

ξ
- due to rotation of the system, around its centroid, relative to inertial systemRQ
( )
[ ]T
kji
E
R θθθθξ ==

- due to elastic modal displacementsEQ [ ] T
E 

4321 ηηηηηξ ==
23
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
( ) ( ) ( )∑+=
openings
i
iopenW tStStS
Generalized Forces (continue – 1)
Virtual Work due to Position Change, Relative to Inertial Frame
The virtual work done by change in position is due to pressure distribution and fluid
flow through the openings, and to discrete forces applied on the system
( ) RF
td
Rd
mdstfnpW
openings j
j
I
ifluid
ifluid
S
P
vehicle




δδ ⋅










+










++−= ∑ ∑∫
ˆ
11
where
• Sw(t) the impermeable wall through which the flow can not escape .( )0,

=sV
• Sopen i(t) the openings (i=1,2,…) through which the flow enters or exits .( )0>m ( )0<m
( )2
/ mNp - pressure on (normal to) the surface .
f - friction force per (parallel to) unit surface .( )2
/ mN
n

1 - outward unit vector normal to the surface element ds
t

1 - local unit vector of tangential stress due to flow on the surface element ds
∑
j
jF

- discrete forces applied to the system at the position j
R

( )N
is the mean position vector of the flow and of the opening on iopenSifluidR
ˆ
fluidm - fluid rate flowing through the opening iopenS
24
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 2)
Si
I
CiopenI
C
I
iopenfluid
I
Ciopen
I
C
I
ifluid
V
td
rd
V
td
rd
td
rd
td
Rd
td
Rd
,
,,, ˆ
ˆˆˆˆ 



++=++=
- velocity of the centroid C of the system relative to inertiaCV

I
Ciopen
td
rd ,
ˆ
- mean velocity of the opening i relative to the centroid C
SiV,
ˆ
- mean velocity of the fluid relative the opening i
Virtual Work due to Position Change, Relative to Inertial Frame (continue – 1)
25
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 5)
A virtual rotation
( )
kIjIntriB
E
kji θδθδθδθδ ˆˆˆ ++=

will produce a virtual displacement: ( )
C
E
C rr ,,

×= θδδ
( ) ( )
∑∑∑∫ ⋅+⋅+










⋅++−⋅=
k
E
k
j
jCj
openings
I
ifluid
ifluidCiopen
S
CR MFr
td
Rd
mrdstfnprW
vehicle
θδδδδδ




,,,
ˆ
ˆ11
( )
( ) ( ) ( )
( )
( )
( ) ( )
∑∑
∑∫
⋅+⋅×+










⋅×++−⋅×=
k
E
k
j
jCj
E
openings
I
ifluid
ifluidCiopen
E
S
C
E
MFr
td
Rd
mrdstfnpr
vehicle
θδθδ
θδθδ




,
,,
ˆ
ˆ11
( )
( )










+×+










×++−×⋅= ∑ ∑∑∫ openings k
k
j
jCj
I
ifluid
ifluidCiopen
S
C
E
MFr
td
Rd
mrdstfnpr
vehicle




,,,
ˆ
ˆ11θδ
The virtual work done along the generalized coordinates (rotation around C relative
to inertial frame around Euler axes) is done by the pressure distribution, the flow
through the openings and the discrete forces and moments applied on the system:
( )E
θ

Virtual Work due to Rotation, Relative to Inertial Frame
26
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 6)
- due to elastic modal displacementsEQ [ ] T
E 

4321 ηηηηηξ ==
The virtual work done during the elastic deformations along thr generalized
coordinates is done by the pressure distribution on the wetted area of the system and
the discrete forces and moments applied on the system:
e

( )
( ) ( ) ( ) ( )∑ ∑∑ ∑∫ ∑
∑∑∫



 ×∇⋅+



⋅+



⋅+−=
×∇⋅+⋅+⋅+−=
∞
=
∞
=
∞
= k i
iik
j i
iij
S i
ii
k
k
j
j
S
E
MFdstfnp
eMeFdsetfnpW
W
vehicle
111
11
11
δηφδηφδηφ
δδδδ


( )
( )
( )[ ] 

,2,111 =∑ ×∇⋅+∑ ⋅+∫ ⋅+−=
∂
∂
= ∞ iMFdstfnpp
W
Q
k
ik
l
il
S
i
i
P
Ei
W
φφφ
ηδ
δ
Generalized Elastic Forces
27
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 7)
Let add to this equation the following
( )( )
( )
01
0
,
5
=∫∫∫ ×∇=∫ ×− ∞∞
V
C
GGauss
tS
CS dvrpdsnpRR


( ) ( ) ( )
0111
0
=⋅∇== ∫∫∫ ∞∞∞
tv
Gauss
tStS
dvnpdsnpdsnp 

( )[ ] RF
td
Rd
mdstfnppW
openings j
j
I
ifluid
ifluid
S
P
vehicle




δδ ⋅










+










++−= ∑ ∑∫ ∞
ˆ
11
( )[ ] ( )E
openings k
k
j
jCjSi
I
Ciopen
CifluidCiopen
S
CR MFrV
td
rd
VmrdstfnpprW
vehicle
θδδ





⋅










+×+
















++×++−×= ∑ ∑∑∫ ∞ ,,
,
,,
ˆ
ˆ11
( ) ( ) ( ) ( )∑ ∑∑ ∑∫ ∑ 


 ×∇⋅+



⋅+



⋅+−=
∞
=
∞
=
∞
= k i
iik
j i
iij
S i
iiE
MFdstfnpW
W
111
11 δηφδηφδηφδ

where is the pressure far away from the system, to obtain∞p
28
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 8)
From those equations we obtain
( ) ( )
( )
( )
( )I
openings j
j
I
iopenI
Cifluid
i
TiAI
C
PI
P
F
td
rd
VmFF
R
W
Q










+
















+++=
∂
∂
= ∑ ∑∑∑






 ˆ
δ
δ
Generalized Position Forces in Inertial Frame
( )
( )[ ]( )
∫∑ +−= ∞
WsS
II
A dstfnppF

11
Aerodynamic Forces in Inertial Frame
( )
( )[ ]( )
∑∑ −+= ∞
openings
I
iopenSiifluid
i
I
Ti nppSVmF



1, Thrust Forces in Inertial Frame
29
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 9)
Generalized Moments around Euler Axes (E), relative to C
Aerodynamic Moments relative to C
Thrust Moments relative to C
( ) ( )
( )
( ) ( )[ ]∫ +−×=
∂
∂
= ∞
vehicleS
CE
RE
R dstfnppr
W
Q



11,
θδ
δ
∑ ∑∑ +×+
















++×+
openings k
k
j
jCjSi
I
CiopenI
CifluidCiopen
MFrV
td
rd
Vmr





,,
,
,
ˆ
ˆ
( )[ ]∫ +−×= ∞
WS
C dstfnppr

11 ( )[ ]∑ +−×+ ∞
openings
SiifluidopeniCiopen VmnppSr ,, 1



∑∑∑ +×+








+×+
k
k
j
jCj
openings
I
CiopenI
CCiopenifluid MFr
td
rd
Vrm



 ,
,
,
ˆ
ˆ
( ) ( )
( )
( )
( )E
openings k
k
j
jCj
I
CiopenI
CCiopenifluid
i
CTiCAE
RE
R MFr
td
rd
VrmMM
W
Q










+×+








+×++=
∂
∂
= ∑ ∑∑∑∑







,
,
,,,
ˆ
ˆ
θδ
δ
( )[ ]∫∑ +−×= ∞
WS
CCA dstfnpprM

11:,
( )[ ]∑∑ −+×= ∞
openings
iopenSiifluidCiopen
i
CTi nppSVmrM



1ˆ: ,,,
30
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Generalized Forces (continue – 10)
We want to find the Generalized Moments around Body Axes. We must find the
transformation from the non-orthogonal Euler Axes (E) to Body Axes (B).
( ) ( )
[ ] ( )
[ ] [ ] ( )
[ ] { } { } { }[ ] ( )E
k
j
i
k
j
i
I
Ijjii
Intr
Intrii
B
B
B
DDDDkji θδ
θδ
θδ
θδ
θδ
θδ
θδ
θθθθδ



=










=










= 321
ˆˆˆ
( )
{ } ( )[ ]
( )
( )
{ } ( )[ ]
( )B
openings k
k
j
jCj
I
ifluid
ifluidCiopen
S
C
TTE
B
openings k
k
j
jCj
I
ifluid
ifluidCiopen
S
C
TE
R
MFr
td
Rd
mrdstfnpprD
MFr
td
Rd
mrdstfnpprDW
vehicle
vehicle










+×+










×++−×=










+×+










×++−×=
∑ ∑∑∫
∑ ∑∑∫
∞
∞








,,,
,,,
ˆ
ˆ11
ˆ
ˆ11
θδ
θδδ
( ) ( )
( )
( )
( )B
openings k
k
j
jCj
I
CiopenI
CCiopenifluid
i
CTiCA
T
E
RB
R
MFr
td
rd
VrmMMD
W
Q










+×+








+×++=
∂
∂
= ∑ ∑∑∑∑







,
,
,,,
ˆ
ˆ
θδ
δ
Table of Contents
31
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame
The generalized coordinates are [ ]T
E
T
R
T
P ξξξξ

=
where
( )
[ ]T
CzCyCx
I
CP RRRR ==

ξ
( )
[ ]T
kji
E
R θθθθξ ==

[ ] T
E 

4321 ηηηηηξ ==
The velocity vector of the system centroid C is given by:
( )
[ ] ( )




















==










=










=
Cz
Cy
Cx
I
C
Cz
Cy
Cx
B
I
B
C
R
R
R
CCC
CCC
CCC
RC
R
R
R
C
w
v
u
V








333231
232221
131211
:
The angular velocity of rotation of the Body relative to inertia is:
[ ]
[ ] [ ] ( )
{ } { } { }[ ]










=




















==










=










=←
k
j
i
k
j
i
E
k
j
i
B
IB DDD
DDD
DDD
DDD
DD
r
q
p
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
ω











321
333231
232221
131211
:
32
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame (continue – 1)
We want to perform a change of coordinates from to( )ξξ , ( )w,ξ
{ } { }ηθηηθθθξ ,,,,,,,,,,: 21321
TT
C
T
CzCyCx RRRR

 ==
{ } { }ηωηη  ,,,,,,,,,,: 21
T
B
T
C
T
Vrqpwvuw ==
- system potential energy.( )ξU
- generalized force along the generalized coordinate given by.iξiQ
( ) ( )wTT ,, ξξξ =
- system kinetic energy.
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )ηωηθ
ηωθηθηθηθ



,,,,,
,,,,,,,,,, 1
B
B
B
C
EI
C
B
B
B
C
ETEI
C
EI
C
EI
C
VRT
DVCRTRRT
=
=



 −
The coordinates are called quasi-coordinates (see Meirovitch [4], pg. 157),
to differentiate from the Lagrangian’s coordinates that describe the degrees
of freedom.
( )ξξ ,
( )w,ξ
33
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame (continue – 2)
The Lagrange’s Equations of Motion are:
i
iii
Q
UTT
td
d
=





∂
∂
+





∂
∂
−





∂
∂
ξξξ
Let outline (full derivation of the equation on this page is done in Appendix )
the derivation of the Lagrange’s Equations in Body Coordinates
( )
( )
( ) ( )
( )
( ) ( )








∂
∂
=








∂
∂








∂
∂
=








∂
∂
B
C
ET
B
C
I
C
B
C
I
C
V
T
C
V
T
R
V
R
T





 θ Appendix
( ) ( )
( )
{ }
( ) ( )
( )
{ }
( ) ( )








∂
∂
∂
∂
+








∂
∂
∂
∂
+






∂
∂
=






∂
∂
←
←
B
C
E
TB
C
B
IB
E
TB
IB
EE
V
TVTTT





θωθ
ω
θθ
Appendix
( ) ( )








∂
∂
=








∂
∂
I
C
I
C R
T
R
T
 Appendix
( ) ( )
( )
{ }
( ) ( )
( )
{ }
( ) ( )
( )
( )
{ }
( ) ( ) [ ]( )
( )






∂
∂
×−






∂
∂
∂
∂
+






∂
∂
=






∂
∂
∂
∂
+






∂
∂
∂
∂
+






∂
∂
=






∂
∂
←
←
←
←
B
C
B
C
T
B
IB
E
TB
IB
E
B
C
E
TB
C
B
IB
E
TB
IB
EE
V
T
VD
TT
V
TVTTT










ωθ
ω
θ
θωθ
ω
θθ Appendix
34
( ) ( ) ( ) [ ] [ ] ( )I
P
CC
B
C
TB
I
B
C
TB
II
C
I
C
I
C
Q
R
U
R
T
V
T
td
Cd
V
T
td
d
C
R
U
R
T
R
T
td
d 

 =







∂
∂
+






∂
∂
−






∂
∂
+






∂
∂
=







∂
∂
+






∂
∂
−








∂
∂
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame (continue – 3)
From
( )
( )
( ) ( )
( )
( ) ( )








∂
∂
=








∂
∂








∂
∂
=








∂
∂
B
C
ET
B
C
I
C
B
C
I
C
V
T
C
V
T
R
V
R
T





 θ ( ) ( )








∂
∂
=








∂
∂
I
C
I
C R
T
R
T

( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂
EEE
UTT
td
d
θθθ


( ) ( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂
+








∂
∂
=
←←
EEB
IB
T
B
IB
T UTT
td
DdT
td
d
D
θθωω

( )
{ }
( ) ( ) [ ]( )
( )
( )E
RB
C
B
C
T
B
IB
E
TB
IB
Q
V
T
VD
T 




=








∂
∂
×+








∂
∂
∂
∂
−
←
→
ωθ
ω
From
we obtain
( ) ( )
( )
{ }
( ) ( )
( )
{ }
( ) ( )








∂
∂
∂
∂
+








∂
∂
∂
∂
+






∂
∂
=






∂
∂
←
←
B
C
E
TB
C
B
IB
E
TB
IB
EE
V
TVTTT





θωθ
ω
θθ ( ) ( )
( )
{ }
( ) ( ) [ ]( )
( )






∂
∂
×−






∂
∂
∂
∂
+






∂
∂
=






∂
∂
←
←
B
C
B
C
T
B
IB
E
TB
IB
EE
V
T
VD
TTT





ωθ
ω
θθ
we obtain
35
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame (continue – 4)
Using
[ ] [ ] [ ] ( )B
IB
TB
I
TB
I
C
td
Cd
×= ←ω

and
( )
{ }
( ) [ ] ( )B
IB
T
E
TB
IB
T
D
td
Dd
×+
∂
∂
= ←
←
ω
θ
ω 

we can compute
( ) ( ) ( ) 







∂
∂
+








∂
∂
−








∂
∂
I
C
I
C
I
C
R
U
R
T
R
T
td
d


[ ] ( )
[ ]
( ) ( ) ( ) 







∂
∂
+








∂
∂
−








∂
∂
+








∂
∂
= I
C
I
C
B
C
TB
I
B
C
TB
I
R
U
R
T
V
T
td
Cd
V
T
td
d
C 
[ ] ( ) [ ] [ ] ( )
( ) ( ) ( )
( )I
PI
C
I
C
B
C
B
IB
TB
IB
C
TB
I Q
R
U
R
T
V
T
C
V
T
td
d
C



 =







∂
∂
+








∂
∂
−








∂
∂
×+








∂
∂
= ←ω
36
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame (continue – 5)
Finally
( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂
EEE
UTT
td
d
θθθ


( ) ( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂
+








∂
∂
=
←←
EEB
IB
T
B
IB
T UTT
td
DdT
td
d
D
θθωω

[ ]( )
( )
( )
{ }
( ) ( )








∂
∂
∂
∂
−








∂
∂
×+
←
→
B
IB
E
TB
IB
B
C
B
C
T T
V
T
VD
ωθ
ω




( ) [ ]( )
( )
{ }
( ) ( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂








∂
∂
+×+








∂
∂
=
←
→
←
←
EEB
IB
E
TB
IBB
IB
T
B
IB
T UTT
D
T
td
d
D
θθωθ
ω
ω
ω




[ ]( )
( )
( )
{ }
( ) ( )
( )E
R
B
IB
E
TB
IB
B
C
B
C
T
Q
T
V
T
VD





=






∂
∂
∂
∂
−






∂
∂
×+
←
→
ωθ
ω
[ ]( )
( ) ( )
( )I
P
B
II
C
B
II
C
B
IB
C
B
IBB
C
QC
R
U
C
R
T
C
V
T
V
T
td
d 


 =







∂
∂
+








∂
∂
−








∂
∂
×+








∂
∂
←ω
( ) [ ]( )
( ) [ ]( )
( ) ( ) ( )
( )E
R
T
E
T
E
T
B
C
B
CB
IB
B
IBB
IB
QD
U
D
T
D
V
T
V
TT
td
d 





−−−
←
←
←
=






∂
∂
+






∂
∂
−






∂
∂
×+






∂
∂
×+






∂
∂
θθω
ω
ω
37
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Computation of Lagrange Equations in Body Frame (continue – 6)
Summarize
( )
( )
[ ]( )
[ ]( )
[ ]( )
( )
( ) ( ) 













∂
∂
∂
∂










−














∂
∂






∂
∂












××
×
+














∂
∂
∂
∂
−
←
←
←
←
E
I
T
B
I
B
IB
B
C
B
IB
B
C
B
IB
B
IB
B
C
T
R
T
D
C
T
V
T
V
T
V
T
td
d
θω
ω
ω
ω








0
00
( )
( )
( ) 



















=














∂
∂
∂
∂










+
−− E
R
I
P
T
B
I
E
I
T
B
I
Q
Q
D
C
U
R
U
D
C




0
0
0
0
θ
See Meirovitch and Kwak [6] and Meirovitch [7].
In the same way, for the elastic modes, we have:


,2,1==
∂
∂
+
∂
∂
−





∂
∂
=
∂
∂
+
∂
∂
−





∂
∂
iQ
UTT
td
dUTT
td
d
Ei
iiiiii ηηηηηη
Table of Contents
38
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion
The Translational Lagrange Equations in Body Coordinates are given by:
( ) [ ]( )
( ) ( ) ( )
( )I
P
B
II
C
B
II
C
B
IB
C
B
IBB
C
QC
R
U
C
R
T
C
V
T
V
T
td
d 


 =







∂
∂
+








∂
∂
−








∂
∂
×+








∂
∂
←ω
Pre-multiplying by will give the Translational Lagrange Equation in
Inertial Frame.
( ) I
B
TB
I CC =
( ) ( ) ( )
( )I
PI
C
I
C
I
C
Q
R
U
R
T
V
T
td
d 
 =







∂
∂
+








∂
∂
−








∂
∂
where we used
( ) ( ) [ ]( )
( ) 













∂
∂
×+






∂
∂
=






∂
∂
← B
C
B
IBB
C
I
BI
C V
T
V
T
td
d
C
V
T
td
d


 ω
39
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 1)
Since the kinetic energy of the system is given by:
( ) ( ) ( ) ( )
∫ ⋅+∫⋅+∫⋅=
tm
I
C
I
C
tm
I
C
C
tm
CC md
td
rd
td
rd
md
td
rd
VmdVVT ,,,
2
1
2
1


( ) ∑⋅−⋅=
openings
i
ifluidCiopenCCC mrVmVV 

,
ˆ
2
1
IBCIB I ←← ⋅⋅+ ωω

,
2
1
( )
∑ ⋅⋅+∫ ⋅+ ←←
rotors
BjrotorCrotorjBjrotor
tm
FrozenRotors
B
C
FrozenRotors
B
C
Imd
td
rd
td
rd
ωω


,
,,
2
1
2
1
∑
∞
=






+
1
2
2
1
i
i
i
M
td
dη
( )
∑ ⋅⋅+∫








×⋅+ ←←←
rotors
BjrotorCrotorjIB
tm
FrozenRotors
B
C
CIB Imd
td
rd
r ωωω



,
,
,
we have:
PmrVm
V
T
openings
ifluidCiopenC
C



 =−=






∂
∂
∑ :ˆ
,
This equation gives the Linear Momentum of the system. The same expression was
obtained using Simplified Particles and Reynolds’ Theorem Approaches.
40
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 2)
we have:
PmrVm
V
T
openings
ifluidCiopenC
C



 =−=






∂
∂
∑ :ˆ
,
This equation gives the derivative of the Linear Momentum of the system. The same
expression was obtained using Simplified Particles and Reynolds’ Theorem Approaches
if we identify:
∑∑ −−+=






∂
∂
=
openings
ifluidCiopen
openings
ifluid
I
Ciopen
C
I
C
ICI
mrm
td
rd
Vm
td
Vd
m
V
T
td
d
td
Pd









,
, ˆ
ˆ
0=






∂
∂
CR
T

( )CECE
CE
Earth
C
RgmR
R
R
gm
R
U 
 −=−=






∂
∂ →
12
2
0
→
+=−−+= ∑∑ E
E
Earth
P
openings
ifluidCiopen
openings
ifluid
I
Ciopen
C
I
C
I
R
R
R
gmQmrm
td
rd
Vm
td
Vd
m
td
Pd
1ˆ
ˆ
2
2
0,
,








Substitute those equation in the Lagrange’s Equation:
( ) ( ) ( )
( )I
PI
C
I
C
I
C
Q
R
U
R
T
V
T
td
d 
 =







∂
∂
+








∂
∂
−








∂
∂
gmQR
R
R
gmQF PE
E
Earth
Pext

+=+=
→
∑ 12
2
0
41
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 3)
→
+=−−+= ∑∑ E
E
Earth
P
openings
ifluidCiopen
openings
ifluid
I
Ciopen
C
I
C
I
R
R
R
gmQmrm
td
rd
Vm
td
Vd
m
td
Pd
1ˆ
ˆ
2
2
0,
,








Substitute:
( )
( )I
openings j
jifluid
I
Ciopen
C
i
TiA
I
P Fm
td
rd
VmFFQ








++++= ∑ ∑∑∑





 ,
ˆ
in
to obtain
∑∑∑∑∑ +++++=
j
j
openings
ifluid
I
Ciopen
openings
ifluidCiopen
i
TiA
I
C
Fm
td
rd
mrFFgm
td
Vd
m






,
,
ˆ
ˆ2
42
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 4)
Rotation Equations
The Rotational Lagrange’s equations in Body Coordinates are given by:
( ) [ ]( )
( ) [ ]( )
( ) ( ) ( )
( )E
R
T
E
T
E
T
B
C
B
CB
IB
B
IBB
IB
QD
U
D
T
D
V
T
V
TT
td
d 





−−−
←
←
←
=






∂
∂
+






∂
∂
−






∂
∂
×+






∂
∂
×+






∂
∂
θθω
ω
ω
( ) ( ) ( ) ( )
∫ ⋅+∫⋅+∫⋅=
tm
I
C
I
C
tm
I
C
C
tm
CC md
td
rd
td
rd
md
td
rd
VmdVVT ,,,
2
1
2
1


( ) ∑⋅−⋅=
openings
i
ifluidCiopenCCC mrVmVV 

,
ˆ
2
1
IBCIB I ←← ⋅⋅+ ωω

,
2
1
( )
∑ ⋅⋅+∫ ⋅+ ←←
rotors
BjrotorCrotorjBjrotor
tm
FrozenRotors
B
C
FrozenRotors
B
C
Imd
td
rd
td
rd
ωω


,
,,
2
1
2
1
∑
∞
=






+
1
2
2
1
i
i
i
M
td
dη
( )
∑ ⋅⋅+∫








×⋅+ ←←←
rotors
BjrotorCrotorjIB
tm
FrozenRotors
B
C
CIB Imd
td
rd
r ωωω



,
,
,
( )
C
rotors
BjrotorCrotorj
tm RotorsFrozen
B
C
CIBC
IB
HImd
td
rd
rI
T
,,
,
,, :



 =⋅+








×+⋅=





∂
∂
∑∫ ←←
←
ωω
ω
Since the kinetic energy of the system is given by:
we obtain
43
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 5)
Rotation Equations (continue – 1)
( )
C
rotors
BjrotorCrotorj
tm RotorsFrozen
B
C
CIBC
IB
HImd
td
rd
rI
T
,,
,
,, :



 =⋅+








×+⋅=





∂
∂
∑∫ ←←
←
ωω
ω
we obtain
( ) ( )






⋅×+⋅+








××+
















×+
⋅×+⋅+⋅=
×+==





∂
∂
∑∑
∫∫
←←←
←
←←←←
←
←
rotors
BjrotorCrotorIB
rotors
BjrotorCrotor
tm RotorsFrozen
B
C
CIB
B
tm RotorsFrozen
B
C
C
IBCIBIBCIBC
CIB
I
C
I
C
IIB
II
md
td
rd
rmd
td
rd
r
dt
d
III
H
td
Hd
td
HdT
td
d
ωωω
ω
ωωωω
ω
ω










,,
,
,
,
,
,,,
,
,,
44
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 6)
Rotation Equations (continue – 2)
we obtain
( ) ( )
{ }0

 =






∂
∂
=






∂
∂
EE
UT
θθ
( ) [ ]( )
( ) [ ]( )
( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂
×+








∂
∂
×+








∂
∂ −−
←
←
←
E
T
E
T
B
C
B
CB
IB
B
IBB
IB
U
D
T
D
V
T
V
TT
td
d
θθω
ω
ω





( ) ( )
[ ]( ) ( )
( ) ( )
( )
[ ]( ) ( )
[ ]( )
( )B
openings
ifluidCiopenC
B
C
B
rotors
BjrotorCrotor
B
IB
rotors
B
BjrotorCrotor
tm
RotorsFrozen
B
C
CIB
B
tm
RotorsFrozen
B
C
C
B
IBC
B
IB
B
IBC
B
IBC
mrVmVII
md
td
rd
rmd
td
rd
r
dt
d
III






∑−×+∑ ⋅×+∑ ⋅+
∫








××+








∫








×+
⋅×+⋅+⋅=
←←←
←
←←←←









,,,
,
,
,
,
,,,
ˆωωω
ω
ωωωω
( )E
openings k
k
j
jCj
I
Ciopen
CCiopenifluid
i
CTiCA
T
MFr
td
rd
VrmMMD










+×+








+×++= ∑ ∑∑∑∑−





,
,
,,,
ˆ
ˆ
( )B
openings k
k
j
jCj
I
Ciopen
CCiopenifluid
i
CTiCA MFr
td
rd
VrmMM










+×+








+×++= ∑ ∑∑∑∑





,
,
,,,
ˆ
ˆ
45
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 7)
Rotation Equations (continue – 3)
Finally
( ) ( )
[ ]( ) ( )
( ) ( )
( )
[ ]( ) ( )
( ) ( )
∑∑∑∑
∑∑
∫∫
+×++=
⋅×+⋅+








××+
















×+
⋅×+⋅+⋅
←←←
←
←←←←
k
k
j
jCj
i
B
CTi
B
CA
B
rotors
BjrotorCrotor
B
IB
rotors
B
BjrotorCrotor
tm RotorsFrozen
B
C
CIB
B
tm RotorsFrozen
B
C
C
B
IBC
B
IB
B
IBC
B
IBC
MFrMM
II
md
td
rd
rmd
td
rd
r
dt
d
III








,,,
,,
,
,
,
,
,,,
ωωω
ω
ωωωω
46
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 8)
Elastic Equations
Ei
iii
Q
UTT
td
d
=
∂
∂
+
∂
∂
−





∂
∂
ηηη
( ) ( ) ( ) ( )
∫ ⋅+∫⋅+∫⋅=
tm
I
C
I
C
tm
I
C
C
tm
CC md
td
rd
td
rd
md
td
rd
VmdVVT ,,,
2
1
2
1


( ) ∑⋅−⋅=
openings
i
ifluidCiopenCCC mrVmVV 

,
ˆ
2
1
IBCIB I ←← ⋅⋅+ ωω

,
2
1
( )
∑ ⋅⋅+∫ ⋅+ ←←
rotors
BjrotorCrotorjBjrotor
tm
FrozenRotors
B
C
FrozenRotors
B
C
Imd
td
rd
td
rd
ωω


,
,,
2
1
2
1
∑
∞
=






+
1
2
2
1
i
i
i
M
td
dη
( )
∑ ⋅⋅+∫








×⋅+ ←←←
rotors
BjrotorCrotorjIB
tm
FrozenRotors
B
C
CIB Imd
td
rd
r ωωω



,
,
,
Since the kinetic energy of the system is given by:
we have
td
d
M
T i
i
i
η
η
=
∂
∂

0=
∂
∂
i
T
η
2
2
td
d
M
TT
td
d i
i
ii
η
ηη
=
∂
∂
−





∂
∂

Therefore
47
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Derivation of the Equations of Motion (continue – 9)
Elastic Equations (continue – 1)
Ei
iii
Q
UTT
td
d
=
∂
∂
+
∂
∂
−





∂
∂
ηηηFrom
∑=
∞
=1
22
2
1
i
iiie MU ηω
we obtain
iii
i
e
M
U
ηω
η
2
=
∂
∂
From
( )
( )
( )[ ] ∑∑∫ ×∇⋅+⋅+⋅+−=
∂
∂
= ∞
k
ik
j
ij
S
i
i
P
Ei
MFdstfnpp
W
Q
W
φφφ
ηδ
δ 
11
Therefore
( )[ ] ∑∑∫ ×∇⋅+⋅+⋅+−=





+ ∞
k
ik
j
ij
S
iii
i
i
MFdstfnpp
td
d
M
W
φφφηω
η 
11
2
2
2
Table of Contents
48
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM
( )
( )
∑ 





=∑ ∫∫=∫=
openings
i
iopen
openings
i S
i
tm td
md
mdmd
td
d
tm
iopen

MASS EQUATION
FORCE EQUATION
RIGID-BODY TERMSmV
td
Vd
CIO
O
C








×+ ←


ω
∑−∑ 







×+− ←
openings
i
iflowiopen
openings
i
iflowiopenIO
B
iopen
mrmr
td
rd





ˆˆ
ˆ
2 ω
FLUID-FLOW TERMS
GRAVITATIONAL,
AERODYNAMIC,
PROPULSIVE &
∑+∑+=
i
TiA FFmg

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
∑+
j
jF

DISCRETE TERMS
49
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 1)
MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
RIGID-BODY TERMSIOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω

,,,




∑ ⋅×+∑ ⋅+ ←←←
j
OjrotorCrotorjIO
j
OjrotorCrotorj RjRj
II ωωω

,, ROTORS TERMS
( )
( ) 







∫








××+








∫








×+
←
tm
FrozenRotor
O
O
OIO
O
tm
FrozenRotor
O
O
O
dm
td
rd
r
dm
td
rd
r
td
d
,
,
,
,




ω
BODY FLUIDS,
MOVING PARTS,
ELASTICITY,…
TERMS
FLUID CROSSING
OPENINGS TERMS
∑ 







×+×− ←
openings
i
iflowOiopenIO
O
Oiopen
Oiopen mr
td
rd
r 



,
,
,
ˆ
ˆ
ˆ ω
AERODYNAMIC &
PROPULSIVE
∑+∑=
i
OTiOA MM ,,

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( ) ∑+∑ ×−+
k
k
j
jOj MFRR
 DISCRETE FORCES
MOMENTS TERMS








−×+
I
O
O
td
Vd
gc


, NON-CENTROIDAL
MOMENTS TERMS
50
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 2)
( )[ ]∫∫∑ +−= ∞
WS
A dstfnppF

11: AERODYNAMIC FORCES
( )∫∫ −+



 −= ∞
iopenS
iflowiopeniflowTi dsnppmVVF



1
ˆˆ
: THRUST FORCES
( ) ( )[ ]∫∫ +−×−=∑ ∞
WS
OOA dstfnppRRM

11:,
AERODYNAMIC MOMENTS
RELATIVE TO O
( ) ( )[ ]∫∫ −×−+



 −×



 −= ∞
iopenS
OiflowiopeniflowOiopenOTi dsnppRRmVVRRM



1
ˆˆˆ
:,
THRUST MOMENTS
RELATIVE TO O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
Table of Contents
51
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
References
2. Meirovitch, L., “Method of Applied Dynamics”, John Wiley & Sons, 1986
3. Goldstein, H., “Classical Mechanics”, 1st
, 2nd
and 3rd
Editions
4. Lanczos, C., “The Variational Principles of Mechanics”, 4th Edition, Dover
Publications, 1970
5. Meirovitch, L., “General Motion of a Variable-Mass Flexible Rocket with
Internal Flow”, J. Spacecraft, Vol. 7, No. 2, Feb. 1970, pp. 186-195
1. Bilmoria, K.D., Schmidt, D.K., “An Integrated Development of the of
Motion for Elastic Hypersonic Flight Vehicles”, AIAA-92-4605-CP, and
Journal of Guidance, Control and Dynamics, Vol.18, No.1, Jan.-Feb., 1995,
pp. 73-81
6. Meirovitch, L., Kwak, M.K., “Dynamics and Control of Spacecraft with
Retargeting Flexible Antennas”, Journal of Guidance, Control and
Dynamics, Vol.13, No.2, March-April, 1990, pp. 241-248
52
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
References (continue – 1)
7. Meirovitch, L., “State Equation of Motion for Flexible Bodies in Terms of
Quasi-Coordinates”, Proceedings of the IUTAM/IFAC Symposium on
Dynamics of Controlled Mechanical Systems, Switzerland, May-June 1998
8. Weng, S-L., Greenwood, D.T., “General Dynamical Equations of Motion
for Elastic Body Systems”, Journal of Guidance, Control and Dynamics,
Vol.15, No.6, Nov.-Dec., 1992, pp. 1434-1442
Table of Contents
53
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations
The generalized coordinates are:
i
iii
Q
UTT
td
d
=





∂
∂
+





∂
∂
−





∂
∂
ξξξ
( )
[ ]T
zyx
I
CP RRRR ==

ξ Position components relative to
Inertial System in Inertial Coordinates
[ ]T
kjiR θθθξ =Γ=

Euler Angles around Euler Axes
[ ] T
E 

4321 ηηηηηξ == Elastic Modes
We want to obtain the Lagrange Equations in Body Coordinates.
( ) ( )wTT ,, ξξξ =
Kinetic Energy of the System
( )ξU Potential Energy of the System
kQ Generalized Forces along the Degrees of Freedom Axes
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )ηωηθηωθηθηθηθ 


,,,,,,,,,,,,,,, 1 B
B
B
B
EIB
B
B
B
ETEIEIEI
VRTDVCRTRRT ==




 −
{ } { }ηθηηθθθξ ,,,,,,,,,,: 21321
TTT
zyx RRRR

 ==
{ } { }ηωηη  ,,,,,,,,,,: 21
T
B
T
B
T
Vrqpwvuw ==
54
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
The angular velocity vector of rotation of the Body frame
relative to Inertia frame is:
kIjIntriBIB kji θθθω  ˆˆˆ ++=←
In Body frame this is:
( ) ( ) ( ) ( ) ( )
[ ] ( )
[ ] [ ] ( )
k
I
Ijjiij
Intr
Intriii
B
Bk
B
Ij
B
Intri
B
B
B
IB kjikji θθθθθθθθθω  ˆˆˆˆˆˆ ++=++=←
[ ] ( )
[ ] ( )
[ ] [ ] ( )
[ ] { } { } { }[ ]










=










=










=←
k
j
i
k
j
i
I
Ijjii
Intr
Intrii
B
B
B
IB DDDkji
r
q
p
θ
θ
θ
θ
θ
θ
θθθω









321
ˆˆˆ:
{ } ( )
( ){ } ( )
[ ] ( )
( ){ } ( )
[ ] [ ] ( )
{ } { } { }[ ]321
321
:
ˆˆ:,&ˆˆ:&ˆ:
DDDD
kkDjjDconstiD
I
Ijjii
B
Iji
Intr
Intrii
B
Intri
B
B
=
======
→
θθθθθθ
( )
[ ] [ ] ( )
{ } { } { }[ ]










=




















==










=










=←
k
j
i
k
j
i
E
k
j
i
B
IB DDD
DDD
DDD
DDD
DD
r
q
p
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
ω












321
333231
232221
131211
:
where:
or
Appendix A: Lagrange Equations (continue – 1)
55
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 2)
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )






















∂
∂
∂
∂
∂
∂
=






















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
−
−
−
z
B
B
B
B
EI
y
B
B
B
B
EI
x
B
B
B
B
EI
z
B
B
EB
B
ETEI
y
B
B
EB
B
ETEI
x
B
B
EB
B
ETEI
z
y
x
R
VRT
R
VRT
R
VRT
R
DVCRT
R
DVCRT
R
DVCRT
R
T
R
T
R
T















ηωηθ
ηωηθ
ηωηθ
ηωθθηθ
ηωθθηθ
ηωθθηθ
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
1
1
1




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
=
w
T
v
T
u
T
R
w
R
v
R
u
R
w
R
v
R
u
R
w
R
v
R
u
w
T
R
w
v
T
R
v
u
T
R
u
w
T
R
w
v
T
R
v
u
T
R
u
w
T
R
w
v
T
R
v
u
T
R
u
zzz
yyy
xxx
zzz
yyy
xxx






We have:
In a shorthand notation form:
( )
( )
( ) ( )
( )
( ) ( )






∂
∂
=






∂
∂








∂
∂
=








∂
∂
B
B
ET
B
B
I
B
B
I V
T
C
V
T
R
V
R
T





 θ
( )
[ ] ( )




















==










=










=
Cz
Cy
Cx
I
C
Cz
Cy
Cx
B
I
B
C
R
R
R
CCC
CCC
CCC
RC
R
R
R
C
w
v
u
V








333231
232221
131211
:
56
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 3)
also:
In a shorthand notation form:
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )






















∂
∂
∂
∂
∂
∂
=






















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
−
−
−
k
B
B
B
B
EI
j
B
B
B
B
EI
i
B
B
B
B
EI
k
B
B
EB
B
ETEI
j
B
B
EB
B
ETEI
i
B
B
EB
B
ETEI
k
j
i
VRT
VRT
VRT
DVCRT
DVCRT
DVCRT
T
T
T
θ
ηωηθ
θ
ηωηθ
θ
ηωηθ
θ
ηωθηθθ
θ
ηωθηθθ
θ
ηωθηθθ
θ
θ
θ















,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
1
1
1




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
=
r
T
q
T
p
T
rqp
rqp
rqp
r
Tr
q
Tq
p
Tp
r
Tr
q
Tq
p
Tp
r
Tr
q
Tq
p
Tp
kkk
jjj
iii
kkk
jjj
iii
θθθ
θθθ
θθθ
θθθ
θθθ
θθθ






( )
( )
( ) ( )
( )
( ) ( )








∂
∂
=








∂
∂








∂
∂
=








∂
∂
←←
←
B
IB
ET
B
IB
E
B
IB
E
T
D
TT
ω
θ
ωθ
ω
θ





57
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 4)
In the same way:
In a shorthand notation form:
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )




















∂
∂
∂
∂
∂
∂
=






















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
−
−
−
z
y
x
z
B
B
EB
B
ETEI
y
B
B
EB
B
ETEI
x
B
B
EB
B
ETEI
z
y
x
R
T
R
T
R
T
R
DVCRT
R
DVCRT
R
DVCRT
R
T
R
T
R
T
ηωθθηθ
ηωθθηθ
ηωθθηθ



,,,,,
,,,,,
,,,,,
1
1
1
( ) ( )






∂
∂
=






∂
∂
II
R
T
R
T

58
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 5)
and: ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )






















∂
∂
∂
∂
∂
∂
=






















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
−
−
−
k
B
B
B
B
EI
j
B
B
B
B
EI
i
B
B
B
B
EI
j
B
B
EB
B
ETEI
j
B
B
EB
B
ETEI
i
B
B
EB
B
ETEI
k
j
i
VRT
VRT
VRT
DVCRT
DVCRT
DVCRT
T
T
T
θ
ηωηθ
θ
ηωηθ
θ
ηωηθ
θ
ηωθθηθ
θ
ηωθθηθ
θ
ηωθθηθ
θ
θ
θ






,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
1
1
1




















∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
+




















∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
+




















∂
∂
∂
∂
∂
∂
=
r
Tr
q
Tq
p
Tp
r
Tr
q
Tq
p
Tp
r
Tr
q
Tq
p
Tp
w
Tw
v
Tv
u
Tu
w
Tw
v
Tv
u
Tu
w
Tw
v
Tv
u
Tu
T
T
T
kkk
jjj
iii
kkk
jjj
iii
k
j
i
θθθ
θθθ
θθθ
θθθ
θθθ
θθθ
θ
θ
θ
( )
{ }
( )
( )
{ }
( )




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
+




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
+




















∂
∂
∂
∂
∂
∂
=
∂
∂
∂
∂ →
r
T
q
T
p
T
rqp
rqp
rqp
w
T
v
T
u
T
wvu
wvu
wvu
T
T
T
E
TB
IB
E
TB
BV
    




θ
ω
θ
θθθ
θθθ
θθθ
θθθ
θθθ
θθθ
θ
θ
θ
333
222
111
333
222
111
3
2
1
59
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 6)










∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
=




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
z
k
y
k
x
k
z
k
y
k
x
k
z
j
y
j
x
j
z
j
y
j
x
j
z
i
y
i
x
i
z
i
y
i
x
i
kkk
jjj
iii
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
wvu
wvu
wvu



θθθθθθ
θθθθθθ
θθθθθθ
θθθ
θθθ
θθθ
232221131211
232221131211
232221131211










∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
∂
∂
+
∂
∂
z
k
y
k
x
k
z
j
y
j
x
j
z
i
y
i
x
i
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C
R
C



θθθ
θθθ
θθθ
333231
333231
333231
( )
{ }
( )
( )
{ }
( )
{ }
( )
{ }
{ }
{ }
{ }
{ } [ ][ ]
{ } [ ][ ]
{ } [ ][ ]
{ } [ ]
{ } [ ]
{ } [ ]
( )
{ } [ ]
( )
{ } [ ]
( )
{ } [ ]
[ ] [ ] [ ][ ] ( )
( ) [ ] ( )
( )TB
B
TB
B
T
TB
B
T
TB
B
T
TB
B
TTT
I
TTT
I
TTT
I
TT
I
TT
I
TT
I
T
k
T
I
T
j
T
I
T
i
T
I
k
TB
B
j
TB
B
i
TB
B
E
TB
B
VDVDDD
DV
DV
DV
DCR
DCR
DCR
CDR
CDR
CDR
C
R
C
R
C
R
V
V
V
V 


















×−=×××−=












×−
×−
×−
=




















×−
×−
×−
=




















×−
×−
×−
=




























∂
∂








∂
∂






∂
∂
=




















∂
∂
∂
∂
∂
∂
=
∂
∂
321
3
2
1
3
2
1
3
2
1
θ
θ
θ
θ
θ
θ
θ
In a shorthand notation form:
[ ]( )
( ) [ ]( )
( ) [ ]( )B
B
TTB
B
TTB
B VDVDDV ×−=×=×=

and
( )
{ }
( )
( )
{ }
( )
{ }
( )
{ }




















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
=
∂
∂
→
→
→
→
k
TB
IB
j
TB
IB
i
TB
IB
kkk
jjj
iii
E
TB
IB
rqp
rqp
rqp
θ
ω
θ
ω
θ
ω
θθθ
θθθ
θθθ
θ
ω





60
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
( )
{ }
( )
( )
{ }
( )




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
+




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
+




















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ →
r
T
q
T
p
T
rqp
rqp
rqp
w
T
v
T
u
T
wvu
wvu
wvu
T
T
T
T
T
T
E
TB
IB
E
TB
BV
k
j
i
    




θ
ω
θ
θθθ
θθθ
θθθ
θθθ
θθθ
θθθ
θ
θ
θ
θ
θ
θ
333
222
111
333
222
111
3
2
1
Appendix A: Lagrange Equations (continue – 7)
( )
{ }
( )
[ ]( )
( ) [ ]( )
( ) [ ]( )B
B
TTB
B
TTB
BE
TB
B
VDVDDV
V
×−=×=×=
∂
∂ 


θ
We found
( )
{ }
( )
( )
{ }
( )
{ }
( )
{ }




















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
=
∂
∂
→
→
→
→
k
TB
IB
j
TB
IB
i
TB
IB
kkk
jjj
iii
E
TB
IB
rqp
rqp
rqp
θ
ω
θ
ω
θ
ω
θθθ
θθθ
θθθ
θ
ω





[ ]( )
( )
{ }
( )
{ }
( )
{ }




















∂
∂
∂
∂
∂
∂




















∂
∂
∂
∂
∂
∂
+




















∂
∂
∂
∂
∂
∂
×−




















∂
∂
∂
∂
∂
∂
=




















∂
∂
∂
∂
∂
∂
→
→
→
r
T
q
T
p
T
w
T
v
T
u
T
VD
T
T
T
T
T
T
k
TB
IB
j
TB
IB
i
TB
IB
B
B
T
k
j
i
k
j
i
θ
ω
θ
ω
θ
ω
θ
θ
θ
θ
θ
θ




In a shorthand notation form: ( ) ( )
[ ] ( )
( )
( )
{ }
( ) ( )






∂
∂
∂
∂
+








∂
∂
×−








∂
∂
=








∂
∂
←
→
B
IB
E
TB
IB
B
B
B
B
T
EE
T
V
T
VD
TT
ωθ
ω
θθ





61
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 8)
( ) ( )






∂
∂
=






∂
∂
II
R
T
R
T
( )
( )
( ) ( )
( )
( ) ( )






∂
∂
=






∂
∂








∂
∂
=








∂
∂
B
B
ET
B
B
I
B
B
I V
T
C
V
T
R
V
R
T





 θUsing and
[ ] [ ] ( )I
P
II
B
B
TB
I
B
B
TB
I
III
Q
R
U
R
T
V
T
td
Cd
V
T
td
d
C
R
U
R
T
R
T
td
d 

 =







∂
∂
+








∂
∂
−








∂
∂
+








∂
∂
=







∂
∂
+








∂
∂
−








∂
∂we obtain
Using
( ) ( )
[ ] ( )
( )
( )
{ }
( ) ( )








∂
∂
∂
∂
+






∂
∂
×−






∂
∂
=






∂
∂
←
→
B
IB
E
TB
IB
B
B
B
B
T
EE
T
V
T
VD
TT
ωθ
ω
θθ




( )
( )
( ) ( )
( )
( ) ( )








∂
∂
=








∂
∂








∂
∂
=








∂
∂
←←
←
B
IB
ET
B
IB
E
B
IB
E
T
D
TT
ω
θ
ωθ
ω
θ




 and
we obtain
( ) ( ) ( )






∂
∂
+






∂
∂
−








∂
∂
EEE
UTT
td
d
θθθ


( ) ( ) ( ) ( )
[ ]( )
( )
( )
{ }
( ) ( )
( )E
RB
IB
E
TB
IB
B
B
B
B
T
EEB
IB
T
B
IB
T
Q
T
V
T
VD
UTT
td
DdT
td
d
D





 =






∂
∂
∂
∂
−








∂
∂
×+








∂
∂
+








∂
∂
−






∂
∂
+






∂
∂
=
←
→
←← ωθ
ω
θθωω
62
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 9)
Computations of and
td
Dd T ( )
{ }
( )E
TB
IB
θ
ω


∂
∂ →
Basic Euler Rotations
The three basic Euler rotations, around the axes are described by the Rotation
Matrices:
,3ˆ,2ˆ,1ˆ
[ ]










−
=
11
1111
0
0
001
:
θθ
θθθ
cs
sc [ ]









 −
=
22
22
22
0
010
0
:
θθ
θθ
θ
cs
sc
[ ]










−=
100
0
0
: 33
33
33 θθ
θθ
θ cs
sc
Let differentiate with respect to Euler Angles.
[ ] [ ][ ] 11
11
11
11
11
11
11
11
11
1ˆ
0
0
001
010
100
000
0
0
000
0
0
001
θ
θθ
θθ
θθ
θθ
θθ
θθ
θθ
θ
×−=










−









−=










−−
−=










−
=
cs
sc
sc
cs
cs
sc
d
d
d
d
[ ] [ ][ ] 22
22
22
22
22
22
22
22
22
2ˆ
0
010
0
001
000
100
0
000
0
0
010
0
θ
θθ
θθ
θθ
θθ
θθ
θθ
θθ
θ
×−=









 −










−
=










−
−−
=









 −
=
cs
sc
sc
cs
cs
sc
d
d
d
d
[ ] [ ][ ] 3333
33
33
33
33
33
33
33
3ˆ
100
0
0
000
001
010
000
0
0
100
0
0
θθθ
θθ
θθ
θθ
θθ
θθ
θθ
θ
×−=










−










−=










−−
−
=










−= cs
sc
sc
cs
cs
sc
d
d
d
d
63
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Table of Contents
Appendix A: Lagrange Equations (continue – 10)
Computations of and
td
Dd T ( )
{ }
( )E
TB
IB
θ
ω


∂
∂ →
Basic Euler Rotations (continue – 1)
is the matrix representation of the cross product of the vector ; i.e. in Cartesian
coordinates :
[ ]×A

A

( )zyx 1ˆ,1ˆ,1ˆ
( ) ( )zzyyxxzzyyxx BBBAAABA 1ˆ1ˆ1ˆ1ˆ1ˆ1ˆ ++×++=×

( ) ( ) ( ) zxyyxyxzzxxyzzy
zyx
zyx
zyx
BABABABABABA
BBB
AAA 1ˆ1ˆ1ˆ
1ˆ1ˆ1ˆ
−+−+−=












=
[ ]( )
{ }( )zyxzyx
z
y
x
xy
xz
yz
BA
B
B
B
AA
AA
AA
,,,,
:
0
0
0

×=




















−
−
−
=
The matrix is skew-symmetric; i.e.:[ ]×A

[ ] [ ]×−=× AA
T 
[ ] [ ] [ ][ ] 1111
1
1111
1ˆ θθθ
θ
θθ  ×−==
d
d
td
d
[ ] [ ] [ ][ ] 2222
2
2222
2ˆ θθθ
θ
θθ  ×−==
d
d
td
d
[ ] [ ] [ ][ ] 3333
3
3333
3ˆ θθθ
θ
θθ  ×−==
d
d
td
d
64
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 11)
Computations of
td
Dd T






=
td
Dd
td
Dd
td
Dd
td
Dd 321









++++++= k
k
j
j
i
i
k
k
j
j
i
i
k
k
j
j
i
i d
Dd
d
Dd
d
Dd
d
Dd
d
Dd
d
Dd
d
Dd
d
Dd
d
Dd
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
 333222111
{ } ( )
( ){ } ( )
[ ] ( )
( ){ } ( )
[ ] [ ] ( )
{ } { } { }[ ]321
3
2
1
:
ˆˆ:,
ˆˆ:
ˆ:
DDDD
kkD
jjD
constiD
I
Ijjii
B
Iji
Intr
Intrii
B
Intri
B
B
=
==
==
==
→
θθθθ
θθ
From
0111
=
∂
∂
=
∂
∂
=
∂
∂
kji
DDD
θθθ
Using those equations, and
[ ] [ ] ( )
[ ] 0ˆ 22
211
2
=
∂
∂
=
∂
∂
×−=×−=
∂
∂
kj
Intr
Intrii
i
DD
DDjD
D
θθ
θ
θ



[ ] [ ] [ ] ( )
[ ]
[ ] [ ]( )
[ ] ( )
[ ] [ ]( )
[ ] [ ] [ ] ( )
[ ]( )
[ ] [ ] ( )
[ ]












=
∂
∂
×−=×−=
−×−=×−=
∂
∂
×−=×−=
∂
∂
0
ˆˆ
ˆˆˆˆ
ˆ
3
32
3
311
3
k
I
Ijjii
B
Intr
I
Ijjiiii
Intr
Intrii
I
Ijj
Intr
Intrii
j
I
Ijjii
i
D
DDkj
kjkj
D
DDkD
D
θ
θθ
θθθθθθ
θ
θθ
θ





01111
=
∂
∂
+
∂
∂
+
∂
∂
= k
k
j
j
i
i
DDD
td
Dd
θ
θ
θ
θ
θ
θ






[ ] i
k
k
j
j
i
i
DD
DDD
td
Dd
θ
θ
θ
θ
θ
θ
θ








21
2222
×−=
∂
∂
+
∂
∂
+
∂
∂
=
[ ] [ ] ji
k
k
j
j
i
i
DDDD
DDD
td
Dd
θθ
θ
θ
θ
θ
θ
θ










3231
3333
×−×−=
∂
∂
+
∂
∂
+
∂
∂
=
65
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Table of Contents
Appendix A: Lagrange Equations (continue – 12)
Computations of
td
Dd T
[ ] [ ] jik
k
j
j
i
i
DDDD
DDD
td
Dd
θθθ
θ
θ
θ
θ
θ










3231
3333
×−×−=
∂
∂
+
∂
∂
+
∂
∂
=
[ ] ik
k
j
j
i
i
DD
DDD
td
Dd
θθ
θ
θ
θ
θ
θ








21
2222
×−=
∂
∂
+
∂
∂
+
∂
∂
=
01111
=
∂
∂
+
∂
∂
+
∂
∂
= k
k
j
j
i
i
DDD
td
Dd
θ
θ
θ
θ
θ
θ






We found:
Therefore:
01
=
td
Dd
T

[ ] i
T
T
DD
td
Dd
θ


×= 12
2
[ ] [ ] j
T
i
T
T
DDDD
td
Dd
θθ 




×+×= 2313
3
66
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 13)
Computations of
( )
{ }
( )E
TB
IB
θ
ω


∂
∂ →
By differentiating [ ]
{ } { } { }[ ]










=←
k
j
i
B
IB DDD
θ
θ
θ
ω





321
we obtain:
( )
[ ] [ ][ ]
[ ] [ ] [ ] [ ] kjkj
k
j
i
k
j
i
iiii
B
IB
DDDDDDDD
DDDD
DDD
θθθθ
θ
θ
θ
θ
θ
θ
θθθθ
ω























13123121
3121
321
0
×+×=×−×−=










×−×−=
















∂
∂
∂
∂
∂
∂
=
∂
∂ ←
( )
[ ][ ]
[ ] [ ] kk
k
j
i
k
j
i
jjjj
B
IB
DDDD
DD
DDD
θθ
θ
θ
θ
θ
θ
θ
θθθθ
ω



















2332
32
321
00
×=×−=












×−=




















∂
∂
∂
∂
∂
∂
=
∂
∂ ←
( )
[ ] 0000321
















=










=
















∂
∂
∂
∂
∂
∂
=
∂
∂ ←
k
j
i
k
j
i
kkkk
B
IB DDD
θ
θ
θ
θ
θ
θ
θθθθ
ω
( )
{ } [ ] [ ]{ }
[ ] [ ] k
T
j
T
T
kj
i
TB
IB
DDDD
DDDD
θθ
θθ
θ
ω








×−×−=
×+×=
∂
∂ ←
3121
1312
( )
{ } [ ]{ } [ ] k
TT
k
j
TB
IB
DDDD θθ
θ
ω 



×−=×=
∂
∂ ←
3223
( )
{ } 0

=
∂
∂ ←
k
TB
IB
θ
ω
67
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Table of Contents
Appendix A: Lagrange Equations (continue – 14)
Computations of [ ]( )B
IB
T
D ×→ω

Since we have[ ] [ ]{ }( ) 0

≡×=×
T
lll
T
l DDDD
[ ][ ]
{ }
{ }
{ }
[ ] [ ] [ ]( )kji
T
T
T
B
IB
T
DDD
D
D
D
D θθθω 
×+×+×










=×← 321
3
2
1
[ ] [ ]
[ ] [ ]
[ ] [ ] 

















×+×
×+×
×+×
=
j
T
i
T
k
T
i
T
k
T
j
T
DDDD
DDDD
DDDD
θθ
θθ
θθ





2313
3212
3121
Computations of and
td
Dd T ( )
{ }
( )E
TB
IB
θ
ω


∂
∂ →
68
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Appendix A: Lagrange Equations (continue – 15)
Computations of
( )
{ }
( )
[ ]( )B
IB
T
E
TB
IB
D ×+
∂
∂
→
→
ω
θ
ω 


Let add and and compare with
( )
{ }
( )E
TB
IB
θ
ω
∂
∂ ←

[ ] ( )B
IB
T
D ×←ω

td
Dd T
Computations of and
td
Dd T ( )
{ }
( )E
TB
IB
θ
ω


∂
∂ →
( )
{ } [ ] ( )
td
Dd
D
T
B
IB
T
i
TB
IB 1
1 0 ==×+
∂
∂
←
←


ω
θ
ω
( )
{ } [ ] ( )
[ ]
td
Dd
DDD
T
i
TB
IB
T
j
TB
IB 2
122 =×=×+
∂
∂
←
←
θω
θ
ω 

( )
{ } [ ] ( )
[ ] [ ]
td
Dd
DDDDD
T
j
T
i
TB
IB
T
k
TB
IB 3
23133 =×+×=×+
∂
∂
←
←
θθω
θ
ω 

or
( )
{ }
( ) [ ] ( )B
IB
T
E
TB
IB
T
D
td
Dd
×+
∂
∂
= ←
←
ω
θ
ω 

69
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
[ ] [ ] [ ] kkjjii
B
IC θθθ=
Appendix A: Lagrange Equations (continue – 16)
Computations of
td
Cd
B
I
[ ] [ ][ ] iiiB
ii
i
td
d
θθ
θ ×−= ˆ
[ ] [ ][ ] jjjr
jj
j
td
d
θθ
θ ×−= int
ˆ
[ ] [ ][ ] kkkI
kk
k
td
d
θθ
θ ×−= ˆ
we can compute
[ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]( )
[ ] B
I
B
I
B
Bkkjjii
B
Bkkjjii
ii
B
I
CDCii
d
dC
×−=×−=×−=





=
∂
∂
1
ˆˆ θθθθθθ
θθ
[ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ]kkjj
Intr
Intriikkjj
j
ii
j
B
I
j
d
dC
θθθθθ
θ
θ
θ
×−=








=
∂
∂ ˆ
[ ] [ ]( )
[ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]( )
[ ] B
I
B
I
B
Intrkkjjii
B
Intrkkjjiiii
Intr
Intrii CDCjjj ×−=×−=×−=−×−= 2
ˆˆˆ θθθθθθθθ
[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )
[ ]kk
I
Ijjiikk
k
jjii
k
B
I
k
d
dC
θθθθ
θ
θθ
θ
×−=





=
∂
∂ ˆ
[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] B
I
B
I
B
Ikkjjiiiijj
I
Ijjii CDCkk ×−=×−=−−×−= 3
ˆˆ θθθθθθθ
where are the unit vectors along the three consecutive Euler axes of rotations
(in Body, Intermediate and Inertial coordinates).
IIntrB kji ˆ,ˆ,ˆ
we found:
70
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
LAGRANGIAN APPROACH
Table of Contents
Appendix A: Lagrange Equations (continue – 17)
Computations of
td
Cd
B
I
we can compute
[ ] [ ] B
I
i
B
I
CD
C
×−=
∂
∂
1
θ
[ ] [ ] B
I
j
B
I
CD
C
×−=
∂
∂
2
θ
[ ] [ ] B
I
k
B
I
CD
C
×−=
∂
∂
3
θ
[ ] [ ] [ ] [ ]
k
k
B
I
j
j
B
I
i
i
B
I
B
I CCC
td
Cd
θ
θ
θ
θ
θ
θ

∂
∂
+
∂
∂
+
∂
∂
=
[ ] [ ] [ ] k
B
Ij
B
Ii
B
I CDCDCD θθθ  ×−×−×−= 321
[ ] [ ] [ ]( ) [ ]( ) B
I
B
IB
B
Ikji
CCDDD ×−=×+×+×−= ←
ωθθθ

321
therefore [ ] [ ]( ) B
I
B
IB
B
I
C
td
Cd
×−= ←ω

[ ]( ) [ ]×−=
∂
∂
1DC
C TB
I
i
B
I
θ
[ ] ( ) [ ]×−=
∂
∂
2DC
C TB
I
j
B
I
θ
[ ] ( ) [ ]×−=
∂
∂
k
TB
I
k
B
I
DC
C
θ
January 5, 2015 71
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA

More Related Content

PPT
Equation of motion of a variable mass system1
PPT
Sliding Mode Observers
PPT
Stabilization of linear time invariant systems, Factorization Approach
PPT
Analytic dynamics
PPT
2 classical field theories
PPT
Reduced order observers
PPT
Equation of motion of a variable mass system2
PPT
2 backlash simulation
Equation of motion of a variable mass system1
Sliding Mode Observers
Stabilization of linear time invariant systems, Factorization Approach
Analytic dynamics
2 classical field theories
Reduced order observers
Equation of motion of a variable mass system2
2 backlash simulation

What's hot (20)

PPT
3 recursive bayesian estimation
PPT
Inner outer and spectral factorizations
PPT
Matrices ii
PPT
4 stochastic processes
PPT
5 cramer-rao lower bound
PPT
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
PPT
2 estimators
PPT
Calculus of variations
PPT
Introduction to Mathematical Probability
PDF
PDF
PDF
Discrete control2 converted
PPT
Fluid dynamics
PDF
Ips csmc 14.06.2016
PPT
Calculus of variation problems
PDF
Ladder operator
PDF
residue
PDF
Notions of equivalence for linear multivariable systems
PDF
Introduction to Calculus of Variations
PPT
Differential geometry three dimensional space
3 recursive bayesian estimation
Inner outer and spectral factorizations
Matrices ii
4 stochastic processes
5 cramer-rao lower bound
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
2 estimators
Calculus of variations
Introduction to Mathematical Probability
Discrete control2 converted
Fluid dynamics
Ips csmc 14.06.2016
Calculus of variation problems
Ladder operator
residue
Notions of equivalence for linear multivariable systems
Introduction to Calculus of Variations
Differential geometry three dimensional space
Ad

Viewers also liked (10)

PDF
Variable mass system
PDF
Region 2 NIRSA In Motion Project 11-6-15
PPTX
Section 6.7 Practice Problems
PPT
Unit 1 Notes
PPT
0314 week1 newtons_laws
PDF
Goldstein solution 4.21
PPTX
projectile motion
PDF
Chapter 5 -momentum_equation_and_its_applications
PPTX
Projectile motion
PDF
Visual Design with Data
Variable mass system
Region 2 NIRSA In Motion Project 11-6-15
Section 6.7 Practice Problems
Unit 1 Notes
0314 week1 newtons_laws
Goldstein solution 4.21
projectile motion
Chapter 5 -momentum_equation_and_its_applications
Projectile motion
Visual Design with Data
Ad

Similar to Equation of motion of a variable mass system3 (20)

PDF
Bazzucchi-Campolmi-Zatti
PPTX
Aerospace Structural Dynamics all athe chapters upted
PDF
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
PDF
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
PDF
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
PDF
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
PDF
ME421 The Single Degree of Freedom System (Undamped).pdf
PDF
Chapter26
PPT
Me330 lecture5
PDF
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
PDF
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
PDF
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
PDF
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
PDF
Modern Control - Lec07 - State Space Modeling of LTI Systems
PDF
Centre of mass, impulse momentum (obj. assignments)
DOCX
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
PDF
control systems.pdf
PDF
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
PDF
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
PPT
STate Space Analysis
Bazzucchi-Campolmi-Zatti
Aerospace Structural Dynamics all athe chapters upted
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
ME421 The Single Degree of Freedom System (Undamped).pdf
Chapter26
Me330 lecture5
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
Modern Control - Lec07 - State Space Modeling of LTI Systems
Centre of mass, impulse momentum (obj. assignments)
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
control systems.pdf
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
STate Space Analysis

More from Solo Hermelin (20)

PPT
5 introduction to quantum mechanics
PPT
Slide Mode Control (S.M.C.)
PPT
Keplerian trajectories
PPT
Anti ballistic missiles ii
PPT
Anti ballistic missiles i
PPT
12 performance of an aircraft with parabolic polar
PPT
11 fighter aircraft avionics - part iv
PPT
10 fighter aircraft avionics - part iii
PPT
9 fighter aircraft avionics-part ii
PPT
8 fighter aircraft avionics-part i
PPT
6 computing gunsight, hud and hms
PPT
4 navigation systems
PPT
3 earth atmosphere
PPT
2 aircraft flight instruments
PPT
3 modern aircraft cutaway
PPT
2Anti-aircraft Warhead
PPT
1 susceptibility vulnerability
PPT
15 sky cars
PPT
14 fixed wing fighter aircraft- flight performance - ii
PPT
13 fixed wing fighter aircraft- flight performance - i
5 introduction to quantum mechanics
Slide Mode Control (S.M.C.)
Keplerian trajectories
Anti ballistic missiles ii
Anti ballistic missiles i
12 performance of an aircraft with parabolic polar
11 fighter aircraft avionics - part iv
10 fighter aircraft avionics - part iii
9 fighter aircraft avionics-part ii
8 fighter aircraft avionics-part i
6 computing gunsight, hud and hms
4 navigation systems
3 earth atmosphere
2 aircraft flight instruments
3 modern aircraft cutaway
2Anti-aircraft Warhead
1 susceptibility vulnerability
15 sky cars
14 fixed wing fighter aircraft- flight performance - ii
13 fixed wing fighter aircraft- flight performance - i

Recently uploaded (20)

PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
2. Earth - The Living Planet earth and life
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPT
protein biochemistry.ppt for university classes
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
neck nodes and dissection types and lymph nodes levels
2. Earth - The Living Planet earth and life
TOTAL hIP ARTHROPLASTY Presentation.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
HPLC-PPT.docx high performance liquid chromatography
AlphaEarth Foundations and the Satellite Embedding dataset
Introduction to Fisheries Biotechnology_Lesson 1.pptx
POSITIONING IN OPERATION THEATRE ROOM.ppt
microscope-Lecturecjchchchchcuvuvhc.pptx
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
protein biochemistry.ppt for university classes
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
2. Earth - The Living Planet Module 2ELS
Biophysics 2.pdffffffffffffffffffffffffff
Derivatives of integument scales, beaks, horns,.pptx
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Comparative Structure of Integument in Vertebrates.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Taita Taveta Laboratory Technician Workshop Presentation.pptx

Equation of motion of a variable mass system3

  • 1. 1 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH SOLO HERMELIN http://www.solohermelin.com
  • 2. 2 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM • Simplified Particle Approach (see Power Point Presentation) The equations of motion can be developed using At a given time t the system has v (t) – system volume. m (t) – system mass. S (t) – system boundary surface. • Reynolds’ Transport Theorem Approach (see Power Point Presentation) • Lagrangian Approach (this Power Point Presentation)
  • 3. 3 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH TABLE OF CONTENT • Generalized Forces Joseph-Louis Lagrange 1736-1813 • Lagrange’s Equations of Motion • Principal Coordinate Frames • Inertial Coordinate Frame • Body Coordinate Frame • Body Mean System Axes • Orientation of Body Frame • Kinetic Energy of the System • Potential Energy of the System • Elastic Potential Energy • Gravitational Potential Energy • Computation of Lagrange’s Equations in Body Coordinates • Derivation of Equations of Motion • Summary of the Equations of Motion of a Variable Mass System • References • Appendix A: Lagrange Equations
  • 4. 4 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Lagrange’s Equations of Motion The Lagrange’s Equations of Motion for a dynamic system are: i iii Q UTT td d =      ∂ ∂ +      ∂ ∂ −      ∂ ∂ ξξξ - system kinetic energy.T - system potential energy.U - generalized coordinates (i=1,2,…, number of degrees of freedom of the system).iξ - generalized force along the generalized coordinate given by.iξiQ ( ) ( )i i W Q ξδ δ ∂ ∂ = -virtual work done on the system by all external forces/moments (excluding those accounted for in the potential energy term) during virtual displacement along all the generalized coordinates. Wδ Table of Contents
  • 5. 5 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames R  - Position of the mass element dm relative to I. I td Rd V   = - Velocity of the mass element dm relative to I. II td Rd td Vd a 2 2   == - Acceleration of the mass element dm relative to I. Inertial Coordinate Frame (vector form) orIzIyIx zRyRxRR ˆˆˆ ++=  IzIyIx I zRyRxR td Rd V ˆˆˆ    ++== (vector form) or (vector form) orIzIyIx II zRyRxR td Rd td Vd a ˆˆˆ2 2    ++=== { }T zyx RRRR ,,=  (matrix form) ( ) { }T zyx I RRRV   ,,= (matrix form) ( ) { }T zyx I RRRa  ,,= (matrix form) Table of Contents
  • 6. 6 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames (continue - 1) Cr,  - Position of the mass element dm relative to C. Body Coordinate Frame The origin of the Body Frame (B) is located at the instantaneous Centroid (C) of the system. 0,  =∫ m C mdr R  - Position of the mass element dm relative to I. CR  - Position of the centroid C relative to I. CC rRR ,  += 0,Cr  - Position of the same mass element dm in the un-deformed system, relative to C. e  - Change in position of the mass element dm due to elastic deformation of the system. err CC  += 0,, Table of Contents
  • 7. 7 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames (continue - 2) Body Mean System Axes Mean Body System Axes are defined such that the relative linear and angular momentum, due to elastic deformation, are zero at every instant. The Body Mean Axes must satisfy the following: 0  =∫ md td ed Bm 0,   =∫ × md td ed r B m C 0, =∫ ⋅ md td ed td rd B m B C  Table of Contents
  • 8. 8 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Structural Model of the System Assume that the elastic deformations are small, and can be represented in terms the normal un-damped modes of vibration. ( ) ( )∑= ∞ =1i ii tRe ηφ  - are mode shape functions that depend on the position of the mass element of the system.( )Ri  φ - are generalized coordinates giving the magnitude of the modal displacements and are functions of time. ( )tiη Structural Dynamic Analysis (e.g. final element method) provides the mode shape functions component of each element of the system, as well as the vacuo modal frequencies ( ) , for a selected number of modes. ( )Ri  φ iω ii i td d ηω η 2 2 2 −= The mode shape functions are orthogonal. 0 ji m ji md ≠ =⋅∫ φφ  i m ii Mmd =∫ φφ  MV Bx By Bz Wz Wy Wx α β α β Bp Wp Bq WqBr Wr FIRST ELASTIC MODE SECOND ELASTIC MODE
  • 9. 9 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames (continue - 3) Orientation of the Body Frame The orientation of the Body Frame relative to the Inertial Frame has three degrees of freedom. We will use 3 Euler Angles that define the orientation by three consecutive rotations around the consecutive frame axes. [ ]           − = 11 1111 0 0 001 : θθ θθθ cs sc [ ]           − = 22 22 22 0 010 0 : θθ θθ θ cs sc [ ]           −= 100 0 0 : 33 33 33 θθ θθ θ cs sc The three basic Euler rotations around axes are described by the rotation matrices: ,3ˆ,2ˆ,1ˆ
  • 10. 10 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames (continue - 4) Orientation of the Body Frame (continue – 1) Using the basic Euler Angles we can define the following 12 different rotations: (a) six rotations around three different axes: 321 →→ 231 →→ 312 →→ 132 →→ 213 →→ 123 →→ (b) six rotations such that the first and third are around the sam axes, but the second is different: 121 →→ 131 →→ 212 →→ 232 →→ 313 →→ 323 →→ Suppose that the Transfer Matrix from Inertia to Body is defined by three consecutive Euler Angles: around (unit vector in Inertial Frame), around (unit vector in intermediate frame), around (unit vector in Body Frame). B IC iθ Iiˆ jθ Interjˆ kθ Bkˆ [ ] [ ] [ ] [ ] [ ]TB I B I I B I B B Ikkjjii B I CCCICCC ==→== −1 &θθθ
  • 11. 11 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames (continue - 5) Orientation of the Body Frame (continue – 2) The angular velocity vector of rotation of the Body frame relative to Inertia frame is: kIjIntriBIB kji θθθω  ˆˆˆ ++=← In Body frame this is: ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] [ ] ( ) k I Ijjiij Intr Intriii B Bk B Ij B Intri B B B IB kjikji θθθθθθθθθω  ˆˆˆˆˆˆ ++=++=← [ ] ( ) [ ] ( ) [ ] [ ] ( ) [ ] { } { } { }[ ]           =           =           =← k j i k j i I Ijjii Intr Intrii B B B IB DDDkji r q p θ θ θ θ θ θ θθθω          321 ˆˆˆ: { } ( ) ( ){ } ( ) [ ] ( ) ( ){ } ( ) [ ] [ ] ( ) { } { } { }[ ]321 321 : ˆˆ:,&ˆˆ:&ˆ: DDDD kkDjjDconstiD I Ijjii B Iji Intr Intrii B Intri B B = ====== → θθθθθθ ( ) [ ] [ ] ( ) { } { } { }[ ]           =                     ==           =           =← k j i k j i E k j i B IB DDD DDD DDD DDD DD r q p θ θ θ θ θ θ θ θ θ θ ω             321 333231 232221 131211 : where: or
  • 12. 12 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Principal Coordinate Frames (continue - 6) Orientation of the Body Frame (continue – 3) The velocity vector of the system centroid C is given by: ( ) [ ] ( )                     ==           =           = Cz Cy Cx I C Cz Cy Cx B I B C R R R CCC CCC CCC RC R R R C w v u V         333231 232221 131211 : The following relations will be useful: and ( )           = k j i E θ θ θ θ : andwhere [ ] ( )           − − − =×← 0 0 0 : pq pr qr B IBω  Table of Contents ( ) { } ( ) [ ] ( )B IB T E TB IB T D td Dd ×+ ∂ ∂ = ← ← ω θ ω  Appendix [ ] [ ] [ ] ( )B IB TB I TB I CC td d ×= ←ω  Appendix
  • 13. 13 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Kinetic Energy of the System ( ) ∫ ⋅= tm II md td Rd td Rd T  2 1 Kinetic Energy of the System We have: We can write ( ) ∫         +⋅         += tm I C C I C C md td rd V td rd VT ,, 2 1     ( ) ( ) ( ) ( ) ∫ ⋅+∫+∫⋅= tm I C I C tm I C C tm CC md td rd td rd md td rd VmdVV ,,, 2 1 2 1   (a) (b) (c) Let develop each of the three parts of this expression erRrRR CCCC  ++=+= 0,, I C C I C I C I td rd V td rd td Rd td Rd ,,    +=+=
  • 14. 14 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Kinetic Energy of the System (continue – 1) (a) ( ) ( ) ( ) mVVmdVV CC tm CC  ⋅=∫⋅ 2 1 2 1 (b) Use Reynolds’ Transport Theorem when we differentiate ( ) 0,  =∫ tm C mdr Therefore ( ) ∑∫ −= openings i ifluidCiopen tm B C mrmd td rd    , , ˆ and ( ) ( ) ∫         ×+⋅=∫⋅ ← tm CIB B C C tm I C C mdr td rd Vmd td rd V , ,,      ω ( ) ( ) ( ) ∑∫∑ ∫∫∫∫ +=+=      = openings ifluidCiopen tm B C i S C tm B C REYNOLDS B tm C mrmd td rd mdrmd td rd mdr td d iopen        , , , , , ˆ0 ( ) ( ) ∑⋅−=∫⋅=∫⋅ openings ifluidCiopenC tm B C C tm I C C mrVmd td rd Vmd td rd V       , ,, ˆ ( ) ( ) ( ) ∫∫∫ ⋅=             ×⋅+⋅= ← tm B C C tm CIBC tm B C C md td rd VmdrVmd td rd V , 0 , ,        ω
  • 15. 15 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Kinetic Energy of the System (continue – 2) (c) ( ) ( ) ∫         ×+⋅         ×+=∫ ⋅ ←← tm CIB B C CIB B C tm I C I C mdr td rd r td rd md td rd td rd , , , ,,, 2 1 2 1     ωω ( ) ∫ ⋅= tm B C B C md td rd td rd ,, 2 1  (c1) ( ) ( ) ∫ ×⋅         + ← tm CIB B C mdr td rd , ,   ω (c2) ( ) ( ) ( ) ∫ ×⋅×+ ←← tm CIBCIB mdrr ,, 2 1  ωω (c3) (c1) ( ) ( ) ∫         +⋅         +∫ =⋅ tm BB C BB C tm B C B C md td ed td rd td ed td rd md td rd td rd  0,0,,, 2 1 2 1 ( ) ( ) ( ) ∫         ⋅         +∫         ⋅         ∫ +⋅= tm BB tm BB C tm B C B C md td ed td ed md td ed td rd md td rd td rd      2 1 2 1 0 0,0,0, ( ) ( ) ( )∑ ∫ ×⋅×+∫ ⋅= ←← rotors m CjrotorBjrotorCjrotorBjrotor tm FrozenRotors B C FrozenRotors B C jrotor mdrrmd td rd td rd ,, ,, 2 1 2 1   ωω ( ) ( )∑ ∫         ⋅×+∫         ⋅+ ← rotors m B CjrotorBjrotor tm BFrozenRotors B C jrotor md td ed rmd td ed td rd          0 , 0 , ω ( ) ∫         ⋅         + tm BB md td ed td ed  2 1 ( ) ∫ ⋅= tm FrozenRotors B C FrozenRotors B C md td rd td rd ,, 2 1  ( )∑       ∫ ××−⋅+ ←⋅ ←← rotors I m BjrotorCjrotorCjrotorBjrotor BjrotorCjrotor jrotor mdrr      ω ωω , ,, 2 1 ( ) ∫ ∑∑ ∞ = ∞ = + tm j i j i ji md td d td d ηη φφ 1 12 1 
  • 16. 16 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH ( )( ) ∑ ⋅⋅+∫ ∫ ⋅=⋅ ←← rotors BjrotorCjrotorBjrotor tm tm FrozenRotors B C FrozenRotors B C B C B C Imd td rd td rd md td rd td rd ωω   , ,,,, 2 1 2 1 2 1 Kinetic Energy of the System (continue – 3) (c3) (c2) ( ) ∫ ∑ ∞ =       + tm i i i md td d 1 2 2 2 1 η φ ( )[ ]∫ −⋅= jrotorm CjrotorCjrotorCjrotorCjrotorCjrotor mdrrrrI ,,,,, 1:  where Second Moment of Inertia Dyadic of the Rotor j Relative to C ( ) ( ) ( ) ( ) ( ) ∫         ×⋅=∫         ⋅×=∫ ×⋅         ←←← tm B C CIB tm B C CIB tm CIB B C md td rd rmd td rd rmdr td rd , , , ,, ,      ωωω ( ) ( )        0 , 0, , ∫         ×⋅+∫         ×⋅= ←← tm B CIB tm B C CIB md td ed rmd td rd r ωω ( ) ( )( )∑ ∫ ××⋅+∫         ×⋅= ←←← rotors m CjrotorBjrotorCjrotorIB tm FrozenRotors B C CIB mdrrmd td rd r ,, , ,    ωωω ( ) [ ] [ ] Bjrotor rotors m CjrotorCjrotorIB tm FrozenRotors B C CIB mdrrmd td rd r ←←← ∑       ∫ ××−⋅+∫         ×⋅= ωωω    ,, , , ( ) [ ]∑⋅+∫         ×⋅= ←←← rotors BjrotorCrotorjIB tm FrozenRotors B C CIB Imd td rd r ωωω    , , ,
  • 17. 17 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Kinetic Energy of the System (continue – 4) (c3) ( )[ ] ( ) ∫ −⋅= tm OOOOO mdrrrrI ,,,,, 1:  where Second Moment of Inertia Dyadic of the System Relative to O ( ) ( ) ( ) [ ] [ ] ( ) IB tm CCIB tm CIBCIB mdrrmdrr ←←←←       ∫ ××−⋅=∫ ×⋅× ωωωω  ,,,, 2 1 2 1 IBCIB I ←← ⋅⋅= ωω  , 2 1
  • 18. 18 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Kinetic Energy of the System (continue – 5) To summarize, the Kinetic Energy of the system is given by ( ) ( ) ( ) ( ) ∫ ⋅+∫⋅+∫⋅= tm I C I C tm I C C tm CC md td rd td rd md td rd VmdVVT ,,, 2 1 2 1   ( ) ∑⋅−⋅= openings i ifluidCiopenCCC mrVmVV   , ˆ 2 1 IBCIB I ←← ⋅⋅+ ωω  , 2 1 ( ) ∑ ⋅⋅+∫ ⋅+ ←← rotors BjrotorCrotorjBjrotor tm FrozenRotors B C FrozenRotors B C Imd td rd td rd ωω   , ,, 2 1 2 1 ∑ ∞ =       + 1 2 2 1 i i i M td dη ( ) ∑ ⋅⋅+∫         ×⋅+ ←←← rotors BjrotorCrotorjIB tm FrozenRotors B C CIB Imd td rd r ωωω    , , , Table of Contents
  • 19. 19 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Potential Energy of the System We consider only (Electromagnetic, Chemical Potentials are not considered) ge UUU += Elastic Deformation Potential eU Gravitational Field Potential gU Table of Contents
  • 20. 20 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Potential Energy of the System Elastic Deformation Potential eU ( ) ( )∑ ∞ = = 1i iii tle ηφ  ii i td d ηω η 2 2 2 −= i m ii Mmd =∫ φφ  0 ji m ji md ≠ =∫ φφ  ∫ ∑∑∫               −⋅        −=         ⋅−= ∞ = ∞ =m i iii j jj m B e mdmd td ed eU 1 2 1 2 2 2 1 2 1 ηωφηφ   ( ) ( ) ∑∑ ∫∑∑ ∫ ∞ = ∞ = ∞ = ∞ = =        ⋅=        ⋅= 1 22 1 22 1 1 2 2 1 2 1 2 1 i iii i ii m ii j i jii m ij Mmdmd ηωηωφφηηωφφ  iii i e M U ηω η 2 = ∂ ∂ From We obtain From this we obtain Table of Contents
  • 21. 21 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Potential Energy of the System (continue – 1) Gravitational Field Potential gU ( ) 2 2 01 E Earth EE R R gRRg  −= 22 0 sec/17.32sec/78.9 ftmg == where mREarth 135.378.6= ( ) ( ) ( ) 2/1 2 0 2 02 2 0 2 0 2 2 0 1 1 CECE Earth CE Earth m CE CE Earth CE Earth m E Earth ECCE m CCEg RR R gm R R gmmdrR R R g R R gm md R R gRrRmdgrRU    ⋅ ==⋅+= ⋅+−=⋅+= ∫ ∫∫ ( ) CE CE CE Earth CE CECE Earth C g R R R R gmR RR R gm R U    2 2 02/3 2 0 2 2 1 −= ⋅ −= ∂ ∂ ( )CECE CE Earth C g RgmR R R gm R U   =−= ∂ ∂ 12 2 0 From this we obtain or Table of Contents
  • 22. 22 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces - generalized force along the generalized coordinate given by.iξiQ ( ) ( )i i W Q ξδ δ ∂ ∂ = -virtual work done on the system by all external forces/moments (excluding those accounted for in the potential energy term) during virtual displacement along all the generalized coordinates. Wδ The generalized forces are: PQ - due to position change, relative to inertial system ( ) [ ]T zyx I P RRRR ==  ξ - due to rotation of the system, around its centroid, relative to inertial systemRQ ( ) [ ]T kji E R θθθθξ ==  - due to elastic modal displacementsEQ [ ] T E   4321 ηηηηηξ ==
  • 23. 23 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH ( ) ( ) ( )∑+= openings i iopenW tStStS Generalized Forces (continue – 1) Virtual Work due to Position Change, Relative to Inertial Frame The virtual work done by change in position is due to pressure distribution and fluid flow through the openings, and to discrete forces applied on the system ( ) RF td Rd mdstfnpW openings j j I ifluid ifluid S P vehicle     δδ ⋅           +           ++−= ∑ ∑∫ ˆ 11 where • Sw(t) the impermeable wall through which the flow can not escape .( )0,  =sV • Sopen i(t) the openings (i=1,2,…) through which the flow enters or exits .( )0>m ( )0<m ( )2 / mNp - pressure on (normal to) the surface . f - friction force per (parallel to) unit surface .( )2 / mN n  1 - outward unit vector normal to the surface element ds t  1 - local unit vector of tangential stress due to flow on the surface element ds ∑ j jF  - discrete forces applied to the system at the position j R  ( )N is the mean position vector of the flow and of the opening on iopenSifluidR ˆ fluidm - fluid rate flowing through the opening iopenS
  • 24. 24 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 2) Si I CiopenI C I iopenfluid I Ciopen I C I ifluid V td rd V td rd td rd td Rd td Rd , ,,, ˆ ˆˆˆˆ     ++=++= - velocity of the centroid C of the system relative to inertiaCV  I Ciopen td rd , ˆ - mean velocity of the opening i relative to the centroid C SiV, ˆ - mean velocity of the fluid relative the opening i Virtual Work due to Position Change, Relative to Inertial Frame (continue – 1)
  • 25. 25 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 5) A virtual rotation ( ) kIjIntriB E kji θδθδθδθδ ˆˆˆ ++=  will produce a virtual displacement: ( ) C E C rr ,,  ×= θδδ ( ) ( ) ∑∑∑∫ ⋅+⋅+           ⋅++−⋅= k E k j jCj openings I ifluid ifluidCiopen S CR MFr td Rd mrdstfnprW vehicle θδδδδδ     ,,, ˆ ˆ11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑ ∑∫ ⋅+⋅×+           ⋅×++−⋅×= k E k j jCj E openings I ifluid ifluidCiopen E S C E MFr td Rd mrdstfnpr vehicle θδθδ θδθδ     , ,, ˆ ˆ11 ( ) ( )           +×+           ×++−×⋅= ∑ ∑∑∫ openings k k j jCj I ifluid ifluidCiopen S C E MFr td Rd mrdstfnpr vehicle     ,,, ˆ ˆ11θδ The virtual work done along the generalized coordinates (rotation around C relative to inertial frame around Euler axes) is done by the pressure distribution, the flow through the openings and the discrete forces and moments applied on the system: ( )E θ  Virtual Work due to Rotation, Relative to Inertial Frame
  • 26. 26 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 6) - due to elastic modal displacementsEQ [ ] T E   4321 ηηηηηξ == The virtual work done during the elastic deformations along thr generalized coordinates is done by the pressure distribution on the wetted area of the system and the discrete forces and moments applied on the system: e  ( ) ( ) ( ) ( ) ( )∑ ∑∑ ∑∫ ∑ ∑∑∫     ×∇⋅+    ⋅+    ⋅+−= ×∇⋅+⋅+⋅+−= ∞ = ∞ = ∞ = k i iik j i iij S i ii k k j j S E MFdstfnp eMeFdsetfnpW W vehicle 111 11 11 δηφδηφδηφ δδδδ   ( ) ( ) ( )[ ]   ,2,111 =∑ ×∇⋅+∑ ⋅+∫ ⋅+−= ∂ ∂ = ∞ iMFdstfnpp W Q k ik l il S i i P Ei W φφφ ηδ δ Generalized Elastic Forces
  • 27. 27 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 7) Let add to this equation the following ( )( ) ( ) 01 0 , 5 =∫∫∫ ×∇=∫ ×− ∞∞ V C GGauss tS CS dvrpdsnpRR   ( ) ( ) ( ) 0111 0 =⋅∇== ∫∫∫ ∞∞∞ tv Gauss tStS dvnpdsnpdsnp   ( )[ ] RF td Rd mdstfnppW openings j j I ifluid ifluid S P vehicle     δδ ⋅           +           ++−= ∑ ∑∫ ∞ ˆ 11 ( )[ ] ( )E openings k k j jCjSi I Ciopen CifluidCiopen S CR MFrV td rd VmrdstfnpprW vehicle θδδ      ⋅           +×+                 ++×++−×= ∑ ∑∑∫ ∞ ,, , ,, ˆ ˆ11 ( ) ( ) ( ) ( )∑ ∑∑ ∑∫ ∑     ×∇⋅+    ⋅+    ⋅+−= ∞ = ∞ = ∞ = k i iik j i iij S i iiE MFdstfnpW W 111 11 δηφδηφδηφδ  where is the pressure far away from the system, to obtain∞p
  • 28. 28 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 8) From those equations we obtain ( ) ( ) ( ) ( ) ( )I openings j j I iopenI Cifluid i TiAI C PI P F td rd VmFF R W Q           +                 +++= ∂ ∂ = ∑ ∑∑∑        ˆ δ δ Generalized Position Forces in Inertial Frame ( ) ( )[ ]( ) ∫∑ +−= ∞ WsS II A dstfnppF  11 Aerodynamic Forces in Inertial Frame ( ) ( )[ ]( ) ∑∑ −+= ∞ openings I iopenSiifluid i I Ti nppSVmF    1, Thrust Forces in Inertial Frame
  • 29. 29 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 9) Generalized Moments around Euler Axes (E), relative to C Aerodynamic Moments relative to C Thrust Moments relative to C ( ) ( ) ( ) ( ) ( )[ ]∫ +−×= ∂ ∂ = ∞ vehicleS CE RE R dstfnppr W Q    11, θδ δ ∑ ∑∑ +×+                 ++×+ openings k k j jCjSi I CiopenI CifluidCiopen MFrV td rd Vmr      ,, , , ˆ ˆ ( )[ ]∫ +−×= ∞ WS C dstfnppr  11 ( )[ ]∑ +−×+ ∞ openings SiifluidopeniCiopen VmnppSr ,, 1    ∑∑∑ +×+         +×+ k k j jCj openings I CiopenI CCiopenifluid MFr td rd Vrm     , , , ˆ ˆ ( ) ( ) ( ) ( ) ( )E openings k k j jCj I CiopenI CCiopenifluid i CTiCAE RE R MFr td rd VrmMM W Q           +×+         +×++= ∂ ∂ = ∑ ∑∑∑∑        , , ,,, ˆ ˆ θδ δ ( )[ ]∫∑ +−×= ∞ WS CCA dstfnpprM  11:, ( )[ ]∑∑ −+×= ∞ openings iopenSiifluidCiopen i CTi nppSVmrM    1ˆ: ,,,
  • 30. 30 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Generalized Forces (continue – 10) We want to find the Generalized Moments around Body Axes. We must find the transformation from the non-orthogonal Euler Axes (E) to Body Axes (B). ( ) ( ) [ ] ( ) [ ] [ ] ( ) [ ] { } { } { }[ ] ( )E k j i k j i I Ijjii Intr Intrii B B B DDDDkji θδ θδ θδ θδ θδ θδ θδ θθθθδ    =           =           = 321 ˆˆˆ ( ) { } ( )[ ] ( ) ( ) { } ( )[ ] ( )B openings k k j jCj I ifluid ifluidCiopen S C TTE B openings k k j jCj I ifluid ifluidCiopen S C TE R MFr td Rd mrdstfnpprD MFr td Rd mrdstfnpprDW vehicle vehicle           +×+           ×++−×=           +×+           ×++−×= ∑ ∑∑∫ ∑ ∑∑∫ ∞ ∞         ,,, ,,, ˆ ˆ11 ˆ ˆ11 θδ θδδ ( ) ( ) ( ) ( ) ( )B openings k k j jCj I CiopenI CCiopenifluid i CTiCA T E RB R MFr td rd VrmMMD W Q           +×+         +×++= ∂ ∂ = ∑ ∑∑∑∑        , , ,,, ˆ ˆ θδ δ Table of Contents
  • 31. 31 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame The generalized coordinates are [ ]T E T R T P ξξξξ  = where ( ) [ ]T CzCyCx I CP RRRR ==  ξ ( ) [ ]T kji E R θθθθξ ==  [ ] T E   4321 ηηηηηξ == The velocity vector of the system centroid C is given by: ( ) [ ] ( )                     ==           =           = Cz Cy Cx I C Cz Cy Cx B I B C R R R CCC CCC CCC RC R R R C w v u V         333231 232221 131211 : The angular velocity of rotation of the Body relative to inertia is: [ ] [ ] [ ] ( ) { } { } { }[ ]           =                     ==           =           =← k j i k j i E k j i B IB DDD DDD DDD DDD DD r q p θ θ θ θ θ θ θ θ θ θ ω            321 333231 232221 131211 :
  • 32. 32 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame (continue – 1) We want to perform a change of coordinates from to( )ξξ , ( )w,ξ { } { }ηθηηθθθξ ,,,,,,,,,,: 21321 TT C T CzCyCx RRRR   == { } { }ηωηη  ,,,,,,,,,,: 21 T B T C T Vrqpwvuw == - system potential energy.( )ξU - generalized force along the generalized coordinate given by.iξiQ ( ) ( )wTT ,, ξξξ = - system kinetic energy. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηωηθ ηωθηθηθηθ    ,,,,, ,,,,,,,,,, 1 B B B C EI C B B B C ETEI C EI C EI C VRT DVCRTRRT = =     − The coordinates are called quasi-coordinates (see Meirovitch [4], pg. 157), to differentiate from the Lagrangian’s coordinates that describe the degrees of freedom. ( )ξξ , ( )w,ξ
  • 33. 33 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame (continue – 2) The Lagrange’s Equations of Motion are: i iii Q UTT td d =      ∂ ∂ +      ∂ ∂ −      ∂ ∂ ξξξ Let outline (full derivation of the equation on this page is done in Appendix ) the derivation of the Lagrange’s Equations in Body Coordinates ( ) ( ) ( ) ( ) ( ) ( ) ( )         ∂ ∂ =         ∂ ∂         ∂ ∂ =         ∂ ∂ B C ET B C I C B C I C V T C V T R V R T       θ Appendix ( ) ( ) ( ) { } ( ) ( ) ( ) { } ( ) ( )         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ +       ∂ ∂ =       ∂ ∂ ← ← B C E TB C B IB E TB IB EE V TVTTT      θωθ ω θθ Appendix ( ) ( )         ∂ ∂ =         ∂ ∂ I C I C R T R T  Appendix ( ) ( ) ( ) { } ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) { } ( ) ( ) [ ]( ) ( )       ∂ ∂ ×−       ∂ ∂ ∂ ∂ +       ∂ ∂ =       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ +       ∂ ∂ =       ∂ ∂ ← ← ← ← B C B C T B IB E TB IB E B C E TB C B IB E TB IB EE V T VD TT V TVTTT           ωθ ω θ θωθ ω θθ Appendix
  • 34. 34 ( ) ( ) ( ) [ ] [ ] ( )I P CC B C TB I B C TB II C I C I C Q R U R T V T td Cd V T td d C R U R T R T td d    =        ∂ ∂ +       ∂ ∂ −       ∂ ∂ +       ∂ ∂ =        ∂ ∂ +       ∂ ∂ −         ∂ ∂ SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame (continue – 3) From ( ) ( ) ( ) ( ) ( ) ( ) ( )         ∂ ∂ =         ∂ ∂         ∂ ∂ =         ∂ ∂ B C ET B C I C B C I C V T C V T R V R T       θ ( ) ( )         ∂ ∂ =         ∂ ∂ I C I C R T R T  ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂ EEE UTT td d θθθ   ( ) ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂ +         ∂ ∂ = ←← EEB IB T B IB T UTT td DdT td d D θθωω  ( ) { } ( ) ( ) [ ]( ) ( ) ( )E RB C B C T B IB E TB IB Q V T VD T      =         ∂ ∂ ×+         ∂ ∂ ∂ ∂ − ← → ωθ ω From we obtain ( ) ( ) ( ) { } ( ) ( ) ( ) { } ( ) ( )         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ +       ∂ ∂ =       ∂ ∂ ← ← B C E TB C B IB E TB IB EE V TVTTT      θωθ ω θθ ( ) ( ) ( ) { } ( ) ( ) [ ]( ) ( )       ∂ ∂ ×−       ∂ ∂ ∂ ∂ +       ∂ ∂ =       ∂ ∂ ← ← B C B C T B IB E TB IB EE V T VD TTT      ωθ ω θθ we obtain
  • 35. 35 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame (continue – 4) Using [ ] [ ] [ ] ( )B IB TB I TB I C td Cd ×= ←ω  and ( ) { } ( ) [ ] ( )B IB T E TB IB T D td Dd ×+ ∂ ∂ = ← ← ω θ ω   we can compute ( ) ( ) ( )         ∂ ∂ +         ∂ ∂ −         ∂ ∂ I C I C I C R U R T R T td d   [ ] ( ) [ ] ( ) ( ) ( )         ∂ ∂ +         ∂ ∂ −         ∂ ∂ +         ∂ ∂ = I C I C B C TB I B C TB I R U R T V T td Cd V T td d C  [ ] ( ) [ ] [ ] ( ) ( ) ( ) ( ) ( )I PI C I C B C B IB TB IB C TB I Q R U R T V T C V T td d C     =        ∂ ∂ +         ∂ ∂ −         ∂ ∂ ×+         ∂ ∂ = ←ω
  • 36. 36 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame (continue – 5) Finally ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂ EEE UTT td d θθθ   ( ) ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂ +         ∂ ∂ = ←← EEB IB T B IB T UTT td DdT td d D θθωω  [ ]( ) ( ) ( ) { } ( ) ( )         ∂ ∂ ∂ ∂ −         ∂ ∂ ×+ ← → B IB E TB IB B C B C T T V T VD ωθ ω     ( ) [ ]( ) ( ) { } ( ) ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂         ∂ ∂ +×+         ∂ ∂ = ← → ← ← EEB IB E TB IBB IB T B IB T UTT D T td d D θθωθ ω ω ω     [ ]( ) ( ) ( ) { } ( ) ( ) ( )E R B IB E TB IB B C B C T Q T V T VD      =       ∂ ∂ ∂ ∂ −       ∂ ∂ ×+ ← → ωθ ω [ ]( ) ( ) ( ) ( )I P B II C B II C B IB C B IBB C QC R U C R T C V T V T td d     =        ∂ ∂ +         ∂ ∂ −         ∂ ∂ ×+         ∂ ∂ ←ω ( ) [ ]( ) ( ) [ ]( ) ( ) ( ) ( ) ( )E R T E T E T B C B CB IB B IBB IB QD U D T D V T V TT td d       −−− ← ← ← =       ∂ ∂ +       ∂ ∂ −       ∂ ∂ ×+       ∂ ∂ ×+       ∂ ∂ θθω ω ω
  • 37. 37 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Computation of Lagrange Equations in Body Frame (continue – 6) Summarize ( ) ( ) [ ]( ) [ ]( ) [ ]( ) ( ) ( ) ( )               ∂ ∂ ∂ ∂           −               ∂ ∂       ∂ ∂             ×× × +               ∂ ∂ ∂ ∂ − ← ← ← ← E I T B I B IB B C B IB B C B IB B IB B C T R T D C T V T V T V T td d θω ω ω ω         0 00 ( ) ( ) ( )                     =               ∂ ∂ ∂ ∂           + −− E R I P T B I E I T B I Q Q D C U R U D C     0 0 0 0 θ See Meirovitch and Kwak [6] and Meirovitch [7]. In the same way, for the elastic modes, we have:   ,2,1== ∂ ∂ + ∂ ∂ −      ∂ ∂ = ∂ ∂ + ∂ ∂ −      ∂ ∂ iQ UTT td dUTT td d Ei iiiiii ηηηηηη Table of Contents
  • 38. 38 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion The Translational Lagrange Equations in Body Coordinates are given by: ( ) [ ]( ) ( ) ( ) ( ) ( )I P B II C B II C B IB C B IBB C QC R U C R T C V T V T td d     =        ∂ ∂ +         ∂ ∂ −         ∂ ∂ ×+         ∂ ∂ ←ω Pre-multiplying by will give the Translational Lagrange Equation in Inertial Frame. ( ) I B TB I CC = ( ) ( ) ( ) ( )I PI C I C I C Q R U R T V T td d   =        ∂ ∂ +         ∂ ∂ −         ∂ ∂ where we used ( ) ( ) [ ]( ) ( )               ∂ ∂ ×+       ∂ ∂ =       ∂ ∂ ← B C B IBB C I BI C V T V T td d C V T td d    ω
  • 39. 39 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 1) Since the kinetic energy of the system is given by: ( ) ( ) ( ) ( ) ∫ ⋅+∫⋅+∫⋅= tm I C I C tm I C C tm CC md td rd td rd md td rd VmdVVT ,,, 2 1 2 1   ( ) ∑⋅−⋅= openings i ifluidCiopenCCC mrVmVV   , ˆ 2 1 IBCIB I ←← ⋅⋅+ ωω  , 2 1 ( ) ∑ ⋅⋅+∫ ⋅+ ←← rotors BjrotorCrotorjBjrotor tm FrozenRotors B C FrozenRotors B C Imd td rd td rd ωω   , ,, 2 1 2 1 ∑ ∞ =       + 1 2 2 1 i i i M td dη ( ) ∑ ⋅⋅+∫         ×⋅+ ←←← rotors BjrotorCrotorjIB tm FrozenRotors B C CIB Imd td rd r ωωω    , , , we have: PmrVm V T openings ifluidCiopenC C     =−=       ∂ ∂ ∑ :ˆ , This equation gives the Linear Momentum of the system. The same expression was obtained using Simplified Particles and Reynolds’ Theorem Approaches.
  • 40. 40 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 2) we have: PmrVm V T openings ifluidCiopenC C     =−=       ∂ ∂ ∑ :ˆ , This equation gives the derivative of the Linear Momentum of the system. The same expression was obtained using Simplified Particles and Reynolds’ Theorem Approaches if we identify: ∑∑ −−+=       ∂ ∂ = openings ifluidCiopen openings ifluid I Ciopen C I C ICI mrm td rd Vm td Vd m V T td d td Pd          , , ˆ ˆ 0=       ∂ ∂ CR T  ( )CECE CE Earth C RgmR R R gm R U   −=−=       ∂ ∂ → 12 2 0 → +=−−+= ∑∑ E E Earth P openings ifluidCiopen openings ifluid I Ciopen C I C I R R R gmQmrm td rd Vm td Vd m td Pd 1ˆ ˆ 2 2 0, ,         Substitute those equation in the Lagrange’s Equation: ( ) ( ) ( ) ( )I PI C I C I C Q R U R T V T td d   =        ∂ ∂ +         ∂ ∂ −         ∂ ∂ gmQR R R gmQF PE E Earth Pext  +=+= → ∑ 12 2 0
  • 41. 41 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 3) → +=−−+= ∑∑ E E Earth P openings ifluidCiopen openings ifluid I Ciopen C I C I R R R gmQmrm td rd Vm td Vd m td Pd 1ˆ ˆ 2 2 0, ,         Substitute: ( ) ( )I openings j jifluid I Ciopen C i TiA I P Fm td rd VmFFQ         ++++= ∑ ∑∑∑       , ˆ in to obtain ∑∑∑∑∑ +++++= j j openings ifluid I Ciopen openings ifluidCiopen i TiA I C Fm td rd mrFFgm td Vd m       , , ˆ ˆ2
  • 42. 42 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 4) Rotation Equations The Rotational Lagrange’s equations in Body Coordinates are given by: ( ) [ ]( ) ( ) [ ]( ) ( ) ( ) ( ) ( )E R T E T E T B C B CB IB B IBB IB QD U D T D V T V TT td d       −−− ← ← ← =       ∂ ∂ +       ∂ ∂ −       ∂ ∂ ×+       ∂ ∂ ×+       ∂ ∂ θθω ω ω ( ) ( ) ( ) ( ) ∫ ⋅+∫⋅+∫⋅= tm I C I C tm I C C tm CC md td rd td rd md td rd VmdVVT ,,, 2 1 2 1   ( ) ∑⋅−⋅= openings i ifluidCiopenCCC mrVmVV   , ˆ 2 1 IBCIB I ←← ⋅⋅+ ωω  , 2 1 ( ) ∑ ⋅⋅+∫ ⋅+ ←← rotors BjrotorCrotorjBjrotor tm FrozenRotors B C FrozenRotors B C Imd td rd td rd ωω   , ,, 2 1 2 1 ∑ ∞ =       + 1 2 2 1 i i i M td dη ( ) ∑ ⋅⋅+∫         ×⋅+ ←←← rotors BjrotorCrotorjIB tm FrozenRotors B C CIB Imd td rd r ωωω    , , , ( ) C rotors BjrotorCrotorj tm RotorsFrozen B C CIBC IB HImd td rd rI T ,, , ,, :     =⋅+         ×+⋅=      ∂ ∂ ∑∫ ←← ← ωω ω Since the kinetic energy of the system is given by: we obtain
  • 43. 43 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 5) Rotation Equations (continue – 1) ( ) C rotors BjrotorCrotorj tm RotorsFrozen B C CIBC IB HImd td rd rI T ,, , ,, :     =⋅+         ×+⋅=      ∂ ∂ ∑∫ ←← ← ωω ω we obtain ( ) ( )       ⋅×+⋅+         ××+                 ×+ ⋅×+⋅+⋅= ×+==      ∂ ∂ ∑∑ ∫∫ ←←← ← ←←←← ← ← rotors BjrotorCrotorIB rotors BjrotorCrotor tm RotorsFrozen B C CIB B tm RotorsFrozen B C C IBCIBIBCIBC CIB I C I C IIB II md td rd rmd td rd r dt d III H td Hd td HdT td d ωωω ω ωωωω ω ω           ,, , , , , ,,, , ,,
  • 44. 44 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 6) Rotation Equations (continue – 2) we obtain ( ) ( ) { }0   =       ∂ ∂ =       ∂ ∂ EE UT θθ ( ) [ ]( ) ( ) [ ]( ) ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂ ×+         ∂ ∂ ×+         ∂ ∂ −− ← ← ← E T E T B C B CB IB B IBB IB U D T D V T V TT td d θθω ω ω      ( ) ( ) [ ]( ) ( ) ( ) ( ) ( ) [ ]( ) ( ) [ ]( ) ( )B openings ifluidCiopenC B C B rotors BjrotorCrotor B IB rotors B BjrotorCrotor tm RotorsFrozen B C CIB B tm RotorsFrozen B C C B IBC B IB B IBC B IBC mrVmVII md td rd rmd td rd r dt d III       ∑−×+∑ ⋅×+∑ ⋅+ ∫         ××+         ∫         ×+ ⋅×+⋅+⋅= ←←← ← ←←←←          ,,, , , , , ,,, ˆωωω ω ωωωω ( )E openings k k j jCj I Ciopen CCiopenifluid i CTiCA T MFr td rd VrmMMD           +×+         +×++= ∑ ∑∑∑∑−      , , ,,, ˆ ˆ ( )B openings k k j jCj I Ciopen CCiopenifluid i CTiCA MFr td rd VrmMM           +×+         +×++= ∑ ∑∑∑∑      , , ,,, ˆ ˆ
  • 45. 45 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 7) Rotation Equations (continue – 3) Finally ( ) ( ) [ ]( ) ( ) ( ) ( ) ( ) [ ]( ) ( ) ( ) ( ) ∑∑∑∑ ∑∑ ∫∫ +×++= ⋅×+⋅+         ××+                 ×+ ⋅×+⋅+⋅ ←←← ← ←←←← k k j jCj i B CTi B CA B rotors BjrotorCrotor B IB rotors B BjrotorCrotor tm RotorsFrozen B C CIB B tm RotorsFrozen B C C B IBC B IB B IBC B IBC MFrMM II md td rd rmd td rd r dt d III         ,,, ,, , , , , ,,, ωωω ω ωωωω
  • 46. 46 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 8) Elastic Equations Ei iii Q UTT td d = ∂ ∂ + ∂ ∂ −      ∂ ∂ ηηη ( ) ( ) ( ) ( ) ∫ ⋅+∫⋅+∫⋅= tm I C I C tm I C C tm CC md td rd td rd md td rd VmdVVT ,,, 2 1 2 1   ( ) ∑⋅−⋅= openings i ifluidCiopenCCC mrVmVV   , ˆ 2 1 IBCIB I ←← ⋅⋅+ ωω  , 2 1 ( ) ∑ ⋅⋅+∫ ⋅+ ←← rotors BjrotorCrotorjBjrotor tm FrozenRotors B C FrozenRotors B C Imd td rd td rd ωω   , ,, 2 1 2 1 ∑ ∞ =       + 1 2 2 1 i i i M td dη ( ) ∑ ⋅⋅+∫         ×⋅+ ←←← rotors BjrotorCrotorjIB tm FrozenRotors B C CIB Imd td rd r ωωω    , , , Since the kinetic energy of the system is given by: we have td d M T i i i η η = ∂ ∂  0= ∂ ∂ i T η 2 2 td d M TT td d i i ii η ηη = ∂ ∂ −      ∂ ∂  Therefore
  • 47. 47 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Derivation of the Equations of Motion (continue – 9) Elastic Equations (continue – 1) Ei iii Q UTT td d = ∂ ∂ + ∂ ∂ −      ∂ ∂ ηηηFrom ∑= ∞ =1 22 2 1 i iiie MU ηω we obtain iii i e M U ηω η 2 = ∂ ∂ From ( ) ( ) ( )[ ] ∑∑∫ ×∇⋅+⋅+⋅+−= ∂ ∂ = ∞ k ik j ij S i i P Ei MFdstfnpp W Q W φφφ ηδ δ  11 Therefore ( )[ ] ∑∑∫ ×∇⋅+⋅+⋅+−=      + ∞ k ik j ij S iii i i MFdstfnpp td d M W φφφηω η  11 2 2 2 Table of Contents
  • 48. 48 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ( ) ∑       =∑ ∫∫=∫= openings i iopen openings i S i tm td md mdmd td d tm iopen  MASS EQUATION FORCE EQUATION RIGID-BODY TERMSmV td Vd CIO O C         ×+ ←   ω ∑−∑         ×+− ← openings i iflowiopen openings i iflowiopenIO B iopen mrmr td rd      ˆˆ ˆ 2 ω FLUID-FLOW TERMS GRAVITATIONAL, AERODYNAMIC, PROPULSIVE & ∑+∑+= i TiA FFmg  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ∑+ j jF  DISCRETE TERMS
  • 49. 49 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 1) MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O RIGID-BODY TERMSIOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω  ,,,     ∑ ⋅×+∑ ⋅+ ←←← j OjrotorCrotorjIO j OjrotorCrotorj RjRj II ωωω  ,, ROTORS TERMS ( ) ( )         ∫         ××+         ∫         ×+ ← tm FrozenRotor O O OIO O tm FrozenRotor O O O dm td rd r dm td rd r td d , , , ,     ω BODY FLUIDS, MOVING PARTS, ELASTICITY,… TERMS FLUID CROSSING OPENINGS TERMS ∑         ×+×− ← openings i iflowOiopenIO O Oiopen Oiopen mr td rd r     , , , ˆ ˆ ˆ ω AERODYNAMIC & PROPULSIVE ∑+∑= i OTiOA MM ,,  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ∑+∑ ×−+ k k j jOj MFRR  DISCRETE FORCES MOMENTS TERMS         −×+ I O O td Vd gc   , NON-CENTROIDAL MOMENTS TERMS
  • 50. 50 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 2) ( )[ ]∫∫∑ +−= ∞ WS A dstfnppF  11: AERODYNAMIC FORCES ( )∫∫ −+     −= ∞ iopenS iflowiopeniflowTi dsnppmVVF    1 ˆˆ : THRUST FORCES ( ) ( )[ ]∫∫ +−×−=∑ ∞ WS OOA dstfnppRRM  11:, AERODYNAMIC MOMENTS RELATIVE TO O ( ) ( )[ ]∫∫ −×−+     −×     −= ∞ iopenS OiflowiopeniflowOiopenOTi dsnppRRmVVRRM    1 ˆˆˆ :, THRUST MOMENTS RELATIVE TO O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM Table of Contents
  • 51. 51 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH References 2. Meirovitch, L., “Method of Applied Dynamics”, John Wiley & Sons, 1986 3. Goldstein, H., “Classical Mechanics”, 1st , 2nd and 3rd Editions 4. Lanczos, C., “The Variational Principles of Mechanics”, 4th Edition, Dover Publications, 1970 5. Meirovitch, L., “General Motion of a Variable-Mass Flexible Rocket with Internal Flow”, J. Spacecraft, Vol. 7, No. 2, Feb. 1970, pp. 186-195 1. Bilmoria, K.D., Schmidt, D.K., “An Integrated Development of the of Motion for Elastic Hypersonic Flight Vehicles”, AIAA-92-4605-CP, and Journal of Guidance, Control and Dynamics, Vol.18, No.1, Jan.-Feb., 1995, pp. 73-81 6. Meirovitch, L., Kwak, M.K., “Dynamics and Control of Spacecraft with Retargeting Flexible Antennas”, Journal of Guidance, Control and Dynamics, Vol.13, No.2, March-April, 1990, pp. 241-248
  • 52. 52 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH References (continue – 1) 7. Meirovitch, L., “State Equation of Motion for Flexible Bodies in Terms of Quasi-Coordinates”, Proceedings of the IUTAM/IFAC Symposium on Dynamics of Controlled Mechanical Systems, Switzerland, May-June 1998 8. Weng, S-L., Greenwood, D.T., “General Dynamical Equations of Motion for Elastic Body Systems”, Journal of Guidance, Control and Dynamics, Vol.15, No.6, Nov.-Dec., 1992, pp. 1434-1442 Table of Contents
  • 53. 53 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations The generalized coordinates are: i iii Q UTT td d =      ∂ ∂ +      ∂ ∂ −      ∂ ∂ ξξξ ( ) [ ]T zyx I CP RRRR ==  ξ Position components relative to Inertial System in Inertial Coordinates [ ]T kjiR θθθξ =Γ=  Euler Angles around Euler Axes [ ] T E   4321 ηηηηηξ == Elastic Modes We want to obtain the Lagrange Equations in Body Coordinates. ( ) ( )wTT ,, ξξξ = Kinetic Energy of the System ( )ξU Potential Energy of the System kQ Generalized Forces along the Degrees of Freedom Axes ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηωηθηωθηθηθηθ    ,,,,,,,,,,,,,,, 1 B B B B EIB B B B ETEIEIEI VRTDVCRTRRT ==      − { } { }ηθηηθθθξ ,,,,,,,,,,: 21321 TTT zyx RRRR   == { } { }ηωηη  ,,,,,,,,,,: 21 T B T B T Vrqpwvuw ==
  • 54. 54 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH The angular velocity vector of rotation of the Body frame relative to Inertia frame is: kIjIntriBIB kji θθθω  ˆˆˆ ++=← In Body frame this is: ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] [ ] ( ) k I Ijjiij Intr Intriii B Bk B Ij B Intri B B B IB kjikji θθθθθθθθθω  ˆˆˆˆˆˆ ++=++=← [ ] ( ) [ ] ( ) [ ] [ ] ( ) [ ] { } { } { }[ ]           =           =           =← k j i k j i I Ijjii Intr Intrii B B B IB DDDkji r q p θ θ θ θ θ θ θθθω          321 ˆˆˆ: { } ( ) ( ){ } ( ) [ ] ( ) ( ){ } ( ) [ ] [ ] ( ) { } { } { }[ ]321 321 : ˆˆ:,&ˆˆ:&ˆ: DDDD kkDjjDconstiD I Ijjii B Iji Intr Intrii B Intri B B = ====== → θθθθθθ ( ) [ ] [ ] ( ) { } { } { }[ ]           =                     ==           =           =← k j i k j i E k j i B IB DDD DDD DDD DDD DD r q p θ θ θ θ θ θ θ θ θ θ ω             321 333231 232221 131211 : where: or Appendix A: Lagrange Equations (continue – 1)
  • 55. 55 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                       ∂ ∂ ∂ ∂ ∂ ∂ =                       ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ − − − z B B B B EI y B B B B EI x B B B B EI z B B EB B ETEI y B B EB B ETEI x B B EB B ETEI z y x R VRT R VRT R VRT R DVCRT R DVCRT R DVCRT R T R T R T                ηωηθ ηωηθ ηωηθ ηωθθηθ ηωθθηθ ηωθθηθ ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, 1 1 1                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ = w T v T u T R w R v R u R w R v R u R w R v R u w T R w v T R v u T R u w T R w v T R v u T R u w T R w v T R v u T R u zzz yyy xxx zzz yyy xxx       We have: In a shorthand notation form: ( ) ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂ =       ∂ ∂         ∂ ∂ =         ∂ ∂ B B ET B B I B B I V T C V T R V R T       θ ( ) [ ] ( )                     ==           =           = Cz Cy Cx I C Cz Cy Cx B I B C R R R CCC CCC CCC RC R R R C w v u V         333231 232221 131211 :
  • 56. 56 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 3) also: In a shorthand notation form: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                       ∂ ∂ ∂ ∂ ∂ ∂ =                       ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ − − − k B B B B EI j B B B B EI i B B B B EI k B B EB B ETEI j B B EB B ETEI i B B EB B ETEI k j i VRT VRT VRT DVCRT DVCRT DVCRT T T T θ ηωηθ θ ηωηθ θ ηωηθ θ ηωθηθθ θ ηωθηθθ θ ηωθηθθ θ θ θ                ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, 1 1 1                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ = r T q T p T rqp rqp rqp r Tr q Tq p Tp r Tr q Tq p Tp r Tr q Tq p Tp kkk jjj iii kkk jjj iii θθθ θθθ θθθ θθθ θθθ θθθ       ( ) ( ) ( ) ( ) ( ) ( ) ( )         ∂ ∂ =         ∂ ∂         ∂ ∂ =         ∂ ∂ ←← ← B IB ET B IB E B IB E T D TT ω θ ωθ ω θ     
  • 57. 57 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 4) In the same way: In a shorthand notation form: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                     ∂ ∂ ∂ ∂ ∂ ∂ =                       ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ − − − z y x z B B EB B ETEI y B B EB B ETEI x B B EB B ETEI z y x R T R T R T R DVCRT R DVCRT R DVCRT R T R T R T ηωθθηθ ηωθθηθ ηωθθηθ    ,,,,, ,,,,, ,,,,, 1 1 1 ( ) ( )       ∂ ∂ =       ∂ ∂ II R T R T 
  • 58. 58 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 5) and: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                       ∂ ∂ ∂ ∂ ∂ ∂ =                       ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ − − − k B B B B EI j B B B B EI i B B B B EI j B B EB B ETEI j B B EB B ETEI i B B EB B ETEI k j i VRT VRT VRT DVCRT DVCRT DVCRT T T T θ ηωηθ θ ηωηθ θ ηωηθ θ ηωθθηθ θ ηωθθηθ θ ηωθθηθ θ θ θ       ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, 1 1 1                     ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ ∂ ∂ = r Tr q Tq p Tp r Tr q Tq p Tp r Tr q Tq p Tp w Tw v Tv u Tu w Tw v Tv u Tu w Tw v Tv u Tu T T T kkk jjj iii kkk jjj iii k j i θθθ θθθ θθθ θθθ θθθ θθθ θ θ θ ( ) { } ( ) ( ) { } ( )                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ → r T q T p T rqp rqp rqp w T v T u T wvu wvu wvu T T T E TB IB E TB BV          θ ω θ θθθ θθθ θθθ θθθ θθθ θθθ θ θ θ 333 222 111 333 222 111 3 2 1
  • 59. 59 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 6)           ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ z k y k x k z k y k x k z j y j x j z j y j x j z i y i x i z i y i x i kkk jjj iii R C R C R C R C R C R C R C R C R C R C R C R C R C R C R C R C R C R C wvu wvu wvu    θθθθθθ θθθθθθ θθθθθθ θθθ θθθ θθθ 232221131211 232221131211 232221131211           ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ z k y k x k z j y j x j z i y i x i R C R C R C R C R C R C R C R C R C    θθθ θθθ θθθ 333231 333231 333231 ( ) { } ( ) ( ) { } ( ) { } ( ) { } { } { } { } { } [ ][ ] { } [ ][ ] { } [ ][ ] { } [ ] { } [ ] { } [ ] ( ) { } [ ] ( ) { } [ ] ( ) { } [ ] [ ] [ ] [ ][ ] ( ) ( ) [ ] ( ) ( )TB B TB B T TB B T TB B T TB B TTT I TTT I TTT I TT I TT I TT I T k T I T j T I T i T I k TB B j TB B i TB B E TB B VDVDDD DV DV DV DCR DCR DCR CDR CDR CDR C R C R C R V V V V                    ×−=×××−=             ×− ×− ×− =                     ×− ×− ×− =                     ×− ×− ×− =                             ∂ ∂         ∂ ∂       ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ 321 3 2 1 3 2 1 3 2 1 θ θ θ θ θ θ θ In a shorthand notation form: [ ]( ) ( ) [ ]( ) ( ) [ ]( )B B TTB B TTB B VDVDDV ×−=×=×=  and ( ) { } ( ) ( ) { } ( ) { } ( ) { }                     ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ → → → → k TB IB j TB IB i TB IB kkk jjj iii E TB IB rqp rqp rqp θ ω θ ω θ ω θθθ θθθ θθθ θ ω     
  • 60. 60 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH ( ) { } ( ) ( ) { } ( )                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ → r T q T p T rqp rqp rqp w T v T u T wvu wvu wvu T T T T T T E TB IB E TB BV k j i          θ ω θ θθθ θθθ θθθ θθθ θθθ θθθ θ θ θ θ θ θ 333 222 111 333 222 111 3 2 1 Appendix A: Lagrange Equations (continue – 7) ( ) { } ( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )B B TTB B TTB BE TB B VDVDDV V ×−=×=×= ∂ ∂    θ We found ( ) { } ( ) ( ) { } ( ) { } ( ) { }                     ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ → → → → k TB IB j TB IB i TB IB kkk jjj iii E TB IB rqp rqp rqp θ ω θ ω θ ω θθθ θθθ θθθ θ ω      [ ]( ) ( ) { } ( ) { } ( ) { }                     ∂ ∂ ∂ ∂ ∂ ∂                     ∂ ∂ ∂ ∂ ∂ ∂ +                     ∂ ∂ ∂ ∂ ∂ ∂ ×−                     ∂ ∂ ∂ ∂ ∂ ∂ =                     ∂ ∂ ∂ ∂ ∂ ∂ → → → r T q T p T w T v T u T VD T T T T T T k TB IB j TB IB i TB IB B B T k j i k j i θ ω θ ω θ ω θ θ θ θ θ θ     In a shorthand notation form: ( ) ( ) [ ] ( ) ( ) ( ) { } ( ) ( )       ∂ ∂ ∂ ∂ +         ∂ ∂ ×−         ∂ ∂ =         ∂ ∂ ← → B IB E TB IB B B B B T EE T V T VD TT ωθ ω θθ     
  • 61. 61 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 8) ( ) ( )       ∂ ∂ =       ∂ ∂ II R T R T ( ) ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂ =       ∂ ∂         ∂ ∂ =         ∂ ∂ B B ET B B I B B I V T C V T R V R T       θUsing and [ ] [ ] ( )I P II B B TB I B B TB I III Q R U R T V T td Cd V T td d C R U R T R T td d    =        ∂ ∂ +         ∂ ∂ −         ∂ ∂ +         ∂ ∂ =        ∂ ∂ +         ∂ ∂ −         ∂ ∂we obtain Using ( ) ( ) [ ] ( ) ( ) ( ) { } ( ) ( )         ∂ ∂ ∂ ∂ +       ∂ ∂ ×−       ∂ ∂ =       ∂ ∂ ← → B IB E TB IB B B B B T EE T V T VD TT ωθ ω θθ     ( ) ( ) ( ) ( ) ( ) ( ) ( )         ∂ ∂ =         ∂ ∂         ∂ ∂ =         ∂ ∂ ←← ← B IB ET B IB E B IB E T D TT ω θ ωθ ω θ      and we obtain ( ) ( ) ( )       ∂ ∂ +       ∂ ∂ −         ∂ ∂ EEE UTT td d θθθ   ( ) ( ) ( ) ( ) [ ]( ) ( ) ( ) { } ( ) ( ) ( )E RB IB E TB IB B B B B T EEB IB T B IB T Q T V T VD UTT td DdT td d D       =       ∂ ∂ ∂ ∂ −         ∂ ∂ ×+         ∂ ∂ +         ∂ ∂ −       ∂ ∂ +       ∂ ∂ = ← → ←← ωθ ω θθωω
  • 62. 62 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 9) Computations of and td Dd T ( ) { } ( )E TB IB θ ω   ∂ ∂ → Basic Euler Rotations The three basic Euler rotations, around the axes are described by the Rotation Matrices: ,3ˆ,2ˆ,1ˆ [ ]           − = 11 1111 0 0 001 : θθ θθθ cs sc [ ]           − = 22 22 22 0 010 0 : θθ θθ θ cs sc [ ]           −= 100 0 0 : 33 33 33 θθ θθ θ cs sc Let differentiate with respect to Euler Angles. [ ] [ ][ ] 11 11 11 11 11 11 11 11 11 1ˆ 0 0 001 010 100 000 0 0 000 0 0 001 θ θθ θθ θθ θθ θθ θθ θθ θ ×−=           −          −=           −− −=           − = cs sc sc cs cs sc d d d d [ ] [ ][ ] 22 22 22 22 22 22 22 22 22 2ˆ 0 010 0 001 000 100 0 000 0 0 010 0 θ θθ θθ θθ θθ θθ θθ θθ θ ×−=           −           − =           − −− =           − = cs sc sc cs cs sc d d d d [ ] [ ][ ] 3333 33 33 33 33 33 33 33 3ˆ 100 0 0 000 001 010 000 0 0 100 0 0 θθθ θθ θθ θθ θθ θθ θθ θ ×−=           −           −=           −− − =           −= cs sc sc cs cs sc d d d d
  • 63. 63 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Table of Contents Appendix A: Lagrange Equations (continue – 10) Computations of and td Dd T ( ) { } ( )E TB IB θ ω   ∂ ∂ → Basic Euler Rotations (continue – 1) is the matrix representation of the cross product of the vector ; i.e. in Cartesian coordinates : [ ]×A  A  ( )zyx 1ˆ,1ˆ,1ˆ ( ) ( )zzyyxxzzyyxx BBBAAABA 1ˆ1ˆ1ˆ1ˆ1ˆ1ˆ ++×++=×  ( ) ( ) ( ) zxyyxyxzzxxyzzy zyx zyx zyx BABABABABABA BBB AAA 1ˆ1ˆ1ˆ 1ˆ1ˆ1ˆ −+−+−=             = [ ]( ) { }( )zyxzyx z y x xy xz yz BA B B B AA AA AA ,,,, : 0 0 0  ×=                     − − − = The matrix is skew-symmetric; i.e.:[ ]×A  [ ] [ ]×−=× AA T  [ ] [ ] [ ][ ] 1111 1 1111 1ˆ θθθ θ θθ  ×−== d d td d [ ] [ ] [ ][ ] 2222 2 2222 2ˆ θθθ θ θθ  ×−== d d td d [ ] [ ] [ ][ ] 3333 3 3333 3ˆ θθθ θ θθ  ×−== d d td d
  • 64. 64 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 11) Computations of td Dd T       = td Dd td Dd td Dd td Dd 321          ++++++= k k j j i i k k j j i i k k j j i i d Dd d Dd d Dd d Dd d Dd d Dd d Dd d Dd d Dd θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ  333222111 { } ( ) ( ){ } ( ) [ ] ( ) ( ){ } ( ) [ ] [ ] ( ) { } { } { }[ ]321 3 2 1 : ˆˆ:, ˆˆ: ˆ: DDDD kkD jjD constiD I Ijjii B Iji Intr Intrii B Intri B B = == == == → θθθθ θθ From 0111 = ∂ ∂ = ∂ ∂ = ∂ ∂ kji DDD θθθ Using those equations, and [ ] [ ] ( ) [ ] 0ˆ 22 211 2 = ∂ ∂ = ∂ ∂ ×−=×−= ∂ ∂ kj Intr Intrii i DD DDjD D θθ θ θ    [ ] [ ] [ ] ( ) [ ] [ ] [ ]( ) [ ] ( ) [ ] [ ]( ) [ ] [ ] [ ] ( ) [ ]( ) [ ] [ ] ( ) [ ]             = ∂ ∂ ×−=×−= −×−=×−= ∂ ∂ ×−=×−= ∂ ∂ 0 ˆˆ ˆˆˆˆ ˆ 3 32 3 311 3 k I Ijjii B Intr I Ijjiiii Intr Intrii I Ijj Intr Intrii j I Ijjii i D DDkj kjkj D DDkD D θ θθ θθθθθθ θ θθ θ      01111 = ∂ ∂ + ∂ ∂ + ∂ ∂ = k k j j i i DDD td Dd θ θ θ θ θ θ       [ ] i k k j j i i DD DDD td Dd θ θ θ θ θ θ θ         21 2222 ×−= ∂ ∂ + ∂ ∂ + ∂ ∂ = [ ] [ ] ji k k j j i i DDDD DDD td Dd θθ θ θ θ θ θ θ           3231 3333 ×−×−= ∂ ∂ + ∂ ∂ + ∂ ∂ =
  • 65. 65 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Table of Contents Appendix A: Lagrange Equations (continue – 12) Computations of td Dd T [ ] [ ] jik k j j i i DDDD DDD td Dd θθθ θ θ θ θ θ           3231 3333 ×−×−= ∂ ∂ + ∂ ∂ + ∂ ∂ = [ ] ik k j j i i DD DDD td Dd θθ θ θ θ θ θ         21 2222 ×−= ∂ ∂ + ∂ ∂ + ∂ ∂ = 01111 = ∂ ∂ + ∂ ∂ + ∂ ∂ = k k j j i i DDD td Dd θ θ θ θ θ θ       We found: Therefore: 01 = td Dd T  [ ] i T T DD td Dd θ   ×= 12 2 [ ] [ ] j T i T T DDDD td Dd θθ      ×+×= 2313 3
  • 66. 66 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 13) Computations of ( ) { } ( )E TB IB θ ω   ∂ ∂ → By differentiating [ ] { } { } { }[ ]           =← k j i B IB DDD θ θ θ ω      321 we obtain: ( ) [ ] [ ][ ] [ ] [ ] [ ] [ ] kjkj k j i k j i iiii B IB DDDDDDDD DDDD DDD θθθθ θ θ θ θ θ θ θθθθ ω                        13123121 3121 321 0 ×+×=×−×−=           ×−×−=                 ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ ← ( ) [ ][ ] [ ] [ ] kk k j i k j i jjjj B IB DDDD DD DDD θθ θ θ θ θ θ θ θθθθ ω                    2332 32 321 00 ×=×−=             ×−=                     ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ ← ( ) [ ] 0000321                 =           =                 ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ ← k j i k j i kkkk B IB DDD θ θ θ θ θ θ θθθθ ω ( ) { } [ ] [ ]{ } [ ] [ ] k T j T T kj i TB IB DDDD DDDD θθ θθ θ ω         ×−×−= ×+×= ∂ ∂ ← 3121 1312 ( ) { } [ ]{ } [ ] k TT k j TB IB DDDD θθ θ ω     ×−=×= ∂ ∂ ← 3223 ( ) { } 0  = ∂ ∂ ← k TB IB θ ω
  • 67. 67 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Table of Contents Appendix A: Lagrange Equations (continue – 14) Computations of [ ]( )B IB T D ×→ω  Since we have[ ] [ ]{ }( ) 0  ≡×=× T lll T l DDDD [ ][ ] { } { } { } [ ] [ ] [ ]( )kji T T T B IB T DDD D D D D θθθω  ×+×+×           =×← 321 3 2 1 [ ] [ ] [ ] [ ] [ ] [ ]                   ×+× ×+× ×+× = j T i T k T i T k T j T DDDD DDDD DDDD θθ θθ θθ      2313 3212 3121 Computations of and td Dd T ( ) { } ( )E TB IB θ ω   ∂ ∂ →
  • 68. 68 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Appendix A: Lagrange Equations (continue – 15) Computations of ( ) { } ( ) [ ]( )B IB T E TB IB D ×+ ∂ ∂ → → ω θ ω    Let add and and compare with ( ) { } ( )E TB IB θ ω ∂ ∂ ←  [ ] ( )B IB T D ×←ω  td Dd T Computations of and td Dd T ( ) { } ( )E TB IB θ ω   ∂ ∂ → ( ) { } [ ] ( ) td Dd D T B IB T i TB IB 1 1 0 ==×+ ∂ ∂ ← ←   ω θ ω ( ) { } [ ] ( ) [ ] td Dd DDD T i TB IB T j TB IB 2 122 =×=×+ ∂ ∂ ← ← θω θ ω   ( ) { } [ ] ( ) [ ] [ ] td Dd DDDDD T j T i TB IB T k TB IB 3 23133 =×+×=×+ ∂ ∂ ← ← θθω θ ω   or ( ) { } ( ) [ ] ( )B IB T E TB IB T D td Dd ×+ ∂ ∂ = ← ← ω θ ω  
  • 69. 69 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH [ ] [ ] [ ] kkjjii B IC θθθ= Appendix A: Lagrange Equations (continue – 16) Computations of td Cd B I [ ] [ ][ ] iiiB ii i td d θθ θ ×−= ˆ [ ] [ ][ ] jjjr jj j td d θθ θ ×−= int ˆ [ ] [ ][ ] kkkI kk k td d θθ θ ×−= ˆ we can compute [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]( ) [ ] B I B I B Bkkjjii B Bkkjjii ii B I CDCii d dC ×−=×−=×−=      = ∂ ∂ 1 ˆˆ θθθθθθ θθ [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]kkjj Intr Intriikkjj j ii j B I j d dC θθθθθ θ θ θ ×−=         = ∂ ∂ ˆ [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]( ) [ ] B I B I B Intrkkjjii B Intrkkjjiiii Intr Intrii CDCjjj ×−=×−=×−=−×−= 2 ˆˆˆ θθθθθθθθ [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]kk I Ijjiikk k jjii k B I k d dC θθθθ θ θθ θ ×−=      = ∂ ∂ ˆ [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] B I B I B Ikkjjiiiijj I Ijjii CDCkk ×−=×−=−−×−= 3 ˆˆ θθθθθθθ where are the unit vectors along the three consecutive Euler axes of rotations (in Body, Intermediate and Inertial coordinates). IIntrB kji ˆ,ˆ,ˆ we found:
  • 70. 70 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM LAGRANGIAN APPROACH Table of Contents Appendix A: Lagrange Equations (continue – 17) Computations of td Cd B I we can compute [ ] [ ] B I i B I CD C ×−= ∂ ∂ 1 θ [ ] [ ] B I j B I CD C ×−= ∂ ∂ 2 θ [ ] [ ] B I k B I CD C ×−= ∂ ∂ 3 θ [ ] [ ] [ ] [ ] k k B I j j B I i i B I B I CCC td Cd θ θ θ θ θ θ  ∂ ∂ + ∂ ∂ + ∂ ∂ = [ ] [ ] [ ] k B Ij B Ii B I CDCDCD θθθ  ×−×−×−= 321 [ ] [ ] [ ]( ) [ ]( ) B I B IB B Ikji CCDDD ×−=×+×+×−= ← ωθθθ  321 therefore [ ] [ ]( ) B I B IB B I C td Cd ×−= ←ω  [ ]( ) [ ]×−= ∂ ∂ 1DC C TB I i B I θ [ ] ( ) [ ]×−= ∂ ∂ 2DC C TB I j B I θ [ ] ( ) [ ]×−= ∂ ∂ k TB I k B I DC C θ
  • 71. January 5, 2015 71 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA