SlideShare a Scribd company logo
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/225075468
Feedback	Control	Of	Dynamic	Systems
Chapter	·	January	1994
CITATIONS
2,247
READS
18,746
3	authors,	including:
J.D.	Powell
Stanford	University
143	PUBLICATIONS			8,633	CITATIONS			
SEE	PROFILE
Abbas	Emami-Naeini
SC	Solutions	Inc.
42	PUBLICATIONS			2,650	CITATIONS			
SEE	PROFILE
All	content	following	this	page	was	uploaded	by	J.D.	Powell	on	10	July	2014.
The	user	has	requested	enhancement	of	the	downloaded	file.
控制系統(二)
PME 3208
教師:彭明輝
辦公室:工一館 625 室
助教:工一館 403 室
課本:
Feedback Control of Dynamic Systems.
by G. F. Franklin, J. D. Powell, &
A. Emami-Naeini
參考書:
B. C. Kuo, Automatic Control Systems, 7th
Ed.Prentice-Hall Inc., 1995.
1
Key issues in this course
Control (I) considers the design of a controller K(s) for
a given plant P(s) using three approaches
(A) PID controller
(B) Root locus
(C) Bode plot
Yet, before we can really solve real problems, some
other issues have to be addressed
What if there is plant uncertainty or model uncertainty,
in terms of robust stability and robust performance?
where 0 ( )) ( )( P sP s s+ Δ=
K(s) P0(s)r(t) y(t)
Δ(s)
K(s) P(s)r(t) y(t)
u(t)
2
What if there are disturbances and/or sensor noise?
Indeed, in a real control system, at least three inputs and
two outputs should be carefully examined, i.e.,
( ) ( ) ( ) ( ) (( )) ) (YR YD YNT s r s T s d s Ty s ss n+ +=
And
{ }1
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) UR UD UN
YR YD YN
T s r s T s d s T s n s
P s T s r s T s d s T s n s
u s
−
+ +
= + +
=
To achieve the required performance, it requires a
sufficient control action (control effort) u(t) to regulate the
plant. For instance, to achieved the required command
following, a control effort ( ) ( ) ( )R URu s T s r s= is required.
Similarly, is required to achieve the
required disturbance rejection, while
( ) ( ) ( )D UDu s T s d s=
( ) ( ) ( )N UNu s T s n s= will
be consumed by the noise.
If the required total control effort exceeds the
K(s) P0(s)r(t) y(t)
d(t)
n(t)
3
saturation limit of the plant, the performance will be
deteriorated.
Wha
difference between
t if there is nonlinearity in the plant?
Will the linear theory fail and become useless? Or
is there a way to accommodate the
linear theory and nonlinear reality?
K(s) P(s)
r(t) y(t)
uC
u
y
u
4
oot locus, nor Bode
that
ensures stability, such as the ‘modern controller’?
tween linear control theory and real industrial
roblems.
What if it is difficult to find a controller that stabilize the
given plant? Neither using r
plot/Nyquist stability criterion?
Is there a new way to design a controller
This course addresses the above questions, and bridges
the gap be
p
5
Overview of the Course
(1) Review of root locus and design on Bode plot
(2) Feedback properties and feedback designs
(3) Nonlinear system and Robust design on Bode plot
第一個期中報告(1/6)
(4) State space representation of a system
第一次期中考(1/3)
(5) Analysis of state equation
(6) Controllability and observability
(7) Pole assignment of control system design
(8) State estimator design
第二次期中考(1/3)
(9) Smith filter and nonlinear systems
第二個期中報告(1/6)
Credit:
◎ Two mid term tests, each accounts for 1/3 of the credit,
two term report, each accounts for 1/6 of the credit
6
Chapter 1. Review
1.1:Objective of feedback control
K(s) P(s)r(t) y(t)
Fi . 1
u(t)
g
Given a plant P(s), design a controller K(s) such that
the overall transfer function
( )
( )( )
y s
T sr s meet design
requirements such as rising time tr, settling time ts,
maximum percentage overshoot PO, phase margin θm and
gain margin, etc. Where, the overall transfer function of the
system is given by
( ) ( )
( ) 1 ( )
( )
( )
( )
Y s P s
R s P s
K s
T s
K s
=
+
The above equation reveals the fact that each controller is
specifically design for a given plant to yield a satisfactory
performance. To maintain the same performance
requirements, the controller has to change with respect to
7
the change in plant dynamics. That is, if the plant model is
not obtained with sufficient accuracy, it is impossible to
acutely meet the required performance requirement.
However, the above block diagram is a representative
of a wider class of feedback systems, such as the one shown
below
H
using block diagram reduction, it can be shown that its
overall transfer function is
( ) ( )( )
( )( ) 1 ( ) ( )
( ) ( )
1 ( ) ( )
( ) ( )
1 ( ) ( )
1
P s K sy s
T s Hr s P s K s H
P sH
H
K s
H
P s K s H
P s K s
H
s H
H
P K sH
=
+
=
+
=
+
That is, the system shown in Fig. 2 has an overall transfer
function between r(t) and y(t) equivalent to the following
K(s) P(s)
y(t)
H
r(t)
Fig. 2
8
with an ‘augmented plant’ P(s)H.
We shall come back to this issue with more details
later on.
The first issue to be addressed is: how is it possible to
obtain an accurate model of the plant? In general, we have
three types of plant models: ODE, transfer function and
Bode plot. They are closely related. First we shall examined
modeling by using O.D.E
1.2:Modeling a dynamic system
HK(s) P(s) y (t)
r(t)
Fig. 3
9
Consider a car driven by a torque of the engine. It can
be modeled as a mass m and an equivalent force u(t)
u bx mx
or
b u
x x
m m
− =
+ =
where
or
Example 2: Consider a more complicated example
m2
tire
ks/2 ks/2m1
10
1
2
1 1 1
2 2
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) 0
s w
s
s w
s
b
1
w
y x k y x k x r m x
b y x k y x m y
k kb k
x y x y x x
m m m
kb
y y x y x
m m
− + − − − =
− − − − = ⇒
+ − + − + =
+ − + − =
r
m
Example 2.4 Flexible R/W for a Disk Driver
11
1 1 1 2 1 2
2 2 2 1 2 1
( ) ( )
( ) ( ) 0
c dI b k M M
I b k
θ θ θ θ θ
θ θ θ θ θ
+ − + − = +
+ − + − =
Example 2.14:電樞驅動式直流馬達
In this type of motors, the magnetic field is held at
constant by applying a constant voltage, while the
voltage applied to the armature circuit (電樞電路)
varies to drive the motor.
Mechanical dynamic:
Circuit dynamic:
input:
t
a a e
a
J b T K i
diL Ri v e v K
dt
v
θ θ
θ
+ = =
+ = − = −
12
Taking Laplace transform of the above equation, it gives
( )2
( ) ( )tJs bs s K I s+ Θ =
( ) ( ) ( ) ( )a eLs R I s v s K s+ = − Θ
That is
( )
[ ] ( )21 1
( ) ( ) ( ) ( )a e
t
I s v s K s Js bs s
Ls R K
= − Θ = +
+
Θ
or
( ) ( )
2
1
( ) ( )e
a
t
KJs bs
v s s
Ls R K Ls R
⎡ ⎤+
= +⎢ ⎥
+ +⎣ ⎦
Θ
Hence
( ) ( )
( )
( )( ) ( )
( )( )
1
2
2
2
1
1
( )
( )a
s
v s
Θ
= e
t
t
t
t e
t
e
KJs bs
K Ls R Ls R
K Ls R
Ls RJs bs Ls R K K
K
Js bs Ls R K K
−
=
⎡ ⎤+
+⎢ ⎥
+ +⎣ ⎦
+
++ + +
+ ++
There are three approaches to determine the model
13
parameters J, b, L, R, Kt, Ke
(1) A series of direct measurements of model parameters.
For instance, J can be estimated from its geometric
shape, b can be measured from quasi-static experiment,
and so on.
(2) Curve fitting to the step responses (or other response
in the time domain) of the motor
In the other type of motors (magnetic field driven
motors), the magnetic field varies by applying a varying
voltage to drive the motor, while the voltage applied to
the armature circuit(電樞電路)is held at a constant. In
such cases, the dynamic model becomes
( )( )2
( )
( )a
t
f f
K
Js bs L s R
s
v s
Θ
=
+ +
14
█ In such cases the plant is of type I, and the step
response will be unbounded because
( )( )2
( )
( )a
s tK
Js Ls Rbs+ +v s
Θ
=
because
0
( )
( )a S
s
v s =
Θ
=∞
Hence model parameters have to be estimated in
closed-loop as shown below
K P(s)r(t) y(t)
u(t)
where the constant gain K is adjusted to stabilize the
plant, while input u(t) and y(t) are measured for
curve fitting in the time domain (i.e., using system
parameter identification techniques).
█ This approach has two major drawback: (1) plant
models with significant differences in model
parameters may have very close step responses.
Therefore, this approach may leads to poor
estimation of model parameters. (2)S/N ratio is
worse than frequency response method using Bode
15
plot
(3) Curve fitting to the Bode plot of the motor
Cω
█ In this approach, phase plot usually results in a
larger error, corresponding to model inaccuracy.
█ In theory, to obtain the Bode plot, u(t) and y(t) can
be any time function, which can be decomposed
into a series of harmonic functions
P(s)
( )
0
(
n
)
si
N
i
ii
However, such a treatment will lead to poor S/N ratio.
i
u t
tu φω i
=
=
+∑ ( )
0
in
( )
s
i
i i
N
y t
y t ϕω
=
=
+∑
16
Handling higher order dynamics on Bode plot
Cω
Higher order dynamics and close pole-zero pairs can be
neglected as long as the gain-phase plot the plant model
shows good agreement with experimental data near the
specified crossover frequency Cω .
17
in terms of robust stability and
but NOT from time domain parameter
C
It is inevitable that model inaccuracy exists due to sensor
noises, neglected higher order dynamics and
nonlinearities, hence it is essential that a feedback
control system must be able to handle model
inaccuracy/uncertainty
robust performance.
Uncertainty/model inaccuracy can be estimated from the
Bode plot,
estimation.
ω
Gain uncertainty
phase uncertainty
18
Handling model uncertainty for robust stability
However, there has no effective techniques to model
plant inaccuracy in time domain approaches (root locus,
modern control)
Unit circle
19
1.3:Design Requirement/performance specifications
Some of the primary design requirements can be
transcribed into properties of the dominant poles of T(z) in
the time domain, such as
(A-1) Transient performance tr, ts, PO (i.e.,ζ and ωN)
(B) Stability margin (in terms of ζ)
(C) Steady state error (KP, KV, Ka)
(D) Noise attenuation
(E) Disturbance rejection/ sensitivity reduction (often
equivalent to tracking)
Transient performances can be transcribed into
(1) overshoot: ζ ≥ −0.6(1 /100)PO
(2) Rise time tr: 1.8
N
ω
nwζ
rt
≥
st≥(3) settling time tS: 4.6/
That is, the locations of the pair of dominant poles are
allowed to appear only in the following region
20
with the step responses of a second order system (dominant
poles) shown below
σ = nwζ
jω
ωn
σ = nwζ
ς
21
where
Stability margin measured by ζ
σ = nwζ
ς=0 jω
1>ς>0
1≥
ς<0
ζ
22
Ste
ee), and
the steady state error following a step command is
ady state error (KP, KV, Ka)
KP measures the capability of a system to follow a
constant step command (polynomial of zero degr
SSe
PK
≈
1
For sys type zero,tem
P 0 0
K L( ) P( ) ( )S S
s s K S H= =
==
For system type I, there is a pure integrator in L(s), hence
0P
0sS
S
=
=
1
L( ) L )(K s s= = ∞=
, SSe 0
PK
≈ =
1
For system type II, there are 2 pure integrators, hence
0P
0
2
1
L( ) L( )K
sS
S
s s=
=
= SSe 0
PK
≈ =
1= ∞=
,
KV measures the capability of a system to follow a
ramp command (polynomial of first degree), and the steady
state error following a ramp command is
SSe
VK
=
1
23
For system type zero,
0VK = hence SSe
VK
= = ∞
1
For system type I, there is a pure integrator in L(s), and
V 0 0
K sL( ) sP( ) ( )S S
s s K S H= =
==
For system type II, there are 2 pure integrators, hence
0P
0
2
s
sL( ) L( )K
sS
S
s s=
=
= SSe 0
PK
≈ =
1= ∞=
,
Ka measures the capability of a system to follow a
parabolic command (polynomial of 2nd degree), and the
steady state error following a ramp command is
SSe
aK
=
1
For system type zero and , system type I
0aK = hence SSe
aK
= = ∞
1
For system type II, there are 2 pure integrators, hence
2
2
s2
0
0
s L( ) L( ) constant
sS
S
a s sK
=
=
===
,
24
SSe limited > 0
aK
≈ =
1
systemSteady state error
ype I Type IIType 0 T
Step command 1
PK
0 0
Ramp command ∞ 1
VK
0
∞ ∞ 1
aK
Parabolic commnad
Unfortunately, there is no quantitative rules to measure
noise attenuation and disturbance rejection in the time
domain except a rough concept that the larger the input
control effort u(t) (or the larger the dc gain of the
controller), the larger the noise amplification rate.
Therefore it has been taken as a rule that the dc gain of
the controller should be kept as small as possible.
25
1.4:Classifications of systems and ODE
1
) ( , )( ) ( ) ( )y t2
( ,( )y t a y ya ty y t uy+ + = (1.1)
is nonlinear ODE (system)
12
( ) ( ) (( ) ( )) )(y t y ta t t u ta t y+ + = (1.2)
is a linear, time varying ODE (system)
(1.3)12 1
( ) ( ) ( ) ( ) ( )y t y t y t b u t u ta a ++ + =
is a linear, time invariant ODE (system)
Superposition principle:Let , y
1 2
( ) ( ) ( )u t u t u tα β= +
1 2
( ) ( ) ( )
1(t)
and y2(t) be responses due to u1(t) & u2(t), respectively, then
y t y t y tα β= + (1.4)
◎ In a linear system output is proportional to input.
◎ Superposition fails for nonlinear systems
Transfer function
Applying Laplace transform to Eq. (1), it gives
3 2 2
2
1 1
( ) (0) (0) (0) ( ) (0) (0)
( ) (0) ( ) (0) ( )
s Y s s y sy y a s Y s sy y
a sY s y b sU s u U s
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− − − + − −
+ − = − +
⎤
⎥
⎥
⎥
⎦
26
Assuming zero initial condition
(0) (0) (0) (0) 0y y y u= = = = ,
one obtained
3 2
1 12
( ) 1 ( )s a s a sY s b s U s
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
+ + = + (1.5)
That is
1
3 2
2 1
1( )( )
( )
b sY sP s
U s s a s a
+
= =
+ + s
(1.6)
Zero polynomial
※ A transfer function description can be obtained from the
ODE by assuming zero initial conditions
Pole polyno.
※ Zero polynomial represents differential operators on the
input, while pole polynomial represents differential
operators on the output
※ To obtain an ODE from a transfer function, convert (6)
into (5), then convert (5) into (3).
※ However, a transfer function does not exist for a linear
time varying system since Laplace transform is not
applicable.
27
1.5:Transfer function and ODE
Consider a general linear, time-invariant ODE
( ) ( 1) ( 2)
1 2
( ) ( 1) ( 2)
10 2
( ) ( ) ( ) ... ( )
( ) ( ) ( ) ... ( )
n n n
n
m m m
m
y t a y t a y t a y t
b u t b u t b u t b u t
− −
− −
+ + + + =
+ + + +
(1.7)
Applying Laplace transform to the ODE, one obtains
( 2) ( 1)1 2
( 3) ( 2)1 2
1
( 4) ( 5)2 3
2
43
( ) (0) (0) ... (0) (0)
( ) (0) ... (0) (0)
( ) (0) ... (0) (0)
... ...
n nn n n
n nn n
n nn n
s Y s s y s y sy y
a s Y s s y sy y
a s Y s s y sy y
a a
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− −− −
− −− −
− −− −
− − − − −
+ − − − −
+ − − − −
+ + 1
( 2) ( 1)1
0
( 3) ( 2)1 2
1
( 4) ( 5)2 3
2
... ( ) (0) ( )
( ) (0) ... (0) (0)
( ) (0) ... (0) (0)
( ) (0) ... (0)
nn
m mm m
m mm m
m mm m
a sY s y a Y s
b s U s s u su u
b s U s s u su u
b s U s s u su u
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
−
− −−
− −− −
− −− −
+ + − +
= − − − −
+ − − − −
+ − − − −
4 13
(0)
... ... ... ( ) (0) ( )mm
b b b sU s u b U s
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
−
+ + + + − +
(8)
Collecting similar terms
28
1 2
1 12
( )
1
1 10
( )
( ) ( ) ( ) ... ( ) ( )
( , (0), )
( ) ( ) ... ( ) ( )
( , (0), )
n n n
nn
i i
i
m m
mm
j j
i
s Y s a s Y s a s Y s a sY s a Y s
C a y s
b s U s b s U s b sU s b U s
D b u s
− −
−
−
−
+ + + + +
+
= + + + +
+
Under zero initial conditions, (8) and (9) reduces to
(10)
1
1 10
1 2
1 12
...
0
0
+
+
... ( )
( )m m
mm
n n n
nn
b s b s b s b
s a s a s a s a Y s
U s
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
−
−
− −
−
+ + + +
+ + + + +
=
(1.11)
Therefore,
[ ]0,1
1
0 1 1
1
1 1
...
( )
...
m m
mm
n n
nn
b s b s b b
P s
s
s a s a s a
−
−
−
−
+ + +
=
+
=
+ + + +
( )
( )
Y
s
s
U
(1.12)
※ To solve for the non-zero initial response,
(i) Convert (12) into (11),
(ii) then convert (11) into (7)
(iii) Solve for (7) with non-zero initial conditions
※ Transfer function description = ODE description.
29
1.6: Multivariable (MIMO) system
A system is called a ‘Multiple-Input-Multiple-Output’ if
consists of more than one inputs and/or more than one
outputs.
For instance, consider a mill plant rolling papers or
steels as depicted below
u1 = T
u2 = P
y2 = v
y1 = t
where
u = T:pulling force, 1 input
u = P:rolling pressure, 2 input
y = t:production speed, 1 output
y = v:thickness of the plate or paper, 2 output
Let the dynamics between u and y1 be captured by the
st
1
nd
2
st
1
nd
2
1
30
transfer function P11(s) so that
1
1111 1 1
1
( )
( ) or ( ) ( )
( )
( )
Y
P s
s
P s Y s U s
U s
=
(1.25)
Similarly,
2
2222 2 2
2 ( )U s (1.26)
However, when the pulling force u
( )
( ) or ( ) ( )( )
Y
P s
s
P s Y s U s=
ted by the 1st
input. This is called the ‘coupling
= v).
nd
input.
Let the coupling effect be capture
1 = T increases to
speed up the process, it inevitably leads to a reduction in
the thickness y2 = t as a side effect. That is, the 2nd
output is
also affec
effect’.
Similarly, when the rolling pressure u2 = P increase to
reduce the thickness y2 = t, it also increases the friction
force between the rollers and the plate and thereby slow
down the process (i.e., decreases production speed y1
That is, the 1st
output is also affected by the 2
d by
1
1212 1 2
2
( )
( ) or ( ) ( )
( )
( )
Y
P s
s
P s Y s U s
U s
=
(1.27)
31
2
21( )P s U
1 12
1 22
( ) ( )
( ) ( )
( )
s P s
s P s
P s
⎤
⎥
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎦
21 2 1
1
( )
( ) or ( ) ( )
( )
Y s
P s Y s s
U s
=
2
1 1
2 2
1
2
( ) ( )
( ) ( )
( )
( )
P
P
Y s U s
Y s U s
U s
U s
⎡
⎢
⎣
⎡ ⎤
=⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎣ ⎦
(1.28)
Then the complete dynamical relationships between the
inputs and outputs described by Eqs. (1.25)~(1.28) can be
rewritten in a matrix form as shown below
1
(1.29)
where P(s) is called the ‘transfer function matrix’ of the
multivariable process.
Other multivariable processes:
★ Space vehicles
★ Control-configured flights
★ High purity chemical process
32
View publication statsView publication stats

More Related Content

PDF
Lecture 5 ME 176 2 Mathematical Modeling
PPTX
Matlab solving rlc circuit
PPT
Lyapunov stability
PPTX
Block diagram Examples
PDF
Phase plane analysis (nonlinear stability analysis)
PPTX
Mathematical Modelling of Control Systems
PPTX
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
PPTX
Laplace periodic function with graph
Lecture 5 ME 176 2 Mathematical Modeling
Matlab solving rlc circuit
Lyapunov stability
Block diagram Examples
Phase plane analysis (nonlinear stability analysis)
Mathematical Modelling of Control Systems
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
Laplace periodic function with graph

What's hot (20)

PPTX
03 dynamic.system.
PPT
Control chap8
PPTX
Steady State Error
PPTX
State space analysis.pptx
PPT
Decimation in time and frequency
PPTX
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
PDF
control engineering revision
PPT
Transfer function and mathematical modeling
PDF
Block diagram reduction techniques
PDF
Mod-5-synchronous-counter-using-J-K flip-flop.pdf
PPTX
Laplace transform
PPTX
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
PDF
Notes nyquist plot and stability criteria
PDF
Impedance in transmission line
PDF
Thevenin's theorem for ac network
PPTX
Lecture 6 modelling-of_electrical__electronic_systems
PDF
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
PDF
Time response second order
PPTX
Asynchronous Sequential Circuit-Unit 4 ppt
03 dynamic.system.
Control chap8
Steady State Error
State space analysis.pptx
Decimation in time and frequency
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
control engineering revision
Transfer function and mathematical modeling
Block diagram reduction techniques
Mod-5-synchronous-counter-using-J-K flip-flop.pdf
Laplace transform
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Notes nyquist plot and stability criteria
Impedance in transmission line
Thevenin's theorem for ac network
Lecture 6 modelling-of_electrical__electronic_systems
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Time response second order
Asynchronous Sequential Circuit-Unit 4 ppt
Ad

Similar to Feedback control of_dynamic_systems (20)

PDF
D0372027037
PDF
Metal cutting tool position control using static output feedback and full sta...
PDF
Lectures upto block diagram reduction
PDF
New controllers efficient model based design method
PDF
A010220109
PDF
Adaptive pi based on direct synthesis nishant
PDF
time response
PDF
Buck converter controlled with ZAD and FPIC for DC-DC signal regulation
PDF
Chapter 1_Lect_3 System Modeling_144875f87dacff21abd64f918872013c Copy.pdf
PDF
Control system introduction for different application
PPTX
Time response of discrete systems 4th lecture
DOCX
Assignment2 control
PPTX
control system, open and closed loop engineering
DOCX
ACS 22LIE12 lab Manul.docx
PDF
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
PDF
The Controller Design For Linear System: A State Space Approach
PDF
Julio Bravo's Master Graduation Project
PDF
Modeling, simulation and control of a robotic arm
PDF
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
D0372027037
Metal cutting tool position control using static output feedback and full sta...
Lectures upto block diagram reduction
New controllers efficient model based design method
A010220109
Adaptive pi based on direct synthesis nishant
time response
Buck converter controlled with ZAD and FPIC for DC-DC signal regulation
Chapter 1_Lect_3 System Modeling_144875f87dacff21abd64f918872013c Copy.pdf
Control system introduction for different application
Time response of discrete systems 4th lecture
Assignment2 control
control system, open and closed loop engineering
ACS 22LIE12 lab Manul.docx
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
The Controller Design For Linear System: A State Space Approach
Julio Bravo's Master Graduation Project
Modeling, simulation and control of a robotic arm
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
Ad

Recently uploaded (20)

PPTX
master seminar digital applications in india
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Institutional Correction lecture only . . .
PPTX
GDM (1) (1).pptx small presentation for students
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Lesson notes of climatology university.
PPTX
Cell Structure & Organelles in detailed.
PDF
RMMM.pdf make it easy to upload and study
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Pharma ospi slides which help in ospi learning
master seminar digital applications in india
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
human mycosis Human fungal infections are called human mycosis..pptx
Institutional Correction lecture only . . .
GDM (1) (1).pptx small presentation for students
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Microbial diseases, their pathogenesis and prophylaxis
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Supply Chain Operations Speaking Notes -ICLT Program
Renaissance Architecture: A Journey from Faith to Humanism
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Basic Mud Logging Guide for educational purpose
Insiders guide to clinical Medicine.pdf
Lesson notes of climatology university.
Cell Structure & Organelles in detailed.
RMMM.pdf make it easy to upload and study
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Pharma ospi slides which help in ospi learning

Feedback control of_dynamic_systems

  • 2. 控制系統(二) PME 3208 教師:彭明輝 辦公室:工一館 625 室 助教:工一館 403 室 課本: Feedback Control of Dynamic Systems. by G. F. Franklin, J. D. Powell, & A. Emami-Naeini 參考書: B. C. Kuo, Automatic Control Systems, 7th Ed.Prentice-Hall Inc., 1995. 1
  • 3. Key issues in this course Control (I) considers the design of a controller K(s) for a given plant P(s) using three approaches (A) PID controller (B) Root locus (C) Bode plot Yet, before we can really solve real problems, some other issues have to be addressed What if there is plant uncertainty or model uncertainty, in terms of robust stability and robust performance? where 0 ( )) ( )( P sP s s+ Δ= K(s) P0(s)r(t) y(t) Δ(s) K(s) P(s)r(t) y(t) u(t) 2
  • 4. What if there are disturbances and/or sensor noise? Indeed, in a real control system, at least three inputs and two outputs should be carefully examined, i.e., ( ) ( ) ( ) ( ) (( )) ) (YR YD YNT s r s T s d s Ty s ss n+ += And { }1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) UR UD UN YR YD YN T s r s T s d s T s n s P s T s r s T s d s T s n s u s − + + = + + = To achieve the required performance, it requires a sufficient control action (control effort) u(t) to regulate the plant. For instance, to achieved the required command following, a control effort ( ) ( ) ( )R URu s T s r s= is required. Similarly, is required to achieve the required disturbance rejection, while ( ) ( ) ( )D UDu s T s d s= ( ) ( ) ( )N UNu s T s n s= will be consumed by the noise. If the required total control effort exceeds the K(s) P0(s)r(t) y(t) d(t) n(t) 3
  • 5. saturation limit of the plant, the performance will be deteriorated. Wha difference between t if there is nonlinearity in the plant? Will the linear theory fail and become useless? Or is there a way to accommodate the linear theory and nonlinear reality? K(s) P(s) r(t) y(t) uC u y u 4
  • 6. oot locus, nor Bode that ensures stability, such as the ‘modern controller’? tween linear control theory and real industrial roblems. What if it is difficult to find a controller that stabilize the given plant? Neither using r plot/Nyquist stability criterion? Is there a new way to design a controller This course addresses the above questions, and bridges the gap be p 5
  • 7. Overview of the Course (1) Review of root locus and design on Bode plot (2) Feedback properties and feedback designs (3) Nonlinear system and Robust design on Bode plot 第一個期中報告(1/6) (4) State space representation of a system 第一次期中考(1/3) (5) Analysis of state equation (6) Controllability and observability (7) Pole assignment of control system design (8) State estimator design 第二次期中考(1/3) (9) Smith filter and nonlinear systems 第二個期中報告(1/6) Credit: ◎ Two mid term tests, each accounts for 1/3 of the credit, two term report, each accounts for 1/6 of the credit 6
  • 8. Chapter 1. Review 1.1:Objective of feedback control K(s) P(s)r(t) y(t) Fi . 1 u(t) g Given a plant P(s), design a controller K(s) such that the overall transfer function ( ) ( )( ) y s T sr s meet design requirements such as rising time tr, settling time ts, maximum percentage overshoot PO, phase margin θm and gain margin, etc. Where, the overall transfer function of the system is given by ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) Y s P s R s P s K s T s K s = + The above equation reveals the fact that each controller is specifically design for a given plant to yield a satisfactory performance. To maintain the same performance requirements, the controller has to change with respect to 7
  • 9. the change in plant dynamics. That is, if the plant model is not obtained with sufficient accuracy, it is impossible to acutely meet the required performance requirement. However, the above block diagram is a representative of a wider class of feedback systems, such as the one shown below H using block diagram reduction, it can be shown that its overall transfer function is ( ) ( )( ) ( )( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) 1 P s K sy s T s Hr s P s K s H P sH H K s H P s K s H P s K s H s H H P K sH = + = + = + That is, the system shown in Fig. 2 has an overall transfer function between r(t) and y(t) equivalent to the following K(s) P(s) y(t) H r(t) Fig. 2 8
  • 10. with an ‘augmented plant’ P(s)H. We shall come back to this issue with more details later on. The first issue to be addressed is: how is it possible to obtain an accurate model of the plant? In general, we have three types of plant models: ODE, transfer function and Bode plot. They are closely related. First we shall examined modeling by using O.D.E 1.2:Modeling a dynamic system HK(s) P(s) y (t) r(t) Fig. 3 9
  • 11. Consider a car driven by a torque of the engine. It can be modeled as a mass m and an equivalent force u(t) u bx mx or b u x x m m − = + = where or Example 2: Consider a more complicated example m2 tire ks/2 ks/2m1 10
  • 12. 1 2 1 1 1 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 s w s s w s b 1 w y x k y x k x r m x b y x k y x m y k kb k x y x y x x m m m kb y y x y x m m − + − − − = − − − − = ⇒ + − + − + = + − + − = r m Example 2.4 Flexible R/W for a Disk Driver 11
  • 13. 1 1 1 2 1 2 2 2 2 1 2 1 ( ) ( ) ( ) ( ) 0 c dI b k M M I b k θ θ θ θ θ θ θ θ θ θ + − + − = + + − + − = Example 2.14:電樞驅動式直流馬達 In this type of motors, the magnetic field is held at constant by applying a constant voltage, while the voltage applied to the armature circuit (電樞電路) varies to drive the motor. Mechanical dynamic: Circuit dynamic: input: t a a e a J b T K i diL Ri v e v K dt v θ θ θ + = = + = − = − 12
  • 14. Taking Laplace transform of the above equation, it gives ( )2 ( ) ( )tJs bs s K I s+ Θ = ( ) ( ) ( ) ( )a eLs R I s v s K s+ = − Θ That is ( ) [ ] ( )21 1 ( ) ( ) ( ) ( )a e t I s v s K s Js bs s Ls R K = − Θ = + + Θ or ( ) ( ) 2 1 ( ) ( )e a t KJs bs v s s Ls R K Ls R ⎡ ⎤+ = +⎢ ⎥ + +⎣ ⎦ Θ Hence ( ) ( ) ( ) ( )( ) ( ) ( )( ) 1 2 2 2 1 1 ( ) ( )a s v s Θ = e t t t t e t e KJs bs K Ls R Ls R K Ls R Ls RJs bs Ls R K K K Js bs Ls R K K − = ⎡ ⎤+ +⎢ ⎥ + +⎣ ⎦ + ++ + + + ++ There are three approaches to determine the model 13
  • 15. parameters J, b, L, R, Kt, Ke (1) A series of direct measurements of model parameters. For instance, J can be estimated from its geometric shape, b can be measured from quasi-static experiment, and so on. (2) Curve fitting to the step responses (or other response in the time domain) of the motor In the other type of motors (magnetic field driven motors), the magnetic field varies by applying a varying voltage to drive the motor, while the voltage applied to the armature circuit(電樞電路)is held at a constant. In such cases, the dynamic model becomes ( )( )2 ( ) ( )a t f f K Js bs L s R s v s Θ = + + 14
  • 16. █ In such cases the plant is of type I, and the step response will be unbounded because ( )( )2 ( ) ( )a s tK Js Ls Rbs+ +v s Θ = because 0 ( ) ( )a S s v s = Θ =∞ Hence model parameters have to be estimated in closed-loop as shown below K P(s)r(t) y(t) u(t) where the constant gain K is adjusted to stabilize the plant, while input u(t) and y(t) are measured for curve fitting in the time domain (i.e., using system parameter identification techniques). █ This approach has two major drawback: (1) plant models with significant differences in model parameters may have very close step responses. Therefore, this approach may leads to poor estimation of model parameters. (2)S/N ratio is worse than frequency response method using Bode 15
  • 17. plot (3) Curve fitting to the Bode plot of the motor Cω █ In this approach, phase plot usually results in a larger error, corresponding to model inaccuracy. █ In theory, to obtain the Bode plot, u(t) and y(t) can be any time function, which can be decomposed into a series of harmonic functions P(s) ( ) 0 ( n ) si N i ii However, such a treatment will lead to poor S/N ratio. i u t tu φω i = = +∑ ( ) 0 in ( ) s i i i N y t y t ϕω = = +∑ 16
  • 18. Handling higher order dynamics on Bode plot Cω Higher order dynamics and close pole-zero pairs can be neglected as long as the gain-phase plot the plant model shows good agreement with experimental data near the specified crossover frequency Cω . 17
  • 19. in terms of robust stability and but NOT from time domain parameter C It is inevitable that model inaccuracy exists due to sensor noises, neglected higher order dynamics and nonlinearities, hence it is essential that a feedback control system must be able to handle model inaccuracy/uncertainty robust performance. Uncertainty/model inaccuracy can be estimated from the Bode plot, estimation. ω Gain uncertainty phase uncertainty 18
  • 20. Handling model uncertainty for robust stability However, there has no effective techniques to model plant inaccuracy in time domain approaches (root locus, modern control) Unit circle 19
  • 21. 1.3:Design Requirement/performance specifications Some of the primary design requirements can be transcribed into properties of the dominant poles of T(z) in the time domain, such as (A-1) Transient performance tr, ts, PO (i.e.,ζ and ωN) (B) Stability margin (in terms of ζ) (C) Steady state error (KP, KV, Ka) (D) Noise attenuation (E) Disturbance rejection/ sensitivity reduction (often equivalent to tracking) Transient performances can be transcribed into (1) overshoot: ζ ≥ −0.6(1 /100)PO (2) Rise time tr: 1.8 N ω nwζ rt ≥ st≥(3) settling time tS: 4.6/ That is, the locations of the pair of dominant poles are allowed to appear only in the following region 20
  • 22. with the step responses of a second order system (dominant poles) shown below σ = nwζ jω ωn σ = nwζ ς 21
  • 23. where Stability margin measured by ζ σ = nwζ ς=0 jω 1>ς>0 1≥ ς<0 ζ 22
  • 24. Ste ee), and the steady state error following a step command is ady state error (KP, KV, Ka) KP measures the capability of a system to follow a constant step command (polynomial of zero degr SSe PK ≈ 1 For sys type zero,tem P 0 0 K L( ) P( ) ( )S S s s K S H= = == For system type I, there is a pure integrator in L(s), hence 0P 0sS S = = 1 L( ) L )(K s s= = ∞= , SSe 0 PK ≈ = 1 For system type II, there are 2 pure integrators, hence 0P 0 2 1 L( ) L( )K sS S s s= = = SSe 0 PK ≈ = 1= ∞= , KV measures the capability of a system to follow a ramp command (polynomial of first degree), and the steady state error following a ramp command is SSe VK = 1 23
  • 25. For system type zero, 0VK = hence SSe VK = = ∞ 1 For system type I, there is a pure integrator in L(s), and V 0 0 K sL( ) sP( ) ( )S S s s K S H= = == For system type II, there are 2 pure integrators, hence 0P 0 2 s sL( ) L( )K sS S s s= = = SSe 0 PK ≈ = 1= ∞= , Ka measures the capability of a system to follow a parabolic command (polynomial of 2nd degree), and the steady state error following a ramp command is SSe aK = 1 For system type zero and , system type I 0aK = hence SSe aK = = ∞ 1 For system type II, there are 2 pure integrators, hence 2 2 s2 0 0 s L( ) L( ) constant sS S a s sK = = === , 24
  • 26. SSe limited > 0 aK ≈ = 1 systemSteady state error ype I Type IIType 0 T Step command 1 PK 0 0 Ramp command ∞ 1 VK 0 ∞ ∞ 1 aK Parabolic commnad Unfortunately, there is no quantitative rules to measure noise attenuation and disturbance rejection in the time domain except a rough concept that the larger the input control effort u(t) (or the larger the dc gain of the controller), the larger the noise amplification rate. Therefore it has been taken as a rule that the dc gain of the controller should be kept as small as possible. 25
  • 27. 1.4:Classifications of systems and ODE 1 ) ( , )( ) ( ) ( )y t2 ( ,( )y t a y ya ty y t uy+ + = (1.1) is nonlinear ODE (system) 12 ( ) ( ) (( ) ( )) )(y t y ta t t u ta t y+ + = (1.2) is a linear, time varying ODE (system) (1.3)12 1 ( ) ( ) ( ) ( ) ( )y t y t y t b u t u ta a ++ + = is a linear, time invariant ODE (system) Superposition principle:Let , y 1 2 ( ) ( ) ( )u t u t u tα β= + 1 2 ( ) ( ) ( ) 1(t) and y2(t) be responses due to u1(t) & u2(t), respectively, then y t y t y tα β= + (1.4) ◎ In a linear system output is proportional to input. ◎ Superposition fails for nonlinear systems Transfer function Applying Laplace transform to Eq. (1), it gives 3 2 2 2 1 1 ( ) (0) (0) (0) ( ) (0) (0) ( ) (0) ( ) (0) ( ) s Y s s y sy y a s Y s sy y a sY s y b sU s u U s ⎡ ⎤ ⎡ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢ ⎣ ⎦ ⎣ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − − − + − − + − = − + ⎤ ⎥ ⎥ ⎥ ⎦ 26
  • 28. Assuming zero initial condition (0) (0) (0) (0) 0y y y u= = = = , one obtained 3 2 1 12 ( ) 1 ( )s a s a sY s b s U s ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ + + = + (1.5) That is 1 3 2 2 1 1( )( ) ( ) b sY sP s U s s a s a + = = + + s (1.6) Zero polynomial ※ A transfer function description can be obtained from the ODE by assuming zero initial conditions Pole polyno. ※ Zero polynomial represents differential operators on the input, while pole polynomial represents differential operators on the output ※ To obtain an ODE from a transfer function, convert (6) into (5), then convert (5) into (3). ※ However, a transfer function does not exist for a linear time varying system since Laplace transform is not applicable. 27
  • 29. 1.5:Transfer function and ODE Consider a general linear, time-invariant ODE ( ) ( 1) ( 2) 1 2 ( ) ( 1) ( 2) 10 2 ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ... ( ) n n n n m m m m y t a y t a y t a y t b u t b u t b u t b u t − − − − + + + + = + + + + (1.7) Applying Laplace transform to the ODE, one obtains ( 2) ( 1)1 2 ( 3) ( 2)1 2 1 ( 4) ( 5)2 3 2 43 ( ) (0) (0) ... (0) (0) ( ) (0) ... (0) (0) ( ) (0) ... (0) (0) ... ... n nn n n n nn n n nn n s Y s s y s y sy y a s Y s s y sy y a s Y s s y sy y a a ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − −− − − −− − − −− − − − − − − + − − − − + − − − − + + 1 ( 2) ( 1)1 0 ( 3) ( 2)1 2 1 ( 4) ( 5)2 3 2 ... ( ) (0) ( ) ( ) (0) ... (0) (0) ( ) (0) ... (0) (0) ( ) (0) ... (0) nn m mm m m mm m m mm m a sY s y a Y s b s U s s u su u b s U s s u su u b s U s s u su u ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − −− − −− − − −− − + + − + = − − − − + − − − − + − − − − 4 13 (0) ... ... ... ( ) (0) ( )mm b b b sU s u b U s ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − + + + + − + (8) Collecting similar terms 28
  • 30. 1 2 1 12 ( ) 1 1 10 ( ) ( ) ( ) ( ) ... ( ) ( ) ( , (0), ) ( ) ( ) ... ( ) ( ) ( , (0), ) n n n nn i i i m m mm j j i s Y s a s Y s a s Y s a sY s a Y s C a y s b s U s b s U s b sU s b U s D b u s − − − − − + + + + + + = + + + + + Under zero initial conditions, (8) and (9) reduces to (10) 1 1 10 1 2 1 12 ... 0 0 + + ... ( ) ( )m m mm n n n nn b s b s b s b s a s a s a s a Y s U s ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − − − − + + + + + + + + + = (1.11) Therefore, [ ]0,1 1 0 1 1 1 1 1 ... ( ) ... m m mm n n nn b s b s b b P s s s a s a s a − − − − + + + = + = + + + + ( ) ( ) Y s s U (1.12) ※ To solve for the non-zero initial response, (i) Convert (12) into (11), (ii) then convert (11) into (7) (iii) Solve for (7) with non-zero initial conditions ※ Transfer function description = ODE description. 29
  • 31. 1.6: Multivariable (MIMO) system A system is called a ‘Multiple-Input-Multiple-Output’ if consists of more than one inputs and/or more than one outputs. For instance, consider a mill plant rolling papers or steels as depicted below u1 = T u2 = P y2 = v y1 = t where u = T:pulling force, 1 input u = P:rolling pressure, 2 input y = t:production speed, 1 output y = v:thickness of the plate or paper, 2 output Let the dynamics between u and y1 be captured by the st 1 nd 2 st 1 nd 2 1 30
  • 32. transfer function P11(s) so that 1 1111 1 1 1 ( ) ( ) or ( ) ( ) ( ) ( ) Y P s s P s Y s U s U s = (1.25) Similarly, 2 2222 2 2 2 ( )U s (1.26) However, when the pulling force u ( ) ( ) or ( ) ( )( ) Y P s s P s Y s U s= ted by the 1st input. This is called the ‘coupling = v). nd input. Let the coupling effect be capture 1 = T increases to speed up the process, it inevitably leads to a reduction in the thickness y2 = t as a side effect. That is, the 2nd output is also affec effect’. Similarly, when the rolling pressure u2 = P increase to reduce the thickness y2 = t, it also increases the friction force between the rollers and the plate and thereby slow down the process (i.e., decreases production speed y1 That is, the 1st output is also affected by the 2 d by 1 1212 1 2 2 ( ) ( ) or ( ) ( ) ( ) ( ) Y P s s P s Y s U s U s = (1.27) 31
  • 33. 2 21( )P s U 1 12 1 22 ( ) ( ) ( ) ( ) ( ) s P s s P s P s ⎤ ⎥ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎦ 21 2 1 1 ( ) ( ) or ( ) ( ) ( ) Y s P s Y s s U s = 2 1 1 2 2 1 2 ( ) ( ) ( ) ( ) ( ) ( ) P P Y s U s Y s U s U s U s ⎡ ⎢ ⎣ ⎡ ⎤ =⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤ ⎣ ⎦ (1.28) Then the complete dynamical relationships between the inputs and outputs described by Eqs. (1.25)~(1.28) can be rewritten in a matrix form as shown below 1 (1.29) where P(s) is called the ‘transfer function matrix’ of the multivariable process. Other multivariable processes: ★ Space vehicles ★ Control-configured flights ★ High purity chemical process 32 View publication statsView publication stats