SlideShare a Scribd company logo
ENDÜSTRİDE BİLGİSAYAR UYGULAMALARI - 2 New potential hubs in the South-Atlantic market. A problem of location Journal  of  Transport   Geography   Volume 11, Issue 2 , June 2003, Pages 139-149   FERİDE SEVLİ – 2000503052 AYTÜL ŞENER – 200503056 İLKEM YALINER – 2000503067
İçerik: Tesis Planlama Kavramı Tesis Planlamanın Amaçları Tesis Planlama Tipleri Tesisin Kurulacağı Bölgenin Seçimi Alternatiflerin Değerlendirilme Yöntemleri Havacılık Sektöründe Tesis Planlama Uygulamaları
TESİS PLANLAMA KAVRAMI: TESİS :  Mal ve hizmetlerin fiilen üretildiği fiziksel birimlerdir.  TESİS PLANLAMA :  Tesislerin düzenleme çalışmalarının yapılması, tesisin kurulması ve faaliyete geçirilmesi aşamalarında gerçekleştirilecek olan faaliyetlerin bugünden eşgüdümlerinin yapılmasıdır.
TESİS PLANLAMA AMAÇLARI: Kaynakların kullanımı Darboğazların belirlenmesi Tesis faaliyetleri  Optimum yerleşim düzeni Maliyet Mesafe Zaman
TESİS PLANLAMA TİPLERİ: Basit Yerleşim  Çoklu Yerleşim Tesis Oluşturulması ve Kapasite Atama Tesis Seçimi ve Kapasite Atama  Tesis İçi Yerleşim(QAP)
TESİSİN KURULACAĞI BÖLGENİN SEÇİLMESİ: Yerleşim Kararlarını Etkileyen Faktörler : Ülke seçimi (kanunlar, pazar, işgücü, tedarik, alım gücü vb.) Bölge seçimi (maliyet, çevre kuralları, müşteri&hammadde erişimi vb.) Yer seçimi (yerin alan&maliyeti, ulaşım kolaylığı vb.)
ALTERNATİFLERİ DEĞERLENDİRME   YÖNTEMLERİ: Faktör Oranlama Metodu  Başa-baş Analizi Ağırlık Merkezi Metodu Ulaştırma Metodu
Problem: Güney Amerika–Avrupa arasında düzenlenen uçuş seferlerinde optimum aktarma noktası seçimi
 
Veriler: 1) Şehirler arası mesafeler 0 4000 4100 24400 23100 21100 BUONES AIRES 4000 0 7000 21100 19500 17600 SAO PAULO 4100 7000 0 26200 24000 24000 SANTIAGO 24400 21100 26200 0 2500 3200 PARIS 23100 19500 24000 2500 0 1000 MADRID 21100 17600 24000 3200 1000 0 LISBON BUONES AIRES SAO PAULO SANTIAGO PARIS MADRID LİSBON TO FROM
Veriler: 2) Şehirler arası yolcu sayısı 0 0 0 83000 270051 110000 BUONES AIRES 0 0 0 143977 126851 73847 SAO PAULO 0 0 0 82000 80054 95000 SANTIAGO 85000 155036 74000 0 0 0 PARIS 240213 126137 81220 0 0 0 MADRID 121000 69238 62000 0 0 0 LISBON BUONES AIRES SAO PAULO SANTIAGO PARIS MADRID LİSBON TO  FROM
min  Σ   (d   E i  H x   + d   H x  S j   )   T   E i  S j H x  E u S   E i   E   T  *      S j    S
Problemin Lingo Modeli: SETS: AIRPORT/LISBON MADRID PARIS SANTIAGO SAOPAULO BUONESAIRES/:HUB,K; A(AIRPORT,AIRPORT):DIST,PASS; ENDSETS DATA: DIST=0  1000  3200  24000  17600  21100  1000  0  2500  24000  19500  23100  3200  2500  0  26200  21100  24400 24000  24000  26200  0  7000  4100 17600  19500  21100  7000  0  4000 21100  23100  24400  4100  4000  0  ; PASS=0  0  0  62000  69238  121000  0  0  0  81220  126137  240213  0  0  0  74000  155036  85000 95000  80054  82000  0  0  0  73847  126851  143977  0  0  0 110000  270051  83000  0  0  0  ; ENDDATA MIN=@SUM(AIRPORT(I):HUB(I)*K(I)); @FOR(AIRPORT(I):@SUM(A(J,K)|J#NE#I #AND# #NE#K:(DIST(J,I)+DIST(I,K))*PASS(J,K))=HUB(I)); IFA=@MIN(AIRPORT(I):HUB(I)); @FOR(AIRPORT(I)|HUB(I)#LE#IFA:K(I)=1); @FOR(AIRPORT(I):@BIN(K(I)));
Lingo Çözümü: Rows=  1 Vars=  5 No. integer vars=  5  ( all are linear) Nonzeros=  6 Constraint nonz=  0(  0 are +- 1) Density=1.000 Smallest and largest elements in absolute value=  0.317284E+11  0.481254E No. < :  0 No. =:  0 No. > :  0, Obj=MIN, GUBs <=  0 Single cols=  5 Optimal solution found at step:  0 Objective value:  0.2743843E+11 Branch count:  0 Variable   Value  Reduced Cost IFA  0.2743843E+11  0.0000000E+00 HUB( LISBON)  0.3455933E+11  0.0000000E+00 HUB( MADRID)  0.2743843E+11  0.0000000E+00 HUB( PARIS)  0.3879355E+11  0.0000000E+00 HUB( SANTIAGO)  0.4812541E+11  0.0000000E+00 HUB( SAOPAULO)  0.3371716E+11  0.0000000E+00 HUB( BUONESAIRES)  0.3172843E+11  0.0000000E+00 K( LISBON)  0.0000000E+00  0.3455933E+11 K( MADRID)  1.000000  0.0000000E+00 K( PARIS)  0.0000000E+00  0.3879355E+11 K( SANTIAGO)  0.0000000E+00  0.4812541E+11 K( SAOPAULO)  0.0000000E+00  0.3371716E+11 K( BUONESAIRES)  0.0000000E+00  0.3172843E+11
Lingo Çözümü: DIST( LISBON, LISBON)  0.0000000E+00  0.0000000E+00 DIST( LISBON, MADRID)  1000.000  0.0000000E+00 DIST( LISBON, PARIS)  3200.000  0.0000000E+00 DIST( LISBON, SANTIAGO)  24000.00  0.0000000E+00 DIST( LISBON, SAOPAULO)  17600.00  0.0000000E+00 DIST( LISBON, BUONESAIRES)  21100.00  0.0000000E+00 DIST( MADRID, LISBON)  1000.000  0.0000000E+00 DIST( MADRID, MADRID)  0.0000000E+00  0.0000000E+00 DIST( MADRID, PARIS)  2500.000  0.0000000E+00 DIST( MADRID, SANTIAGO)  24000.00  0.0000000E+00 DIST( MADRID, SAOPAULO)  19500.00  0.0000000E+00 DIST( MADRID, BUONESAIRES)  23100.00  0.0000000E+00 DIST( PARIS, LISBON)  3200.000  0.0000000E+00 DIST( PARIS, MADRID)  2500.000  0.0000000E+00 DIST( PARIS, PARIS)  0.0000000E+00  0.0000000E+00 DIST( PARIS, SANTIAGO)  26200.00  0.0000000E+00 DIST( PARIS, SAOPAULO)  21100.00  0.0000000E+00 DIST( PARIS, BUONESAIRES) 24400.00  0.0000000E+00 DIST( SANTIAGO, LISBON)  24000.00  0.0000000E+00 DIST( SANTIAGO, MADRID)  24000.00  0.0000000E+00 DIST( SANTIAGO, PARIS)  26200.00  0.0000000E+00 DIST( SANTIAGO, SANTIAGO) 0.0000000E+00  0.0000000E+00 DIST( SANTIAGO, SAOPAULO) 7000.000  0.0000000E+00 DIST( SANTIAGO, BUONESAIRES)  4100.000  0.0000000E+00
Lingo Çözümü: DIST( SAOPAULO, LISBON)  17600.00  0.0000000E+00 DIST( SAOPAULO, MADRID)  19500.00  0.0000000E+00 DIST( SAOPAULO, PARIS)  21100.00  0.0000000E+00 DIST( SAOPAULO, SANTIAGO)  7000.000  0.0000000E+00 DIST( SAOPAULO, SAOPAULO)  0.0000000E+00  0.0000000E+00 DIST( SAOPAULO, BUONESAIRES)  4000.000  0.0000000E+00 DIST( BUONESAIRES, LISBON)  21100.00  0.0000000E+00 DIST( BUONESAIRES, MADRID)  23100.00  0.0000000E+00 DIST( BUONESAIRES, PARIS)  24400.00  0.0000000E+00 DIST( BUONESAIRES, SANTIAGO)  4100.000  0.0000000E+00 DIST( BUONESAIRES, SAOPAULO)  4000.000  0.0000000E+00 DIST( BUONESAIRES, BUONESAIRES  0.0000000E+00  0.0000000E+00 PASS( LISBON, LISBON)  0.0000000E+00  0.0000000E+00 PASS( LISBON, MADRID)  0.0000000E+00  0.0000000E+00 PASS( LISBON, PARIS)  0.0000000E+00  0.0000000E+00 PASS( LISBON, SANTIAGO)  62000.00  0.0000000E+00 PASS( LISBON, SAOPAULO)  69238.00  0.0000000E+00 PASS( LISBON, BUONESAIRES)  121000.0  0.0000000E+00 PASS( MADRID, LISBON)  0.0000000E+00  0.0000000E+00 PASS( MADRID, MADRID)  0.0000000E+00  0.0000000E+00 PASS( MADRID, PARIS)  0.0000000E+00  0.0000000E+00 PASS( MADRID, SANTIAGO)  81220.00  0.0000000E+00 PASS( MADRID, SAOPAULO)  126137.0  0.0000000E+00 PASS( MADRID, BUONESAIRES)  240213.0  0.0000000E+00
Lingo Çözümü: PASS( PARIS, LISBON)  0.0000000E+00  0.0000000E+00 PASS( PARIS, MADRID)  0.0000000E+00  0.0000000E+00 PASS( PARIS, PARIS)  0.0000000E+00  0.0000000E+00 PASS( PARIS, SANTIAGO)  74000.00  0.0000000E+00 PASS( PARIS, SAOPAULO)  155036.0  0.0000000E+00 PASS( PARIS, BUONESAIRES)  85000.00  0.0000000E+00 PASS( SANTIAGO, LISBON)  95000.00  0.0000000E+00 PASS( SANTIAGO, MADRID)  80054.00  0.0000000E+00 PASS( SANTIAGO, PARIS)  82000.00  0.0000000E+00 PASS( SANTIAGO, SANTIAGO)  0.0000000E+00  0.0000000E+00 PASS( SANTIAGO, SAOPAULO)  0.0000000E+00  0.0000000E+00 PASS( SANTIAGO, BUONESAIRES)  0.0000000E+00  0.0000000E+00 PASS( SAOPAULO, LISBON)  73847.00  0.0000000E+00 PASS( SAOPAULO, MADRID)  126851.0  0.0000000E+00 PASS( SAOPAULO, PARIS)  143977.0  0.0000000E+00 PASS( SAOPAULO, SANTIAGO)  0.0000000E+00  0.0000000E+00 PASS( SAOPAULO, SAOPAULO)  0.0000000E+00  0.0000000E+00 PASS( SAOPAULO, BUONESAIRES)  0.0000000E+00  0.0000000E+00 PASS( BUONESAIRES, LISBON)  110000.0  0.0000000E+00 PASS( BUONESAIRES, MADRID)  270051.0  0.0000000E+00 PASS( BUONESAIRES, PARIS)  83000.00  0.0000000E+00 PASS( BUONESAIRES, SANTIAGO)  0.0000000E+00  0.0000000E+00 PASS( BUONESAIRES, SAOPAULO)  0.0000000E+00  0.0000000E+00 PASS( BUONESAIRES, BUONESAIRES  0.0000000E+00  0.0000000E+00
Lingo Çözümü:   Row  Slack or Surplus  Dual Price 1  0.2743843E+11  -1.000000 2  0.0000000E+00  0.0000000E+00 3  0.0000000E+00  1.000000 4  0.0000000E+00  0.0000000E+00 5  0.0000000E+00  0.0000000E+00 6  0.0000000E+00  0.0000000E+00 7  0.0000000E+00  0.0000000E+00 8  0.0000000E+00  0.0000000E+00 9  0.0000000E+00  -0.2743843E+11
Problem: Avrupa – Güney Amerika arasında düzenlenen uçuş seferlerinde; biri Amerika diğeri Avrupa’da olmak üzere iki tane aktarma noktası seçimi
 
min  Σ   (d  E j E x  + d   E x S y   +  d  S y S j  ) T  E i  S j E x ,S y  E x S   E i   E   T  *      S j    S
Problemin Lingo Modeli: SETS: S1/LISBON MADRID PARIS/; S2/SANTIAGO SAOPAULO BUONESAIRES/; B1(S1,S1):DIST1; B2(S2,S2):DIST2; A(S1,S2):DIST,PASS,HUB,AFI; ENDSETS DATA: DIST1= 0  1000  3200 1000  0  2500 3200  2500  0  ; DIST2= 0  7000  4100 7000  0  4000 4100  4000  0  ; DIST= 24000  17600  21100 24000  19500  23100 26200  21100  24400; PASS= 157000  143085  231000 161274  252988  425087 156000  384190  168000; ENDDATA MIN=@SUM(A(I,J):HUB(I,J)*AFI(I,J)); @FOR(A(I,J):@SUM(A(K,L):(DIST1(K,I)+DIST(I,J)+DIST2(J,L))*PASS(K,L))=HUB(I,J)); IFA=@MIN(A(I,L):HUB(I,L)); @FOR(A(M,N)|HUB(M,N)#LE#IFA:AFI(M,N)=1); @FOR(A(I,J):@BIN(AFI(I,J)));
Lingo Çözümü: Rows=  1 Vars=  8 No. integer vars=  8  ( all are linear) Nonzeros=  9 Constraint nonz=  0(  0 are +- 1) Density=1.000 Smallest and largest elements in absolute value=  0.494510E+11  0.670984E No. < :  0 No. =:  0 No. > :  0, Obj=MIN, GUBs <=  0 Single cols=  8 Optimal solution found at step:  0 Objective value:  0.4630561E+11 Branch count:  0 Variable   Value   Reduced Cost IFA  0.4630561E+11  0.0000000E+00 DIST1( LISBON, LISBON)  0.0000000E+00  0.0000000E+00 DIST1( LISBON, MADRID)  1000.000  0.0000000E+00 DIST1( LISBON, PARIS)  3200.000  0.0000000E+00 DIST1( MADRID, LISBON)  1000.000  0.0000000E+00 DIST1( MADRID, MADRID)  0.0000000E+00  0.0000000E+00 DIST1( MADRID, PARIS)  2500.000  0.0000000E+00 DIST1( PARIS, LISBON)  3200.000  0.0000000E+00 DIST1( PARIS, MADRID)  2500.000  0.0000000E+00 DIST1( PARIS, PARIS)  0.0000000E+00  0.0000000E+00
Lingo Çözümü: DIST2( SANTIAGO, SANTIAGO)  0.0000000E+00  0.0000000E+00 DIST2( SANTIAGO, SAOPAULO)  7000.000  0.0000000E+00 DIST2( SANTIAGO, BUONESAIRES)  4100.000  0.0000000E+00 DIST2( SAOPAULO, SANTIAGO)  7000.000  0.0000000E+00 DIST2( SAOPAULO, SAOPAULO)  0.0000000E+00  0.0000000E+00 DIST2( SAOPAULO, BUONESAIRES)  4000.000  0.0000000E+00 DIST2( BUONESAIRES, SANTIAGO)  4100.000  0.0000000E+00 DIST2( BUONESAIRES, SAOPAULO)  4000.000  0.0000000E+00 DIST2( BUONESAIRES, BUONESAIRE  0.0000000E+00  0.0000000E+00 DIST( LISBON, SANTIAGO)  24000.00  0.0000000E+00 DIST( LISBON, SAOPAULO)  17600.00  0.0000000E+00 DIST( LISBON, BUONESAIRES)  21100.00  0.0000000E+00 DIST( MADRID, SANTIAGO)  24000.00  0.0000000E+00 DIST( MADRID, SAOPAULO)  19500.00  0.0000000E+00 DIST( MADRID, BUONESAIRES)  23100.00  0.0000000E+00 DIST( PARIS, SANTIAGO)  26200.00  0.0000000E+00 DIST( PARIS, SAOPAULO)  21100.00  0.0000000E+00 DIST( PARIS, BUONESAIRES)  24400.00  0.0000000E+00 PASS( LISBON, SANTIAGO)  157000.0  0.0000000E+00 PASS( LISBON, SAOPAULO)  143085.0  0.0000000E+00 PASS( LISBON, BUONESAIRES)  231000.0  0.0000000E+00 PASS( MADRID, SANTIAGO)  161274.0  0.0000000E+00 PASS( MADRID, SAOPAULO)  252988.0  0.0000000E+00 PASS( MADRID, BUONESAIRES)  425087.0  0.0000000E+00
Lingo Çözümü: PASS( PARIS, SANTIAGO)  156000.0  0.0000000E+00 PASS( PARIS, SAOPAULO)  384190.0  0.0000000E+00 PASS( PARIS, BUONESAIRES)  168000.0  0.0000000E+00 HUB( LISBON, SANTIAGO)  0.6183313E+11  0.0000000E+00 HUB( LISBON, SAOPAULO)  0.4630561E+11  0.0000000E+00 HUB( LISBON, BUONESAIRES)  0.5203010E+11  0.0000000E+00 HUB( MADRID, SANTIAGO)  0.6102913E+11  0.0000000E+00 HUB( MADRID, SAOPAULO)  0.4945099E+11  0.0000000E+00 HUB( MADRID, BUONESAIRES)  0.5538335E+11  0.0000000E+00 HUB( PARIS, SANTIAGO)  0.6709839E+11  0.0000000E+00 HUB( PARIS, SAOPAULO)  0.5427308E+11  0.0000000E+00 HUB( PARIS, BUONESAIRES)  0.5958185E+11  0.0000000E+00 AFI( LISBON, SANTIAGO)  0.0000000E+00  0.6183313E+11 AFI( LISBON, SAOPAULO)  1.000000  0.0000000E+00 AFI( LISBON, BUONESAIRES)  0.0000000E+00  0.5203010E+11 AFI( MADRID, SANTIAGO)  0.0000000E+00  0.6102913E+11 AFI( MADRID, SAOPAULO)  0.0000000E+00  0.4945099E+11 AFI( MADRID, BUONESAIRES)  0.0000000E+00  0.5538335E+11 AFI( PARIS, SANTIAGO)  0.0000000E+00  0.6709839E+11 AFI( PARIS, SAOPAULO)  0.0000000E+00  0.5427308E+11 AFI( PARIS, BUONESAIRES)  0.0000000E+00  0.5958185E+11
Lingo Çözümü:   Row  Slack or Surplus  Dual Price 1  0.4630561E+11  -1.000000 2  0.0000000E+00  0.0000000E+00 3  0.0000000E+00  1.000000 4  0.0000000E+00  0.0000000E+00 5  0.0000000E+00  0.0000000E+00 6  0.0000000E+00  0.0000000E+00 7  0.0000000E+00  0.0000000E+00 8  0.0000000E+00  0.0000000E+00 9  0.0000000E+00  0.0000000E+00 10  0.0000000E+00  0.0000000E+00 11  0.0000000E+00  0.0000000E+00 12  0.0000000E+00  -0.4630561E+11
TEŞEKKÜRLER :))

More Related Content

PPSX
Facility location problem
PPTX
Facility location and techniques
PPT
Facility location
XLS
Modelos economicos
PPTX
PBL1-v1-004j.pptx
PPTX
Lecture # 20 FM S2025 Problem NPV Risk & Return.pptx
PPSX
Make your data dance: PIVOT, UNPIVOT & GROUP BY extensions
PDF
Wireless
Facility location problem
Facility location and techniques
Facility location
Modelos economicos
PBL1-v1-004j.pptx
Lecture # 20 FM S2025 Problem NPV Risk & Return.pptx
Make your data dance: PIVOT, UNPIVOT & GROUP BY extensions
Wireless

Similar to Facility Location Problem (20)

PPTX
Capitulo 02 grupo 01
PDF
stackconf 2022: Are all programming languages in english?
PDF
Prelude to halide_public
PDF
Teaching your sensors new tricks with Machine Learning - Eta Compute webinar
PPTX
ALU.pptx kjvjjfjrshfjshfjrhfjershfherjghre
PDF
Cyrille Martraire: Monoids, Monoids Everywhere! at I T.A.K.E. Unconference 2015
PDF
201506 CSE340 Lecture 21
PPTX
Tugasan 9 Pisah Ragaman (A168202)
DOC
Graphical representation of Stack
PDF
recipes
DOCX
Rajnifile
PPTX
Webinar PHP-ID: Mari Mengenal Logika Fuzzy (Fuzzy Logic)
DOC
Tripc.bas
DOC
Tripc.bas
PDF
Rcpp11 genentech
PDF
10. Getting Spatial
 
PDF
Solutions Manual for Basics of Engineering Economy 2nd Edition by Blank
PDF
Balance de prueba a junio 2016
PDF
Adding intelligence to your LoRaWAN devices - The Things Conference on tour
PDF
Consider the following C code snippet C codevoid setArray(int.pdf
Capitulo 02 grupo 01
stackconf 2022: Are all programming languages in english?
Prelude to halide_public
Teaching your sensors new tricks with Machine Learning - Eta Compute webinar
ALU.pptx kjvjjfjrshfjshfjrhfjershfherjghre
Cyrille Martraire: Monoids, Monoids Everywhere! at I T.A.K.E. Unconference 2015
201506 CSE340 Lecture 21
Tugasan 9 Pisah Ragaman (A168202)
Graphical representation of Stack
recipes
Rajnifile
Webinar PHP-ID: Mari Mengenal Logika Fuzzy (Fuzzy Logic)
Tripc.bas
Tripc.bas
Rcpp11 genentech
10. Getting Spatial
 
Solutions Manual for Basics of Engineering Economy 2nd Edition by Blank
Balance de prueba a junio 2016
Adding intelligence to your LoRaWAN devices - The Things Conference on tour
Consider the following C code snippet C codevoid setArray(int.pdf
Ad

More from Evren E (20)

PPT
Lean Manufacturing , Yalın Üretim
PPT
Total Quality Management, Toplam Kalite Yönetimi 2
PPT
Automated Storage and Retrival Systems AS/RS
PPT
Material Handling Technologies
PPT
Latest Developments In CIM
PPT
Just in Time , Tam Zamanında Üretim
PPT
concurrent engineering, eş zamanlı mühendislik
PPT
Flexible Manufacturing Systems, Esnek Üretim Sistemleri
PPT
Industrial Robots
PPT
Agile Manufacturing, Çevik Üretim
PPT
Cellular Manufacturing
PPT
Computer Aided Manufacturing
PPT
Time-table Scheduling
PPT
Supply Chain Management
PPT
Staff Scheduling
PPT
NETWORK AND GRAPH PROBLEMS
PPT
Goal Programming
PPT
CREW SCHEDULING
PPT
AGGREGATE PLANNING MODELS FOR FIELD SERVICE DELIVERY
PPT
Assingment Problem3
Lean Manufacturing , Yalın Üretim
Total Quality Management, Toplam Kalite Yönetimi 2
Automated Storage and Retrival Systems AS/RS
Material Handling Technologies
Latest Developments In CIM
Just in Time , Tam Zamanında Üretim
concurrent engineering, eş zamanlı mühendislik
Flexible Manufacturing Systems, Esnek Üretim Sistemleri
Industrial Robots
Agile Manufacturing, Çevik Üretim
Cellular Manufacturing
Computer Aided Manufacturing
Time-table Scheduling
Supply Chain Management
Staff Scheduling
NETWORK AND GRAPH PROBLEMS
Goal Programming
CREW SCHEDULING
AGGREGATE PLANNING MODELS FOR FIELD SERVICE DELIVERY
Assingment Problem3
Ad

Recently uploaded (20)

PPTX
Minimalist Business Slides XL by Slidesgo.pptx
PDF
Explore Gujarat with the Best Tour Packages
PDF
Nashik Kumbh Mela Package 2027 – Your Complete Travel Guide
PPTX
Vacation Rental Market Scraping for Smarter Investment Strategies.pptx
PDF
Discover The Charm of Dublin with isango!
PDF
Mapping the Landscape of Hospitality and Tourism A Bibliometric Study 2000–20...
PPSX
Tongling Canyon, Jingxi, Guangxi, CN. (中國 廣西靖西市 通靈大峽谷).ppsx
PDF
Villa Oriente Porto Rotondo - Luxury Villlas Sardinia.pdf
PPTX
Quiz- Thursday.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
PDF
Chardham Yatra Packing List 2026 – Essentials to Carry
PPTX
Luxury in the Skies: Business Class Flights to Tokyo with FlightsLux
PDF
Your Ultimate Guide to Arabian Adventures
PDF
Skyward Airlines Angani Magazine August 2025 Moses Kemibaro Article.pdf
PPTX
Best Tour and Travel- Travel Tips- Damanjit kaur
PPTX
Festival Season Hotel Price Surge in Bali, Goa, and Phuket A Data-Driven Anal...
PDF
Private Chauffeur Service Boston – Ride in Style
PPTX
Gujarat Tour Packages – Spiritual, Cultural & Scenic Journeys
PDF
Discover the charm of Luxemburry, A free guide to travel to Luxemburry
PPTX
Exploring Chandigarh : A Perfect Travel Guide and Its Surroundings
PDF
Where is Kailash Mansarovar in India or China.pdf
Minimalist Business Slides XL by Slidesgo.pptx
Explore Gujarat with the Best Tour Packages
Nashik Kumbh Mela Package 2027 – Your Complete Travel Guide
Vacation Rental Market Scraping for Smarter Investment Strategies.pptx
Discover The Charm of Dublin with isango!
Mapping the Landscape of Hospitality and Tourism A Bibliometric Study 2000–20...
Tongling Canyon, Jingxi, Guangxi, CN. (中國 廣西靖西市 通靈大峽谷).ppsx
Villa Oriente Porto Rotondo - Luxury Villlas Sardinia.pdf
Quiz- Thursday.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Chardham Yatra Packing List 2026 – Essentials to Carry
Luxury in the Skies: Business Class Flights to Tokyo with FlightsLux
Your Ultimate Guide to Arabian Adventures
Skyward Airlines Angani Magazine August 2025 Moses Kemibaro Article.pdf
Best Tour and Travel- Travel Tips- Damanjit kaur
Festival Season Hotel Price Surge in Bali, Goa, and Phuket A Data-Driven Anal...
Private Chauffeur Service Boston – Ride in Style
Gujarat Tour Packages – Spiritual, Cultural & Scenic Journeys
Discover the charm of Luxemburry, A free guide to travel to Luxemburry
Exploring Chandigarh : A Perfect Travel Guide and Its Surroundings
Where is Kailash Mansarovar in India or China.pdf

Facility Location Problem

  • 1. ENDÜSTRİDE BİLGİSAYAR UYGULAMALARI - 2 New potential hubs in the South-Atlantic market. A problem of location Journal of Transport Geography Volume 11, Issue 2 , June 2003, Pages 139-149 FERİDE SEVLİ – 2000503052 AYTÜL ŞENER – 200503056 İLKEM YALINER – 2000503067
  • 2. İçerik: Tesis Planlama Kavramı Tesis Planlamanın Amaçları Tesis Planlama Tipleri Tesisin Kurulacağı Bölgenin Seçimi Alternatiflerin Değerlendirilme Yöntemleri Havacılık Sektöründe Tesis Planlama Uygulamaları
  • 3. TESİS PLANLAMA KAVRAMI: TESİS : Mal ve hizmetlerin fiilen üretildiği fiziksel birimlerdir. TESİS PLANLAMA : Tesislerin düzenleme çalışmalarının yapılması, tesisin kurulması ve faaliyete geçirilmesi aşamalarında gerçekleştirilecek olan faaliyetlerin bugünden eşgüdümlerinin yapılmasıdır.
  • 4. TESİS PLANLAMA AMAÇLARI: Kaynakların kullanımı Darboğazların belirlenmesi Tesis faaliyetleri Optimum yerleşim düzeni Maliyet Mesafe Zaman
  • 5. TESİS PLANLAMA TİPLERİ: Basit Yerleşim Çoklu Yerleşim Tesis Oluşturulması ve Kapasite Atama Tesis Seçimi ve Kapasite Atama Tesis İçi Yerleşim(QAP)
  • 6. TESİSİN KURULACAĞI BÖLGENİN SEÇİLMESİ: Yerleşim Kararlarını Etkileyen Faktörler : Ülke seçimi (kanunlar, pazar, işgücü, tedarik, alım gücü vb.) Bölge seçimi (maliyet, çevre kuralları, müşteri&hammadde erişimi vb.) Yer seçimi (yerin alan&maliyeti, ulaşım kolaylığı vb.)
  • 7. ALTERNATİFLERİ DEĞERLENDİRME YÖNTEMLERİ: Faktör Oranlama Metodu Başa-baş Analizi Ağırlık Merkezi Metodu Ulaştırma Metodu
  • 8. Problem: Güney Amerika–Avrupa arasında düzenlenen uçuş seferlerinde optimum aktarma noktası seçimi
  • 9.  
  • 10. Veriler: 1) Şehirler arası mesafeler 0 4000 4100 24400 23100 21100 BUONES AIRES 4000 0 7000 21100 19500 17600 SAO PAULO 4100 7000 0 26200 24000 24000 SANTIAGO 24400 21100 26200 0 2500 3200 PARIS 23100 19500 24000 2500 0 1000 MADRID 21100 17600 24000 3200 1000 0 LISBON BUONES AIRES SAO PAULO SANTIAGO PARIS MADRID LİSBON TO FROM
  • 11. Veriler: 2) Şehirler arası yolcu sayısı 0 0 0 83000 270051 110000 BUONES AIRES 0 0 0 143977 126851 73847 SAO PAULO 0 0 0 82000 80054 95000 SANTIAGO 85000 155036 74000 0 0 0 PARIS 240213 126137 81220 0 0 0 MADRID 121000 69238 62000 0 0 0 LISBON BUONES AIRES SAO PAULO SANTIAGO PARIS MADRID LİSBON TO FROM
  • 12. min Σ (d E i H x + d H x S j ) T E i S j H x  E u S E i  E T *  S j  S
  • 13. Problemin Lingo Modeli: SETS: AIRPORT/LISBON MADRID PARIS SANTIAGO SAOPAULO BUONESAIRES/:HUB,K; A(AIRPORT,AIRPORT):DIST,PASS; ENDSETS DATA: DIST=0 1000 3200 24000 17600 21100 1000 0 2500 24000 19500 23100 3200 2500 0 26200 21100 24400 24000 24000 26200 0 7000 4100 17600 19500 21100 7000 0 4000 21100 23100 24400 4100 4000 0 ; PASS=0 0 0 62000 69238 121000 0 0 0 81220 126137 240213 0 0 0 74000 155036 85000 95000 80054 82000 0 0 0 73847 126851 143977 0 0 0 110000 270051 83000 0 0 0 ; ENDDATA MIN=@SUM(AIRPORT(I):HUB(I)*K(I)); @FOR(AIRPORT(I):@SUM(A(J,K)|J#NE#I #AND# #NE#K:(DIST(J,I)+DIST(I,K))*PASS(J,K))=HUB(I)); IFA=@MIN(AIRPORT(I):HUB(I)); @FOR(AIRPORT(I)|HUB(I)#LE#IFA:K(I)=1); @FOR(AIRPORT(I):@BIN(K(I)));
  • 14. Lingo Çözümü: Rows= 1 Vars= 5 No. integer vars= 5 ( all are linear) Nonzeros= 6 Constraint nonz= 0( 0 are +- 1) Density=1.000 Smallest and largest elements in absolute value= 0.317284E+11 0.481254E No. < : 0 No. =: 0 No. > : 0, Obj=MIN, GUBs <= 0 Single cols= 5 Optimal solution found at step: 0 Objective value: 0.2743843E+11 Branch count: 0 Variable Value Reduced Cost IFA 0.2743843E+11 0.0000000E+00 HUB( LISBON) 0.3455933E+11 0.0000000E+00 HUB( MADRID) 0.2743843E+11 0.0000000E+00 HUB( PARIS) 0.3879355E+11 0.0000000E+00 HUB( SANTIAGO) 0.4812541E+11 0.0000000E+00 HUB( SAOPAULO) 0.3371716E+11 0.0000000E+00 HUB( BUONESAIRES) 0.3172843E+11 0.0000000E+00 K( LISBON) 0.0000000E+00 0.3455933E+11 K( MADRID) 1.000000 0.0000000E+00 K( PARIS) 0.0000000E+00 0.3879355E+11 K( SANTIAGO) 0.0000000E+00 0.4812541E+11 K( SAOPAULO) 0.0000000E+00 0.3371716E+11 K( BUONESAIRES) 0.0000000E+00 0.3172843E+11
  • 15. Lingo Çözümü: DIST( LISBON, LISBON) 0.0000000E+00 0.0000000E+00 DIST( LISBON, MADRID) 1000.000 0.0000000E+00 DIST( LISBON, PARIS) 3200.000 0.0000000E+00 DIST( LISBON, SANTIAGO) 24000.00 0.0000000E+00 DIST( LISBON, SAOPAULO) 17600.00 0.0000000E+00 DIST( LISBON, BUONESAIRES) 21100.00 0.0000000E+00 DIST( MADRID, LISBON) 1000.000 0.0000000E+00 DIST( MADRID, MADRID) 0.0000000E+00 0.0000000E+00 DIST( MADRID, PARIS) 2500.000 0.0000000E+00 DIST( MADRID, SANTIAGO) 24000.00 0.0000000E+00 DIST( MADRID, SAOPAULO) 19500.00 0.0000000E+00 DIST( MADRID, BUONESAIRES) 23100.00 0.0000000E+00 DIST( PARIS, LISBON) 3200.000 0.0000000E+00 DIST( PARIS, MADRID) 2500.000 0.0000000E+00 DIST( PARIS, PARIS) 0.0000000E+00 0.0000000E+00 DIST( PARIS, SANTIAGO) 26200.00 0.0000000E+00 DIST( PARIS, SAOPAULO) 21100.00 0.0000000E+00 DIST( PARIS, BUONESAIRES) 24400.00 0.0000000E+00 DIST( SANTIAGO, LISBON) 24000.00 0.0000000E+00 DIST( SANTIAGO, MADRID) 24000.00 0.0000000E+00 DIST( SANTIAGO, PARIS) 26200.00 0.0000000E+00 DIST( SANTIAGO, SANTIAGO) 0.0000000E+00 0.0000000E+00 DIST( SANTIAGO, SAOPAULO) 7000.000 0.0000000E+00 DIST( SANTIAGO, BUONESAIRES) 4100.000 0.0000000E+00
  • 16. Lingo Çözümü: DIST( SAOPAULO, LISBON) 17600.00 0.0000000E+00 DIST( SAOPAULO, MADRID) 19500.00 0.0000000E+00 DIST( SAOPAULO, PARIS) 21100.00 0.0000000E+00 DIST( SAOPAULO, SANTIAGO) 7000.000 0.0000000E+00 DIST( SAOPAULO, SAOPAULO) 0.0000000E+00 0.0000000E+00 DIST( SAOPAULO, BUONESAIRES) 4000.000 0.0000000E+00 DIST( BUONESAIRES, LISBON) 21100.00 0.0000000E+00 DIST( BUONESAIRES, MADRID) 23100.00 0.0000000E+00 DIST( BUONESAIRES, PARIS) 24400.00 0.0000000E+00 DIST( BUONESAIRES, SANTIAGO) 4100.000 0.0000000E+00 DIST( BUONESAIRES, SAOPAULO) 4000.000 0.0000000E+00 DIST( BUONESAIRES, BUONESAIRES 0.0000000E+00 0.0000000E+00 PASS( LISBON, LISBON) 0.0000000E+00 0.0000000E+00 PASS( LISBON, MADRID) 0.0000000E+00 0.0000000E+00 PASS( LISBON, PARIS) 0.0000000E+00 0.0000000E+00 PASS( LISBON, SANTIAGO) 62000.00 0.0000000E+00 PASS( LISBON, SAOPAULO) 69238.00 0.0000000E+00 PASS( LISBON, BUONESAIRES) 121000.0 0.0000000E+00 PASS( MADRID, LISBON) 0.0000000E+00 0.0000000E+00 PASS( MADRID, MADRID) 0.0000000E+00 0.0000000E+00 PASS( MADRID, PARIS) 0.0000000E+00 0.0000000E+00 PASS( MADRID, SANTIAGO) 81220.00 0.0000000E+00 PASS( MADRID, SAOPAULO) 126137.0 0.0000000E+00 PASS( MADRID, BUONESAIRES) 240213.0 0.0000000E+00
  • 17. Lingo Çözümü: PASS( PARIS, LISBON) 0.0000000E+00 0.0000000E+00 PASS( PARIS, MADRID) 0.0000000E+00 0.0000000E+00 PASS( PARIS, PARIS) 0.0000000E+00 0.0000000E+00 PASS( PARIS, SANTIAGO) 74000.00 0.0000000E+00 PASS( PARIS, SAOPAULO) 155036.0 0.0000000E+00 PASS( PARIS, BUONESAIRES) 85000.00 0.0000000E+00 PASS( SANTIAGO, LISBON) 95000.00 0.0000000E+00 PASS( SANTIAGO, MADRID) 80054.00 0.0000000E+00 PASS( SANTIAGO, PARIS) 82000.00 0.0000000E+00 PASS( SANTIAGO, SANTIAGO) 0.0000000E+00 0.0000000E+00 PASS( SANTIAGO, SAOPAULO) 0.0000000E+00 0.0000000E+00 PASS( SANTIAGO, BUONESAIRES) 0.0000000E+00 0.0000000E+00 PASS( SAOPAULO, LISBON) 73847.00 0.0000000E+00 PASS( SAOPAULO, MADRID) 126851.0 0.0000000E+00 PASS( SAOPAULO, PARIS) 143977.0 0.0000000E+00 PASS( SAOPAULO, SANTIAGO) 0.0000000E+00 0.0000000E+00 PASS( SAOPAULO, SAOPAULO) 0.0000000E+00 0.0000000E+00 PASS( SAOPAULO, BUONESAIRES) 0.0000000E+00 0.0000000E+00 PASS( BUONESAIRES, LISBON) 110000.0 0.0000000E+00 PASS( BUONESAIRES, MADRID) 270051.0 0.0000000E+00 PASS( BUONESAIRES, PARIS) 83000.00 0.0000000E+00 PASS( BUONESAIRES, SANTIAGO) 0.0000000E+00 0.0000000E+00 PASS( BUONESAIRES, SAOPAULO) 0.0000000E+00 0.0000000E+00 PASS( BUONESAIRES, BUONESAIRES 0.0000000E+00 0.0000000E+00
  • 18. Lingo Çözümü: Row Slack or Surplus Dual Price 1 0.2743843E+11 -1.000000 2 0.0000000E+00 0.0000000E+00 3 0.0000000E+00 1.000000 4 0.0000000E+00 0.0000000E+00 5 0.0000000E+00 0.0000000E+00 6 0.0000000E+00 0.0000000E+00 7 0.0000000E+00 0.0000000E+00 8 0.0000000E+00 0.0000000E+00 9 0.0000000E+00 -0.2743843E+11
  • 19. Problem: Avrupa – Güney Amerika arasında düzenlenen uçuş seferlerinde; biri Amerika diğeri Avrupa’da olmak üzere iki tane aktarma noktası seçimi
  • 20.  
  • 21. min Σ (d E j E x + d E x S y + d S y S j ) T E i S j E x ,S y  E x S E i  E T *  S j  S
  • 22. Problemin Lingo Modeli: SETS: S1/LISBON MADRID PARIS/; S2/SANTIAGO SAOPAULO BUONESAIRES/; B1(S1,S1):DIST1; B2(S2,S2):DIST2; A(S1,S2):DIST,PASS,HUB,AFI; ENDSETS DATA: DIST1= 0 1000 3200 1000 0 2500 3200 2500 0 ; DIST2= 0 7000 4100 7000 0 4000 4100 4000 0 ; DIST= 24000 17600 21100 24000 19500 23100 26200 21100 24400; PASS= 157000 143085 231000 161274 252988 425087 156000 384190 168000; ENDDATA MIN=@SUM(A(I,J):HUB(I,J)*AFI(I,J)); @FOR(A(I,J):@SUM(A(K,L):(DIST1(K,I)+DIST(I,J)+DIST2(J,L))*PASS(K,L))=HUB(I,J)); IFA=@MIN(A(I,L):HUB(I,L)); @FOR(A(M,N)|HUB(M,N)#LE#IFA:AFI(M,N)=1); @FOR(A(I,J):@BIN(AFI(I,J)));
  • 23. Lingo Çözümü: Rows= 1 Vars= 8 No. integer vars= 8 ( all are linear) Nonzeros= 9 Constraint nonz= 0( 0 are +- 1) Density=1.000 Smallest and largest elements in absolute value= 0.494510E+11 0.670984E No. < : 0 No. =: 0 No. > : 0, Obj=MIN, GUBs <= 0 Single cols= 8 Optimal solution found at step: 0 Objective value: 0.4630561E+11 Branch count: 0 Variable Value Reduced Cost IFA 0.4630561E+11 0.0000000E+00 DIST1( LISBON, LISBON) 0.0000000E+00 0.0000000E+00 DIST1( LISBON, MADRID) 1000.000 0.0000000E+00 DIST1( LISBON, PARIS) 3200.000 0.0000000E+00 DIST1( MADRID, LISBON) 1000.000 0.0000000E+00 DIST1( MADRID, MADRID) 0.0000000E+00 0.0000000E+00 DIST1( MADRID, PARIS) 2500.000 0.0000000E+00 DIST1( PARIS, LISBON) 3200.000 0.0000000E+00 DIST1( PARIS, MADRID) 2500.000 0.0000000E+00 DIST1( PARIS, PARIS) 0.0000000E+00 0.0000000E+00
  • 24. Lingo Çözümü: DIST2( SANTIAGO, SANTIAGO) 0.0000000E+00 0.0000000E+00 DIST2( SANTIAGO, SAOPAULO) 7000.000 0.0000000E+00 DIST2( SANTIAGO, BUONESAIRES) 4100.000 0.0000000E+00 DIST2( SAOPAULO, SANTIAGO) 7000.000 0.0000000E+00 DIST2( SAOPAULO, SAOPAULO) 0.0000000E+00 0.0000000E+00 DIST2( SAOPAULO, BUONESAIRES) 4000.000 0.0000000E+00 DIST2( BUONESAIRES, SANTIAGO) 4100.000 0.0000000E+00 DIST2( BUONESAIRES, SAOPAULO) 4000.000 0.0000000E+00 DIST2( BUONESAIRES, BUONESAIRE 0.0000000E+00 0.0000000E+00 DIST( LISBON, SANTIAGO) 24000.00 0.0000000E+00 DIST( LISBON, SAOPAULO) 17600.00 0.0000000E+00 DIST( LISBON, BUONESAIRES) 21100.00 0.0000000E+00 DIST( MADRID, SANTIAGO) 24000.00 0.0000000E+00 DIST( MADRID, SAOPAULO) 19500.00 0.0000000E+00 DIST( MADRID, BUONESAIRES) 23100.00 0.0000000E+00 DIST( PARIS, SANTIAGO) 26200.00 0.0000000E+00 DIST( PARIS, SAOPAULO) 21100.00 0.0000000E+00 DIST( PARIS, BUONESAIRES) 24400.00 0.0000000E+00 PASS( LISBON, SANTIAGO) 157000.0 0.0000000E+00 PASS( LISBON, SAOPAULO) 143085.0 0.0000000E+00 PASS( LISBON, BUONESAIRES) 231000.0 0.0000000E+00 PASS( MADRID, SANTIAGO) 161274.0 0.0000000E+00 PASS( MADRID, SAOPAULO) 252988.0 0.0000000E+00 PASS( MADRID, BUONESAIRES) 425087.0 0.0000000E+00
  • 25. Lingo Çözümü: PASS( PARIS, SANTIAGO) 156000.0 0.0000000E+00 PASS( PARIS, SAOPAULO) 384190.0 0.0000000E+00 PASS( PARIS, BUONESAIRES) 168000.0 0.0000000E+00 HUB( LISBON, SANTIAGO) 0.6183313E+11 0.0000000E+00 HUB( LISBON, SAOPAULO) 0.4630561E+11 0.0000000E+00 HUB( LISBON, BUONESAIRES) 0.5203010E+11 0.0000000E+00 HUB( MADRID, SANTIAGO) 0.6102913E+11 0.0000000E+00 HUB( MADRID, SAOPAULO) 0.4945099E+11 0.0000000E+00 HUB( MADRID, BUONESAIRES) 0.5538335E+11 0.0000000E+00 HUB( PARIS, SANTIAGO) 0.6709839E+11 0.0000000E+00 HUB( PARIS, SAOPAULO) 0.5427308E+11 0.0000000E+00 HUB( PARIS, BUONESAIRES) 0.5958185E+11 0.0000000E+00 AFI( LISBON, SANTIAGO) 0.0000000E+00 0.6183313E+11 AFI( LISBON, SAOPAULO) 1.000000 0.0000000E+00 AFI( LISBON, BUONESAIRES) 0.0000000E+00 0.5203010E+11 AFI( MADRID, SANTIAGO) 0.0000000E+00 0.6102913E+11 AFI( MADRID, SAOPAULO) 0.0000000E+00 0.4945099E+11 AFI( MADRID, BUONESAIRES) 0.0000000E+00 0.5538335E+11 AFI( PARIS, SANTIAGO) 0.0000000E+00 0.6709839E+11 AFI( PARIS, SAOPAULO) 0.0000000E+00 0.5427308E+11 AFI( PARIS, BUONESAIRES) 0.0000000E+00 0.5958185E+11
  • 26. Lingo Çözümü: Row Slack or Surplus Dual Price 1 0.4630561E+11 -1.000000 2 0.0000000E+00 0.0000000E+00 3 0.0000000E+00 1.000000 4 0.0000000E+00 0.0000000E+00 5 0.0000000E+00 0.0000000E+00 6 0.0000000E+00 0.0000000E+00 7 0.0000000E+00 0.0000000E+00 8 0.0000000E+00 0.0000000E+00 9 0.0000000E+00 0.0000000E+00 10 0.0000000E+00 0.0000000E+00 11 0.0000000E+00 0.0000000E+00 12 0.0000000E+00 -0.4630561E+11