SlideShare a Scribd company logo
- Mr Kim
Finding IQR for odd number of scores
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
First, find the Median by
crossing off the scores
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**Make sure the scores
are in Ascending Order
first!
The scores here go
from Small to Big
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 5 3 5 8 5 9
2 3 0 1 3
3 2 7 4
4 2 6
5 1 7
For example this is not
in ascending order
1 5 3 5 8 5 9
2 3 0 1 3
3 2 7 4
4 2 6
5 1 7
For example this is not
in ascending order
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now, start by crossing
off the Smallest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
13
Now, start by crossing
off the Smallest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now cross off the
Biggest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
57
Now cross off the
Biggest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Cross off the scores in
the directions shown
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Stop here
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Always stop at “Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
So the Median (Q2)
is…
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
So the Median (Q2) is
21
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now put 2 lines
around it like shown
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now find the Lower and
Upper Quartile by dividing
the Stem-Leaf Plot in two
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**It is very important to
divide the sides properly
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
To do this, count the
scores from the start
until you reach the Line
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Stop here!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now put a Border around
the scores that you just
counted
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now put a Border around
the other side
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
This is how you correctly
divide the sides
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now find the Median for
both sides of the scores
by crossing off each side
at a time
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
We will start with
this side
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Remember the
directions
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Stop here!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
15
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
1815
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
2
1815 
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
5.16
2
1815


1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is 16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now cross off the
other side
Lower Quartile:
16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Remember the
directions
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Stop here!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
37
42
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
42
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
37
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
4237 
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
2
4237 
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
5.39
2
4237


1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is 39.537
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So, the Interquartile Range is
Upper Quartile:
39.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So, the Interquartile Range is
Upper Quartile:
39.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
So, the Interquartile Range is
39.5 –
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
So, the Interquartile Range is
39.5 –
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
So, the Interquartile Range is
39.5 – 16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So, the Interquartile Range is
39.5 – 16.5 = 23
Our Final Answer!
Upper Quartile:
39.5

More Related Content

PPTX
Math-Problems-of-the-Day-2nd-Grade.pptx
PPTX
Finding Interquartile Range from Stem-Leaf Plot 2
PPTX
Finding Interquartile Range from Dot Plot 1
PPT
Area and perimeter
PPTX
Multiples and Common Multiples
PPT
Multiplying Decimals
PPT
05-Area-of-a-parrallelogram-and-a-trapezium.ppt
PPT
Ordinal numbers
Math-Problems-of-the-Day-2nd-Grade.pptx
Finding Interquartile Range from Stem-Leaf Plot 2
Finding Interquartile Range from Dot Plot 1
Area and perimeter
Multiples and Common Multiples
Multiplying Decimals
05-Area-of-a-parrallelogram-and-a-trapezium.ppt
Ordinal numbers

What's hot (20)

PPTX
Pie charts explained
PPT
PPT
Math Powerpoint Final
DOCX
Maths year 5
PPT
Compound measures
PPTX
4 Geometry Area and Perimeter
PPTX
Short Division Of Decimals
PPT
Teaching equivalent fractions
DOCX
Mathematics Year 1 DLP - Topic 1 - 3 ( Revision).docx
PPTX
Apertura italiana
PPT
Factors and multiple arif class v
PPTX
Fractions-Multiplying-Complete-Lesson.pptx
PDF
Sudoku Solving with Computational Intelligence
PPTX
Algebra Substitution With Positive Numbers
PPT
Estimating Products
PPTX
Ratios and Fractions
PPTX
Division
PPTX
Bar graphs intro lesson
PDF
Ahmed ibn tejmijje urdherimi per te mire dhe ndalimi nga e keqja
PPTX
Str8ts Weekly Extreme #70 - Step-by-step Solution
Pie charts explained
Math Powerpoint Final
Maths year 5
Compound measures
4 Geometry Area and Perimeter
Short Division Of Decimals
Teaching equivalent fractions
Mathematics Year 1 DLP - Topic 1 - 3 ( Revision).docx
Apertura italiana
Factors and multiple arif class v
Fractions-Multiplying-Complete-Lesson.pptx
Sudoku Solving with Computational Intelligence
Algebra Substitution With Positive Numbers
Estimating Products
Ratios and Fractions
Division
Bar graphs intro lesson
Ahmed ibn tejmijje urdherimi per te mire dhe ndalimi nga e keqja
Str8ts Weekly Extreme #70 - Step-by-step Solution
Ad

Viewers also liked (8)

PPT
Confidence intervals
PPTX
Questions On Hypothesis Testing
PPTX
Hypothesis testing examples on z test
PPT
Hypothesis Testing
PDF
Hypothesis testing; z test, t-test. f-test
PPTX
Hypothesis testing ppt final
PPTX
Hypothesis
PPT
Introduction To Statistics
Confidence intervals
Questions On Hypothesis Testing
Hypothesis testing examples on z test
Hypothesis Testing
Hypothesis testing; z test, t-test. f-test
Hypothesis testing ppt final
Hypothesis
Introduction To Statistics
Ad

Similar to Finding Interquartile Range from Stem-Leaf Plot 1 (20)

PPTX
Finding Interquartile Range Introduction
PPTX
Finding Interquartile Range from Dot Plot 2
PPTX
Double Stem-Leaf Plot, Box-Whisker Plot
PPTX
EDUC-201-QUARTILES.pptx
PPTX
Interpreting Quartiles of Ungrouped Data.pptx
PPTX
Chapter 4 powerpoint
PPTX
Quartile Deviation.pptx
PPTX
L2 calc stats 08feb12
PPTX
Mathematics 10 - Quarter 4 Week 1-4 (Quartiles, Deciles and Percentiles).pptx
PPT
Boxand whiskerplots[1]ppt
PPTX
inbound3423736837981134888.pptxkskjsjskd
PPTX
QUARTILES.pptx
PPTX
measures-of-position-for-ungrouped-data.pptx
PPTX
Q4_Day 1_PPT.pptx
PPTX
quartiles,deciles,percentiles.ppt
PDF
Election 2016: Mobile Activity in the U.S. on Election Day
PPTX
Measure-of-Position.pptx
PPTX
Statics and probabilty
PPTX
WEEK 1 QUARTER 4 MATH 10 B.pptx
PPTX
G10 Math Q4 Week 8 Other forms of position of measure.pptx
Finding Interquartile Range Introduction
Finding Interquartile Range from Dot Plot 2
Double Stem-Leaf Plot, Box-Whisker Plot
EDUC-201-QUARTILES.pptx
Interpreting Quartiles of Ungrouped Data.pptx
Chapter 4 powerpoint
Quartile Deviation.pptx
L2 calc stats 08feb12
Mathematics 10 - Quarter 4 Week 1-4 (Quartiles, Deciles and Percentiles).pptx
Boxand whiskerplots[1]ppt
inbound3423736837981134888.pptxkskjsjskd
QUARTILES.pptx
measures-of-position-for-ungrouped-data.pptx
Q4_Day 1_PPT.pptx
quartiles,deciles,percentiles.ppt
Election 2016: Mobile Activity in the U.S. on Election Day
Measure-of-Position.pptx
Statics and probabilty
WEEK 1 QUARTER 4 MATH 10 B.pptx
G10 Math Q4 Week 8 Other forms of position of measure.pptx

More from Moonie Kim (13)

PPTX
Surface Area of Triangular Prism 3
PPTX
Surface Area of Triangular Prism 2
PPTX
Surface Area of Triangular Prism 1
PPTX
Finding the Median from Frequency Table 1
PPTX
Finding the Mean from Grouped Frequency Table
PPTX
Finding the Mean from Dot Plot
PPTX
Finding the Mean from Stem Leaf Plot
PPTX
Finding the Mean from Frequency Table
PPTX
Finding the Mean Introduction
PPTX
Drawing Stem-Leaf Plot
PPTX
Surface Area of Rectangular Prism
PPTX
Drawing Frequency Histogram Polygon
PPTX
Drawing Cumulative Frequency Histogram Polygon
Surface Area of Triangular Prism 3
Surface Area of Triangular Prism 2
Surface Area of Triangular Prism 1
Finding the Median from Frequency Table 1
Finding the Mean from Grouped Frequency Table
Finding the Mean from Dot Plot
Finding the Mean from Stem Leaf Plot
Finding the Mean from Frequency Table
Finding the Mean Introduction
Drawing Stem-Leaf Plot
Surface Area of Rectangular Prism
Drawing Frequency Histogram Polygon
Drawing Cumulative Frequency Histogram Polygon

Recently uploaded (20)

PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Pre independence Education in Inndia.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Insiders guide to clinical Medicine.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Institutional Correction lecture only . . .
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Basic Mud Logging Guide for educational purpose
PDF
Classroom Observation Tools for Teachers
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
VCE English Exam - Section C Student Revision Booklet
Pharma ospi slides which help in ospi learning
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
2.FourierTransform-ShortQuestionswithAnswers.pdf
Complications of Minimal Access Surgery at WLH
Microbial disease of the cardiovascular and lymphatic systems
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Pre independence Education in Inndia.pdf
human mycosis Human fungal infections are called human mycosis..pptx
Renaissance Architecture: A Journey from Faith to Humanism
Insiders guide to clinical Medicine.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
RMMM.pdf make it easy to upload and study
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Institutional Correction lecture only . . .
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Basic Mud Logging Guide for educational purpose
Classroom Observation Tools for Teachers

Finding Interquartile Range from Stem-Leaf Plot 1

  • 2. Finding IQR for odd number of scores
  • 3. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 4. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 First, find the Median by crossing off the scores
  • 5. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **Make sure the scores are in Ascending Order first!
  • 6. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **Make sure the scores are in Ascending Order first!
  • 7. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **Make sure the scores are in Ascending Order first! The scores here go from Small to Big
  • 8. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 9. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 10. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 11. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 12. 1 5 3 5 8 5 9 2 3 0 1 3 3 2 7 4 4 2 6 5 1 7 For example this is not in ascending order
  • 13. 1 5 3 5 8 5 9 2 3 0 1 3 3 2 7 4 4 2 6 5 1 7 For example this is not in ascending order
  • 14. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now, start by crossing off the Smallest Number
  • 15. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 13 Now, start by crossing off the Smallest Number
  • 16. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 17. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now cross off the Biggest Number
  • 18. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 57 Now cross off the Biggest Number
  • 19. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 20. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Cross off the scores in the directions shown
  • 21. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 22. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 23. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 24. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 25. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 26. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 27. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 28. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 29. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 30. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 31. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 32. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 33. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 34. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 35. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Stop here
  • 36. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Always stop at “Out”
  • 37. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 So the Median (Q2) is…
  • 38. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 So the Median (Q2) is 21
  • 39. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now put 2 lines around it like shown
  • 40. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now find the Lower and Upper Quartile by dividing the Stem-Leaf Plot in two
  • 41. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **It is very important to divide the sides properly
  • 42. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 To do this, count the scores from the start until you reach the Line
  • 43. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 44. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 45. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 46. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 47. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 48. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 49. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 50. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 51. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Stop here!
  • 52. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now put a Border around the scores that you just counted
  • 53. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 54. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now put a Border around the other side
  • 55. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 56. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 This is how you correctly divide the sides
  • 57. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now find the Median for both sides of the scores by crossing off each side at a time
  • 58. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 We will start with this side
  • 59. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Remember the directions
  • 60. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 61. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 62. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 63. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 64. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 65. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 66. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Stop here!
  • 67. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 68. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18
  • 69. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is…
  • 70. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 15
  • 71. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 1815
  • 72. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 2 1815 
  • 73. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 5.16 2 1815  
  • 74. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is 16.5
  • 75. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5
  • 76. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now cross off the other side Lower Quartile: 16.5
  • 77. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Remember the directions
  • 78. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “In”
  • 79. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “Out”
  • 80. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “In”
  • 81. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “Out”
  • 82. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “In”
  • 83. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “Out”
  • 84. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Stop here!
  • 85. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5
  • 86. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 37 42
  • 87. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So the Upper Quartile (Q3) is between 37 and 42 which is …37 42
  • 88. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 37
  • 89. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 4237 
  • 90. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 2 4237 
  • 91. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 5.39 2 4237  
  • 92. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is 39.537
  • 93. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5
  • 94. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So, the Interquartile Range is Upper Quartile: 39.5
  • 95. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So, the Interquartile Range is Upper Quartile: 39.5
  • 96. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5 So, the Interquartile Range is 39.5 –
  • 97. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5 So, the Interquartile Range is 39.5 –
  • 98. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5 So, the Interquartile Range is 39.5 – 16.5
  • 99. 1 3 5 5 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So, the Interquartile Range is 39.5 – 16.5 = 23 Our Final Answer! Upper Quartile: 39.5