SlideShare a Scribd company logo
1
EQUATIONS OF MOTION OF A
VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM
APPROACH
SOLO HERMELIN
http://www.solohermelin.com
2
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
• Simplified Particle Approach (see Power Point Presentation)
The equations of motion can be developed using
At a given time t the system has
V(t) – system volume.
m (t) – system mass.
S (t) – system boundary surface.
• Reynolds’ Transport Theorem Approach (this Power Point Presentation)
• Lagrangian Approach (see Power Point Presentation)
3
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
TABLE OF CONTENT
OSBORNE REYNOLDS
1842-1912
• Reynolds’ Transport Theorem
• Inertial Velocity and Acceleration
• Mass Equation
• First Moment of Inertia Relative to a Reference Point O
• Linear Momentum Equation
• Force Equation
• Absolute Angular Momentum Relative to a Reference
Point O
• Moment Relative to a Reference Point O
• External Forces and Moments of the System
• Summary of Equation of Motion for a Variable Mass
System
4
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
TABLE OF CONTENT (Continue)
• Kinetic Energy of the System
• Quasi-Lagrangian Equations
• Energy Flow
• References
• Absolute Angular Momentum Relative to a Reference
Point O (Body Containing Rotors)
• Summary of the Equations of Motion of a Variable
Mass System
MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
5
REYNOLDS’ TRANSPORT THEOREM
-any system of coordinatesOxyz
- any continuous and differentiable
functions in
( ) ( )trtr OO ,,, ,,

ηχ
( )tandrO,

( )trO ,,

ρ - flow density at point
and time t
Or,

SOLO
- mass flow through the element .mdsdVS


=⋅− ,ρ sd

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
- any control volume, changing shape, bounded by a closed surface S(t)v (t)
- flow velocity, relative to O, at point and time t( )trV OOflow ,,,

Or,

- position and velocity, relative to O, of an element of surface, part of the
control surface S(t).
OSOS Vr ,, ,

- area of the opening i, in the control surface S(t).iopenS
- gradient operator in O frame.O,∇
- flow relative to the opening i, in the control surface S(t).OSiOflowSi VVV ,,,

−=
- differential of any vector , in O frame.
O
td
d ζ

ζ

6
EQUATIONS OF MOTION OF A VARIABLE MASS
SYSTEM
Start with LEIBNIZ THEOREM from CALCULUS:
( ) ( )
  
ChangeBoundariesthetodueChange
tb
ta
tb
ta td
tad
ttaf
td
tbd
ttbfdx
t
txf
dxtxf
td
d
LEIBNITZ 





−+= ∫∫ )),(()),((
),(
),(::
)(
)(
)(
)( ∂
∂
and generalized it for a 3 dimensional vector space on a volume v(t) bounded by the
surface S(t).
Using LEIBNIZ THEOREM followed by GAUSS THEOREM (GAUSS 4):
( ) ( )
( ) ( )
∫∫∫∫∫ 





⋅∇+∇⋅+=⋅+
→
=
tv
OSOOOSGAUSS
Opotolative
dsofMovement
thetodueChage
tS
OS
tv
O
LEIBNITZ
O
tv
vdVV
t
GAUSS
sdVvd
t
vd
td
d
,,,,)4(
intRe
)(
,





χχ
∂
χ∂
χ
∂
χ∂
χ
This is REYNOLDS’ TRANSPORT THEOREM
OsborneReynolds
1842-1912
SOLO
GOTTFRIED WILHELM
von LEIBNIZ
1646-1716
REYNOLDS’ TRANSPORT THEOREM
Johann Carl Friederich Gauss
1777-1855
7
0,,,,,

=−=⇒= OSOSOOS VVVVV
( ) ∫∫∫∫∫∫∫∫∫∫∫ 







⋅∇+∇⋅+=⋅+=
)(
,,,,
)4(
,
)()()( tv
OOOO
O
GAUSS
O
tStv
OO
tv FFFF
vdVV
t
GAUSS
sdVvd
t
vd
td
d 



χχ
∂
χ∂
χ
∂
χ∂
χ
SOLO
REYNOLDS’ TRANSPORT THEOREM (CONTINUE -1)
( ) ∫∫∫∫∫∫∫∫ ⋅∇=⋅==
)(
,,)4(,
)()(
)(
tv
OOGAUSSO
tStv
F
FFF
vdV
GAUSS
sdVvd
td
d
td
tvd 
χ














=⋅∇
→ td
tvd
tv
V
tv
OO
)(
)(
1
lim0)(
,,

EULER 1755
ρχ == &,, OOS VV

( )∫∫∫∫∫∫∫∫ ∫∫∫ 





⋅∇+=⋅+===
)(
,,
)(
,
)( )(
)(
0
tV
OO
tS
O
tV tV FFF F
vdV
t
sdVvd
t
dv
td
d
td
tmd 
ρ
∂
ρ∂
ρ
∂
ρ∂
ρ
or, since this is true for any attached volume vF(t)
( ) 0,,,,,,
=⋅∇+∇⋅+=⋅∇+ OOOOOO
VV
t
V
t

ρρ
∂
ρ∂
ρ
∂
ρ∂
CONSERVATION OF MASS EQUATION
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
CASE 1 (Control Volume vF attached to the Fluid )OOS
VV ,,

=
CASE 2 (Control Volume vF attached to the Fluid and )1=χOOS
VV ,,

=
CASE 3 (Control Volume vF attached to the Fluid and )ρχ =OOS
VV ,,

=
8
Define ( ) ( ) ( )trtrtr OOO ,,:, ,,,

ηρχ =
( )∫∫∫∫∫∫∫∫ ⋅+








+=
)(
,
)()( tS
OS
tv
OO
tv
sdVvd
tt
vd
td
d 


ηρ
∂
ρ∂
η
∂
η∂
ρηρ
We have (for any volume v(t) bounded by the surface S(t))
But, from CONSERVATION OF MASS
( ) ( )OOOO V
t
V
t
,,,, 0

ρη
∂
ρ∂
ηρ
∂
ρ∂
⋅∇−=⇒=⋅∇+
CASE 4: Flow Equations
SOLO
We have
( ) ( )
( ) ( )[ ] ( )
( )[ ]∫∫∫∫∫=
∫∫∫∫∫
∫∫∫∫∫∫∫∫
⋅−−
⋅+








⋅∇+∇⋅−








∇⋅+=
⋅+








⋅∇−=
+
+
)(
,,
)(
4
.
)(
,
)(
,,,,,,
)(
,
)(
,,
)(
tS
OSO
tv
O
MDG
DerMat
GAUSS
tS
OS
tv
OOOOOO
O
tS
OS
tv
OO
OO
tv
sdVVvd
tD
D
sdVvdVVV
t
sdVvdV
t
vd
td
d






ρηρ
η
ρηρηηρη
∂
η∂
ρ
ρηρηρ
∂
η∂
ρη
where 0: ,, =⋅∇+= η
∂
η∂η 
OO
OO
V
ttD
D
is the MATERIAL DERIVATIVE, RELATIVE TO O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM (CONTINUE -2)
9
CASE 4: Flow Equations (continue – 1)
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM (CONTINUE -3)
( )[ ]∫∫∫∫∫∫∫∫ ⋅−−=
)(
,,
)()( tS
OSO
tv
OO
tv
sdVVvd
tD
D
vd
td
d 


ρηρ
η
ρη
v(t)
ds
m> 0
.
m< 0
.
0, <⋅ sdV S

dm
∑=
+
N
j
ext iji
fdfd
1
int

( )tSW
2openS
openiS
O
0, >⋅ sdV S

OCr ,
Oflowir ,

C
Copenir ,

Cr,

SV,

Oiopenr ,

openiV

OV,

Or,

Cflowir ,

flowiV

Ozˆ
Oyˆ
Oxˆ
openflowS VVV

−=,
- mass flow rate through
the element .
mdsdVS


=⋅− ,ρ
sd

SOSO VVV ,,, :

=− - flow velocity relative
to .sd

There are no sources or sinks in the volume v (t). The change in the mass of the
system is due only to the flow through the surface openings Sopen i (i=1,2,…). The
surface S(t) can be divided in:
• Sw(t) the impermeable wall through which the fluid can not escape .( )0,

=sV
• Sopen i(t) the openings (i=1,2,…) through which the fluid enters or exits .( )0>m ( )0<m
( ) ( ) ( )∑+=
openings
i
iopenW tStStS
( ) ( )
( )( )
∑=∑ ∫∫ ⋅−+∫∫ 







⋅−=∫∫ ⋅−
openings
i
ii
openings
i tS
S
tS
S
tS
S msdVsdVsdV
iopenW


ηρηρηρη ˆ
,
0
,
)(
,
10
CASE 4: Flow Equations (continue – 2)
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM (CONTINUE -3)
( )∫∫∫∫∫∫∫∫ ⋅+=
..
,
.... SC
O
O
VCVC
O
sdVvd
td
d
vd
tD
D 

ρηρηρ
η
- mass flow rate through
the element .
mdsdVS


=⋅− ,ρ
sd

SO VV ,,

= - flow velocity relative
to O and .sd

CONTROL VOLUME WITH FIXED SHAPE C.V.( ) 0,

=OS
V
11
CASE 4: Flow Equations (continue – 2)
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM (CONTINUE -4)
( )∫∫∫∫∫∫∫∫ ⋅−+=
)(
,
)()( tS
S
tv
OO
tv
sdVvd
tD
D
vd
td
d 


ρηρ
η
ρη
v(t)
ds
m> 0
.
m< 0
.
0, <⋅ sdV S

dm
∑=
+
N
j
ext iji
fdfd
1
int

( )tSW
2openS
openiS
O
0, >⋅ sdV S

OCr ,
Oflowir ,

C
Copenir ,

Cr,

SV,

Oiopenr ,

openiV

OV,

Or,

Cflowir ,

flowiV

Ozˆ
Oyˆ
Oxˆ
openflowS VVV

−=,
( )( )
∫∫ ⋅−=
tS
Si
iopen
sdVm

 ,
ρ
( )( )






=
≠
∫∫ ⋅−
=
00
0:ˆ
,
i
i
i
tS
S
i
m
m
m
sdV
iopen





ρη
η
where
i
openings
i
i
tv
OO
tv
mvd
tD
D
vd
td
d




∑∫∫∫∫∫∫ += ηρ
η
ρη ˆ
)()(
( )∑ ∫∫∫∫∫∫∫∫ ⋅−+=
openings
i S
S
tv
OO
tv iopen
sdVvd
tD
D
vd
td
d 


,
)()(
ρηρ
η
ρη
We can write
or
or
REYNOLDS’ TRANSPORT
THEOREM
OSBORNE
REYNOLDS
1842-1912
Mean Vector of
on the opening
iη

iopenS
Mass Rate entering
through opening iopenS
or
( )∫∫∫∫∫∫∫∫ ⋅+=
..
,
.... SC
O
O
VCVC
O
sdVvd
td
d
vd
tD
D 

ρηρηρ
η
Table of Content
12
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Inertial Velocity and Acceleration
v(t)
I
R

dm
( )tS
2openS
1openS I
td
Rd
V


=
I
td
Vd
a


=
Ix
Oy
Iz
Ox
Oz
Iy
OR

O
Or,

R

- Position of the mass element dm relative to I.
I
td
Rd
V


= - Velocity of the mass element dm relative to I.
II
td
Rd
td
Vd
a 2
2


== - Acceleration of the mass element dm relative to I.
Mass Equation
Use the REYNOLDS’ TRANSPORT THEOREM with 01 =→=
O
tD
Dη
η


( )
( ) ( )
( ) ∑∑ ∫∫∫∫ =⋅−===
openings
i
iflow
openings
i S
S
REYNOLDS
tvtm
msdVvd
td
d
md
td
d
tm
iopen


 ,
ρρ
The change of the mass of the system is due to the flow through the openings
in the surface S (t).
( )∫∫ ⋅−=
iopenS
Siflow sdVm

 ,: ρ
Table of Content
Table of Content
13
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
First Moment of Inertia Relative to a Reference Point O
v(t)
I
R

dm
( )tS
2openS
1openS I
td
Rd
V


=
I
td
Vd
a


=
Ix
Oy
Iz
Ox
Oz
Iy
OR

O
Or,
Define the First Moment of Inertia Relative to O
( )
( ) ( )
mRmdRmdRRc O
tmtm
OO

−=−= ∫∫:,
-Position vector of the instantaneous Mass Center
(Centroid) of the system, relative to I
( ) ( )
( )
( )
( )
( )
0: =−→== ∫
∫
∫
∫
tm
C
tm
tv
tv
C mdRR
m
mdR
vd
vdR
tR



ρ
ρ
Therefore
( )
( )( )
( ) mrmRRmRmdRmdRRc OCOC
tm
O
tm
OO ,, :

=−=−=−= ∫ ∫
For O = C we have:
( ) ( )( )
( ) 0:,

=−=−=−= ∫ ∫ mRRmRmdRmdRRc CC
tm
C
tm
CC
Table of Content
14
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Linear Momentum Equation
v(t)
I
R

dm
( )tS
2openS
1openS I
td
Rd
V


=
I
td
Vd
a


=
Ix
Oy
Iz
Ox
Oz
Iy
OR

O
Or,

The Linear Moment of the mass enclosed by v (t) is defined as
( ) ( )
∫∫∫∫∫∫ ==
tv
I
tv
I
vd
tD
RD
vdVP ρρ


,
:
vdVmdVPd II
ρ,,
:

==
The Linear Momentum, of the differential mass dm = ρdv, with initial
velocity ,is defined as
I
I
tD
RD
VV


== ,
:
Use the REYNOLDS’ TRANSPORT THEOREM with R

=η and O = I
( ) ( ) ( )
( )
( )
∑
∫∫∫∫∫∫∫∫∫∫∫
−+=
⋅−−===
openings
i
iflowiopenC
V
C
tS
S
mR
tv
REYNOLDS
tv
I
tv
I
mRmR
td
Rd
m
sdVRvdR
td
d
vd
tD
RD
vdVP
C
C













ˆ
: ,,
ρρρρ
( )






=
≠
⋅−
=
∫∫
00
0:
ˆ
,
iflow
iflow
iflow
S
S
iopen
mif
mif
m
sdVR
R
iopen





ρ
where:
is the mean position vector of the flow and of the opening on iopenSiopenR
ˆ
15
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Linear Momentum Equation (continue – 1)
v(t)
I
R

dm
( )tS
2openS
1openS I
td
Rd
V


=
I
td
Vd
a


=
Ix
Oy
Iz
Ox
Oz
Iy
OR

O
Or,
We can write the Linear Momentum
( )
( )( )
∑ 



 −−=
∑ ∫∫ ⋅−−−=∫=
openings
i
iflowCiopenC
openings
i S
SCC
tm
mRRmV
sdVRRmVmdVP
iopen



ˆ
: ,ρ
We can write
( )
∫=
tm
mdVP

: ( ) ( )( )∑ ∫∫ ⋅−−+−−+−=
openings
i S
SCOOOOC
iopen
sdVRRRRmVmVmV

,ρ
( ) ( ) ( ) ( )( )∑ ∫∫ ⋅−−−+∑ ∫∫ ⋅−−+−=
openings
i S
SOO
openings
i S
SOCOC
iopeniopen
sdVRRmVsdVRRmVV

,, ρρ
( ) ( ) ∑∑ 




 −−+−+−=
openings
i
iflowOiopenO
td
cd
m
openings
i
iflowOCOC mRRmVmRRmVV
I
O


  





ˆ
,
or
( )( )
∑ 



 −−+=
∑ ∫∫ ⋅−−−+=
openings
i
iflowOiopenO
I
O
openings
i S
SOO
I
O
mRRmV
td
cd
sdVRRmV
td
cd
P
iopen






ˆ,
,
,
ρ
Table of Content
16
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Force Equation
Applying the 2nd
Newton’s Law to the differential mass
dm = ρdv, we obtain:
int2
2
fdfdmd
td
Rd
md
td
Vd
ext
II


+==
where
ext
fd

- External forces acting on the differential
mass dm
intfd

- Internal forces that surroundings exercises on the differential mass dm
From the 3rd
Newton’s Law the internal force that particle j applies on particle i is of
equal magnitude but of opposite direction to the force that particle i applies on
particle j :
jiij
fdfd intint

−=
Therefore
( )
00 int
1 1
int

=→= ∫∑∑
→∞
=
≠
= tv
NN
i
N
ij
j
ij
fdfd
17
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Force Equation (continue – 1)
( ) ( ) ( ) ( )
∑∑∫∫∫∫ =++== ext
l
l
tvtv
ext
tv
I
tm
I
FFfdfddv
tD
VD
dm
tD
VD 

intρ
discrete forces exerting by the surrounding at point jR

Use the REYNOLDS’ TRANSPORT THEOREM with V

=η
and O = I (Inertial System)
( ) ( )
( )∑ ∫∫∫∫ ⋅−+=
openings
i S
S
tv
I
REYNOLDS
I
tv iopen
sdVVvd
Dt
VD
vdV
td
d 


,ρρρ
Since the Linear Momentum is
( ) ( )
∫∫ ==
tvtm
dvVmdVP ρ

:
( ) ( )
( )
( )
∑+∑=
∑+∫=
∑ ∫∫ ⋅−+∫=∫=
openings
i
iflowiflowext
openings
i
iflowiflow
tm
I
openings
i S
S
tm
II
tm
I
mVF
mVmd
Dt
VD
sdVVmd
Dt
VD
mdV
td
d
P
td
d
iopen








,
,
,
ˆ
ˆ
ρ
Integrate the force equation on ρ dv over the volume v (t)
18
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Force Equation (continue – 2)
where
( )
( )







=
≠
∫∫ ⋅−
=→∫∫ ⋅−=
00
0:
ˆ
:
ˆ
,
,
iflow
iflow
iflow
S
S
iflow
S
Siflowiflow
mif
mif
m
sdVV
VsdVVmV
iopen
iopen







ρ
ρ
- is the mean flow velocity, relative to an inertial
frame, at the opening
iflowV

iopenS
Let differentiate the Linear Momentum
I
openings
i
iflowCiopenC
I
mRRmV
td
d
td
Pd




∑ 



 −−= 


ˆ
∑










−−∑ 




 −−+=
openings
i
iflow
I
C
I
iopen
openings
i
iflowCiopenC
I
C
m
td
Rd
td
Rd
mRRmVm
td
Vd






 ˆ
ˆ
∑∑ 



 −−



 −−+=
openings
i
iflowCiopen
openings
i
iflowCiopenC
I
C
mVVmRRmVm
td
Vd







ˆˆ
where
is the mean velocity of the opening ,
relative to I
iopenS
( )
iflow
iflow
iflow
I
iflow
S
S
I
iopeniopen V
mif
mif
m
sdVR
td
d
R
td
d
V
iopen
ˆ
00
0ˆ
:
ˆ
,






≠








=
≠











 ⋅−
==
∫∫ ρ
19
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Force Equation (continue – 3)
Using
∑ 



 −−∑ 



 −−+=
openings
i
iflowCiopen
openings
i
iflowCiopenC
I
C
I
mVVmRRmVm
td
Vd
td
Pd







ˆˆ
and
( )
∑+∑=∫=
openings
i
iflowiflowext
I
tm
I
mVFmdV
td
d
P
td
d


,
ˆ
we obtain
∑ 



 −+∑ 



 −+−∑+∑=
openings
i
iflowCiopen
openings
i
iflowCiopenC
openings
i
iflowiflowext
I
C
mVVmRRmVmVFm
td
Vd









ˆˆˆ
∑ 



 −+∑ 



 −+
∑−∑ 




 +−+∑=
openings
i
iflowCiopen
openings
i
iflowCiopen
openings
i
iflowC
openings
iflowiopeniopeniflowext
mVVmRR
mVmVVVF








ˆˆ
ˆˆˆ
∑ 



 −+∑ 



 −+∑ 



 −+∑=
openings
i
iflowCiopen
openings
i
iflowCiopen
openings
i
iflowiopeniflowext
I
C
mVVmRRmVVFm
td
Vd







ˆ
2
ˆˆˆ
Therefore
20
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Force Equation (continue – 4)
Note
We could obtain this result by performing
∑ 



 −+∑ 



 −+∑ 



 −+∑=
openings
i
iflowCiopen
openings
i
iflowCiopen
openings
i
iflowiopeniflowext
I
C
mVVmRRmVVFm
td
Vd







ˆ
2
ˆˆˆ
( )( ) ( )( )∑ ∫∫∑ ∫∫ ⋅−−−+=








⋅−−−=
openings
i
I
S
SCC
I
C
I
openings S
SCC
I iopeniopen
sdVRR
td
d
mVm
td
Vd
sdVRRmV
td
d
td
Pd 





,, ρρ
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )∑ ∫∫
∑ ∫∫∑ ∫∫∑ ∫∫
⋅−−+
⋅−−+⋅−−=⋅−−
openings
i
SOFPOSITIONINCHANGE
S
S
I
C
openings
i
STHROUGH
FLOWINCHANGE
S I
SC
openings
i
SOFSHAPEAND
MAGNITUDEINCHANGE
S
td
d
SC
openings
i
I
S
SC
iopen
iopen
iopen
iopen
iopen
I
iopen
iopen
sdVRR
td
d
sdV
td
d
RRsdVRRsdVRR
td
d
  

  

  

,
,,,
ρ
ρρρ
( ) ( ) ( ) ( ) ∑∑ ∫∫∑ ∫∫ 



 −=⋅−−+⋅−−
openings
i
iflowCiopen
openings
i S I
SC
openings
i
S
td
d
SC mRRsdV
td
d
RRsdVRR
iopen
I
iopen

 ˆ
,, ρρ
Therefore
( ) ( ) ( ) ( ) ( )∑∑ ∫∫∑ ∫∫ −=⋅−−=⋅−−
openings
i
iflowCiopen
openings
i S
SC
openings
i S
S
I
C mVVsdVVVsdVRR
td
d
iopeniopen


,, ρρ
( ) ( )
∑
∑∑ ∫∫




 −−




 −−+=








⋅−−−=
openings
i
iflowCiopen
openings
i
iflowCiopenC
I
C
I
openings
i S
SCC
I
mVV
mRRmVm
td
Vd
sdVRRmV
td
d
td
Pd
iopen









ˆ
ˆ
,ρ
or
End Note
Table of Content
21
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
Absolute Angular Momentum Relative to a Reference Point O
Define the Absolute Angular Momentum Relative to O of
the mass enclosed by the volume v (t), as
Substitute in the previous equation
OIO
O
O
O
I
O
I
O
I
OO r
td
rd
V
td
rd
td
Rd
td
Rd
VrRR ,
,,
, :&





×++=+==+= ←ω
( )( ) ( )
∫ 







×++×=∫ ×−= ←
tm
OIO
O
O
OO
tm
OO dmr
td
rd
VrdmVRRH ,
,
,,



ω
( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫= ←
tm
O
O
O
tm
OIOOO
tm
O dm
td
rd
rdmrrVdmr ,
,,,,


ω
We obtain
(a) (b) (c)
Let develop those three expressions (a), (b) and (c).
where IO←ω

is the angular velocity vector of the O frame relative to
I.
( ) ( ) PdRRvdVRRHd OOO

×−=×−= ρ,
The Absolute Angular Momentum, of the differential mass
and Inertial Velocity ,relative to a reference point O is defined as
vdmd ρ=
V

22
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Absolute Angular Momentum Relative to a Reference Point O (continue -1)
(a)
( ) ( ) ( ) ( ) ( )
( ) OOC
tm
OC
tm
OC
tm
OC
tm
C
tm
O cmRRdmrdmrdmrdmrdmr ,,,,,,

=−===+= ∫∫∫∫∫
Where we used because C is the Center of Mass (Centroid) of the system.
( )
0, =∫tm
C dmr

( )
OOOOCO
tm
O VcVrmVdmr

×=×=×








∫ ,,,
( )
( )
( )[ ]( )
IOOIO
tm
OOOO
tm
OIOO
Idmrrrrdmrr ←←←
⋅=⋅−⋅=×× ∫∫ ωωω

,,,,,,,
1(b)
where
( )[ ]
( )
∫ −⋅=
tm
OOOOO dmrrrrI ,,,,, 1:

2nd
Moment of Inertia Dyadic of all the
mass m(t) relative to O
We obtain (a) + (b) + (c)
( )( ) ( )
( )
( ) ( )
( )
∫
∫∫∫∫








×+⋅+×=








×+××+×





=×−=
←
←
tm
O
O
OIOOOO
tm
O
O
O
tm
OIOOO
tm
O
tv
OO
dm
td
rd
rIVc
dm
td
rd
rdmrrVdmrvdVRRH
,
,,,
,
,,,,, :




ω
ωρ
23
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Absolute Angular Momentum Relative to a Reference Point O (continue -2)
( )( ) ( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫=∫ ×−= ←
tm
O
O
O
tm
OIOOO
tm
O
tv
OO dm
td
rd
rdmrrVdmrvdVRRH ,
,,,,, :


ωρ
OO Vc

×= , Difference between O and System centroid C
IOOI ←⋅+ ω

, Rotation from I to O coordinates
( )
∫ 







×+
tm O
O
O dm
td
rd
r ,
,


Non-rigidity of System
• Rotors
• Moving Parts (Pistons, …)
• Fluids
• Elasticity
24
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Absolute Angular Momentum Relative to a Reference Point O (continue -3)
Let differentiate the Absolute Angular Momentum, relative to an
Inertial System and apply REYNOLDS’ Transport Theorem with
and O = I (Inertial System)( ) VRR O

×−=η
( )( )
( )
( )
( ) ( )∑ ∫∫∫∫ ⋅−×−+
×−
=×−=
openings
i S
SO
tv
I
O
REYNOLDS
I
tv
O
I
O
iopen
sdVVRRvd
Dt
VRRD
vdVRR
td
d
td
Hd 



,
,
ρρρ
( )( )
( )( ) ( )
( ) ( )∑ ∫∫∫∫∫ ⋅−×−+×−×−=×−=
openings
i S
md
SO
P
tv
O
tv
I
O
REYNOLDS
I
tv
O
I
O
iopen
sdVVRRvdVVvd
Dt
VD
RRvdVRR
td
d
td
Hd









,
,
ρρρρ
to obtain
Use
( )( )
( )( )
( ) ( ) ( )( )∑ ∫∫∫∫ ⋅−−×−+×−+×+×−=×−=
openings
i S
SOOOOCOC
tv
I
O
I
tv
O
I
O
iopen
sdVVVRRmVRRmVVvd
Dt
VD
RRvdVRR
td
d
td
Hd 





,
,
ρρρ
And use ( ) ( )
( )( )∑ ∫∫ ⋅−−−=∫=∫=
openings
i S
SCC
tmtv iopen
sdVVRRmVmdVvdVP

,ρρ
( )[ ] ( ) ( ) ( ) ( ) VV
tD
VD
RR
tD
VD
RRVVV
tD
VD
RRV
tD
RD
tD
RD
tD
VRRD
O
I
O
I
OO
I
O
I
O
II
O








×−×−=×−+×−=×−+×








−=
×−
to obtain
( )( )
( )( )
O
I
O
openings
i
iflowOiflowOiopen
tv
I
O
I
tv
O
I
O
V
td
cd
mVVRRvd
Dt
VD
RRvdVRR
td
d
td
Hd 






×+




 −×




 −+×−=×−= ∑∫∫
,, ˆˆ
ρρ
or
Table of Content
25
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Moment Relative to a Reference Point O
Multiplying (vector product) the 2nd
Newton’s Law on
the particle of mass dm=ρ dv, by we
obtain the Moment of forces applied, relative to O:
OO RRr

−=:,
( ) ( ) ( ) dm
td
Vd
RRfdfdRR
I
OextO


×−=+×− int
from which by integration over the volume v (t)
( )( )
( )( )
( )( )
∫∫∫ ×−=×−+×−
tv
I
O
tv
O
tv
extO
dv
td
Vd
RRfdRRfdRR ρ


int
We define the moment of external forces, relative to O, on the mass of the volume v (t),
as:
( )( )
∫∑ ×−=
tv
extOOext
fdRRM

:,
26
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Moment Relative to a Reference Point O (continue – 1)
We assumed that the equal but opposite forces between i and j act along the line joining
them; i.e.
Note
collineararefandr jitij int

This is not always true (see H. Goldstein “Classical Mechanics”, 2nd
Edition, pg.8,
R. Aris “Vectors, Tenors and the Basic Equations of Fluid Mechanics”, pp.102-104,
Michalas & Michalas “Radiation Hydrodynamics”, pg.72,
Jaunzemis “Continuous Mechanics” Sec. 11, pg.223)
End Note
Since for any particles i and j the internal forces are of
equal magnitude but of opposite directions
we have
jiij
fdfd intint

−=
( ) ( )
( ) ( )
( )
( )( )
0
0
int
intintint
intint
intint




=×−⇒
←=×=×−=
=×−+×−−=
=×−+×−
∫
tv
tOj
jitijjitijjitij
jitOjjitOi
jitOjijtOi
fdRR
collinearfandrfdrfdRR
fdRRfdRR
fdRRfdRR
27
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Moment Relative to a Reference Point O
(continue – 2)
Therefore
( )( )
( )( )
( )( )
∫
∫∫∑
×−=
×−=×−=
tv
extO
tv
I
O
tm
I
OOext
fdRR
dv
tD
VD
RRdm
tD
VD
RRM





ρ,
( )( )
( )( )
O
I
O
openings
i
iflowOiflowOiopen
tv
I
O
I
tv
O
I
O
V
td
cd
mVVRRvd
Dt
VD
RRvdVRR
td
d
td
Hd 






×+




 −×




 −+×−=×−= ∑∫∫
,, ˆˆ
ρρ
Use
to obtain
O
I
O
openings
i
iflowOiflowOiopenOext
I
O V
td
cd
mVVRRMH
td
d 



×+




 −×




 −+= ∑∑
,
,,
ˆˆ
28
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Moment Relative to a Reference Point O
(continue – 3)
Use
( )
( )( )∑ ∫∫ ⋅−−−+=∫=
openings
i S
SCO
I
O
tm iopen
sdVVRRmV
td
cd
mdVP

,
,
ρ
( ) ( ) ( ) O
I
O
openings
i S
SOOOext
I
O V
td
cd
sdVVVRRMH
td
d
iopen



×+∑ ∫∫ ⋅−−×−+∑= ,
,,, ρ
( ) ( ) ( ) ( ) ( ) O
openings
i S
SOO
openings
i S
SOOOext VsdVRRmVPsdVVVRRM
iopeniopen

×







∑ ∫∫ ⋅−−+−+∑ ∫∫ ⋅−−×−+∑= ,,,
ρρ
( ) ( )∑ ∫∫ ⋅−×−+∑ ×+=
openings
i S
SOOOext
I
O
iopen
sdVVRRVPMH
td
d 
,,, ρ
in
to obtain
29
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Moment Relative to a Reference Point O (continue – 4)
Use the centroid C instead of O
Absolute Angular Moment Relative to Center of Mass C
( )
( )
( )
( )
∫∫ ×−=×−=
tm
C
tv
CC mdVRRvdVRRH

ρ:,
and
( ) ( ) ( )
∑∑
∑ ∫∫∑





 −×




 −+=
=⋅−−×−+=
openings
i
iflowCiflowCiopenCext
openings
i S
SCCCext
I
C
mVVRRM
sdVVVRRMH
td
d
iopen



ˆˆ
,
,,, ρ
( )
( )
( )
( )
( )
( )
∫∫∫ ×−+×−=×−=
tm
OC
tm
C
tm
OO mdVRRmdVRRmdVRRH

,
( )
( )
( ) PrHPRRHmdVRRH OCCOCC
tm
OCC

×+=×−+=×−+= ∫ ,,,,
The relation between and is obtained usingOH,

CH,

30
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Let compute
OIO
O
O
I
O
H
td
Hd
td
Hd
,
,,


×+= ←ω
















××+
















×+ ∫∫ ←
m O
O
OIO
Om O
O
O md
td
rd
rmd
td
rd
r
td
d ,
,
,
,




ω
Absolute Angular Momentum Relative to a Reference Point O (Continue - 5)
Using
( )
∫ 







×+⋅+×= ←
tm O
O
OIOOOOO dm
td
rd
rIVcH ,
,,,,


ω
IOOI ←⋅+ ω

,
IOOIOIOO II ←←← ⋅×+⋅+ ωωω

,, Rotation from I to O coordinates
I
O
OO
I
O
td
Vd
cV
td
cd



×+×= ,
,
Difference between O and System centroid C
Non-rigidity of System
• Rotors
• Moving Parts (Pistons,…)
• Fluids
• Elasticity Table of Content
31
SOLO
External Forces and Moments of the System
We have a system of particles enclosed at the time t by a surface S(t) that bounds
the volume v(t). There are no sources or sinks in the volume v(t). The change in the
mass of the system is due only to the flow through the surface openings Sopen i (i=1,2,
…). The surface S(t) can be divided in:
• Sw(t) the impermeable wall through which the flow can not escape .( )0,

=sV
• Sopen i(t) the openings (i=1,2,…) through which the flow enters or exits .( )0>m ( )0<m
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
32
SOLO
External Forces and Moments of the System (continue -1 )
The external forces acting on the system are:
• Gravitation acceleration (E center of Earth).E
E
R
R
M
Gg

3
=
• Force per unit surface applied by the surroundings on the surface of the system.( )2
/mNσ

( )dstfnpsdTsdnsd

111 +−==⋅=⋅ σσ
where:
( ) ndsnnsdsd

111 =⋅= - vector of surface differential
( )2
/mNp - pressure on (normal to) the surface .
( ) ( )
∑∫∫∑∑∑ +⋅+=→=
j
j
tStv
ext
i
iextext FsddvgFfdF

σρ
( )
( )( )
( )( )
( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑→
∑ ×−=∑
k
k
j
jOj
tS
O
tv
OOext
i
iextOiOext
MFRRsdRRdvgRRM
fdRRM


σρ,
,
The moment of the external forces, relative to a point O, is:
f - friction force per (parallel to) unit surface .( )2
/ mN
• Discrete force exerting by the surrounding on the point , and discrete moments .∑j
jF

jR

∑
k
kM

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
nT

1⋅= σ - force per unit surface ( )2
/mN
33
SOLO
∑ 



 −+∑ 



 −+∑ 



 −+∑=
openings
i
Ciopeniflow
openings
i
Ciopeniflow
openings
i
iopeniflowiflowext
I
C
RRmVVmVVmF
td
Vd
m








ˆˆ
2
ˆˆ
External Forces Equations (continue -2)
( ) ( ) ( )
( )
( )
∑∫∫∑∫∫∑ ++−+=+⋅+=
j
j
tStvj
j
tStv
ext FdstfnpdvgFsddvgF

11ρσρ
( ) ( ) ( )
0111
0
=⋅∇== ∫∫∫ ∞∞∞
tv
Gauss
tStS
dvnpdsnpdsnp 

Since the pressure far away from the body is constant∞p
Let add this equation to the previous one
( ) ( )
( ) ( )[ ]
( )
∑∫∑∫∫∑ ++−+=+⋅+= ∞
j
j
tSj
j
tStv
ext FdstfnpptmgFsddvgF

11σρ
( ) ( )[ ] ( )[ ] ∑+∫∫ ∑ ∫∫ +−++−+= ∞∞
j
j
S
openings
i S
Fdstfnppdstfnpptmg
W iopen

1111
Finally since on Sopen i (t) the openings (i=1,2,…) the friction force f = 0
( ) ( )[ ] ( ) ∑+∫∫ ∑ ∫∫ −++−+=∑ ∞∞
j
j
S
openings
i S
ext FdsnppdstfnpptmgF
W iopen

111
Substitute this equation in
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
34
SOLO
External Forces Equations (continue – 3)
or
( ) ( )[ ] ( )
∑ 



 −+∑ 



 −+
∑+∑ 





∫∫ −+



 −+∫∫ +−+= ∞∞
openings
i
iflowCiopen
openings
i
iflowCiopen
j
j
openings
i S
iflowopeniflow
SI
C
mRRmVV
FdsnppmVVdstfnpptmgmV
dt
d
iopenW







ˆˆ
2
1
ˆˆ
11 1
( ) ( ) ( )∑∑∑∑∑ −+−++++=
openings
i
iflowCiopen
openings
i
iflowCiopen
j
j
i
iThrustAero
I
C mRRmVVFFFtmgmV
dt
d




2
where
( )[ ]∫∫∑ +−= ∞
WS
Aero dstfnppF

11: Aerodynamic Forces
( )∫∫ −+



 −= ∞
iopenS
iflowiopeniflowiThrust dsnppmVVF



1
ˆˆ
: Thrust Forces
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
35
SOLO
External Forces Equations (continue – 4)
Let substitute
( ) ∑∑∑∑∑ 



 −+



 −++++=
openings
i
iflowCiopen
openings
i
iflowCiopen
j
j
i
iThrustAero
I
C mRRmVVFFFtmgmV
dt
d



 ˆˆ
2
in
CIO
O
C
I
C
V
td
Vd
td
Vd
a



×+== ←ω
to obtain
RIGID-BODY TERMSmV
td
Vd
CIO
O
C








×+ ←


ω
∑∑ −








×+− ←
openings
i
iflowCiopen
openings
i
iflowCiopenIO
O
Ciopen
mrmr
td
rd





,,
, ˆˆ
ˆ
2 ω FLUID-FLOW TERMS
AERODYNAMIC &
PROPULSIVE∑∑ +=
i
iThrustAero FF

v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

∑+=
j
jFmg

GRAVITATIONAL &
DISCRETE TERMS
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
36
SOLO
External Moments Equations (continue – 5)
The moments of the external forces relative to the point O are
given by
( )( )
( )( )
( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑
k
k
j
jOj
tS
OS
tv
OOext MFRRsdRRdvgRRM

σρ ~
,
( )( )
( ) ( )
( )
( ) ∑+∑ ×−+∫ +−×−+×





∫ −=
k
k
j
jOj
tS
OS
tv
O MFRRdstfnpRRgdvRR

11ρ
Let add to this equation the following
( )
( )
( )
( ) 01
0
5
=−×∇=×− ∫∫∫∫ ∞∞
V
OS
GGauss
tS
OS dvRRpdsnpRR
  

to obtain
( )( )
( ) ( )[ ]
( )
( ) ∑+∑ ×−+∫ +−×−+×





∫ −=∑ ∞
k
k
j
jOj
tS
OS
tv
OOext MFRRdstfnppRRgdvRRM

11,
ρ
( ) ( ) ( )[ ] ( ) ( ) 
( ) ∑+∑ ×−+
∫∫ ∑ ∫∫








+−×−++−×−+×−= ∞∞
k
k
j
jOj
S
openings
i S
Son
OOOC
MFRR
dstfnppRRdstfnppRRgmRR
W iopen
W


1111
0
v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
37
SOLO
( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ∑+∑ ×−+
∫∫ ∑ ∫∫ −×−++−×−+×−=∑ ∞∞
k
k
j
jOj
S
openings
i S
OOOCOext
MFRR
dsnppRRdstfnppRRgmRRM
W iopen


111,
∑ 




 −×




 −+×+∑=
openings
i
iflowOiflowOiopenO
I
O
Oext
I
O
mVVRRV
td
cd
M
td
Hd



ˆˆ
,
,
External Moments Equations (continue -6)
Using
together with
we obtain
( ) ∑∑∑
∑∑
+×−+



 −×



 −+
×+++×=
k
k
j
jOj
openings
i
iflowOiopenOiopen
O
I
O
openings
i
OiThrustOAeroO
I
O
MFRRmVVRR
V
td
cd
MMgc
td
Hd







ˆˆ
,
,,,
,
∑ 



 −×



 −+∑ 



 −×



 −+
×+∑=
openings
i
iflowOiopenOiopen
openings
i
iflowiopeniflowOiopen
O
I
O
Oext
mVVRRmVVRR
V
td
cd
M





ˆˆˆˆˆ
,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
38
SOLO
External Moments Equations (continue -7)
where
( ) ( )[ ]∫∫∑ +−×−= ∞
WS
OOAero dstfnppRRM

11:,
Aerodynamic Moments
( ) ( )∫∫ −×−+



 −×



 −= ∞
iopenS
OiflowiopeniflowOiopenOiThrust dsnppRRmVVRRM



1
ˆˆˆ
:,
Thrust Moments on the
opening i
discrete forces exerting by the surrounding at point∑
j
jF

jR

∑
k
kM

discrete moments exerting by the surrounding
v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
39
SOLO
( ) Itm O
O
O
I
IO
OIO
I
O
I
O
OO
I
O
I
O
dm
td
rd
r
td
d
td
d
I
td
Id
td
Vd
cV
td
cd
td
Hd
∫ 







×+⋅+⋅+×+×= ←
←
,
,,
,
,
,,






ω
ω
External Moments Equations (continue -8)
Using
together with
we obtain
( ) ( )
∫∫ 







××+








×+⋅×+⋅+⋅ ←←←←
←
tm O
O
OIO
Otm O
O
OIOOIOIO
O
O
O
IO
O dm
td
rd
rdm
td
rd
r
td
d
I
td
Id
td
d
I ,
,
,
,,
,
,





ωωωω
ω
( )
( ) ∑∑∑
∑∑
+×−+



 −×



 −+
×+++×−=
k
k
j
jCj
openings
i
iflowOiopenOiopen
O
I
O
openings
i
OiThrustOAeroOC
I
O
MFRRmVVRR
V
td
cd
MMgmRR
td
Hd





ˆˆ
,,
,
( ) ∑∑∑
∑∑
+×−+



 −×



 −+
++








−×=
k
k
j
jCj
openings
i
iflowOiopenOiopen
openings
i
OiThrustOAero
I
O
O
MFRRmVVRR
MM
td
Vd
gc






ˆˆ
,,,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Table of Content
40
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM
( )
( )
∑∑ ∫∫∫ 





===
openings
i
iopen
openings
i S
iflow
tm td
md
mdmd
td
d
tm
iopen

MASS EQUATION
LINEAR MOMENTUM
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( )
( )( )
( ) mrmRRmRmdRmdRRc OCOC
tm
O
tm
OO ,, :

=−=−=−= ∫ ∫
( )
( )( )
∑
∑ ∫∫∫





 −−=
⋅−−−==
openings
i
iflowCiopenC
openings
i S
SCC
tm
mRRmV
sdVRRmVmdVP
iopen



ˆ
: ,
ρ
( )
( )( )
∑
∑ ∫∫∫





 −−+=
⋅−−−+==
openings
i
iflowOiopenO
I
O
openings
i S
SOO
I
O
tm
mRRmV
td
cd
sdVRRmV
td
cd
mdVP
iopen






ˆ
:
,
,
,
ρ
First Moment of Inertia Relative to O
0,

=Cc
( ) ( )
( )
( )
( )
( )
0: =−→== ∫
∫
∫
∫
tm
C
tm
tv
tv
C mdRR
m
mdR
vd
vdR
tR



ρ
ρ
Mass Centroid
( )






=
≠
⋅−
=
∫∫
00
0:
ˆ
,
iflow
iflow
iflow
S
S
iopen
mif
mif
m
sdVR
R
iopen





ρ
41
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM (CONTINUE – 1)
FORCE EQUATIONS
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( ) ( ) ( ) ( )
∑∑∫∫∫∫ =++== ext
j
j
tvtv
ext
tv
I
tm
I
FFfdfddv
tD
VD
dm
tD
VD 




0
int
ρ
( ) ( )
( ) ∑∑∑ ∫∫∫∫ +=⋅−+==
openings
i
iflowiflowext
openings
i S
S
tm
II
tm
I
mVFsdVVmd
Dt
VD
mdV
td
d
P
td
d
iopen




,,
ˆ
ρ
( ) ( )
∑∫∫∑ +⋅+=
j
j
tStv
ext FsddvgF

σρ
∑ 



 −+∑ 



 −+∑ 



 −+∑=
openings
i
iflowCiopen
openings
i
iflowCiopen
openings
i
iflowiopeniflowext
I
C
mVVmRRmVVFm
td
Vd







ˆ
2
ˆˆˆ
∑ 



 −−∑ 



 −−+=
openings
i
iflowCiopen
openings
i
iflowCiopenC
I
C
I
mVVmRRmVm
td
Vd
td
Pd







ˆˆ
( )dstfnpsdTsdnsd

111 +−==⋅=⋅ σσ
 int
fdfddv
tD
VD
ext
mdI


+=ρ
42
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 2)
( )[ ]∫∫∑ +−= ∞
WS
Aero dstfnppF

11: AERODYNAMIC FORCES
( )∫∫ −+



 −= ∞
iopenS
iflowiopeniflowiThrust dsnppmVVF



1
ˆˆ
: THRUST FORCES
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
RIGID-BODY TERMSmV
td
Vd
CIO
O
C








×+ ←


ω
∑−∑ 







×+− ←
openings
i
iflowiopen
openings
i
iflowiopenIO
B
iopen
mrmr
td
rd





ˆˆ
ˆ
2 ω FLUID-FLOW TERMS
GRAVITATIONAL,
AERODYNAMIC,
PROPULSIVE &
∑∑ ++=
i
iThrustAero FFmg

∑+
j
jF

DISCRETE TERMS
FORCE EQUATIONS (CONTINUE – 1)
43
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 3)
ABSOLUTE ANGULAR MOMENT RELATIVE TO A REFERENCE POINT O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( )( ) ( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫=∫ ×−= ←
tm
O
O
O
tm
OIOOO
tm
O
tv
OO dm
td
rd
rdmrrVdmrvdVRRH ,
,,,,, :


ωρ
OO Vc

×= , O different from body centroid C
IOOI ←⋅+ ω

, Rotation from I to O coordinates
( )
∫ 







×+
tm O
O
O dm
td
rd
r ,
,

 Non-rigidity of System
• Rotors, Shafts
• Fluids
• Elasticity
( )[ ]
( )
∫ −⋅=
tm
OOOOO dmrrrrI ,,,,, 1:

2nd
Moment of Inertia Dyadic of all the
mass m(t) relative to O
PrHH OCCO

×+= ,,,
44
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 4)
MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( ) ( )( )
( )( )
( ) ∑∑∫∫∑∑ +×−+⋅×−+×−=×−=
k
k
j
jOj
tS
O
tv
O
i
iextOiOext
MFRRsdRRdvgRRfdRRM

σρ,
( )( )
( )( ) ( )
( ) ( )∑ ∫∫∫∫∫ ⋅−×−+×−×−=×−=
openings
i S
SO
P
tv
O
tv
I
O
REYNOLDS
I
tv
O
I
O
iopen
sdVVRRvdVVvd
Dt
VD
RRvdVRR
td
d
H
td
d 





,,
ρρρρ
O
I
O
openings
i
iflowOiflowOiopenOext
I
O V
td
cd
mVVRRMH
td
d 



×+




 −×




 −+= ∑∑
,
,,
ˆˆ
( )( )
( )( )
∫∫∑ ×−=×−=
tv
I
O
tm
I
OOext dv
tD
VD
RRdm
tD
VD
RRM ρ




,
∑∑ 




 −×




 −+=
openings
i
iflowCiflowCiopenCext
I
C mVVRRMH
td
d

 ˆˆ
,,
( ) ( ) ( ) int,
fdRRfdRRvd
tD
VD
RRMd OextO
I
OO



×−+×−=×−= ρ
45
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 5)
MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
BODY TERMSIOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω

,,,
( )
( ) 















××+
















×+
∫
∫
←
tm O
O
OIO
O
tm O
O
O
dm
td
rd
r
dm
td
rd
r
td
d
,
,
,
,




ω
ROTORS, FLUIDS,
SHAFTS,
ELASTICITY,…
TERMS
FLUID CROSSING
OPENINGS TERMS
∑ 







×+×− ←
openings
i
iflowOiopenIO
O
Oiopen
Oiopen mr
td
rd
r 



,
,
,
ˆ
ˆ
ˆ ω
AERODYNAMIC &
PROPULSIVE
∑∑ +=
i
OiThrustOAero MM ,,

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( ) ∑+∑ ×−+
k
k
j
jOj MFRR
 DISCRETE FORCES
& MOMENTS TERMS








−×+
I
O
O
td
Vd
gc


,
NON-CENTROIDAL
MOMENTS TERMS
46
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 6)
( ) ( )[ ]∫∫∑ +−×−= ∞
WS
OOAero dstfnppRRM

11:, AERODYNAMIC MOMENTS
RELATIVE TO O
( ) ( )[ ]∫∫ −×−+



 −×



 −= ∞
iopenS
OiflowiopeniflowOiopenOiThrust dsnppRRmVVRRM



1
ˆˆˆ
:,
THRUST MOMENTS
RELATIVE TO O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
discrete forces exerting by the surrounding at point∑
j
jF

jR

∑
k
kM

discrete moments exerting by the surrounding
Table of Content
47
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System
Kinetic Energy as a Function of Parameters Defined at a Reference Point O
( )
∫ ⋅=
tm II
md
td
Rd
td
Rd
T

2
1
Kinetic Energy of the System
Let choose a reference point O and use:
OO rRR ,

+=
I
O
O
I
O
I
O
I
td
rd
V
td
rd
td
Rd
td
Rd ,,



+=+=
We can write
( )
∫ 







+⋅








+=
tm I
O
O
I
O
O md
td
rd
V
td
rd
VT ,,
2
1




( )
( ) ( ) ( )
∫∫∫ ⋅++⋅=
tm I
O
I
O
tm I
O
O
tm
OO md
td
rd
td
rd
md
td
rd
VmdVV ,,,
2
1
2
1


(a) (b) (c)
Let develop each of the three parts of this expression
48
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System (continue – 1)
(a)
( ) ( )
( ) mVVmdVV OO
tm
OO

⋅=∫⋅
2
1
2
1
( )
∫⋅
tm I
O
O md
td
rd
V ,


(b)
Use Reynolds’ Transport Theorem when we differentiate
( )
OOC
tm
O cmrmdr ,,,

==∫
( ) ( ) I
O
openings
i
ifluidOiopen
tm
I
O
REYNOLDS
I
tm
O
td
cd
mrmd
td
rd
mdr
td
d ,
,
,
,
ˆ





=+=





∑∫∫
Therefore
( )
∑−=∫
openings
i
ifluidOiopen
I
O
tm
I
O
mr
td
cd
md
td
rd



,
,, ˆ
and
( )
∑⋅−⋅=∫⋅
openings
i
ifluidOiopenO
I
O
O
tm
I
O
O mrV
td
cd
Vmd
td
rd
V 



,
, ˆ
∑⋅−








×+⋅= ←
openings
i
ifluidOiopenOOIO
O
O
O mrVc
td
cd
V 


,
ˆω
49
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System (continue – 2)
(c)
( ) ( )
∫∫ 







×+⋅








×+=⋅ ←←
tm
OBIO
O
OB
OBIO
O
OB
tm I
O
I
O
B
mdr
td
rd
r
td
rd
md
td
rd
td
rd
,
,
,
,,,
2
1
2
1 



ωω
∑ ∫ 







×+×+⋅






















×++×++ ←←←←
rotors m
CirotorORiOCIO
O
OC
td
rd
CirotorORi
Ri
Cirotor
td
rd
OCIO
O
OC
Ri
RiRi
Ri
Ii
RiCirotor
Ri
Ri
I
ORiC
Ri
Ri
dmrr
td
rd
r
td
rd
r
td
rd
,,
,
,
0
,
,
,
,
,
2
1 

  



  




ωωωω
( )
∫ 







×+⋅








×+= ←←
tm
OIO
FrozenRotor
O
O
OIO
FrozenRotor
O
O
mdr
td
rd
r
td
rd
,
,
,
,
2
1 



ωω
( ) ( )∑ ∫∑ ∫ ×⋅×+⋅








×+ ←←←
rotors m
CirotorORiCirotorORi
rotors I
OC
m
CirotorORi
Ri
RiRi
Ri
Ri
Ri
dmrr
td
rd
dmr ,,
,
0
,
2
1 

  

ωωω
( )
∫ ⋅=
tm
FrozenRotor
O
O
FrozenRotor
O
O
md
td
rd
td
rd ,,
2
1

(c1)
( )
( )
∫ ×⋅








+ ←
tm
OIO
FrozenRotor
O
O
mdr
td
rd
,
, 

ω
(c2)
( ) ( )
( )
∫ ×⋅×+ ←←
tm
OIOOIO mdrr ,,
2
1 
ωω
(c3)
( ) ( )∑ ∫ ×⋅×+ ←←
rotors m
CirotorIRiCirotorIRi
Ri
RiRi
dmrr ,,
2
1 
ωω
(c4)
50
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System (continue – 3)
Let develop those equations
( )
∫ ⋅
tm O
O
O
O
md
td
rd
td
rd ,,
2
1

(c1)
(c2) ( )
( )
( )
( )
∫∫ 







⋅×=×⋅








←←
tm O
O
OIO
tm
OIO
O
md
td
rd
rmdr
td
rd
O
,
,,
,



ωω
( ) ( )
∫∫ 







×⋅=








×⋅= ←←
tm O
O
OIO
tm O
O
OIO md
td
rd
rmd
td
rd
r ,
,
,
,




ωω
(c3) ( ) ( )
( )
( ) ( )
( )
∫ ×⋅×−=∫ ×⋅× ←←←←
tm
IOOOIO
tm
OIOOIO mdrrmdrr ωωωω

,,,,
2
1
2
1
( )[ ]
( )
( )[ ]( )
IO
tm
OOOOIO
tm
IOOOIO mdrrrrmdrr ←←←← ⋅∫ −⋅⋅=∫ ××⋅−= ωωωω

,,,,,, 1
2
1
2
1
IOOIO I ←← ⋅⋅= ωω

,
2
1
( )[ ]
( )
∫ −⋅=
tm
OOOOO mdrrrrI ,,,,, 1:

where
Second Moment of Inertia Dyadic of
the System, Relative to O
51
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System (continue – 5)
To summarize, the Kinetic Energy of the system is given by
( )
( ) ( ) ( )
∫∫∫ ⋅+⋅+⋅=
tm I
O
I
O
tm I
O
O
tm
OO md
td
rd
td
rd
md
td
rd
VmdVVT ,,,
2
1
2
1


( ) ∑⋅−








×+⋅+⋅= ←
openings
i
ifluidOiopenOOIO
O
O
OOO mrVc
td
cd
VmVV 



,,
, ˆ
2
1
ω
Since the kinetic energy is independent of the chosen
reference point O, the previous relation is invariant to O.
( )
∫ ⋅=
tm II
md
td
Rd
td
Rd
T

2
1
( ) ( )
∫∫ 







×⋅+⋅+ ←
tm O
O
OIO
tm O
O
O
O
md
td
rd
rmd
td
rd
td
rd ,
,
,,
2
1



ω
IOOIO I ←← ⋅⋅+ ωω

,
2
1
Table of Content
52
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Quasi-Lagrangian Equations
Let perform the following calculations
∑−+=∑−








×++=
∂
∂
←
openings
i
ifluidOiopen
I
O
O
openings
i
ifluidOiopenOIO
O
O
O
O
mr
td
cd
mVmrc
td
cd
mV
V
T








 ,
,
,,
, ˆˆω
( ) ∑⋅−








×+⋅+⋅= ←
openings
i
ifluidOiopenOOIO
O
O
OOO mrVc
td
cd
VmVVT 


,,
ˆ
2
1
ω
( ) ( )
IOOIO
tm
O
O
OIO
tm
O
O
O
O
Imd
td
rd
rmd
td
rd
td
rd
←←← ⋅⋅+∫ 







×⋅+∫ ⋅+ ωωω




,
,
,
,,
2
1
2
1
Since P
V
T
O

 =
∂
∂
Also
( )
OOIOO
tm
O
O
O
IO
VcImd
td
rd
r
T 


 ×+⋅+∫ 







×=
∂
∂
←
←
,,
,
, ω
ω
Since
O
IO
H
T
,

 =
∂
∂
←ω
( )
OOIOO
tm
O
O
OO VcImd
td
rd
rH



×+⋅+∫ 







×= ← ,,
,
,, ω
We found
∑−+=
openings
i
ifluidOiopen
I
O
O mr
td
cd
mVP 



,
, ˆ
53
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Quasi-Lagrangian Equations (continue – 1)
Let develop those equations in frame O
P
V
T
O

 =
∂
∂
O
IO
H
T
,

 =
∂
∂
←ω
We found
( )
∑−=∫=∑
openings
i
iflowiflow
I
tm
I
ext mV
td
Pd
md
tD
VD
F 


 ˆ
∑+∑=






∂
∂ openings
i
iflowiflowext
IO
mVF
V
T
td
d


 ˆ
∑ ×+∑ ×+=
openings
i
iflowiflowOiopenOOext
I
O mVrVPMH
td
d

 ˆˆ
,,, ∑ ×∑ +=






∂
∂
×+






∂
∂
←
openings
i
iflowiflowOiopenOext
O
O
IIO
mVrM
V
T
V
T
td
d



ˆˆ
,,
ω
[ ] ( )
( )
( ) ( )
∑+∑=






∂
∂
×+






∂
∂
←
openings
i
iflow
O
iflow
O
ext
O
O
O
IO
OO
mVF
V
T
V
T
td
d




 ˆ
ω
[ ]( )
( )
[ ]( )
( )
( )
[ ]( ) ( )
∑∑ ×+=








∂
∂
×+






∂
∂
×+






∂
∂
←
←
←
openings
i
iflow
O
iflow
O
Oiopen
O
Oext
O
O
O
O
O
IO
O
IO
OIO
mVrM
V
T
V
TT
td
d







ˆˆ
,,
ω
ω
ω
This equation is obtained, also, using the LAGRANGE’s EQUATIONS OF MOTION.
Table of Content
54
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Energy Flow
Let compute the time derivative of the kinetic energy, using the REYNOLD’s Transport
Theorem.
  


openingsthethroughaddedenergykinetic
openings
i
ifluid
iopenII
m
II
REYNOLDS
m
II
m
td
Rd
td
Rd
md
td
Rd
td
Rd
md
td
Rd
td
Rd
td
d
td
Td
∑ 







⋅+∫ 







⋅=∫ 







⋅=
2
1
2
1
2
2
where
( )







=
≠
∫∫ ⋅−








⋅
=








⋅
00
0
2
1
,
iflow
iflow
iflow
S
S
II
iopenII
m
m
m
sdV
td
Rd
td
Rd
td
Rd
td
Rd iopen





 ρ
Is the mean value of the kinetic energy flow that crosses through the openings .iopenS
55
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Energy Flow (continue – 1)
Let express the kinetic energy flow as function of the parameters of the reference point O.
OIO
O
O
O
I
O
I
O
I
r
td
rd
V
td
rd
td
Rd
td
Rd
,
,, 



×++=+= ←ω
int2
2
fdfdmd
td
Rd
ext
I


+=
( )
  





openingsthethroughaddedenergykinetic
openings
i
ifluid
iopenII
m
extOIO
O
O
O m
td
Rd
td
Rd
fdfdr
td
rd
V
td
Td
∑ 







⋅+∫ +⋅








×++= ←
2
1
int,
,
ω
( ) IOOIOextO
O
O
ext
O
O
extO fdrfdrfd
td
rd
fd
td
rd
fdfdV ←← ⋅








∫ ×+⋅∫ ×+∫ ⋅+∫ ⋅+








∫ ∫+⋅= ωω



  



0
int,,
0
int
,,
0
int
  


openingsthethroughaddedenergykinetic
openings
i
ifluid
iopenII
m
td
Rd
td
Rd
∑ 







⋅+
2
1
( ) ( )
  




openingsthethroughaddedenergykinetic
openings
i
ifluid
iopenII
IOOextext
O
O
extO m
td
Rd
td
Rd
Mfd
td
rd
FV ∑
















⋅+⋅∑+∫ ⋅+∑⋅= ←
2
1
,
,
ω
56
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Energy Flow (continue – 2)
where

ForcesDiscrete
l
l
ForcesSurface
S
ForcesBody
V
extext FsdTvdGfdF ∑+∫+∫=∫=∑





ρ:






  

MomentsDiscrete
k
k
Moments
ForcesDiscrete
l
lOl
MomentsSurface
S
O
MomentsBody
V
OextOOext MFrsdTrvdGrfdrM ∑+∑ ×+∫ ×+∫ ×=∫ ×=∑ ,,,,, : ρ
G

- body force per unit mass ( )3
/mN
nT

1⋅= σ - force per unit surface ( )2
/mN
σ

- stress tensor (dyadic) ( )2
/mN
∑
l
lF

- discrete forces applied to the system at the position lR

( )N
∑
k
kM

- discrete moments applied to the system ( )mN ⋅
57
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Energy Flow (continue – 3)
Since the kinetic energy is invariant to the reference point O, let choose O = C (system centroid)
( ) ( )
  


  

  



openingsthethroughaddedenergyKinetic
openings
i
ifluid
iopenII
momentsexternal
bydoneWork
ICCext
bodytheofrigiditynonof
becausedoneWork
ext
C
C
forcesexternal
bydoneWork
extC m
td
Rd
td
Rd
Mfd
td
rd
FV
td
Td
∑∑∫∑ 















⋅+⋅+⋅+⋅= ←
−
2
1,
ω
    

Openings
trough
Added
Massof
Energy
Internal
flow
Openings
trough
Added
Energy
Kinetic
flow
System
to
Added
Flow
Heat
Change
Work
m II
Change
Energy
Kinetic
Change
Energy
Internal
td
Ud
td
Td
td
Qd
td
Wd
md
td
Rd
td
Rd
e
td
d
td
Td
td
Ud
+++=








⋅+=+ ∫ 2
1
Change in Internal Energy + Change in Kinetic Energy = Change in Total Energy due to Surroundings
From thermodynamics we have:
58
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Energy Flow (continue – 4)
-internal energy of the molecules
(vibration, rotation, translation).
∫=
m
mde
td
Ud
∫ 







⋅=
m II
md
td
Rd
td
Rd
td
d
td
Td

2
1
( ) ( )



  


  

  



ForcesSurface
S I
ForcesBody
v I
momentsexternal
bydoneWork
ICCext
bodyrigidnon
anondoneWork
ext
C
C
forcesexternal
bydoneWork
extC sdT
td
Rd
vdG
td
Rd
Mfd
td
rd
FV
td
Wd
∫∫∑∫∑ ⋅+⋅=⋅+⋅+⋅= ←
−
ρω,

∫∫ ⋅−
∂
∂
=
S
Surface
throughRate
Radiation
ConductionV
Rate
Transfer
Heat
sdqvd
t
Q
td
Qd 
ρ
∑
















⋅=
openings
i
ifluid
iopenII
flow
m
td
Rd
td
Rd
td
Td


2
1
- kinetic energy change.
- rate of work done by the surroundings on the system
-rate of heat transfer and
conduction/radiation added to the system.
- kinetic energy added to the system
through the openings.
td
Ud flow -internal energy added by the flow entering
the system through the openings.
Table of Content
59
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
I
R

CR

C
( )tS
OR

OOCr

Bxˆ
Bzˆ
shaftr

rotorr

Byˆ
Ixˆ
Iyˆ
Izˆ
Cshaftr

Crotorr

OyˆOxˆ
OzˆLet assume that the variable mass has internal
rigid rotors and other rigid moving parts (shafts...)
Bm - mass of the body (excluding rotors)
irotorm - mass of the rotor i
m - mass of the system
∑+=
rotors
irotorB mmm
BC - centroid of the body located at , relative to the reference point O.OCB
r ,

RiC - centroid of the rotor i located at , relative to the reference point O.OCRi
r ,

C - centroid of the system located at , relative to the reference point O.OCr ,

Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors)
60
SOLO
I
R

CR

C
( )tS
OR

OOCr

Bxˆ
Bzˆ
shaftr

rotorr

Byˆ
Ixˆ
Iyˆ
Izˆ
Cshaftr

Crotorr

OyˆOxˆ
Ozˆ
OBc ,

- first moment of inertia of the body, relative to O.
ORi
c ,

- first moment of inertia of the rotor i, relative to O.
Oc,

- first moment of inertia of the system, relative to O.
∑+
∑+
=→
=∑+=∑ ∫+∫=∫=
rotors
irotorB
rotors
irotorOCBOC
OC
OC
rotors
irotorOCBOC
rotors m
O
m
O
m
OO
mm
mrmr
r
mrmrmrmdrmdrmdrc
RiB
RiB
RB
,,
,
,,,,,,, :



Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 1)
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
61
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
I
R

CR

C
( )tS
OR

OOCr

Bxˆ
Bzˆ
shaftr

rotorr

Byˆ
Ixˆ
Iyˆ
Izˆ
Cshaftr

Crotorr

OyˆOxˆ
Ozˆ
BP

- body linear momentum ∑ 



 −−+=
openings
i
iflowOiopenBO
I
OB
B mRRmV
td
cd
P 


 ˆ,
irotorP

- rotor i linear momentum irotorO
I
C
irotorO
I
ORi
irotor mV
td
rd
mV
td
cd
P Ri








+=+=




 ,
P

- system linear momentum ∑ 



 −−+=∑+=
openings
i
iflowOiopenO
I
O
rotors
i
irotorB mRRmV
td
cd
PPP 


 ˆ,
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 2)
62
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Absolute Angular Momentum Relative to a Reference Point O (continue -2)
( )( ) ( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫=∫ ×−= ←
tm
O
O
O
tm
OIOOO
tm
O
tv
OO dm
td
rd
rdmrrVdmrvdVRRH ,
,,,,, :


ωρ
OO Vc

×= , Difference between O and System centroid C
IOOI ←⋅+ ω

, Rotation from I to O coordinates
( )
∫ 







×+
tm O
O
O dm
td
rd
r ,
,

 Non-rigidity of System
• Rotors,
• Moving parts (Pistons,…)
• Fluids
• Elasticity
63
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Let go in more details by taking the rotors in consideration
For a point on the rotor i, we have
I
R

CR

C
( )tS
OR

OOCr

Bxˆ
Bzˆ
shaftr

rotorr

Byˆ
Ixˆ
Iyˆ
Izˆ
Cshaftr

Crotorr

OyˆOxˆ
Ozˆ
Ri
Ri
Ri
ORi
ORi
RiORi
RiORi
CirotorIRi
C
Cirotor
CIO
O
C
O
I
Cirotor
I
C
I
O
I
irotor
irotor
CirotorCOirotor
r
td
rd
r
td
rd
V
td
rd
td
rd
td
Rd
td
Rd
V
rrRR
,
0
,
,
,
,
,
,
,
:









×++×++=
++==
++=
←← ωω
Substitute those in ( )( )
∫ ×−=
tm
OO dmVRRH

, , to obtain
( )( ) ( )
∑+=∑ ∫ ×+∫ ×=∫ ×−=
rotors
ORiOB
rotors m
I
irotor
Oirotor
tm
I
B
OB
tm
OO HHdm
td
Rd
rdm
td
Rd
rdmVRRH
RiB
,,,,,





( )
∑ ∫ 







×+×++×+
∫ 







×++×=
←←
←
rotors m
CirotorIRiOCIO
O
OC
OOirotor
tm
OBIO
O
OB
OOB
irotor
RiRi
Ri
B
dmrr
td
rd
Vr
dmr
td
rd
Vr
,,
,
,
,
,
,






ωω
ω
where OBH ,

- body absolute angular momentum relative to the reference point O.
ORiH ,

- rotor i absolute angular momentum relative to the reference point O.
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 3)
64
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
OBH ,

- body absolute angular momentum relative to the reference point O.
( )
( )
( )
( ) ( )
∫ ×+∫ ××+×∫=
∫ 







+×+×=
←
←
tm
O
OB
OB
tm
OBIOOBO
tm
OB
tm
O
OB
OBIOOOBOB
BBB
B
dm
td
rd
rdmrrVdmr
dm
td
rd
rVrH
,
,,,,
,
,,,




ω
ω
(a1) (b1) (c1)
( )
OB
tm
OB cdmr ,,

=∫(a1)
(b1)
( )
OOBOOBBO
tm
OB VcVrmVdmr
B

×=×=×








∫ ,,,
( )
( )
( )[ ]( )
IOOBIO
tm
OBOBOBOB
tm
OBIOOB Idmrrrrdmrr
BB
←←← ⋅=⋅∫ −⋅=∫ ×× ωωω

,,,,,,, 1
( )[ ]∫ −⋅=
Bm
OOOOOB mdrrrrI ,,,,, 1:

where
Second Moment of Inertia of the
body relative to O
( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫= ←
tm
O
OB
OB
tm
OBIOOBO
tm
OBOB
BBB
dm
td
rd
rdmrrVdmrH ,
,,,,,


ω
( )
∫ 







×+⋅+×= ←
tm
O
OB
OBIOOBOOB dm
td
rd
rIVc ,,
,,,


ω
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 4)
65
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
ORiH ,

- rotor i absolute angular momentum relative to the reference point O.
∫ 







×+×++×=∫ 







×= ←←
Ri
RiRi
Ri
Ri m
CirotorIRiOCIO
O
OC
OOirotor
m
I
irotor
OirotorORi mdrr
td
rd
Vrmd
td
Rd
rH ,,
,
,,,





ωω
∫ 







×+×++×= ←←
R
RiRi
Ri
Ri
m
CirotorIRiOCIO
O
OC
OCirotor mdrr
td
rd
Vr ,,
,
,



ωω
∫ 







×+×++×+ ←←
R
RiRi
Ri
Ri
m
CirotorIRiOCIO
O
OC
OOC mdrr
td
rd
Vr ,,
,
,



ωω irotorOCCRi PrH RiRi

×+= ,,
∫ 







×+×++×= ←←
Ri
RiRi
Ri
RiRi
m
CrotorIRiOCIO
O
OC
OCirotorCRi mdrr
td
rd
VrH ,,
,
,,



ωω
( ) IRi
m
CirotorCirotorOCIO
O
OC
O
m
Cirotor
Ri
RiRiRi
Ri
Ri
Ri
mdrrr
td
rd
Vmdr ←← 





∫ ××−+








×++×












∫= ωω



  

,,,
,
0
,
( )[ ] IRiCirotorIR
m
CirotorCirotorCirotorCirotor Ri
Ri
RiRiRiRi
Imdrrrr ←← ⋅=⋅∫ −⋅= ωω

,,,,, 1
( )[ ]∫ −⋅=
Ri
RiRiRiRiRi
m
CirotorCirotorCirotorCirotorCirotor mdrrrrI ,,,,, 1:

Second Moment of Inertia of the
rotor i relative to it’s centroid RiC
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 5)
66
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Therefore
( )[ ]( )
Ri
O
OC
OOCIOOirotorORiCirotor
Ri
B
OC
OOCIORiOCOCOCOCCirotorORiCirotor
ORiIORi
O
OC
RiOOCIRiCirotorORi
m
td
rd
VrII
m
td
rd
VrmrrrrII
cm
td
rd
mVrIH
Ri
RiRi
Ri
RiRiRiRiRiRiRi
Ri
RiRi








+×++⋅=








+×+−⋅++⋅=








×++×+⋅=
←←
←←
←←
,
,,,
,
,,,,,,,
,
,
,,,
1







ωω
ωω
ωω
Second Moment of Inertia of the
rotor i relative to O
( )[ ] RiOCOCOCOCCirotorOirotor mrrrrII RiRiRiRiRi ,,,,,, 1:

−⋅+=
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 6)
67
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
The system Absolute Angular Momentum relative to O, is
IOOB
m O
OB
OBOOB
rotors
ORiOBO Imd
td
rd
rVcHHH
B
←⋅+








×+×=+= ∫∑ ω



,
,
,,,,,
∑ 







+×+⋅∑+∑ ⋅+ ←←
rotors
Ri
O
OC
OOCIO
rotors
Oirotor
rotors
BRiCirotor m
td
rd
VrII Ri
RiRi
,
,,,


ωω
or
∑∫
∑








×+








×+
⋅+⋅+×= ←←
rotors
Ri
O
OC
OC
m O
OB
OB
rotors
ORiCirotorIOOOOO
m
td
rd
rmd
td
rd
r
IIVcH
Ri
Ri
B
Ri
,
,
,
,
,,,





ωω
Second Moment of Inertia of the system relative to O∑+=
rotors
OirotorOBO III ,,, :

Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 7)
68
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
If we compare
with
∑∫
∑








×+








×+
⋅+⋅+×= ←←
rotors
Ri
O
OC
OC
m O
OB
OB
rotors
ORiCirotorIOOOOO
m
td
rd
rmd
td
rd
r
IIVcH
Ri
Ri
B
Ri
,
,
,
,
,,,





ωω
( )
∫ 







×+⋅+×= ←
tm
O
O
OIOOOOO dm
td
rd
rIVcH ,
,,,,


ω
we can see that
∑∫ ←⋅=








×
rotors
ORiCirotor
m O
O
O Ri
Imd
td
rd
r ω



,
,
,
∫ 







×+
Bm
O
OB
OB md
td
rd
r ,
,


∑ 







×+
rotors
Ri
O
OC
OC m
td
rd
r Ri
Ri
,
,


- Rotors Absolute Angular Moment
Relative to O
- Body Non-rigidity
Elasticity of the System
Sloshing of Liquids
Moving Parts (Pistons,…)
- Movement of
Relative to O
RiC
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 8)
69
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Let define
∑ 







×+∫ 







×=∫








×
rotors
Ri
O
OC
OC
m
O
Ob
Ob
m
FrozenRotors
O
O
O m
td
rd
rmd
td
rd
rmd
td
rd
r Ri
Ri
B
,
,
,
,
,
, :






We obtain
∫∑ 







×+⋅+⋅+×= ←←
m FrozemRotor
O
O
O
rotors
ORiCirotorIOOOOO md
td
rd
rIIVcH Ri
,
,,,,,


ωω
Let compute
OIO
O
O
I
O
H
td
Hd
td
Hd
,
,,


×+= ←ω
( )
O
m FrozemRotor
O
O
O
rotors
ORiCirotor
rotors
ORiCirotorIOOIOO
I
OO
md
td
rd
r
td
d
IIIIVc
td
d
RiRi
















×+
⋅+⋅+⋅+⋅+×=
∫
∑∑ ←←←←
,
,
0
,,,,,







ωωωω
















××+





⋅×+⋅×+ ∫∑ ←←←←←
m FrozemRotor
O
O
OIO
rotors
ORiCirotorIOIOOIO md
td
rd
rII Ri
,
,,,


ωωωωω
Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 9)
70
SOLO
( ) ( )
I
tm
O
O
O
I
j
ORjCjrotor
I
IO
OIO
I
O
I
O
OO
I
O
I
O
dm
td
rd
r
td
d
I
td
d
td
d
I
td
Id
td
Vd
cV
td
cd
td
Hd
Rj
∫ 







×+∑+⋅+⋅+×+×= ←
←
←
,
,,,
,
,
,,





ω
ω
ω
External Moments Equations (continue -8)
Using
together with
we obtain
( )
( )∑+∫








×+⋅×+⋅+⋅ ←←←←
←
j
I
ORjCjrotor
I
tm
FrozenRotors
O
O
OIOOIOIO
O
O
O
IO
O Rj
I
td
d
dm
td
rd
r
td
d
I
td
Id
td
d
I ωωωω
ω 



,
,
,,
,
,
( )
( ) ∑+∑ ×−+∑ 



 −×



 −+
×+∑+∑+×−=
k
k
j
jCj
openings
i
iflowOiopenOiopen
O
I
O
openings
i
OTiOAOC
I
O
MFRRmVVRR
V
td
cd
MMgmRR
td
Hd





ˆˆ
,,
,
( ) ∑+∑ ×−+∑ 



 −×



 −+
∑+∑+








−×=
k
k
j
jCj
openings
i
iflowOiopenOiopen
openings
i
OTiOA
I
O
O
MFRRmVVRR
MM
td
Vd
gc






ˆˆ
,,,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Table of Content
71
SOLO
SUMMARY OF EQUATIONS OF MOTION OF
A VARIABLE MASS (CONTINUE – 1)
MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
RIGID-BODY TERMS
IOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω

,,,




∑ ⋅×+∑ ⋅+ ←←←
j
OjrotorCrotorjIO
j
OjrotorCrotorj RjRj
II ωωω

,, ROTORS TERMS
( )
( ) 







∫








××+








∫








×+
←
tm
FrozenRotor
O
O
OIO
O
tm
FrozenRotor
O
O
O
dm
td
rd
r
dm
td
rd
r
td
d
,
,
,
,




ω
BODY FLUIDS,
MOVING PARTS,
ELASTICITY,…
TERMS
FLUID CROSSING
OPENINGS TERMS
∑ 







×+×− ←
openings
i
iflowOiopenIO
O
Oiopen
Oiopen mr
td
rd
r 



,
,
,
ˆ
ˆ
ˆ ω
AERODYNAMIC &
PROPULSIVE
∑+∑=
i
OTiOA MM ,,

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( ) ∑+∑ ×−+
k
k
j
jOj MFRR
 DISCRETE FORCES
MOMENTS TERMS








−×+
I
O
O
td
Vd
gc


, NON-CENTROIDAL
MOMENTS TERMS
72
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System (continue – 4)
In the same way
(c4) ( ) ( ) ( )[ ]
∑
∑∑ ∫
←←
←←←←
⋅⋅=
⋅−⋅⋅=×⋅×
rotors
ORiCrotorORi
rotors
ORiCirotorCirotorCirotorCirotorORi
rotors m
CirotorORiCirotorORi
Ri
RiRiRiRi
Ri
RiRi
I
rrrrdmrr
ωω
ωωωω


,
,,,,,,
2
1
1
2
1
2
1
Therefore
(c) ( ) ( )
∫∫ 







×+⋅








×+=⋅ ←←
tm
OIO
O
O
OIO
O
O
tm I
O
I
O
mdr
td
rd
r
td
rd
md
td
rd
td
rd
,
,
,
,,,
2
1
2
1 



ωω
( )
∫ ⋅=
tm
FrozenRotor
O
O
FrozenRotor
O
O
md
td
rd
td
rd ,,
2
1

( )
∫








×⋅+ ←
tm
FrozenRotor
O
O
OIO md
td
rd
r ,
,


ω
IOOIO I ←← ⋅⋅+ ωω

,
2
1
ORiCirotorORi Ri
I ←← ⋅⋅+ ωω

,
(c1) (c2)
(c4)(c3)
73
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLDS’ TRANSPORT THEOREM APPROACH
Kinetic Energy of the System (continue – 5)
To summarize, the Kinetic Energy of the system is given by
( )
( ) ( ) ( )
∫∫∫ ⋅+⋅+⋅=
tm I
O
I
O
tm I
O
O
tm
OO md
td
rd
td
rd
md
td
rd
VmdVVT ,,,
2
1
2
1


( ) ∑⋅−








×+⋅+⋅= ←
openings
i
ifluidOiopenOOIO
O
O
OOO mrVc
td
cd
VmVV 



,,
, ˆ
2
1
ω
Since the kinetic energy is independent of the chosen
reference point O, the previous relation is invariant to O.
( )
∫ ⋅=
tm II
md
td
Rd
td
Rd
T

2
1
( ) ( )
∫∫ 







×⋅+⋅+ ←
tm
FrozenRotor
O
O
OIO
tm
FrozenRotor
O
O
FrozenRotor
O
O
md
td
rd
rmd
td
rd
td
rd ,
,
,,
2
1



ω
∑ ⋅⋅+⋅⋅+ ←←←←
rotors
ORiCirotorORiIOOIO Ri
II ωωωω

,,
2
1
2
1
Table of Content
74
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
REYNOLD’s TRANSPORT THEOREM APPROACH
References
1. Shames, I.H., “Mechanics of Fluids”, 2nd
Ed., McGraw-Hill, 1982
Table of Content
January 5, 2015 75
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA

More Related Content

PDF
Ece4510 notes08
PDF
UDA 5 - P.pdf
PPTX
Variables de estado Isrrael Daboin
PPTX
Biomathematics
PDF
Introduccion al control digital
PPT
Simple harmonic motion
PPT
Equation of motion of a variable mass system3
PPT
Chapter 11 notes
Ece4510 notes08
UDA 5 - P.pdf
Variables de estado Isrrael Daboin
Biomathematics
Introduccion al control digital
Simple harmonic motion
Equation of motion of a variable mass system3
Chapter 11 notes

Viewers also liked (20)

PDF
Region 2 NIRSA In Motion Project 11-6-15
PPTX
Section 6.7 Practice Problems
PDF
Variable mass system
PPT
2 estimators
PPT
2 classical field theories
PPT
Reduced order observers
PPT
6 radar range-doppler-angular loops
PPT
Introduction to elasticity, part i
PPT
Unit 1 Notes
PPT
Optical aberrations
PPT
5 cramer-rao lower bound
PPT
Maxwell equations and propagation in anisotropic media
PPT
Keplerian trajectories
PPT
11 fighter aircraft avionics - part iv
PPT
Sliding Mode Observers
PPT
1 tracking systems1
PPT
6 computing gunsight, hud and hms
PPT
Fiber optics ray theory
PPT
14 fixed wing fighter aircraft- flight performance - ii
PPT
0314 week1 newtons_laws
Region 2 NIRSA In Motion Project 11-6-15
Section 6.7 Practice Problems
Variable mass system
2 estimators
2 classical field theories
Reduced order observers
6 radar range-doppler-angular loops
Introduction to elasticity, part i
Unit 1 Notes
Optical aberrations
5 cramer-rao lower bound
Maxwell equations and propagation in anisotropic media
Keplerian trajectories
11 fighter aircraft avionics - part iv
Sliding Mode Observers
1 tracking systems1
6 computing gunsight, hud and hms
Fiber optics ray theory
14 fixed wing fighter aircraft- flight performance - ii
0314 week1 newtons_laws
Ad

Similar to Equation of motion of a variable mass system2 (20)

PPT
Equation of motion of a variable mass system1
PPT
Thermodynam8cs basicsbñbbdhjsksksjsajajammamamams
PPT
Fluid dynamics
PDF
4. Lecture 5 Reynolds Transport Theorem -Continuity equation by ned.pdf
PDF
Solutions manual for fundamentals of aerodynamics 6th edition by anderson
PPT
chap04.ppt
PPTX
Reynolds transport theorem
PDF
Answers to Problems in Convective Heat and Mass Transfer, 2nd Edition by Ghia...
PPT
Fluid kinematics lecture note for students.ppt
PDF
006a (PPT) Fluid Dynamics New 2022.pdf .
PPT
Ch5_CV_&_Continuity Presentation Guide Fluids
PDF
6. balance laws jan 2013
PPTX
reynolds theorm
PPT
Introduction to FLUID MECHANICS & KINEMATICS
PPTX
Module 2 of fluid machines - Kinematics of fluids
PDF
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
PDF
Flow in Pipes
PDF
Introduction to basic principles of fluid mechanics
PDF
fluid mechanics pt1
PDF
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
Equation of motion of a variable mass system1
Thermodynam8cs basicsbñbbdhjsksksjsajajammamamams
Fluid dynamics
4. Lecture 5 Reynolds Transport Theorem -Continuity equation by ned.pdf
Solutions manual for fundamentals of aerodynamics 6th edition by anderson
chap04.ppt
Reynolds transport theorem
Answers to Problems in Convective Heat and Mass Transfer, 2nd Edition by Ghia...
Fluid kinematics lecture note for students.ppt
006a (PPT) Fluid Dynamics New 2022.pdf .
Ch5_CV_&_Continuity Presentation Guide Fluids
6. balance laws jan 2013
reynolds theorm
Introduction to FLUID MECHANICS & KINEMATICS
Module 2 of fluid machines - Kinematics of fluids
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
Flow in Pipes
Introduction to basic principles of fluid mechanics
fluid mechanics pt1
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
Ad

More from Solo Hermelin (20)

PPT
5 introduction to quantum mechanics
PPT
Stabilization of linear time invariant systems, Factorization Approach
PPT
Slide Mode Control (S.M.C.)
PPT
Inner outer and spectral factorizations
PPT
Anti ballistic missiles ii
PPT
Anti ballistic missiles i
PPT
Analytic dynamics
PPT
12 performance of an aircraft with parabolic polar
PPT
10 fighter aircraft avionics - part iii
PPT
9 fighter aircraft avionics-part ii
PPT
8 fighter aircraft avionics-part i
PPT
4 navigation systems
PPT
3 earth atmosphere
PPT
2 aircraft flight instruments
PPT
3 modern aircraft cutaway
PPT
2Anti-aircraft Warhead
PPT
1 susceptibility vulnerability
PPT
15 sky cars
PPT
13 fixed wing fighter aircraft- flight performance - i
PPT
Calculus of variation problems
5 introduction to quantum mechanics
Stabilization of linear time invariant systems, Factorization Approach
Slide Mode Control (S.M.C.)
Inner outer and spectral factorizations
Anti ballistic missiles ii
Anti ballistic missiles i
Analytic dynamics
12 performance of an aircraft with parabolic polar
10 fighter aircraft avionics - part iii
9 fighter aircraft avionics-part ii
8 fighter aircraft avionics-part i
4 navigation systems
3 earth atmosphere
2 aircraft flight instruments
3 modern aircraft cutaway
2Anti-aircraft Warhead
1 susceptibility vulnerability
15 sky cars
13 fixed wing fighter aircraft- flight performance - i
Calculus of variation problems

Recently uploaded (20)

PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PDF
An interstellar mission to test astrophysical black holes
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
BIOMOLECULES PPT........................
PPTX
2. Earth - The Living Planet earth and life
2Systematics of Living Organisms t-.pptx
Cell Membrane: Structure, Composition & Functions
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
POSITIONING IN OPERATION THEATRE ROOM.ppt
An interstellar mission to test astrophysical black holes
Biophysics 2.pdffffffffffffffffffffffffff
The KM-GBF monitoring framework – status & key messages.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
Classification Systems_TAXONOMY_SCIENCE8.pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
. Radiology Case Scenariosssssssssssssss
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
7. General Toxicologyfor clinical phrmacy.pptx
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Taita Taveta Laboratory Technician Workshop Presentation.pptx
BIOMOLECULES PPT........................
2. Earth - The Living Planet earth and life

Equation of motion of a variable mass system2

  • 1. 1 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH SOLO HERMELIN http://www.solohermelin.com
  • 2. 2 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM • Simplified Particle Approach (see Power Point Presentation) The equations of motion can be developed using At a given time t the system has V(t) – system volume. m (t) – system mass. S (t) – system boundary surface. • Reynolds’ Transport Theorem Approach (this Power Point Presentation) • Lagrangian Approach (see Power Point Presentation)
  • 3. 3 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH TABLE OF CONTENT OSBORNE REYNOLDS 1842-1912 • Reynolds’ Transport Theorem • Inertial Velocity and Acceleration • Mass Equation • First Moment of Inertia Relative to a Reference Point O • Linear Momentum Equation • Force Equation • Absolute Angular Momentum Relative to a Reference Point O • Moment Relative to a Reference Point O • External Forces and Moments of the System • Summary of Equation of Motion for a Variable Mass System
  • 4. 4 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH TABLE OF CONTENT (Continue) • Kinetic Energy of the System • Quasi-Lagrangian Equations • Energy Flow • References • Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors) • Summary of the Equations of Motion of a Variable Mass System MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
  • 5. 5 REYNOLDS’ TRANSPORT THEOREM -any system of coordinatesOxyz - any continuous and differentiable functions in ( ) ( )trtr OO ,,, ,,  ηχ ( )tandrO,  ( )trO ,,  ρ - flow density at point and time t Or,  SOLO - mass flow through the element .mdsdVS   =⋅− ,ρ sd  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM - any control volume, changing shape, bounded by a closed surface S(t)v (t) - flow velocity, relative to O, at point and time t( )trV OOflow ,,,  Or,  - position and velocity, relative to O, of an element of surface, part of the control surface S(t). OSOS Vr ,, ,  - area of the opening i, in the control surface S(t).iopenS - gradient operator in O frame.O,∇ - flow relative to the opening i, in the control surface S(t).OSiOflowSi VVV ,,,  −= - differential of any vector , in O frame. O td d ζ  ζ 
  • 6. 6 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM Start with LEIBNIZ THEOREM from CALCULUS: ( ) ( )    ChangeBoundariesthetodueChange tb ta tb ta td tad ttaf td tbd ttbfdx t txf dxtxf td d LEIBNITZ       −+= ∫∫ )),(()),(( ),( ),(:: )( )( )( )( ∂ ∂ and generalized it for a 3 dimensional vector space on a volume v(t) bounded by the surface S(t). Using LEIBNIZ THEOREM followed by GAUSS THEOREM (GAUSS 4): ( ) ( ) ( ) ( ) ∫∫∫∫∫       ⋅∇+∇⋅+=⋅+ → = tv OSOOOSGAUSS Opotolative dsofMovement thetodueChage tS OS tv O LEIBNITZ O tv vdVV t GAUSS sdVvd t vd td d ,,,,)4( intRe )( ,      χχ ∂ χ∂ χ ∂ χ∂ χ This is REYNOLDS’ TRANSPORT THEOREM OsborneReynolds 1842-1912 SOLO GOTTFRIED WILHELM von LEIBNIZ 1646-1716 REYNOLDS’ TRANSPORT THEOREM Johann Carl Friederich Gauss 1777-1855
  • 7. 7 0,,,,,  =−=⇒= OSOSOOS VVVVV ( ) ∫∫∫∫∫∫∫∫∫∫∫         ⋅∇+∇⋅+=⋅+= )( ,,,, )4( , )()()( tv OOOO O GAUSS O tStv OO tv FFFF vdVV t GAUSS sdVvd t vd td d     χχ ∂ χ∂ χ ∂ χ∂ χ SOLO REYNOLDS’ TRANSPORT THEOREM (CONTINUE -1) ( ) ∫∫∫∫∫∫∫∫ ⋅∇=⋅== )( ,,)4(, )()( )( tv OOGAUSSO tStv F FFF vdV GAUSS sdVvd td d td tvd  χ               =⋅∇ → td tvd tv V tv OO )( )( 1 lim0)( ,,  EULER 1755 ρχ == &,, OOS VV  ( )∫∫∫∫∫∫∫∫ ∫∫∫       ⋅∇+=⋅+=== )( ,, )( , )( )( )( 0 tV OO tS O tV tV FFF F vdV t sdVvd t dv td d td tmd  ρ ∂ ρ∂ ρ ∂ ρ∂ ρ or, since this is true for any attached volume vF(t) ( ) 0,,,,,, =⋅∇+∇⋅+=⋅∇+ OOOOOO VV t V t  ρρ ∂ ρ∂ ρ ∂ ρ∂ CONSERVATION OF MASS EQUATION EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM CASE 1 (Control Volume vF attached to the Fluid )OOS VV ,,  = CASE 2 (Control Volume vF attached to the Fluid and )1=χOOS VV ,,  = CASE 3 (Control Volume vF attached to the Fluid and )ρχ =OOS VV ,,  =
  • 8. 8 Define ( ) ( ) ( )trtrtr OOO ,,:, ,,,  ηρχ = ( )∫∫∫∫∫∫∫∫ ⋅+         += )( , )()( tS OS tv OO tv sdVvd tt vd td d    ηρ ∂ ρ∂ η ∂ η∂ ρηρ We have (for any volume v(t) bounded by the surface S(t)) But, from CONSERVATION OF MASS ( ) ( )OOOO V t V t ,,,, 0  ρη ∂ ρ∂ ηρ ∂ ρ∂ ⋅∇−=⇒=⋅∇+ CASE 4: Flow Equations SOLO We have ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]∫∫∫∫∫= ∫∫∫∫∫ ∫∫∫∫∫∫∫∫ ⋅−− ⋅+         ⋅∇+∇⋅−         ∇⋅+= ⋅+         ⋅∇−= + + )( ,, )( 4 . )( , )( ,,,,,, )( , )( ,, )( tS OSO tv O MDG DerMat GAUSS tS OS tv OOOOOO O tS OS tv OO OO tv sdVVvd tD D sdVvdVVV t sdVvdV t vd td d       ρηρ η ρηρηηρη ∂ η∂ ρ ρηρηρ ∂ η∂ ρη where 0: ,, =⋅∇+= η ∂ η∂η  OO OO V ttD D is the MATERIAL DERIVATIVE, RELATIVE TO O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM (CONTINUE -2)
  • 9. 9 CASE 4: Flow Equations (continue – 1) SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM (CONTINUE -3) ( )[ ]∫∫∫∫∫∫∫∫ ⋅−−= )( ,, )()( tS OSO tv OO tv sdVVvd tD D vd td d    ρηρ η ρη v(t) ds m> 0 . m< 0 . 0, <⋅ sdV S  dm ∑= + N j ext iji fdfd 1 int  ( )tSW 2openS openiS O 0, >⋅ sdV S  OCr , Oflowir ,  C Copenir ,  Cr,  SV,  Oiopenr ,  openiV  OV,  Or,  Cflowir ,  flowiV  Ozˆ Oyˆ Oxˆ openflowS VVV  −=, - mass flow rate through the element . mdsdVS   =⋅− ,ρ sd  SOSO VVV ,,, :  =− - flow velocity relative to .sd  There are no sources or sinks in the volume v (t). The change in the mass of the system is due only to the flow through the surface openings Sopen i (i=1,2,…). The surface S(t) can be divided in: • Sw(t) the impermeable wall through which the fluid can not escape .( )0,  =sV • Sopen i(t) the openings (i=1,2,…) through which the fluid enters or exits .( )0>m ( )0<m ( ) ( ) ( )∑+= openings i iopenW tStStS ( ) ( ) ( )( ) ∑=∑ ∫∫ ⋅−+∫∫         ⋅−=∫∫ ⋅− openings i ii openings i tS S tS S tS S msdVsdVsdV iopenW   ηρηρηρη ˆ , 0 , )( ,
  • 10. 10 CASE 4: Flow Equations (continue – 2) SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM (CONTINUE -3) ( )∫∫∫∫∫∫∫∫ ⋅+= .. , .... SC O O VCVC O sdVvd td d vd tD D   ρηρηρ η - mass flow rate through the element . mdsdVS   =⋅− ,ρ sd  SO VV ,,  = - flow velocity relative to O and .sd  CONTROL VOLUME WITH FIXED SHAPE C.V.( ) 0,  =OS V
  • 11. 11 CASE 4: Flow Equations (continue – 2) SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM (CONTINUE -4) ( )∫∫∫∫∫∫∫∫ ⋅−+= )( , )()( tS S tv OO tv sdVvd tD D vd td d    ρηρ η ρη v(t) ds m> 0 . m< 0 . 0, <⋅ sdV S  dm ∑= + N j ext iji fdfd 1 int  ( )tSW 2openS openiS O 0, >⋅ sdV S  OCr , Oflowir ,  C Copenir ,  Cr,  SV,  Oiopenr ,  openiV  OV,  Or,  Cflowir ,  flowiV  Ozˆ Oyˆ Oxˆ openflowS VVV  −=, ( )( ) ∫∫ ⋅−= tS Si iopen sdVm   , ρ ( )( )       = ≠ ∫∫ ⋅− = 00 0:ˆ , i i i tS S i m m m sdV iopen      ρη η where i openings i i tv OO tv mvd tD D vd td d     ∑∫∫∫∫∫∫ += ηρ η ρη ˆ )()( ( )∑ ∫∫∫∫∫∫∫∫ ⋅−+= openings i S S tv OO tv iopen sdVvd tD D vd td d    , )()( ρηρ η ρη We can write or or REYNOLDS’ TRANSPORT THEOREM OSBORNE REYNOLDS 1842-1912 Mean Vector of on the opening iη  iopenS Mass Rate entering through opening iopenS or ( )∫∫∫∫∫∫∫∫ ⋅+= .. , .... SC O O VCVC O sdVvd td d vd tD D   ρηρηρ η Table of Content
  • 12. 12 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Inertial Velocity and Acceleration v(t) I R  dm ( )tS 2openS 1openS I td Rd V   = I td Vd a   = Ix Oy Iz Ox Oz Iy OR  O Or,  R  - Position of the mass element dm relative to I. I td Rd V   = - Velocity of the mass element dm relative to I. II td Rd td Vd a 2 2   == - Acceleration of the mass element dm relative to I. Mass Equation Use the REYNOLDS’ TRANSPORT THEOREM with 01 =→= O tD Dη η   ( ) ( ) ( ) ( ) ∑∑ ∫∫∫∫ =⋅−=== openings i iflow openings i S S REYNOLDS tvtm msdVvd td d md td d tm iopen    , ρρ The change of the mass of the system is due to the flow through the openings in the surface S (t). ( )∫∫ ⋅−= iopenS Siflow sdVm   ,: ρ Table of Content Table of Content
  • 13. 13 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH First Moment of Inertia Relative to a Reference Point O v(t) I R  dm ( )tS 2openS 1openS I td Rd V   = I td Vd a   = Ix Oy Iz Ox Oz Iy OR  O Or, Define the First Moment of Inertia Relative to O ( ) ( ) ( ) mRmdRmdRRc O tmtm OO  −=−= ∫∫:, -Position vector of the instantaneous Mass Center (Centroid) of the system, relative to I ( ) ( ) ( ) ( ) ( ) ( ) 0: =−→== ∫ ∫ ∫ ∫ tm C tm tv tv C mdRR m mdR vd vdR tR    ρ ρ Therefore ( ) ( )( ) ( ) mrmRRmRmdRmdRRc OCOC tm O tm OO ,, :  =−=−=−= ∫ ∫ For O = C we have: ( ) ( )( ) ( ) 0:,  =−=−=−= ∫ ∫ mRRmRmdRmdRRc CC tm C tm CC Table of Content
  • 14. 14 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Linear Momentum Equation v(t) I R  dm ( )tS 2openS 1openS I td Rd V   = I td Vd a   = Ix Oy Iz Ox Oz Iy OR  O Or,  The Linear Moment of the mass enclosed by v (t) is defined as ( ) ( ) ∫∫∫∫∫∫ == tv I tv I vd tD RD vdVP ρρ   , : vdVmdVPd II ρ,, :  == The Linear Momentum, of the differential mass dm = ρdv, with initial velocity ,is defined as I I tD RD VV   == , : Use the REYNOLDS’ TRANSPORT THEOREM with R  =η and O = I ( ) ( ) ( ) ( ) ( ) ∑ ∫∫∫∫∫∫∫∫∫∫∫ −+= ⋅−−=== openings i iflowiopenC V C tS S mR tv REYNOLDS tv I tv I mRmR td Rd m sdVRvdR td d vd tD RD vdVP C C              ˆ : ,, ρρρρ ( )       = ≠ ⋅− = ∫∫ 00 0: ˆ , iflow iflow iflow S S iopen mif mif m sdVR R iopen      ρ where: is the mean position vector of the flow and of the opening on iopenSiopenR ˆ
  • 15. 15 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Linear Momentum Equation (continue – 1) v(t) I R  dm ( )tS 2openS 1openS I td Rd V   = I td Vd a   = Ix Oy Iz Ox Oz Iy OR  O Or, We can write the Linear Momentum ( ) ( )( ) ∑      −−= ∑ ∫∫ ⋅−−−=∫= openings i iflowCiopenC openings i S SCC tm mRRmV sdVRRmVmdVP iopen    ˆ : ,ρ We can write ( ) ∫= tm mdVP  : ( ) ( )( )∑ ∫∫ ⋅−−+−−+−= openings i S SCOOOOC iopen sdVRRRRmVmVmV  ,ρ ( ) ( ) ( ) ( )( )∑ ∫∫ ⋅−−−+∑ ∫∫ ⋅−−+−= openings i S SOO openings i S SOCOC iopeniopen sdVRRmVsdVRRmVV  ,, ρρ ( ) ( ) ∑∑       −−+−+−= openings i iflowOiopenO td cd m openings i iflowOCOC mRRmVmRRmVV I O           ˆ , or ( )( ) ∑      −−+= ∑ ∫∫ ⋅−−−+= openings i iflowOiopenO I O openings i S SOO I O mRRmV td cd sdVRRmV td cd P iopen       ˆ, , , ρ Table of Content
  • 16. 16 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Force Equation Applying the 2nd Newton’s Law to the differential mass dm = ρdv, we obtain: int2 2 fdfdmd td Rd md td Vd ext II   +== where ext fd  - External forces acting on the differential mass dm intfd  - Internal forces that surroundings exercises on the differential mass dm From the 3rd Newton’s Law the internal force that particle j applies on particle i is of equal magnitude but of opposite direction to the force that particle i applies on particle j : jiij fdfd intint  −= Therefore ( ) 00 int 1 1 int  =→= ∫∑∑ →∞ = ≠ = tv NN i N ij j ij fdfd
  • 17. 17 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Force Equation (continue – 1) ( ) ( ) ( ) ( ) ∑∑∫∫∫∫ =++== ext l l tvtv ext tv I tm I FFfdfddv tD VD dm tD VD   intρ discrete forces exerting by the surrounding at point jR  Use the REYNOLDS’ TRANSPORT THEOREM with V  =η and O = I (Inertial System) ( ) ( ) ( )∑ ∫∫∫∫ ⋅−+= openings i S S tv I REYNOLDS I tv iopen sdVVvd Dt VD vdV td d    ,ρρρ Since the Linear Momentum is ( ) ( ) ∫∫ == tvtm dvVmdVP ρ  : ( ) ( ) ( ) ( ) ∑+∑= ∑+∫= ∑ ∫∫ ⋅−+∫=∫= openings i iflowiflowext openings i iflowiflow tm I openings i S S tm II tm I mVF mVmd Dt VD sdVVmd Dt VD mdV td d P td d iopen         , , , ˆ ˆ ρ Integrate the force equation on ρ dv over the volume v (t)
  • 18. 18 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Force Equation (continue – 2) where ( ) ( )        = ≠ ∫∫ ⋅− =→∫∫ ⋅−= 00 0: ˆ : ˆ , , iflow iflow iflow S S iflow S Siflowiflow mif mif m sdVV VsdVVmV iopen iopen        ρ ρ - is the mean flow velocity, relative to an inertial frame, at the opening iflowV  iopenS Let differentiate the Linear Momentum I openings i iflowCiopenC I mRRmV td d td Pd     ∑      −−=    ˆ ∑           −−∑       −−+= openings i iflow I C I iopen openings i iflowCiopenC I C m td Rd td Rd mRRmVm td Vd        ˆ ˆ ∑∑      −−     −−+= openings i iflowCiopen openings i iflowCiopenC I C mVVmRRmVm td Vd        ˆˆ where is the mean velocity of the opening , relative to I iopenS ( ) iflow iflow iflow I iflow S S I iopeniopen V mif mif m sdVR td d R td d V iopen ˆ 00 0ˆ : ˆ ,       ≠         = ≠             ⋅− == ∫∫ ρ
  • 19. 19 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Force Equation (continue – 3) Using ∑      −−∑      −−+= openings i iflowCiopen openings i iflowCiopenC I C I mVVmRRmVm td Vd td Pd        ˆˆ and ( ) ∑+∑=∫= openings i iflowiflowext I tm I mVFmdV td d P td d   , ˆ we obtain ∑      −+∑      −+−∑+∑= openings i iflowCiopen openings i iflowCiopenC openings i iflowiflowext I C mVVmRRmVmVFm td Vd          ˆˆˆ ∑      −+∑      −+ ∑−∑       +−+∑= openings i iflowCiopen openings i iflowCiopen openings i iflowC openings iflowiopeniopeniflowext mVVmRR mVmVVVF         ˆˆ ˆˆˆ ∑      −+∑      −+∑      −+∑= openings i iflowCiopen openings i iflowCiopen openings i iflowiopeniflowext I C mVVmRRmVVFm td Vd        ˆ 2 ˆˆˆ Therefore
  • 20. 20 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Force Equation (continue – 4) Note We could obtain this result by performing ∑      −+∑      −+∑      −+∑= openings i iflowCiopen openings i iflowCiopen openings i iflowiopeniflowext I C mVVmRRmVVFm td Vd        ˆ 2 ˆˆˆ ( )( ) ( )( )∑ ∫∫∑ ∫∫ ⋅−−−+=         ⋅−−−= openings i I S SCC I C I openings S SCC I iopeniopen sdVRR td d mVm td Vd sdVRRmV td d td Pd       ,, ρρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫∫ ∑ ∫∫∑ ∫∫∑ ∫∫ ⋅−−+ ⋅−−+⋅−−=⋅−− openings i SOFPOSITIONINCHANGE S S I C openings i STHROUGH FLOWINCHANGE S I SC openings i SOFSHAPEAND MAGNITUDEINCHANGE S td d SC openings i I S SC iopen iopen iopen iopen iopen I iopen iopen sdVRR td d sdV td d RRsdVRRsdVRR td d             , ,,, ρ ρρρ ( ) ( ) ( ) ( ) ∑∑ ∫∫∑ ∫∫      −=⋅−−+⋅−− openings i iflowCiopen openings i S I SC openings i S td d SC mRRsdV td d RRsdVRR iopen I iopen   ˆ ,, ρρ Therefore ( ) ( ) ( ) ( ) ( )∑∑ ∫∫∑ ∫∫ −=⋅−−=⋅−− openings i iflowCiopen openings i S SC openings i S S I C mVVsdVVVsdVRR td d iopeniopen   ,, ρρ ( ) ( ) ∑ ∑∑ ∫∫      −−      −−+=         ⋅−−−= openings i iflowCiopen openings i iflowCiopenC I C I openings i S SCC I mVV mRRmVm td Vd sdVRRmV td d td Pd iopen          ˆ ˆ ,ρ or End Note Table of Content
  • 21. 21 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ Absolute Angular Momentum Relative to a Reference Point O Define the Absolute Angular Momentum Relative to O of the mass enclosed by the volume v (t), as Substitute in the previous equation OIO O O O I O I O I OO r td rd V td rd td Rd td Rd VrRR , ,, , :&      ×++=+==+= ←ω ( )( ) ( ) ∫         ×++×=∫ ×−= ← tm OIO O O OO tm OO dmr td rd VrdmVRRH , , ,,    ω ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫= ← tm O O O tm OIOOO tm O dm td rd rdmrrVdmr , ,,,,   ω We obtain (a) (b) (c) Let develop those three expressions (a), (b) and (c). where IO←ω  is the angular velocity vector of the O frame relative to I. ( ) ( ) PdRRvdVRRHd OOO  ×−=×−= ρ, The Absolute Angular Momentum, of the differential mass and Inertial Velocity ,relative to a reference point O is defined as vdmd ρ= V 
  • 22. 22 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Absolute Angular Momentum Relative to a Reference Point O (continue -1) (a) ( ) ( ) ( ) ( ) ( ) ( ) OOC tm OC tm OC tm OC tm C tm O cmRRdmrdmrdmrdmrdmr ,,,,,,  =−===+= ∫∫∫∫∫ Where we used because C is the Center of Mass (Centroid) of the system. ( ) 0, =∫tm C dmr  ( ) OOOOCO tm O VcVrmVdmr  ×=×=×         ∫ ,,, ( ) ( ) ( )[ ]( ) IOOIO tm OOOO tm OIOO Idmrrrrdmrr ←←← ⋅=⋅−⋅=×× ∫∫ ωωω  ,,,,,,, 1(b) where ( )[ ] ( ) ∫ −⋅= tm OOOOO dmrrrrI ,,,,, 1:  2nd Moment of Inertia Dyadic of all the mass m(t) relative to O We obtain (a) + (b) + (c) ( )( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫∫∫∫         ×+⋅+×=         ×+××+×      =×−= ← ← tm O O OIOOOO tm O O O tm OIOOO tm O tv OO dm td rd rIVc dm td rd rdmrrVdmrvdVRRH , ,,, , ,,,,, :     ω ωρ
  • 23. 23 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Absolute Angular Momentum Relative to a Reference Point O (continue -2) ( )( ) ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫=∫ ×−= ← tm O O O tm OIOOO tm O tv OO dm td rd rdmrrVdmrvdVRRH , ,,,,, :   ωρ OO Vc  ×= , Difference between O and System centroid C IOOI ←⋅+ ω  , Rotation from I to O coordinates ( ) ∫         ×+ tm O O O dm td rd r , ,   Non-rigidity of System • Rotors • Moving Parts (Pistons, …) • Fluids • Elasticity
  • 24. 24 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Absolute Angular Momentum Relative to a Reference Point O (continue -3) Let differentiate the Absolute Angular Momentum, relative to an Inertial System and apply REYNOLDS’ Transport Theorem with and O = I (Inertial System)( ) VRR O  ×−=η ( )( ) ( ) ( ) ( ) ( )∑ ∫∫∫∫ ⋅−×−+ ×− =×−= openings i S SO tv I O REYNOLDS I tv O I O iopen sdVVRRvd Dt VRRD vdVRR td d td Hd     , , ρρρ ( )( ) ( )( ) ( ) ( ) ( )∑ ∫∫∫∫∫ ⋅−×−+×−×−=×−= openings i S md SO P tv O tv I O REYNOLDS I tv O I O iopen sdVVRRvdVVvd Dt VD RRvdVRR td d td Hd          , , ρρρρ to obtain Use ( )( ) ( )( ) ( ) ( ) ( )( )∑ ∫∫∫∫ ⋅−−×−+×−+×+×−=×−= openings i S SOOOOCOC tv I O I tv O I O iopen sdVVVRRmVRRmVVvd Dt VD RRvdVRR td d td Hd       , , ρρρ And use ( ) ( ) ( )( )∑ ∫∫ ⋅−−−=∫=∫= openings i S SCC tmtv iopen sdVVRRmVmdVvdVP  ,ρρ ( )[ ] ( ) ( ) ( ) ( ) VV tD VD RR tD VD RRVVV tD VD RRV tD RD tD RD tD VRRD O I O I OO I O I O II O         ×−×−=×−+×−=×−+×         −= ×− to obtain ( )( ) ( )( ) O I O openings i iflowOiflowOiopen tv I O I tv O I O V td cd mVVRRvd Dt VD RRvdVRR td d td Hd        ×+      −×      −+×−=×−= ∑∫∫ ,, ˆˆ ρρ or Table of Content
  • 25. 25 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Moment Relative to a Reference Point O Multiplying (vector product) the 2nd Newton’s Law on the particle of mass dm=ρ dv, by we obtain the Moment of forces applied, relative to O: OO RRr  −=:, ( ) ( ) ( ) dm td Vd RRfdfdRR I OextO   ×−=+×− int from which by integration over the volume v (t) ( )( ) ( )( ) ( )( ) ∫∫∫ ×−=×−+×− tv I O tv O tv extO dv td Vd RRfdRRfdRR ρ   int We define the moment of external forces, relative to O, on the mass of the volume v (t), as: ( )( ) ∫∑ ×−= tv extOOext fdRRM  :,
  • 26. 26 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Moment Relative to a Reference Point O (continue – 1) We assumed that the equal but opposite forces between i and j act along the line joining them; i.e. Note collineararefandr jitij int  This is not always true (see H. Goldstein “Classical Mechanics”, 2nd Edition, pg.8, R. Aris “Vectors, Tenors and the Basic Equations of Fluid Mechanics”, pp.102-104, Michalas & Michalas “Radiation Hydrodynamics”, pg.72, Jaunzemis “Continuous Mechanics” Sec. 11, pg.223) End Note Since for any particles i and j the internal forces are of equal magnitude but of opposite directions we have jiij fdfd intint  −= ( ) ( ) ( ) ( ) ( ) ( )( ) 0 0 int intintint intint intint     =×−⇒ ←=×=×−= =×−+×−−= =×−+×− ∫ tv tOj jitijjitijjitij jitOjjitOi jitOjijtOi fdRR collinearfandrfdrfdRR fdRRfdRR fdRRfdRR
  • 27. 27 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Moment Relative to a Reference Point O (continue – 2) Therefore ( )( ) ( )( ) ( )( ) ∫ ∫∫∑ ×−= ×−=×−= tv extO tv I O tm I OOext fdRR dv tD VD RRdm tD VD RRM      ρ, ( )( ) ( )( ) O I O openings i iflowOiflowOiopen tv I O I tv O I O V td cd mVVRRvd Dt VD RRvdVRR td d td Hd        ×+      −×      −+×−=×−= ∑∫∫ ,, ˆˆ ρρ Use to obtain O I O openings i iflowOiflowOiopenOext I O V td cd mVVRRMH td d     ×+      −×      −+= ∑∑ , ,, ˆˆ
  • 28. 28 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Moment Relative to a Reference Point O (continue – 3) Use ( ) ( )( )∑ ∫∫ ⋅−−−+=∫= openings i S SCO I O tm iopen sdVVRRmV td cd mdVP  , , ρ ( ) ( ) ( ) O I O openings i S SOOOext I O V td cd sdVVVRRMH td d iopen    ×+∑ ∫∫ ⋅−−×−+∑= , ,,, ρ ( ) ( ) ( ) ( ) ( ) O openings i S SOO openings i S SOOOext VsdVRRmVPsdVVVRRM iopeniopen  ×        ∑ ∫∫ ⋅−−+−+∑ ∫∫ ⋅−−×−+∑= ,,, ρρ ( ) ( )∑ ∫∫ ⋅−×−+∑ ×+= openings i S SOOOext I O iopen sdVVRRVPMH td d  ,,, ρ in to obtain
  • 29. 29 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Moment Relative to a Reference Point O (continue – 4) Use the centroid C instead of O Absolute Angular Moment Relative to Center of Mass C ( ) ( ) ( ) ( ) ∫∫ ×−=×−= tm C tv CC mdVRRvdVRRH  ρ:, and ( ) ( ) ( ) ∑∑ ∑ ∫∫∑       −×      −+= =⋅−−×−+= openings i iflowCiflowCiopenCext openings i S SCCCext I C mVVRRM sdVVVRRMH td d iopen    ˆˆ , ,,, ρ ( ) ( ) ( ) ( ) ( ) ( ) ∫∫∫ ×−+×−=×−= tm OC tm C tm OO mdVRRmdVRRmdVRRH  , ( ) ( ) ( ) PrHPRRHmdVRRH OCCOCC tm OCC  ×+=×−+=×−+= ∫ ,,,, The relation between and is obtained usingOH,  CH, 
  • 30. 30 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Let compute OIO O O I O H td Hd td Hd , ,,   ×+= ←ω                 ××+                 ×+ ∫∫ ← m O O OIO Om O O O md td rd rmd td rd r td d , , , ,     ω Absolute Angular Momentum Relative to a Reference Point O (Continue - 5) Using ( ) ∫         ×+⋅+×= ← tm O O OIOOOOO dm td rd rIVcH , ,,,,   ω IOOI ←⋅+ ω  , IOOIOIOO II ←←← ⋅×+⋅+ ωωω  ,, Rotation from I to O coordinates I O OO I O td Vd cV td cd    ×+×= , , Difference between O and System centroid C Non-rigidity of System • Rotors • Moving Parts (Pistons,…) • Fluids • Elasticity Table of Content
  • 31. 31 SOLO External Forces and Moments of the System We have a system of particles enclosed at the time t by a surface S(t) that bounds the volume v(t). There are no sources or sinks in the volume v(t). The change in the mass of the system is due only to the flow through the surface openings Sopen i (i=1,2, …). The surface S(t) can be divided in: • Sw(t) the impermeable wall through which the flow can not escape .( )0,  =sV • Sopen i(t) the openings (i=1,2,…) through which the flow enters or exits .( )0>m ( )0<m EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 32. 32 SOLO External Forces and Moments of the System (continue -1 ) The external forces acting on the system are: • Gravitation acceleration (E center of Earth).E E R R M Gg  3 = • Force per unit surface applied by the surroundings on the surface of the system.( )2 /mNσ  ( )dstfnpsdTsdnsd  111 +−==⋅=⋅ σσ where: ( ) ndsnnsdsd  111 =⋅= - vector of surface differential ( )2 /mNp - pressure on (normal to) the surface . ( ) ( ) ∑∫∫∑∑∑ +⋅+=→= j j tStv ext i iextext FsddvgFfdF  σρ ( ) ( )( ) ( )( ) ( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑→ ∑ ×−=∑ k k j jOj tS O tv OOext i iextOiOext MFRRsdRRdvgRRM fdRRM   σρ, , The moment of the external forces, relative to a point O, is: f - friction force per (parallel to) unit surface .( )2 / mN • Discrete force exerting by the surrounding on the point , and discrete moments .∑j jF  jR  ∑ k kM  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH nT  1⋅= σ - force per unit surface ( )2 /mN
  • 33. 33 SOLO ∑      −+∑      −+∑      −+∑= openings i Ciopeniflow openings i Ciopeniflow openings i iopeniflowiflowext I C RRmVVmVVmF td Vd m         ˆˆ 2 ˆˆ External Forces Equations (continue -2) ( ) ( ) ( ) ( ) ( ) ∑∫∫∑∫∫∑ ++−+=+⋅+= j j tStvj j tStv ext FdstfnpdvgFsddvgF  11ρσρ ( ) ( ) ( ) 0111 0 =⋅∇== ∫∫∫ ∞∞∞ tv Gauss tStS dvnpdsnpdsnp   Since the pressure far away from the body is constant∞p Let add this equation to the previous one ( ) ( ) ( ) ( )[ ] ( ) ∑∫∑∫∫∑ ++−+=+⋅+= ∞ j j tSj j tStv ext FdstfnpptmgFsddvgF  11σρ ( ) ( )[ ] ( )[ ] ∑+∫∫ ∑ ∫∫ +−++−+= ∞∞ j j S openings i S Fdstfnppdstfnpptmg W iopen  1111 Finally since on Sopen i (t) the openings (i=1,2,…) the friction force f = 0 ( ) ( )[ ] ( ) ∑+∫∫ ∑ ∫∫ −++−+=∑ ∞∞ j j S openings i S ext FdsnppdstfnpptmgF W iopen  111 Substitute this equation in EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 34. 34 SOLO External Forces Equations (continue – 3) or ( ) ( )[ ] ( ) ∑      −+∑      −+ ∑+∑       ∫∫ −+     −+∫∫ +−+= ∞∞ openings i iflowCiopen openings i iflowCiopen j j openings i S iflowopeniflow SI C mRRmVV FdsnppmVVdstfnpptmgmV dt d iopenW        ˆˆ 2 1 ˆˆ 11 1 ( ) ( ) ( )∑∑∑∑∑ −+−++++= openings i iflowCiopen openings i iflowCiopen j j i iThrustAero I C mRRmVVFFFtmgmV dt d     2 where ( )[ ]∫∫∑ +−= ∞ WS Aero dstfnppF  11: Aerodynamic Forces ( )∫∫ −+     −= ∞ iopenS iflowiopeniflowiThrust dsnppmVVF    1 ˆˆ : Thrust Forces EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 35. 35 SOLO External Forces Equations (continue – 4) Let substitute ( ) ∑∑∑∑∑      −+     −++++= openings i iflowCiopen openings i iflowCiopen j j i iThrustAero I C mRRmVVFFFtmgmV dt d     ˆˆ 2 in CIO O C I C V td Vd td Vd a    ×+== ←ω to obtain RIGID-BODY TERMSmV td Vd CIO O C         ×+ ←   ω ∑∑ −         ×+− ← openings i iflowCiopen openings i iflowCiopenIO O Ciopen mrmr td rd      ,, , ˆˆ ˆ 2 ω FLUID-FLOW TERMS AERODYNAMIC & PROPULSIVE∑∑ += i iThrustAero FF  v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  ∑+= j jFmg  GRAVITATIONAL & DISCRETE TERMS EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 36. 36 SOLO External Moments Equations (continue – 5) The moments of the external forces relative to the point O are given by ( )( ) ( )( ) ( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑ k k j jOj tS OS tv OOext MFRRsdRRdvgRRM  σρ ~ , ( )( ) ( ) ( ) ( ) ( ) ∑+∑ ×−+∫ +−×−+×      ∫ −= k k j jOj tS OS tv O MFRRdstfnpRRgdvRR  11ρ Let add to this equation the following ( ) ( ) ( ) ( ) 01 0 5 =−×∇=×− ∫∫∫∫ ∞∞ V OS GGauss tS OS dvRRpdsnpRR     to obtain ( )( ) ( ) ( )[ ] ( ) ( ) ∑+∑ ×−+∫ +−×−+×      ∫ −=∑ ∞ k k j jOj tS OS tv OOext MFRRdstfnppRRgdvRRM  11, ρ ( ) ( ) ( )[ ] ( ) ( )  ( ) ∑+∑ ×−+ ∫∫ ∑ ∫∫         +−×−++−×−+×−= ∞∞ k k j jOj S openings i S Son OOOC MFRR dstfnppRRdstfnppRRgmRR W iopen W   1111 0 v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 37. 37 SOLO ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ∑+∑ ×−+ ∫∫ ∑ ∫∫ −×−++−×−+×−=∑ ∞∞ k k j jOj S openings i S OOOCOext MFRR dsnppRRdstfnppRRgmRRM W iopen   111, ∑       −×      −+×+∑= openings i iflowOiflowOiopenO I O Oext I O mVVRRV td cd M td Hd    ˆˆ , , External Moments Equations (continue -6) Using together with we obtain ( ) ∑∑∑ ∑∑ +×−+     −×     −+ ×+++×= k k j jOj openings i iflowOiopenOiopen O I O openings i OiThrustOAeroO I O MFRRmVVRR V td cd MMgc td Hd        ˆˆ , ,,, , ∑      −×     −+∑      −×     −+ ×+∑= openings i iflowOiopenOiopen openings i iflowiopeniflowOiopen O I O Oext mVVRRmVVRR V td cd M      ˆˆˆˆˆ , EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 38. 38 SOLO External Moments Equations (continue -7) where ( ) ( )[ ]∫∫∑ +−×−= ∞ WS OOAero dstfnppRRM  11:, Aerodynamic Moments ( ) ( )∫∫ −×−+     −×     −= ∞ iopenS OiflowiopeniflowOiopenOiThrust dsnppRRmVVRRM    1 ˆˆˆ :, Thrust Moments on the opening i discrete forces exerting by the surrounding at point∑ j jF  jR  ∑ k kM  discrete moments exerting by the surrounding v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 39. 39 SOLO ( ) Itm O O O I IO OIO I O I O OO I O I O dm td rd r td d td d I td Id td Vd cV td cd td Hd ∫         ×+⋅+⋅+×+×= ← ← , ,, , , ,,       ω ω External Moments Equations (continue -8) Using together with we obtain ( ) ( ) ∫∫         ××+         ×+⋅×+⋅+⋅ ←←←← ← tm O O OIO Otm O O OIOOIOIO O O O IO O dm td rd rdm td rd r td d I td Id td d I , , , ,, , ,      ωωωω ω ( ) ( ) ∑∑∑ ∑∑ +×−+     −×     −+ ×+++×−= k k j jCj openings i iflowOiopenOiopen O I O openings i OiThrustOAeroOC I O MFRRmVVRR V td cd MMgmRR td Hd      ˆˆ ,, , ( ) ∑∑∑ ∑∑ +×−+     −×     −+ ++         −×= k k j jCj openings i iflowOiopenOiopen openings i OiThrustOAero I O O MFRRmVVRR MM td Vd gc       ˆˆ ,,, EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Table of Content
  • 40. 40 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ( ) ∑∑ ∫∫∫       === openings i iopen openings i S iflow tm td md mdmd td d tm iopen  MASS EQUATION LINEAR MOMENTUM EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ( )( ) ( ) mrmRRmRmdRmdRRc OCOC tm O tm OO ,, :  =−=−=−= ∫ ∫ ( ) ( )( ) ∑ ∑ ∫∫∫       −−= ⋅−−−== openings i iflowCiopenC openings i S SCC tm mRRmV sdVRRmVmdVP iopen    ˆ : , ρ ( ) ( )( ) ∑ ∑ ∫∫∫       −−+= ⋅−−−+== openings i iflowOiopenO I O openings i S SOO I O tm mRRmV td cd sdVRRmV td cd mdVP iopen       ˆ : , , , ρ First Moment of Inertia Relative to O 0,  =Cc ( ) ( ) ( ) ( ) ( ) ( ) 0: =−→== ∫ ∫ ∫ ∫ tm C tm tv tv C mdRR m mdR vd vdR tR    ρ ρ Mass Centroid ( )       = ≠ ⋅− = ∫∫ 00 0: ˆ , iflow iflow iflow S S iopen mif mif m sdVR R iopen      ρ
  • 41. 41 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM (CONTINUE – 1) FORCE EQUATIONS EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ( ) ( ) ( ) ∑∑∫∫∫∫ =++== ext j j tvtv ext tv I tm I FFfdfddv tD VD dm tD VD      0 int ρ ( ) ( ) ( ) ∑∑∑ ∫∫∫∫ +=⋅−+== openings i iflowiflowext openings i S S tm II tm I mVFsdVVmd Dt VD mdV td d P td d iopen     ,, ˆ ρ ( ) ( ) ∑∫∫∑ +⋅+= j j tStv ext FsddvgF  σρ ∑      −+∑      −+∑      −+∑= openings i iflowCiopen openings i iflowCiopen openings i iflowiopeniflowext I C mVVmRRmVVFm td Vd        ˆ 2 ˆˆˆ ∑      −−∑      −−+= openings i iflowCiopen openings i iflowCiopenC I C I mVVmRRmVm td Vd td Pd        ˆˆ ( )dstfnpsdTsdnsd  111 +−==⋅=⋅ σσ  int fdfddv tD VD ext mdI   +=ρ
  • 42. 42 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 2) ( )[ ]∫∫∑ +−= ∞ WS Aero dstfnppF  11: AERODYNAMIC FORCES ( )∫∫ −+     −= ∞ iopenS iflowiopeniflowiThrust dsnppmVVF    1 ˆˆ : THRUST FORCES EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM RIGID-BODY TERMSmV td Vd CIO O C         ×+ ←   ω ∑−∑         ×+− ← openings i iflowiopen openings i iflowiopenIO B iopen mrmr td rd      ˆˆ ˆ 2 ω FLUID-FLOW TERMS GRAVITATIONAL, AERODYNAMIC, PROPULSIVE & ∑∑ ++= i iThrustAero FFmg  ∑+ j jF  DISCRETE TERMS FORCE EQUATIONS (CONTINUE – 1)
  • 43. 43 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 3) ABSOLUTE ANGULAR MOMENT RELATIVE TO A REFERENCE POINT O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( )( ) ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫=∫ ×−= ← tm O O O tm OIOOO tm O tv OO dm td rd rdmrrVdmrvdVRRH , ,,,,, :   ωρ OO Vc  ×= , O different from body centroid C IOOI ←⋅+ ω  , Rotation from I to O coordinates ( ) ∫         ×+ tm O O O dm td rd r , ,   Non-rigidity of System • Rotors, Shafts • Fluids • Elasticity ( )[ ] ( ) ∫ −⋅= tm OOOOO dmrrrrI ,,,,, 1:  2nd Moment of Inertia Dyadic of all the mass m(t) relative to O PrHH OCCO  ×+= ,,,
  • 44. 44 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 4) MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ( )( ) ( )( ) ( ) ∑∑∫∫∑∑ +×−+⋅×−+×−=×−= k k j jOj tS O tv O i iextOiOext MFRRsdRRdvgRRfdRRM  σρ, ( )( ) ( )( ) ( ) ( ) ( )∑ ∫∫∫∫∫ ⋅−×−+×−×−=×−= openings i S SO P tv O tv I O REYNOLDS I tv O I O iopen sdVVRRvdVVvd Dt VD RRvdVRR td d H td d       ,, ρρρρ O I O openings i iflowOiflowOiopenOext I O V td cd mVVRRMH td d     ×+      −×      −+= ∑∑ , ,, ˆˆ ( )( ) ( )( ) ∫∫∑ ×−=×−= tv I O tm I OOext dv tD VD RRdm tD VD RRM ρ     , ∑∑       −×      −+= openings i iflowCiflowCiopenCext I C mVVRRMH td d   ˆˆ ,, ( ) ( ) ( ) int, fdRRfdRRvd tD VD RRMd OextO I OO    ×−+×−=×−= ρ
  • 45. 45 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 5) MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O BODY TERMSIOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω  ,,, ( ) ( )                 ××+                 ×+ ∫ ∫ ← tm O O OIO O tm O O O dm td rd r dm td rd r td d , , , ,     ω ROTORS, FLUIDS, SHAFTS, ELASTICITY,… TERMS FLUID CROSSING OPENINGS TERMS ∑         ×+×− ← openings i iflowOiopenIO O Oiopen Oiopen mr td rd r     , , , ˆ ˆ ˆ ω AERODYNAMIC & PROPULSIVE ∑∑ += i OiThrustOAero MM ,,  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ∑+∑ ×−+ k k j jOj MFRR  DISCRETE FORCES & MOMENTS TERMS         −×+ I O O td Vd gc   , NON-CENTROIDAL MOMENTS TERMS
  • 46. 46 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 6) ( ) ( )[ ]∫∫∑ +−×−= ∞ WS OOAero dstfnppRRM  11:, AERODYNAMIC MOMENTS RELATIVE TO O ( ) ( )[ ]∫∫ −×−+     −×     −= ∞ iopenS OiflowiopeniflowOiopenOiThrust dsnppRRmVVRRM    1 ˆˆˆ :, THRUST MOMENTS RELATIVE TO O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM discrete forces exerting by the surrounding at point∑ j jF  jR  ∑ k kM  discrete moments exerting by the surrounding Table of Content
  • 47. 47 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System Kinetic Energy as a Function of Parameters Defined at a Reference Point O ( ) ∫ ⋅= tm II md td Rd td Rd T  2 1 Kinetic Energy of the System Let choose a reference point O and use: OO rRR ,  += I O O I O I O I td rd V td rd td Rd td Rd ,,    +=+= We can write ( ) ∫         +⋅         += tm I O O I O O md td rd V td rd VT ,, 2 1     ( ) ( ) ( ) ( ) ∫∫∫ ⋅++⋅= tm I O I O tm I O O tm OO md td rd td rd md td rd VmdVV ,,, 2 1 2 1   (a) (b) (c) Let develop each of the three parts of this expression
  • 48. 48 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System (continue – 1) (a) ( ) ( ) ( ) mVVmdVV OO tm OO  ⋅=∫⋅ 2 1 2 1 ( ) ∫⋅ tm I O O md td rd V ,   (b) Use Reynolds’ Transport Theorem when we differentiate ( ) OOC tm O cmrmdr ,,,  ==∫ ( ) ( ) I O openings i ifluidOiopen tm I O REYNOLDS I tm O td cd mrmd td rd mdr td d , , , , ˆ      =+=      ∑∫∫ Therefore ( ) ∑−=∫ openings i ifluidOiopen I O tm I O mr td cd md td rd    , ,, ˆ and ( ) ∑⋅−⋅=∫⋅ openings i ifluidOiopenO I O O tm I O O mrV td cd Vmd td rd V     , , ˆ ∑⋅−         ×+⋅= ← openings i ifluidOiopenOOIO O O O mrVc td cd V    , ˆω
  • 49. 49 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System (continue – 2) (c) ( ) ( ) ∫∫         ×+⋅         ×+=⋅ ←← tm OBIO O OB OBIO O OB tm I O I O B mdr td rd r td rd md td rd td rd , , , ,,, 2 1 2 1     ωω ∑ ∫         ×+×+⋅                       ×++×++ ←←←← rotors m CirotorORiOCIO O OC td rd CirotorORi Ri Cirotor td rd OCIO O OC Ri RiRi Ri Ii RiCirotor Ri Ri I ORiC Ri Ri dmrr td rd r td rd r td rd ,, , , 0 , , , , , 2 1                ωωωω ( ) ∫         ×+⋅         ×+= ←← tm OIO FrozenRotor O O OIO FrozenRotor O O mdr td rd r td rd , , , , 2 1     ωω ( ) ( )∑ ∫∑ ∫ ×⋅×+⋅         ×+ ←←← rotors m CirotorORiCirotorORi rotors I OC m CirotorORi Ri RiRi Ri Ri Ri dmrr td rd dmr ,, , 0 , 2 1       ωωω ( ) ∫ ⋅= tm FrozenRotor O O FrozenRotor O O md td rd td rd ,, 2 1  (c1) ( ) ( ) ∫ ×⋅         + ← tm OIO FrozenRotor O O mdr td rd , ,   ω (c2) ( ) ( ) ( ) ∫ ×⋅×+ ←← tm OIOOIO mdrr ,, 2 1  ωω (c3) ( ) ( )∑ ∫ ×⋅×+ ←← rotors m CirotorIRiCirotorIRi Ri RiRi dmrr ,, 2 1  ωω (c4)
  • 50. 50 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System (continue – 3) Let develop those equations ( ) ∫ ⋅ tm O O O O md td rd td rd ,, 2 1  (c1) (c2) ( ) ( ) ( ) ( ) ∫∫         ⋅×=×⋅         ←← tm O O OIO tm OIO O md td rd rmdr td rd O , ,, ,    ωω ( ) ( ) ∫∫         ×⋅=         ×⋅= ←← tm O O OIO tm O O OIO md td rd rmd td rd r , , , ,     ωω (c3) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ×⋅×−=∫ ×⋅× ←←←← tm IOOOIO tm OIOOIO mdrrmdrr ωωωω  ,,,, 2 1 2 1 ( )[ ] ( ) ( )[ ]( ) IO tm OOOOIO tm IOOOIO mdrrrrmdrr ←←←← ⋅∫ −⋅⋅=∫ ××⋅−= ωωωω  ,,,,,, 1 2 1 2 1 IOOIO I ←← ⋅⋅= ωω  , 2 1 ( )[ ] ( ) ∫ −⋅= tm OOOOO mdrrrrI ,,,,, 1:  where Second Moment of Inertia Dyadic of the System, Relative to O
  • 51. 51 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System (continue – 5) To summarize, the Kinetic Energy of the system is given by ( ) ( ) ( ) ( ) ∫∫∫ ⋅+⋅+⋅= tm I O I O tm I O O tm OO md td rd td rd md td rd VmdVVT ,,, 2 1 2 1   ( ) ∑⋅−         ×+⋅+⋅= ← openings i ifluidOiopenOOIO O O OOO mrVc td cd VmVV     ,, , ˆ 2 1 ω Since the kinetic energy is independent of the chosen reference point O, the previous relation is invariant to O. ( ) ∫ ⋅= tm II md td Rd td Rd T  2 1 ( ) ( ) ∫∫         ×⋅+⋅+ ← tm O O OIO tm O O O O md td rd rmd td rd td rd , , ,, 2 1    ω IOOIO I ←← ⋅⋅+ ωω  , 2 1 Table of Content
  • 52. 52 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Quasi-Lagrangian Equations Let perform the following calculations ∑−+=∑−         ×++= ∂ ∂ ← openings i ifluidOiopen I O O openings i ifluidOiopenOIO O O O O mr td cd mVmrc td cd mV V T          , , ,, , ˆˆω ( ) ∑⋅−         ×+⋅+⋅= ← openings i ifluidOiopenOOIO O O OOO mrVc td cd VmVVT    ,, ˆ 2 1 ω ( ) ( ) IOOIO tm O O OIO tm O O O O Imd td rd rmd td rd td rd ←←← ⋅⋅+∫         ×⋅+∫ ⋅+ ωωω     , , , ,, 2 1 2 1 Since P V T O   = ∂ ∂ Also ( ) OOIOO tm O O O IO VcImd td rd r T     ×+⋅+∫         ×= ∂ ∂ ← ← ,, , , ω ω Since O IO H T ,   = ∂ ∂ ←ω ( ) OOIOO tm O O OO VcImd td rd rH    ×+⋅+∫         ×= ← ,, , ,, ω We found ∑−+= openings i ifluidOiopen I O O mr td cd mVP     , , ˆ
  • 53. 53 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Quasi-Lagrangian Equations (continue – 1) Let develop those equations in frame O P V T O   = ∂ ∂ O IO H T ,   = ∂ ∂ ←ω We found ( ) ∑−=∫=∑ openings i iflowiflow I tm I ext mV td Pd md tD VD F     ˆ ∑+∑=       ∂ ∂ openings i iflowiflowext IO mVF V T td d    ˆ ∑ ×+∑ ×+= openings i iflowiflowOiopenOOext I O mVrVPMH td d   ˆˆ ,,, ∑ ×∑ +=       ∂ ∂ ×+       ∂ ∂ ← openings i iflowiflowOiopenOext O O IIO mVrM V T V T td d    ˆˆ ,, ω [ ] ( ) ( ) ( ) ( ) ∑+∑=       ∂ ∂ ×+       ∂ ∂ ← openings i iflow O iflow O ext O O O IO OO mVF V T V T td d      ˆ ω [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( ) ∑∑ ×+=         ∂ ∂ ×+       ∂ ∂ ×+       ∂ ∂ ← ← ← openings i iflow O iflow O Oiopen O Oext O O O O O IO O IO OIO mVrM V T V TT td d        ˆˆ ,, ω ω ω This equation is obtained, also, using the LAGRANGE’s EQUATIONS OF MOTION. Table of Content
  • 54. 54 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Energy Flow Let compute the time derivative of the kinetic energy, using the REYNOLD’s Transport Theorem.      openingsthethroughaddedenergykinetic openings i ifluid iopenII m II REYNOLDS m II m td Rd td Rd md td Rd td Rd md td Rd td Rd td d td Td ∑         ⋅+∫         ⋅=∫         ⋅= 2 1 2 1 2 2 where ( )        = ≠ ∫∫ ⋅−         ⋅ =         ⋅ 00 0 2 1 , iflow iflow iflow S S II iopenII m m m sdV td Rd td Rd td Rd td Rd iopen       ρ Is the mean value of the kinetic energy flow that crosses through the openings .iopenS
  • 55. 55 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Energy Flow (continue – 1) Let express the kinetic energy flow as function of the parameters of the reference point O. OIO O O O I O I O I r td rd V td rd td Rd td Rd , ,,     ×++=+= ←ω int2 2 fdfdmd td Rd ext I   += ( )         openingsthethroughaddedenergykinetic openings i ifluid iopenII m extOIO O O O m td Rd td Rd fdfdr td rd V td Td ∑         ⋅+∫ +⋅         ×++= ← 2 1 int, , ω ( ) IOOIOextO O O ext O O extO fdrfdrfd td rd fd td rd fdfdV ←← ⋅         ∫ ×+⋅∫ ×+∫ ⋅+∫ ⋅+         ∫ ∫+⋅= ωω          0 int,, 0 int ,, 0 int      openingsthethroughaddedenergykinetic openings i ifluid iopenII m td Rd td Rd ∑         ⋅+ 2 1 ( ) ( )        openingsthethroughaddedenergykinetic openings i ifluid iopenII IOOextext O O extO m td Rd td Rd Mfd td rd FV ∑                 ⋅+⋅∑+∫ ⋅+∑⋅= ← 2 1 , , ω
  • 56. 56 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Energy Flow (continue – 2) where  ForcesDiscrete l l ForcesSurface S ForcesBody V extext FsdTvdGfdF ∑+∫+∫=∫=∑      ρ:           MomentsDiscrete k k Moments ForcesDiscrete l lOl MomentsSurface S O MomentsBody V OextOOext MFrsdTrvdGrfdrM ∑+∑ ×+∫ ×+∫ ×=∫ ×=∑ ,,,,, : ρ G  - body force per unit mass ( )3 /mN nT  1⋅= σ - force per unit surface ( )2 /mN σ  - stress tensor (dyadic) ( )2 /mN ∑ l lF  - discrete forces applied to the system at the position lR  ( )N ∑ k kM  - discrete moments applied to the system ( )mN ⋅
  • 57. 57 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Energy Flow (continue – 3) Since the kinetic energy is invariant to the reference point O, let choose O = C (system centroid) ( ) ( )                openingsthethroughaddedenergyKinetic openings i ifluid iopenII momentsexternal bydoneWork ICCext bodytheofrigiditynonof becausedoneWork ext C C forcesexternal bydoneWork extC m td Rd td Rd Mfd td rd FV td Td ∑∑∫∑                 ⋅+⋅+⋅+⋅= ← − 2 1, ω       Openings trough Added Massof Energy Internal flow Openings trough Added Energy Kinetic flow System to Added Flow Heat Change Work m II Change Energy Kinetic Change Energy Internal td Ud td Td td Qd td Wd md td Rd td Rd e td d td Td td Ud +++=         ⋅+=+ ∫ 2 1 Change in Internal Energy + Change in Kinetic Energy = Change in Total Energy due to Surroundings From thermodynamics we have:
  • 58. 58 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Energy Flow (continue – 4) -internal energy of the molecules (vibration, rotation, translation). ∫= m mde td Ud ∫         ⋅= m II md td Rd td Rd td d td Td  2 1 ( ) ( )                   ForcesSurface S I ForcesBody v I momentsexternal bydoneWork ICCext bodyrigidnon anondoneWork ext C C forcesexternal bydoneWork extC sdT td Rd vdG td Rd Mfd td rd FV td Wd ∫∫∑∫∑ ⋅+⋅=⋅+⋅+⋅= ← − ρω,  ∫∫ ⋅− ∂ ∂ = S Surface throughRate Radiation ConductionV Rate Transfer Heat sdqvd t Q td Qd  ρ ∑                 ⋅= openings i ifluid iopenII flow m td Rd td Rd td Td   2 1 - kinetic energy change. - rate of work done by the surroundings on the system -rate of heat transfer and conduction/radiation added to the system. - kinetic energy added to the system through the openings. td Ud flow -internal energy added by the flow entering the system through the openings. Table of Content
  • 59. 59 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH I R  CR  C ( )tS OR  OOCr  Bxˆ Bzˆ shaftr  rotorr  Byˆ Ixˆ Iyˆ Izˆ Cshaftr  Crotorr  OyˆOxˆ OzˆLet assume that the variable mass has internal rigid rotors and other rigid moving parts (shafts...) Bm - mass of the body (excluding rotors) irotorm - mass of the rotor i m - mass of the system ∑+= rotors irotorB mmm BC - centroid of the body located at , relative to the reference point O.OCB r ,  RiC - centroid of the rotor i located at , relative to the reference point O.OCRi r ,  C - centroid of the system located at , relative to the reference point O.OCr ,  Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors)
  • 60. 60 SOLO I R  CR  C ( )tS OR  OOCr  Bxˆ Bzˆ shaftr  rotorr  Byˆ Ixˆ Iyˆ Izˆ Cshaftr  Crotorr  OyˆOxˆ Ozˆ OBc ,  - first moment of inertia of the body, relative to O. ORi c ,  - first moment of inertia of the rotor i, relative to O. Oc,  - first moment of inertia of the system, relative to O. ∑+ ∑+ =→ =∑+=∑ ∫+∫=∫= rotors irotorB rotors irotorOCBOC OC OC rotors irotorOCBOC rotors m O m O m OO mm mrmr r mrmrmrmdrmdrmdrc RiB RiB RB ,, , ,,,,,,, :    Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 1) EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH
  • 61. 61 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH I R  CR  C ( )tS OR  OOCr  Bxˆ Bzˆ shaftr  rotorr  Byˆ Ixˆ Iyˆ Izˆ Cshaftr  Crotorr  OyˆOxˆ Ozˆ BP  - body linear momentum ∑      −−+= openings i iflowOiopenBO I OB B mRRmV td cd P     ˆ, irotorP  - rotor i linear momentum irotorO I C irotorO I ORi irotor mV td rd mV td cd P Ri         +=+=      , P  - system linear momentum ∑      −−+=∑+= openings i iflowOiopenO I O rotors i irotorB mRRmV td cd PPP     ˆ, Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 2)
  • 62. 62 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Absolute Angular Momentum Relative to a Reference Point O (continue -2) ( )( ) ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫=∫ ×−= ← tm O O O tm OIOOO tm O tv OO dm td rd rdmrrVdmrvdVRRH , ,,,,, :   ωρ OO Vc  ×= , Difference between O and System centroid C IOOI ←⋅+ ω  , Rotation from I to O coordinates ( ) ∫         ×+ tm O O O dm td rd r , ,   Non-rigidity of System • Rotors, • Moving parts (Pistons,…) • Fluids • Elasticity
  • 63. 63 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Let go in more details by taking the rotors in consideration For a point on the rotor i, we have I R  CR  C ( )tS OR  OOCr  Bxˆ Bzˆ shaftr  rotorr  Byˆ Ixˆ Iyˆ Izˆ Cshaftr  Crotorr  OyˆOxˆ Ozˆ Ri Ri Ri ORi ORi RiORi RiORi CirotorIRi C Cirotor CIO O C O I Cirotor I C I O I irotor irotor CirotorCOirotor r td rd r td rd V td rd td rd td Rd td Rd V rrRR , 0 , , , , , , , :          ×++×++= ++== ++= ←← ωω Substitute those in ( )( ) ∫ ×−= tm OO dmVRRH  , , to obtain ( )( ) ( ) ∑+=∑ ∫ ×+∫ ×=∫ ×−= rotors ORiOB rotors m I irotor Oirotor tm I B OB tm OO HHdm td Rd rdm td Rd rdmVRRH RiB ,,,,,      ( ) ∑ ∫         ×+×++×+ ∫         ×++×= ←← ← rotors m CirotorIRiOCIO O OC OOirotor tm OBIO O OB OOB irotor RiRi Ri B dmrr td rd Vr dmr td rd Vr ,, , , , , ,       ωω ω where OBH ,  - body absolute angular momentum relative to the reference point O. ORiH ,  - rotor i absolute angular momentum relative to the reference point O. Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 3)
  • 64. 64 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH OBH ,  - body absolute angular momentum relative to the reference point O. ( ) ( ) ( ) ( ) ( ) ∫ ×+∫ ××+×∫= ∫         +×+×= ← ← tm O OB OB tm OBIOOBO tm OB tm O OB OBIOOOBOB BBB B dm td rd rdmrrVdmr dm td rd rVrH , ,,,, , ,,,     ω ω (a1) (b1) (c1) ( ) OB tm OB cdmr ,,  =∫(a1) (b1) ( ) OOBOOBBO tm OB VcVrmVdmr B  ×=×=×         ∫ ,,, ( ) ( ) ( )[ ]( ) IOOBIO tm OBOBOBOB tm OBIOOB Idmrrrrdmrr BB ←←← ⋅=⋅∫ −⋅=∫ ×× ωωω  ,,,,,,, 1 ( )[ ]∫ −⋅= Bm OOOOOB mdrrrrI ,,,,, 1:  where Second Moment of Inertia of the body relative to O ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫= ← tm O OB OB tm OBIOOBO tm OBOB BBB dm td rd rdmrrVdmrH , ,,,,,   ω ( ) ∫         ×+⋅+×= ← tm O OB OBIOOBOOB dm td rd rIVc ,, ,,,   ω Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 4)
  • 65. 65 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH ORiH ,  - rotor i absolute angular momentum relative to the reference point O. ∫         ×+×++×=∫         ×= ←← Ri RiRi Ri Ri m CirotorIRiOCIO O OC OOirotor m I irotor OirotorORi mdrr td rd Vrmd td Rd rH ,, , ,,,      ωω ∫         ×+×++×= ←← R RiRi Ri Ri m CirotorIRiOCIO O OC OCirotor mdrr td rd Vr ,, , ,    ωω ∫         ×+×++×+ ←← R RiRi Ri Ri m CirotorIRiOCIO O OC OOC mdrr td rd Vr ,, , ,    ωω irotorOCCRi PrH RiRi  ×+= ,, ∫         ×+×++×= ←← Ri RiRi Ri RiRi m CrotorIRiOCIO O OC OCirotorCRi mdrr td rd VrH ,, , ,,    ωω ( ) IRi m CirotorCirotorOCIO O OC O m Cirotor Ri RiRiRi Ri Ri Ri mdrrr td rd Vmdr ←←       ∫ ××−+         ×++×             ∫= ωω        ,,, , 0 , ( )[ ] IRiCirotorIR m CirotorCirotorCirotorCirotor Ri Ri RiRiRiRi Imdrrrr ←← ⋅=⋅∫ −⋅= ωω  ,,,,, 1 ( )[ ]∫ −⋅= Ri RiRiRiRiRi m CirotorCirotorCirotorCirotorCirotor mdrrrrI ,,,,, 1:  Second Moment of Inertia of the rotor i relative to it’s centroid RiC Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 5)
  • 66. 66 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Therefore ( )[ ]( ) Ri O OC OOCIOOirotorORiCirotor Ri B OC OOCIORiOCOCOCOCCirotorORiCirotor ORiIORi O OC RiOOCIRiCirotorORi m td rd VrII m td rd VrmrrrrII cm td rd mVrIH Ri RiRi Ri RiRiRiRiRiRiRi Ri RiRi         +×++⋅=         +×+−⋅++⋅=         ×++×+⋅= ←← ←← ←← , ,,, , ,,,,,,, , , ,,, 1        ωω ωω ωω Second Moment of Inertia of the rotor i relative to O ( )[ ] RiOCOCOCOCCirotorOirotor mrrrrII RiRiRiRiRi ,,,,,, 1:  −⋅+= Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 6)
  • 67. 67 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH The system Absolute Angular Momentum relative to O, is IOOB m O OB OBOOB rotors ORiOBO Imd td rd rVcHHH B ←⋅+         ×+×=+= ∫∑ ω    , , ,,,,, ∑         +×+⋅∑+∑ ⋅+ ←← rotors Ri O OC OOCIO rotors Oirotor rotors BRiCirotor m td rd VrII Ri RiRi , ,,,   ωω or ∑∫ ∑         ×+         ×+ ⋅+⋅+×= ←← rotors Ri O OC OC m O OB OB rotors ORiCirotorIOOOOO m td rd rmd td rd r IIVcH Ri Ri B Ri , , , , ,,,      ωω Second Moment of Inertia of the system relative to O∑+= rotors OirotorOBO III ,,, :  Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 7)
  • 68. 68 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH If we compare with ∑∫ ∑         ×+         ×+ ⋅+⋅+×= ←← rotors Ri O OC OC m O OB OB rotors ORiCirotorIOOOOO m td rd rmd td rd r IIVcH Ri Ri B Ri , , , , ,,,      ωω ( ) ∫         ×+⋅+×= ← tm O O OIOOOOO dm td rd rIVcH , ,,,,   ω we can see that ∑∫ ←⋅=         × rotors ORiCirotor m O O O Ri Imd td rd r ω    , , , ∫         ×+ Bm O OB OB md td rd r , ,   ∑         ×+ rotors Ri O OC OC m td rd r Ri Ri , ,   - Rotors Absolute Angular Moment Relative to O - Body Non-rigidity Elasticity of the System Sloshing of Liquids Moving Parts (Pistons,…) - Movement of Relative to O RiC Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 8)
  • 69. 69 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Let define ∑         ×+∫         ×=∫         × rotors Ri O OC OC m O Ob Ob m FrozenRotors O O O m td rd rmd td rd rmd td rd r Ri Ri B , , , , , , :       We obtain ∫∑         ×+⋅+⋅+×= ←← m FrozemRotor O O O rotors ORiCirotorIOOOOO md td rd rIIVcH Ri , ,,,,,   ωω Let compute OIO O O I O H td Hd td Hd , ,,   ×+= ←ω ( ) O m FrozemRotor O O O rotors ORiCirotor rotors ORiCirotorIOOIOO I OO md td rd r td d IIIIVc td d RiRi                 ×+ ⋅+⋅+⋅+⋅+×= ∫ ∑∑ ←←←← , , 0 ,,,,,        ωωωω                 ××+      ⋅×+⋅×+ ∫∑ ←←←←← m FrozemRotor O O OIO rotors ORiCirotorIOIOOIO md td rd rII Ri , ,,,   ωωωωω Absolute Angular Momentum Relative to a Reference Point O (Body Containing Rotors - 9)
  • 70. 70 SOLO ( ) ( ) I tm O O O I j ORjCjrotor I IO OIO I O I O OO I O I O dm td rd r td d I td d td d I td Id td Vd cV td cd td Hd Rj ∫         ×+∑+⋅+⋅+×+×= ← ← ← , ,,, , , ,,      ω ω ω External Moments Equations (continue -8) Using together with we obtain ( ) ( )∑+∫         ×+⋅×+⋅+⋅ ←←←← ← j I ORjCjrotor I tm FrozenRotors O O OIOOIOIO O O O IO O Rj I td d dm td rd r td d I td Id td d I ωωωω ω     , , ,, , , ( ) ( ) ∑+∑ ×−+∑      −×     −+ ×+∑+∑+×−= k k j jCj openings i iflowOiopenOiopen O I O openings i OTiOAOC I O MFRRmVVRR V td cd MMgmRR td Hd      ˆˆ ,, , ( ) ∑+∑ ×−+∑      −×     −+ ∑+∑+         −×= k k j jCj openings i iflowOiopenOiopen openings i OTiOA I O O MFRRmVVRR MM td Vd gc       ˆˆ ,,, EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Table of Content
  • 71. 71 SOLO SUMMARY OF EQUATIONS OF MOTION OF A VARIABLE MASS (CONTINUE – 1) MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O RIGID-BODY TERMS IOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω  ,,,     ∑ ⋅×+∑ ⋅+ ←←← j OjrotorCrotorjIO j OjrotorCrotorj RjRj II ωωω  ,, ROTORS TERMS ( ) ( )         ∫         ××+         ∫         ×+ ← tm FrozenRotor O O OIO O tm FrozenRotor O O O dm td rd r dm td rd r td d , , , ,     ω BODY FLUIDS, MOVING PARTS, ELASTICITY,… TERMS FLUID CROSSING OPENINGS TERMS ∑         ×+×− ← openings i iflowOiopenIO O Oiopen Oiopen mr td rd r     , , , ˆ ˆ ˆ ω AERODYNAMIC & PROPULSIVE ∑+∑= i OTiOA MM ,,  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ∑+∑ ×−+ k k j jOj MFRR  DISCRETE FORCES MOMENTS TERMS         −×+ I O O td Vd gc   , NON-CENTROIDAL MOMENTS TERMS
  • 72. 72 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System (continue – 4) In the same way (c4) ( ) ( ) ( )[ ] ∑ ∑∑ ∫ ←← ←←←← ⋅⋅= ⋅−⋅⋅=×⋅× rotors ORiCrotorORi rotors ORiCirotorCirotorCirotorCirotorORi rotors m CirotorORiCirotorORi Ri RiRiRiRi Ri RiRi I rrrrdmrr ωω ωωωω   , ,,,,,, 2 1 1 2 1 2 1 Therefore (c) ( ) ( ) ∫∫         ×+⋅         ×+=⋅ ←← tm OIO O O OIO O O tm I O I O mdr td rd r td rd md td rd td rd , , , ,,, 2 1 2 1     ωω ( ) ∫ ⋅= tm FrozenRotor O O FrozenRotor O O md td rd td rd ,, 2 1  ( ) ∫         ×⋅+ ← tm FrozenRotor O O OIO md td rd r , ,   ω IOOIO I ←← ⋅⋅+ ωω  , 2 1 ORiCirotorORi Ri I ←← ⋅⋅+ ωω  , (c1) (c2) (c4)(c3)
  • 73. 73 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLDS’ TRANSPORT THEOREM APPROACH Kinetic Energy of the System (continue – 5) To summarize, the Kinetic Energy of the system is given by ( ) ( ) ( ) ( ) ∫∫∫ ⋅+⋅+⋅= tm I O I O tm I O O tm OO md td rd td rd md td rd VmdVVT ,,, 2 1 2 1   ( ) ∑⋅−         ×+⋅+⋅= ← openings i ifluidOiopenOOIO O O OOO mrVc td cd VmVV     ,, , ˆ 2 1 ω Since the kinetic energy is independent of the chosen reference point O, the previous relation is invariant to O. ( ) ∫ ⋅= tm II md td Rd td Rd T  2 1 ( ) ( ) ∫∫         ×⋅+⋅+ ← tm FrozenRotor O O OIO tm FrozenRotor O O FrozenRotor O O md td rd rmd td rd td rd , , ,, 2 1    ω ∑ ⋅⋅+⋅⋅+ ←←←← rotors ORiCirotorORiIOOIO Ri II ωωωω  ,, 2 1 2 1 Table of Content
  • 74. 74 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM REYNOLD’s TRANSPORT THEOREM APPROACH References 1. Shames, I.H., “Mechanics of Fluids”, 2nd Ed., McGraw-Hill, 1982 Table of Content
  • 75. January 5, 2015 75 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA