SlideShare a Scribd company logo
Scintillation Detectors
Elton Smith JLab 2006 Detector/Computer Summer Lecture Series
Introduction
Components
Scintillator
Light Guides
Photomultiplier Tubes
Formalism/Electronics
Timing Resolution
Elton Smith / Scintillation Detectors
B field ~ 5/3 T
R = 3m
L = ½ p R = 4.71 m
p = 0.3 B R = 1.5 GeV/c
tp = L/bpc = 15.77 ns
tK = L/bKc = 16.53 ns
DtpK = 0.76 ns
Experiment basics
bp = p/√p2+mp
2 = 0.9957
bK = p/√p2+mK
2 = 0.9496
Particle Identification by time-of-flight (TOF) requires
Measurements with accuracies of ~ 0.1 ns
Elton Smith / Scintillation Detectors
Measure the Flight Time between two
Scintillators
Disc
Disc
TDC
Start
Stop
Particle Trajectory
Elton Smith / Scintillation Detectors
Propagation velocities
 c = 30 cm/ns
 vscint = c/n = 20 cm/ns
 veff = 16 cm/ns
 vpmt = 0.6 cm/ns
 vcable = 20 cm/ns
Dt ~ 0.1 ns
Dx ~ 3 cm
Elton Smith / Scintillation Detectors
TOF scintillators stacked for shipment
Elton Smith / Scintillation Detectors
CLAS detector open for repairs
Elton Smith / Scintillation Detectors
CLAS detector with FC pulled apart
Elton Smith / Scintillation Detectors
Start counter assembly
Elton Smith / Scintillation Detectors
Scintillator types
 Organic
 Liquid
 Economical
 messy
 Solid
 Fast decay time
 long attenuation length
 Emission spectra
 Inorganic
 Anthracene
 Unused standard
 NaI, CsI
 Excellent g resolution
 Slow decay time
 BGO
 High density, compact
Elton Smith / Scintillation Detectors
Photocathode spectral response
Elton Smith / Scintillation Detectors
Scintillator thickness
 Minimizing material vs. signal/background
 CLAS TOF: 5 cm thick
Penetrating particles (e.g. pions) loose 10 MeV
 Start counter: 0.3 cm thick
Penetrating particles loose 0.6 MeV
 Photons, e+e− backgrounds ~ 1MeV contribute
substantially to count rate
Thresholds may eliminate these in TOF
Elton Smith / Scintillation Detectors
Light guides
 Goals
Match (rectangular) scintillator to (circular) pmt
Optimize light collection for applications
 Types
Plastic
Air
None
“Winston” shapes
Elton Smith / Scintillation Detectors
acrylic
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
Elton Smith / Scintillation Detectors
Air with
reflective
boundary
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
%
5
4
1
1
2











n
n
Rair
(reflectance at normal incidence)
Elton Smith / Scintillation Detectors
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
air
Elton Smith / Scintillation Detectors
acrylic
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
Large-angle
ray lost
Acceptance of incident rays at fixed angle depends
on position at the exit face of the scintillator
Elton Smith / Scintillation Detectors
Winston Cones - geometry
Elton Smith / Scintillation Detectors
Winston Cone - acceptance
Elton Smith / Scintillation Detectors
Photomultiplier tube, sensitive light meter
Photocathode
Electrodes
Dynodes
Anode
56 AVP pmt
g
e−
Gain ~ 106 - 107
Elton Smith / Scintillation Detectors
Voltage Dividers
d1 d2 d3
dN
dN-1
dN-2
a
k
g
4 2.5 1 1 1 1 1 1 1 1 1 1
16.5
RL
+HV
−HV
Equal Steps – Max Gain
4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5
21
RL
Intermediate
6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10
44
RL
Progressive
Timing Linearity
Elton Smith / Scintillation Detectors
Voltage
Divider
Active components
to minimize changes
to timing and rate
capability with HV
Capacitors for increased
linearity in
pulsed applications
Elton Smith / Scintillation Detectors
High voltage
 Positive (cathode at ground)
low noise, capacitative coupling
 Negative
Anode at ground (no HV on signal)
 No (high) voltage
Cockcroft-Walton bases
Elton Smith / Scintillation Detectors
Effect of magnetic field on pmt
Elton Smith / Scintillation Detectors
Housing
Elton Smith / Scintillation Detectors
Compact UNH divider design
Elton Smith / Scintillation Detectors
Dark counts
Solid : Sea level
Dashed: 30 m underground
Thermal
Noise
After-pulsing and
Glass radioactivity
Cosmic rays
Elton Smith / Scintillation Detectors
Signal for passing tracks
Elton Smith / Scintillation Detectors
Single photoelectron signal
Elton Smith / Scintillation Detectors
Pulse distortion in cable
Elton Smith / Scintillation Detectors
Electronics
trigger
dynode
Measure time
Measure pulse height
anode
Elton Smith / Scintillation Detectors
Formalism: Measure time and position
PL PR
TR
TL
X=0 X
X=−L/2 X=+L/2
eff
L
L v
x
T
T /
0


)
(
)
( 0
0
2
1
2
1
R
L
R
L
ave T
T
T
T
T 


 Mean is independent of x!
eff
R
R v
x
T
T /
0


  )
(
2
)
(
)
(
2
0
0
R
L
eff
R
L
R
L
eff
T
T
v
T
T
T
T
v
x 





Elton Smith / Scintillation Detectors
From single-photoelectron timing to
counter resolution
The uncertainty in determining the passage of a particle
through a scintillator has a statistical component, depending
on the number of photoelectrons Npe that create the pulse.
)
2
/
exp(
)
2
/
(
)
(
2
2
1
2
0





L
N
L
ns
pe
P
TOF





 1000

pe
N
Note: Parameters for CLAS
ns
062
.
0
0 
 Intrinsic timing of electronic circuits
ns
1
.
2
1 

cm
ns
P /
0118
.
0


)
15
(
36
.
0
134 counters
cm
L
cm 



)
22
(
430 counters
cm
cm


Combined scintillator and pmt response
Average path length variations in scintillator
Single
Photoelectron
Response

Elton Smith / Scintillation Detectors
Average time resolution
CLAS in Hall B
Elton Smith / Scintillation Detectors
Formalism: Measure energy loss
PL PR
TR
TL
X=0 X
X=−L/2 X=+L/2

/
0 x
L
L e
P
P 
 
/
0 x
R
R e
P
P 
0
0
R
L
R
L P
P
P
P
Energy 



Geometric mean is independent of x!
Elton Smith / Scintillation Detectors
Energy deposited in scintillator
Elton Smith / Scintillation Detectors
Uncertainties
Timing
Mass Resolution
Assume that one pmt measures a time with uncertainty dt
2
~
2
1 2
2 t
t
t
t R
L
ave
d
d
d
d 

2
~
)
2
1
( 2
2 t
v
t
t
v
x eff
R
L
eff
d
d
d
d 



g
E
m  2
2
2
2
2
2 1
)
1
( p
E
m







 




b
b
b
2
2
4
2
























p
p
m
m d
b
db
g
d
Elton Smith / Scintillation Detectors
Example: Kaon mass resolution by TOF
c
GeV
PK /
1
 GeV
EK 116
.
1
1
495
.
0 2



896
.
0










K
K
K
E
P
b 26
.
2










K
K
K
m
E
g
For a flight path of d = 500 cm, ns
ns
cm
cm
t 6
.
18
/
30
896
.
0
500











ns
t 15
.
0

d 01
.
0









p
p
d
Assume
  2
2
2
4
2
042
.
0
01
.
0
6
.
18
15
.
0
26
.
2 














m
m
d
MeV
mK 21
~
d

Note: 










 








 b
db
d
g
fixed
for
m
m
2
Elton Smith / Scintillation Detectors
Velocity vs. momentum
p+
K+
p
Elton Smith / Scintillation Detectors
Summary
 Scintillator counters have a few simple
components
Systems are built out of these counters
Fast response allows for accurate timing
 The time resolution required for particle
identification is the result of the time
response of individual components
scaled by √Npe

More Related Content

PPT
Introduction ES_scintillation_detectors_06.ppt
PDF
Time reversed acoustics - Mathias Fink
KEY
Jan2010 Triumf2
PPTX
RiseFalltime031114.pptx
PPTX
4. Analysis of Digital Pulses
PPTX
Unit 1 -Introduction to signals and standard signals
PPT
1. diode
PDF
Circuit Network Analysis - [Chapter3] Fourier Analysis
Introduction ES_scintillation_detectors_06.ppt
Time reversed acoustics - Mathias Fink
Jan2010 Triumf2
RiseFalltime031114.pptx
4. Analysis of Digital Pulses
Unit 1 -Introduction to signals and standard signals
1. diode
Circuit Network Analysis - [Chapter3] Fourier Analysis

Similar to ES_scintillation_detectors_06.ppt (20)

PPT
6. Really Basic Optics.ppt
PPT
optical receivers for optical communciation system
PPT
Q canalytic aas2
PPTX
Alternating current and voltages
PDF
Aircraft propulsion non ideal turbomachine 2 d
PPT
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
PDF
Fourier Analysis Review for engineering.
PPT
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
PDF
Optical coherence tomography powerpoint presentation
PDF
Spacecraft RF Communications Course Sampler
PPT
generation of ac voltage
PPTX
Basic concepts
PDF
Lecture 3 ctft
PDF
Embedded_Systems_secondcourse_UniversitéToulouse.pdf
PPT
PAM
PPTX
Basic Principles UT Presentation - Theory & Practice
PDF
RF Module Design - [Chapter 2] Noises
PPTX
Radio active particle tracking implemnetation
PDF
Time-Frequency Representation of Microseismic Signals using the SST
6. Really Basic Optics.ppt
optical receivers for optical communciation system
Q canalytic aas2
Alternating current and voltages
Aircraft propulsion non ideal turbomachine 2 d
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
Fourier Analysis Review for engineering.
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
Optical coherence tomography powerpoint presentation
Spacecraft RF Communications Course Sampler
generation of ac voltage
Basic concepts
Lecture 3 ctft
Embedded_Systems_secondcourse_UniversitéToulouse.pdf
PAM
Basic Principles UT Presentation - Theory & Practice
RF Module Design - [Chapter 2] Noises
Radio active particle tracking implemnetation
Time-Frequency Representation of Microseismic Signals using the SST
Ad

Recently uploaded (20)

PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
famous lake in india and its disturibution and importance
PPTX
BIOMOLECULES PPT........................
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
An interstellar mission to test astrophysical black holes
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Sciences of Europe No 170 (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx
famous lake in india and its disturibution and importance
BIOMOLECULES PPT........................
neck nodes and dissection types and lymph nodes levels
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
The KM-GBF monitoring framework – status & key messages.pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
An interstellar mission to test astrophysical black holes
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
2Systematics of Living Organisms t-.pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Sciences of Europe No 170 (2025)
Ad

ES_scintillation_detectors_06.ppt

  • 1. Scintillation Detectors Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution
  • 2. Elton Smith / Scintillation Detectors B field ~ 5/3 T R = 3m L = ½ p R = 4.71 m p = 0.3 B R = 1.5 GeV/c tp = L/bpc = 15.77 ns tK = L/bKc = 16.53 ns DtpK = 0.76 ns Experiment basics bp = p/√p2+mp 2 = 0.9957 bK = p/√p2+mK 2 = 0.9496 Particle Identification by time-of-flight (TOF) requires Measurements with accuracies of ~ 0.1 ns
  • 3. Elton Smith / Scintillation Detectors Measure the Flight Time between two Scintillators Disc Disc TDC Start Stop Particle Trajectory
  • 4. Elton Smith / Scintillation Detectors Propagation velocities  c = 30 cm/ns  vscint = c/n = 20 cm/ns  veff = 16 cm/ns  vpmt = 0.6 cm/ns  vcable = 20 cm/ns Dt ~ 0.1 ns Dx ~ 3 cm
  • 5. Elton Smith / Scintillation Detectors TOF scintillators stacked for shipment
  • 6. Elton Smith / Scintillation Detectors CLAS detector open for repairs
  • 7. Elton Smith / Scintillation Detectors CLAS detector with FC pulled apart
  • 8. Elton Smith / Scintillation Detectors Start counter assembly
  • 9. Elton Smith / Scintillation Detectors Scintillator types  Organic  Liquid  Economical  messy  Solid  Fast decay time  long attenuation length  Emission spectra  Inorganic  Anthracene  Unused standard  NaI, CsI  Excellent g resolution  Slow decay time  BGO  High density, compact
  • 10. Elton Smith / Scintillation Detectors Photocathode spectral response
  • 11. Elton Smith / Scintillation Detectors Scintillator thickness  Minimizing material vs. signal/background  CLAS TOF: 5 cm thick Penetrating particles (e.g. pions) loose 10 MeV  Start counter: 0.3 cm thick Penetrating particles loose 0.6 MeV  Photons, e+e− backgrounds ~ 1MeV contribute substantially to count rate Thresholds may eliminate these in TOF
  • 12. Elton Smith / Scintillation Detectors Light guides  Goals Match (rectangular) scintillator to (circular) pmt Optimize light collection for applications  Types Plastic Air None “Winston” shapes
  • 13. Elton Smith / Scintillation Detectors acrylic Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5
  • 14. Elton Smith / Scintillation Detectors Air with reflective boundary Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5 % 5 4 1 1 2            n n Rair (reflectance at normal incidence)
  • 15. Elton Smith / Scintillation Detectors Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5 air
  • 16. Elton Smith / Scintillation Detectors acrylic Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5 Large-angle ray lost Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator
  • 17. Elton Smith / Scintillation Detectors Winston Cones - geometry
  • 18. Elton Smith / Scintillation Detectors Winston Cone - acceptance
  • 19. Elton Smith / Scintillation Detectors Photomultiplier tube, sensitive light meter Photocathode Electrodes Dynodes Anode 56 AVP pmt g e− Gain ~ 106 - 107
  • 20. Elton Smith / Scintillation Detectors Voltage Dividers d1 d2 d3 dN dN-1 dN-2 a k g 4 2.5 1 1 1 1 1 1 1 1 1 1 16.5 RL +HV −HV Equal Steps – Max Gain 4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5 21 RL Intermediate 6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10 44 RL Progressive Timing Linearity
  • 21. Elton Smith / Scintillation Detectors Voltage Divider Active components to minimize changes to timing and rate capability with HV Capacitors for increased linearity in pulsed applications
  • 22. Elton Smith / Scintillation Detectors High voltage  Positive (cathode at ground) low noise, capacitative coupling  Negative Anode at ground (no HV on signal)  No (high) voltage Cockcroft-Walton bases
  • 23. Elton Smith / Scintillation Detectors Effect of magnetic field on pmt
  • 24. Elton Smith / Scintillation Detectors Housing
  • 25. Elton Smith / Scintillation Detectors Compact UNH divider design
  • 26. Elton Smith / Scintillation Detectors Dark counts Solid : Sea level Dashed: 30 m underground Thermal Noise After-pulsing and Glass radioactivity Cosmic rays
  • 27. Elton Smith / Scintillation Detectors Signal for passing tracks
  • 28. Elton Smith / Scintillation Detectors Single photoelectron signal
  • 29. Elton Smith / Scintillation Detectors Pulse distortion in cable
  • 30. Elton Smith / Scintillation Detectors Electronics trigger dynode Measure time Measure pulse height anode
  • 31. Elton Smith / Scintillation Detectors Formalism: Measure time and position PL PR TR TL X=0 X X=−L/2 X=+L/2 eff L L v x T T / 0   ) ( ) ( 0 0 2 1 2 1 R L R L ave T T T T T     Mean is independent of x! eff R R v x T T / 0     ) ( 2 ) ( ) ( 2 0 0 R L eff R L R L eff T T v T T T T v x      
  • 32. Elton Smith / Scintillation Detectors From single-photoelectron timing to counter resolution The uncertainty in determining the passage of a particle through a scintillator has a statistical component, depending on the number of photoelectrons Npe that create the pulse. ) 2 / exp( ) 2 / ( ) ( 2 2 1 2 0      L N L ns pe P TOF       1000  pe N Note: Parameters for CLAS ns 062 . 0 0   Intrinsic timing of electronic circuits ns 1 . 2 1   cm ns P / 0118 . 0   ) 15 ( 36 . 0 134 counters cm L cm     ) 22 ( 430 counters cm cm   Combined scintillator and pmt response Average path length variations in scintillator Single Photoelectron Response 
  • 33. Elton Smith / Scintillation Detectors Average time resolution CLAS in Hall B
  • 34. Elton Smith / Scintillation Detectors Formalism: Measure energy loss PL PR TR TL X=0 X X=−L/2 X=+L/2  / 0 x L L e P P    / 0 x R R e P P  0 0 R L R L P P P P Energy     Geometric mean is independent of x!
  • 35. Elton Smith / Scintillation Detectors Energy deposited in scintillator
  • 36. Elton Smith / Scintillation Detectors Uncertainties Timing Mass Resolution Assume that one pmt measures a time with uncertainty dt 2 ~ 2 1 2 2 t t t t R L ave d d d d   2 ~ ) 2 1 ( 2 2 t v t t v x eff R L eff d d d d     g E m  2 2 2 2 2 2 1 ) 1 ( p E m              b b b 2 2 4 2                         p p m m d b db g d
  • 37. Elton Smith / Scintillation Detectors Example: Kaon mass resolution by TOF c GeV PK / 1  GeV EK 116 . 1 1 495 . 0 2    896 . 0           K K K E P b 26 . 2           K K K m E g For a flight path of d = 500 cm, ns ns cm cm t 6 . 18 / 30 896 . 0 500            ns t 15 . 0  d 01 . 0          p p d Assume   2 2 2 4 2 042 . 0 01 . 0 6 . 18 15 . 0 26 . 2                m m d MeV mK 21 ~ d  Note:                       b db d g fixed for m m 2
  • 38. Elton Smith / Scintillation Detectors Velocity vs. momentum p+ K+ p
  • 39. Elton Smith / Scintillation Detectors Summary  Scintillator counters have a few simple components Systems are built out of these counters Fast response allows for accurate timing  The time resolution required for particle identification is the result of the time response of individual components scaled by √Npe