SlideShare a Scribd company logo
Exploratory Data Analysis 
Wesley GOI
In today’s session 
• Principles behind exploratory analyses 
• Plotting data out on to popular exploratory graphs 
• Plotting Systems in R 
• Base (Week1) 
• Lattice (Week2) 
• GGPLOT2 (Week2) 
• Choosing and using Graphic Devices aka the output formats 
Scripts can be downloaded at: 
https://www.dropbox.com/s/ii1yj8f650d4l1q/lesson1.r?dl=0 
https://www.dropbox.com/s/eme44h6lrhn775l/final.r?dl=0
Principles behind exploratory analyses 
• Show comparisons 
• Show causality, mechanism, explanation 
• Show multivariate data 
• Integrate multiple modes of evidence 
• Describe and document the evidence 
• Content is king 
• SPEED
Dimensionality 
• Five-number summary 
• Boxplots 
• Histograms 
• Density plot 
• Barplot 
Multiple-overlayed 1D plots 
Scatter plots
Downloading our dataset 
R code 
dir.create("exploring_data") 
setwd(“exploring_data”) 
download.file(“http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/therbook.zip",dest="data.zip") 
unzip(“data.zip”)
R code 
Boxplots 
weather = read.table("SilwoodWeather.txt",h=T) 
onemonth = subset(weather, 
month==1 & yr == 2004) 
boxplot(onemonth$rain) 
Header = T
Histograms 
R code 
hist(weather$upper) 
rug(weather$upper) ticks for each value
Barplot 
R code 
Barplot( 
table(weather$month), 
col = "wheat", 
main = "Number of Observations in 
Months”)
Raster Vector 
PNG PDF SVG 
grDevices 
Filesize small medium medium 
Scalable No Yes Yes 
Web friendly Yes No Yes
Plotting Systems 
Plotting Systems 
Base Lattice Grid 
Libraries lattice grid, gridExtras 
ggplot2 
Example 
functions 
hist✔ 
barplot✔ 
boxplot✔ 
Plot 
xyplot (scatterplots) 
bwplot (boxplots) 
levelplot 
qplot 
ggplot 
geom 
Facetted plots Yes Yes Yes 
Grammar of 
NO No Yes 
graphics 
Interface with 
statistical 
functions 
Yes Partial Partial + 
Workarounds 
Cannot 
be mixed
Base plots: Scatterplot 
R code 
data1 = read.table("scatter1.txt", h=T) 
data2 = read.table("scatter2.txt", h=T)
Base plots: Scatterplot 
R code 
data1 = read.table("scatter1.txt", h=T) 
data2 = read.table("scatter2.txt", h=T) 
#Color 
with(data1, plot(xv, ys, col="red")) 
#Regression Line 
with(data1, abline(lm(ys~xv))) 
Color
Base plots: Scatterplot 
Set symbol to represent data point
Base plots: Scatterplot 
R code 
data1 = read.table("scatter1.txt", h=T) 
data2 = read.table("scatter2.txt", h=T) 
#Color 
with(data1, plot(xv, ys, col="red")) 
with(data1, abline(lm(ys~xv))) 
#shape 
with(data2, 
points(xv2, ys2, col="blue", 
pch =11)) 
Symbol shape
Base plots: Scatterplot 
R code 
data1 = read.table("scatter1.txt", h=T) 
data2 = read.table("scatter2.txt", h=T) 
#Color 
with(data1, plot(xv, ys, col="red")) 
with(data1, abline(lm(ys~xv))) 
#shape 
with(data2, 
points(xv2, ys2, col="blue", 
pch =11)) 
Symbol shape
Base plots: Using par for multiple plots 
R code 
par(mfrow=c(1,2)) 
with(data1, plot(xv, ys, col="red")) 
with(data1, abline(lm(ys~xv))) 
#Plot2 
with(data2, 
plot(xv2, ys2, col="blue", 
pch =11)) 
title(“My Title", outer=TRUE)
Par: To set global settings 
R code 
mfrow( 
mar=c(5.1,4.1,4.1,2.1), 
oma=c(2,2,2,2) 
)
Lattice 
productivity = read.table("productivity.txt",h=T) 
# of species in forest against differing productivity 
library(lattice) 
#plotting 
xyplot( x~y, productivity, 
xlab=list(label="Productivity"), 
ylab=list(label="Mammal Species")) 
R code 
Formular 
Data frame
Exploratory Analysis Part1 Coursera DataScience Specialisation
Lattice 
productivity = read.table("productivity.txt",h=T) 
# of species in forest against differing productivity 
library(lattice) 
#plotting 
xyplot( x~y, productivity, 
xlab=list(label="Productivity"), 
ylab=list(label="Mammal Species")) 
xyplot( x~y | f, productivity, 
xlab=list(label="Productivity"), 
ylab=list(label="Mammal Species")) 
R code 
Formular 
Data frame 
given
Exploratory Analysis Part1 Coursera DataScience Specialisation
ggplot2 
• Grammar of graphics (gg) 
• Based on GRID plotting system, cannot be 
mixed with base 
ggplot2.org
ggplot 
Components 
• Data & relationship 
• GEOMetric Object 
• Statistical transformation 
• Scales 
• Coordinate system 
• Facetting
ggplot 
Data
ggplot 
Mapping
ggplot 
Geometric objects 
aka 
Geoms 
Coordinate system 
wrt 
scales 
Log scale / sqrt / log ratio 
Title 
Plot 
Theme 
etc
ggplot 
Geometric objects 
aka 
Geoms
ggplot 
Components 
• Data & relationship ✔ 
• GEOMetric Object 
• Statistical transformation 
• Scales 
• Coordinate system 
• Facetting 
R code 
Rmbr to change 
month into a 
factor 
data.frame 
Aesthetics function which maps the relationships 
ggplot(weather, aes(x=month, y=upper))+ 
geom_boxplot()
ggplot 
Components 
• Data & relationship ✔ 
• GEOMetric Object ✔ 
• Statistical transformation✔ 
• Scales 
• Coordinate system 
• Facetting 
R code 
weather2 = weather %>% 
group_by(month) %>% 
summarise(average.upper = mean(upper)) 
ggplot(weather2, aes(month, average.upper))+ 
geom_bar(stat="identity")
ggplot 
Components 
• Data & relationship ✔ 
• GEOMetric Object ✔ 
• Statistical transformation✔ 
• Scales 
• Coordinate system 
• Facetting 
R code 
weather2 = weather %>% 
group_by(month) %>% 
summarise(average.upper = mean(upper)) 
ggplot(weather2, aes(month, average.upper))+ 
geom_bar(stat="identity")
ggplot 
Components 
• Data & relationship ✔ 
• GEOMetric Object ✔ 
• Statistical transformation✔ 
• Scales✔ 
• Coordinate system 
• Facetting 
R code 
plot2 = ggplot(weather2, 
aes(month, average.upper))+ 
geom_bar(aes(fill=month),stat="identity")+ 
scale_fill_brewer(palette="Set3")+ 
xlab("Months")+ 
ylab("Upper Quantile")+theme_bw()
ggplot 
Components 
• Data & relationship ✔ 
• GEOMetric Object ✔ 
• Statistical transformation✔ 
• Scales✔ 
• Coordinate system 
• Facetting 
R code 
plot2 = ggplot(weather2, 
aes(month, average.upper))+ 
geom_bar(aes(fill=month),stat="identity")+ 
scale_fill_brewer(palette="Set3")+ 
xlab("Months")+ 
ylab("Upper Quantile")+theme_bw()
ggplot
qplot 
A separate function which wraps ggplot, for simpler syntax 
R code 
qplot(month, upper, fill=month, data=weather, facets = ~yr, geom="bar", 
stat="identity")
Ethos behind visualization 
http://keylines.com/network-visualization
Final Challenge
Final Challenge 
R code 
library(ggplot2) 
#Reads in data 
data = read.csv("final.csv") 
#Preparing for the rectangle background 
areas=unique(subset(data, select=c(Planning_Area,Planning_Region))) 
areas=areas[order(areas$Planning_Region),] 
areas$rectid=1:nrow(areas) 
rectdata = areas %>% group_by(Planning_Region) %>% summarise(xstart=min(rectid)- 
0.5,xend= max(rectid)+0.5) 
#Order the levels 
data$Planning_Area=factor(data$Planning_Area, 
levels=as.character(areas[order(areas$Planning_Region),]$Planning_Area))
Final challenge 
#Plot 
p0 = 
ggplot(data, aes(Planning_Area, Unit_Price____psm_))+ 
geom_boxplot(outlier.colour=NA)+ 
geom_rect(data=rectdata,aes(xmin=xstart,xmax=xend,ymin = -Inf, ymax = Inf, fill = 
Planning_Region,group=Planning_Region), alpha = 0.4,inherit.aes=F)+ 
geom_jitter(alpha=0.40, aes(color=as.factor(Year)))+ 
scale_color_brewer("Year", palette='RdBu')+ 
scale_fill_brewer(palette="Set1",name='Region')+ 
theme_minimal()+ 
theme(axis.text.x = element_text(angle=45, hjust=1, vjust=1))+ 
xlab("Planning Area")+ylab("Unit Price (PSM)") 
R code 
#Save plot 
ggsave(p0, file="areaboxplots.pdf",w=20,h=10,units="in",dpi=300)
“Above all else show the data.” 
― Edward R. Tufte, The Visual Display of Quantitative Information 
Thank you for your time
gridExtras

More Related Content

PDF
Introduction to spatial data analysis in r
ODP
Geospatial Data in R
PDF
Spatial Data Science with R
PPT
R Spatial Analysis using SP
PPTX
La R Users Group Survey Of R Graphics
PPT
Olap Functions Suport in Informix
PDF
R visualization: ggplot2, googlevis, plotly, igraph Overview
PPTX
R and Visualization: A match made in Heaven
Introduction to spatial data analysis in r
Geospatial Data in R
Spatial Data Science with R
R Spatial Analysis using SP
La R Users Group Survey Of R Graphics
Olap Functions Suport in Informix
R visualization: ggplot2, googlevis, plotly, igraph Overview
R and Visualization: A match made in Heaven

Viewers also liked (16)

PDF
Exploratory Factor Analysis
PDF
Hamilton 1994 time series analysis
PPTX
Exploratory factor analysis
PPT
Descriptive Analysis in Statistics
PDF
Time Series Analysis: Theory and Practice
PPTX
Descriptive Statistics
PPTX
Time series
PPT
Time Series Analysis Ravi
PPT
Time series slideshare
PPT
Descriptive statistics
PPTX
Time Series
PPT
Descriptive Statistics
PPTX
Data analysis powerpoint
ODP
Exploratory factor analysis
PPTX
time series analysis
PDF
3 Things Every Sales Team Needs to Be Thinking About in 2017
Exploratory Factor Analysis
Hamilton 1994 time series analysis
Exploratory factor analysis
Descriptive Analysis in Statistics
Time Series Analysis: Theory and Practice
Descriptive Statistics
Time series
Time Series Analysis Ravi
Time series slideshare
Descriptive statistics
Time Series
Descriptive Statistics
Data analysis powerpoint
Exploratory factor analysis
time series analysis
3 Things Every Sales Team Needs to Be Thinking About in 2017
Ad

Similar to Exploratory Analysis Part1 Coursera DataScience Specialisation (20)

PDF
R programming & Machine Learning
PDF
Big datacourse
PDF
Introduction to R for data science
PDF
Data profiling with Apache Calcite
PDF
Data profiling in Apache Calcite
PPTX
Tech talk ggplot2
PDF
Data Profiling in Apache Calcite
PPTX
ggplotcourse.pptx
PDF
M4_DAR_part1. module part 4 analystics with r
PDF
Spatial Analysis with R - the Good, the Bad, and the Pretty
PDF
Presentation: Plotting Systems in R
PDF
R training5
PDF
BasicGraphsWithR
PDF
Practical data science_public
PDF
ggplot2: An Extensible Platform for Publication-quality Graphics
DOCX
Week-3 – System RSupplemental material1Recap •.docx
PDF
Elegant Graphics for Data Analysis with ggplot2
DOCX
Data visualization with R and ggplot2.docx
PPTX
Exploratory data analysis of 2017 US Employment data using R
PDF
Introduction to R Short course Fall 2016
R programming & Machine Learning
Big datacourse
Introduction to R for data science
Data profiling with Apache Calcite
Data profiling in Apache Calcite
Tech talk ggplot2
Data Profiling in Apache Calcite
ggplotcourse.pptx
M4_DAR_part1. module part 4 analystics with r
Spatial Analysis with R - the Good, the Bad, and the Pretty
Presentation: Plotting Systems in R
R training5
BasicGraphsWithR
Practical data science_public
ggplot2: An Extensible Platform for Publication-quality Graphics
Week-3 – System RSupplemental material1Recap •.docx
Elegant Graphics for Data Analysis with ggplot2
Data visualization with R and ggplot2.docx
Exploratory data analysis of 2017 US Employment data using R
Introduction to R Short course Fall 2016
Ad

Recently uploaded (20)

PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
The scientific heritage No 166 (166) (2025)
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
2. Earth - The Living Planet earth and life
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
BIOMOLECULES PPT........................
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
POSITIONING IN OPERATION THEATRE ROOM.ppt
. Radiology Case Scenariosssssssssssssss
Cell Membrane: Structure, Composition & Functions
neck nodes and dissection types and lymph nodes levels
Taita Taveta Laboratory Technician Workshop Presentation.pptx
The scientific heritage No 166 (166) (2025)
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
2. Earth - The Living Planet earth and life
Classification Systems_TAXONOMY_SCIENCE8.pptx
2. Earth - The Living Planet Module 2ELS
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Viruses (History, structure and composition, classification, Bacteriophage Re...
INTRODUCTION TO EVS | Concept of sustainability
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
BIOMOLECULES PPT........................
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
AlphaEarth Foundations and the Satellite Embedding dataset

Exploratory Analysis Part1 Coursera DataScience Specialisation

  • 2. In today’s session • Principles behind exploratory analyses • Plotting data out on to popular exploratory graphs • Plotting Systems in R • Base (Week1) • Lattice (Week2) • GGPLOT2 (Week2) • Choosing and using Graphic Devices aka the output formats Scripts can be downloaded at: https://www.dropbox.com/s/ii1yj8f650d4l1q/lesson1.r?dl=0 https://www.dropbox.com/s/eme44h6lrhn775l/final.r?dl=0
  • 3. Principles behind exploratory analyses • Show comparisons • Show causality, mechanism, explanation • Show multivariate data • Integrate multiple modes of evidence • Describe and document the evidence • Content is king • SPEED
  • 4. Dimensionality • Five-number summary • Boxplots • Histograms • Density plot • Barplot Multiple-overlayed 1D plots Scatter plots
  • 5. Downloading our dataset R code dir.create("exploring_data") setwd(“exploring_data”) download.file(“http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/therbook.zip",dest="data.zip") unzip(“data.zip”)
  • 6. R code Boxplots weather = read.table("SilwoodWeather.txt",h=T) onemonth = subset(weather, month==1 & yr == 2004) boxplot(onemonth$rain) Header = T
  • 7. Histograms R code hist(weather$upper) rug(weather$upper) ticks for each value
  • 8. Barplot R code Barplot( table(weather$month), col = "wheat", main = "Number of Observations in Months”)
  • 9. Raster Vector PNG PDF SVG grDevices Filesize small medium medium Scalable No Yes Yes Web friendly Yes No Yes
  • 10. Plotting Systems Plotting Systems Base Lattice Grid Libraries lattice grid, gridExtras ggplot2 Example functions hist✔ barplot✔ boxplot✔ Plot xyplot (scatterplots) bwplot (boxplots) levelplot qplot ggplot geom Facetted plots Yes Yes Yes Grammar of NO No Yes graphics Interface with statistical functions Yes Partial Partial + Workarounds Cannot be mixed
  • 11. Base plots: Scatterplot R code data1 = read.table("scatter1.txt", h=T) data2 = read.table("scatter2.txt", h=T)
  • 12. Base plots: Scatterplot R code data1 = read.table("scatter1.txt", h=T) data2 = read.table("scatter2.txt", h=T) #Color with(data1, plot(xv, ys, col="red")) #Regression Line with(data1, abline(lm(ys~xv))) Color
  • 13. Base plots: Scatterplot Set symbol to represent data point
  • 14. Base plots: Scatterplot R code data1 = read.table("scatter1.txt", h=T) data2 = read.table("scatter2.txt", h=T) #Color with(data1, plot(xv, ys, col="red")) with(data1, abline(lm(ys~xv))) #shape with(data2, points(xv2, ys2, col="blue", pch =11)) Symbol shape
  • 15. Base plots: Scatterplot R code data1 = read.table("scatter1.txt", h=T) data2 = read.table("scatter2.txt", h=T) #Color with(data1, plot(xv, ys, col="red")) with(data1, abline(lm(ys~xv))) #shape with(data2, points(xv2, ys2, col="blue", pch =11)) Symbol shape
  • 16. Base plots: Using par for multiple plots R code par(mfrow=c(1,2)) with(data1, plot(xv, ys, col="red")) with(data1, abline(lm(ys~xv))) #Plot2 with(data2, plot(xv2, ys2, col="blue", pch =11)) title(“My Title", outer=TRUE)
  • 17. Par: To set global settings R code mfrow( mar=c(5.1,4.1,4.1,2.1), oma=c(2,2,2,2) )
  • 18. Lattice productivity = read.table("productivity.txt",h=T) # of species in forest against differing productivity library(lattice) #plotting xyplot( x~y, productivity, xlab=list(label="Productivity"), ylab=list(label="Mammal Species")) R code Formular Data frame
  • 20. Lattice productivity = read.table("productivity.txt",h=T) # of species in forest against differing productivity library(lattice) #plotting xyplot( x~y, productivity, xlab=list(label="Productivity"), ylab=list(label="Mammal Species")) xyplot( x~y | f, productivity, xlab=list(label="Productivity"), ylab=list(label="Mammal Species")) R code Formular Data frame given
  • 22. ggplot2 • Grammar of graphics (gg) • Based on GRID plotting system, cannot be mixed with base ggplot2.org
  • 23. ggplot Components • Data & relationship • GEOMetric Object • Statistical transformation • Scales • Coordinate system • Facetting
  • 26. ggplot Geometric objects aka Geoms Coordinate system wrt scales Log scale / sqrt / log ratio Title Plot Theme etc
  • 28. ggplot Components • Data & relationship ✔ • GEOMetric Object • Statistical transformation • Scales • Coordinate system • Facetting R code Rmbr to change month into a factor data.frame Aesthetics function which maps the relationships ggplot(weather, aes(x=month, y=upper))+ geom_boxplot()
  • 29. ggplot Components • Data & relationship ✔ • GEOMetric Object ✔ • Statistical transformation✔ • Scales • Coordinate system • Facetting R code weather2 = weather %>% group_by(month) %>% summarise(average.upper = mean(upper)) ggplot(weather2, aes(month, average.upper))+ geom_bar(stat="identity")
  • 30. ggplot Components • Data & relationship ✔ • GEOMetric Object ✔ • Statistical transformation✔ • Scales • Coordinate system • Facetting R code weather2 = weather %>% group_by(month) %>% summarise(average.upper = mean(upper)) ggplot(weather2, aes(month, average.upper))+ geom_bar(stat="identity")
  • 31. ggplot Components • Data & relationship ✔ • GEOMetric Object ✔ • Statistical transformation✔ • Scales✔ • Coordinate system • Facetting R code plot2 = ggplot(weather2, aes(month, average.upper))+ geom_bar(aes(fill=month),stat="identity")+ scale_fill_brewer(palette="Set3")+ xlab("Months")+ ylab("Upper Quantile")+theme_bw()
  • 32. ggplot Components • Data & relationship ✔ • GEOMetric Object ✔ • Statistical transformation✔ • Scales✔ • Coordinate system • Facetting R code plot2 = ggplot(weather2, aes(month, average.upper))+ geom_bar(aes(fill=month),stat="identity")+ scale_fill_brewer(palette="Set3")+ xlab("Months")+ ylab("Upper Quantile")+theme_bw()
  • 34. qplot A separate function which wraps ggplot, for simpler syntax R code qplot(month, upper, fill=month, data=weather, facets = ~yr, geom="bar", stat="identity")
  • 35. Ethos behind visualization http://keylines.com/network-visualization
  • 37. Final Challenge R code library(ggplot2) #Reads in data data = read.csv("final.csv") #Preparing for the rectangle background areas=unique(subset(data, select=c(Planning_Area,Planning_Region))) areas=areas[order(areas$Planning_Region),] areas$rectid=1:nrow(areas) rectdata = areas %>% group_by(Planning_Region) %>% summarise(xstart=min(rectid)- 0.5,xend= max(rectid)+0.5) #Order the levels data$Planning_Area=factor(data$Planning_Area, levels=as.character(areas[order(areas$Planning_Region),]$Planning_Area))
  • 38. Final challenge #Plot p0 = ggplot(data, aes(Planning_Area, Unit_Price____psm_))+ geom_boxplot(outlier.colour=NA)+ geom_rect(data=rectdata,aes(xmin=xstart,xmax=xend,ymin = -Inf, ymax = Inf, fill = Planning_Region,group=Planning_Region), alpha = 0.4,inherit.aes=F)+ geom_jitter(alpha=0.40, aes(color=as.factor(Year)))+ scale_color_brewer("Year", palette='RdBu')+ scale_fill_brewer(palette="Set1",name='Region')+ theme_minimal()+ theme(axis.text.x = element_text(angle=45, hjust=1, vjust=1))+ xlab("Planning Area")+ylab("Unit Price (PSM)") R code #Save plot ggsave(p0, file="areaboxplots.pdf",w=20,h=10,units="in",dpi=300)
  • 39. “Above all else show the data.” ― Edward R. Tufte, The Visual Display of Quantitative Information Thank you for your time

Editor's Notes

  • #3: In this course we will be learning how to
  • #4: In this course we will be learning how to
  • #5: In this course we will be learning how to
  • #6: In this course we will be learning how to
  • #9: barplot(table(weather$month), col = "wheat", main = "Number of Observations in Months")
  • #12: In this course we will be learning how to
  • #13: In this course we will be learning how to
  • #14: In this course we will be learning how to
  • #15: In this course we will be learning how to
  • #16: In this course we will be learning how to
  • #17: In this course we will be learning how to title("My Title", outer=TRUE)
  • #18: In this course we will be learning how to
  • #29: ggplot(weather, aes(month, upper))+ geom_boxplot()
  • #30: ggplot(weather, aes(month, upper))+ geom_boxplot()
  • #31: ggplot(weather, aes(month, upper))+ geom_boxplot()
  • #32: ggplot(weather, aes(month, upper))+ geom_boxplot()
  • #33: ggplot(weather, aes(month, upper))+ geom_boxplot()
  • #34: ggplot(weather, aes(month, upper))+ geom_boxplot()
  • #38: In this course we will be learning how to
  • #39: In this course we will be learning how to