SlideShare a Scribd company logo
Stephanie Yang G11 AP-Calculus
Find the volume of a solid with given
base and cross-sections.
                      2
  Base: y      16- x ,     [ 4, 4 ]
 Cross sections perpendicular to the x - axis
 are equilateral triangles .
2
Base: y       16 x , [ 4,4]
Cross sections perpendicular to the x - axis
are equilateral triangles .




                                 4
                                                    4




                                               -4
2
Base: y       16 x , [ 4,4]
Cross sections perpendicular to the x - axis
are equilateral triangles .

                    ( x, 16 x2 )   s    ( 16 x 2       0) 2 ( x x) 2

                                       ( 16 x 2 ) 2
                    s
                                       16 x 2
                     (x,0)
                                       Distance formula to find the
                                             length of a side
2
Base: y        16 x , [ 4,4]
Cross sections perpendicular to the x - axis
are equilateral triangles .
                                      Area of an equilatera l triangle
                  ( x, 16 x 2 )            3 2
                                            s
                                          4
                  s                   s    16 x 2
                  (x,0)

                                                                s

                                3                 3
 Area of each cross - section     ( 16 x 2 ) 2      (16 x 2 )
                               4                 4
                                      3 2
                              4 3      x
                                     4
2
    Base: y      16 x , [ 4,4]
Cross sections perpendicular to the x - axis
are equilateral triangles .                                   ( x, 16 x2 )

                                            4
      4
                  3 2          3 3                            s
V         (4 3     x )dx 4 3x    x                            (x,0)
      4
                 4            12                4
                 3 3                   3
     4 3 (4)      (4) (4 3 ( 4)           ( 4) 3 )
               12                    12
             16 3          16 3
     16 3           16 3
               3             3
             32 3 (96 32) 3
     32 3
               3         3
                          The volume of the solid formed is
                                                            64 3
     64 3                                                        .
                                                              3
       3

More Related Content

PPT
5.7 rolle's thrm & mv theorem
PPT
5.2 first and second derivative test
PPTX
5.3 curve sketching
PPTX
Matematicas
PDF
Ejercicios aplicaciones de la integral areas
PDF
Circunfêrencia 1
PPTX
Φρανσουά Βιετ | Σωτήρης Συριόπουλος
PPTX
Methods3 types of functions1
5.7 rolle's thrm & mv theorem
5.2 first and second derivative test
5.3 curve sketching
Matematicas
Ejercicios aplicaciones de la integral areas
Circunfêrencia 1
Φρανσουά Βιετ | Σωτήρης Συριόπουλος
Methods3 types of functions1

What's hot (16)

PPTX
4.3.3 find x intercepts by factoring
PPTX
3 Forms Of A Quadratic Function
PPT
Surfaces
PPTX
Circles and ellipses
PPT
Lesson 3 finding x and y intercepts shared
PPTX
x and y intercepts 2012-13 edmodo
PPT
Linear equations 2-2 a graphing and x-y intercepts
PDF
ITA 2018 - aberta
PPTX
April 14, 2015
PPT
Graphing quadratic-equations-4818
PPTX
Know It All!
PDF
3.1 3.2 Notes
DOCX
A1 2 linear fxns notes
DOC
Pc9 3 polar&rect notes
PDF
March 8 Quadratic Equations
PDF
Co ordinate geometry
4.3.3 find x intercepts by factoring
3 Forms Of A Quadratic Function
Surfaces
Circles and ellipses
Lesson 3 finding x and y intercepts shared
x and y intercepts 2012-13 edmodo
Linear equations 2-2 a graphing and x-y intercepts
ITA 2018 - aberta
April 14, 2015
Graphing quadratic-equations-4818
Know It All!
3.1 3.2 Notes
A1 2 linear fxns notes
Pc9 3 polar&rect notes
March 8 Quadratic Equations
Co ordinate geometry
Ad

Similar to Finding volume of a solid using cross sectional areas (20)

PDF
Pc12 sol c04_review
PDF
Pc12 sol c03_review
PDF
11 x1 t11 06 tangents & normals ii (2013)
PPTX
Inequalities quadratic, fractional & irrational form
PPTX
Alg2 lesson 6-1
PPTX
Lesson slope power point
PDF
Lesson 54
PDF
Pc12 sol c03_3-5
PPTX
Solving volumes using cross sectional areas
PPT
Graphs linear equations and functions
PDF
11 x1 t16 04 areas (2013)
PDF
11X1 T11 02 quadratics and other methods
PDF
11X1 T10 02 quadratics and other methods (2011)
PDF
11X1 T10 02 quadratics and other methods (2010)
DOCX
Chapter 7 solution of equations
PDF
11 x1 t10 02 quadratics and other methods (2012)
PPTX
fundamentals of 2D and 3D graphs
PPT
10 Coordinate Geometry Math Concepts .ppt
PPTX
Dec 14
PPT
plotting cordinates-cordinate plane, plotting coordinates of points.ppt
Pc12 sol c04_review
Pc12 sol c03_review
11 x1 t11 06 tangents & normals ii (2013)
Inequalities quadratic, fractional & irrational form
Alg2 lesson 6-1
Lesson slope power point
Lesson 54
Pc12 sol c03_3-5
Solving volumes using cross sectional areas
Graphs linear equations and functions
11 x1 t16 04 areas (2013)
11X1 T11 02 quadratics and other methods
11X1 T10 02 quadratics and other methods (2011)
11X1 T10 02 quadratics and other methods (2010)
Chapter 7 solution of equations
11 x1 t10 02 quadratics and other methods (2012)
fundamentals of 2D and 3D graphs
10 Coordinate Geometry Math Concepts .ppt
Dec 14
plotting cordinates-cordinate plane, plotting coordinates of points.ppt
Ad

More from gregcross22 (16)

PPTX
Additional review problems
PPTX
Savanah presentatiom
PPTX
Inverse functions
PPTX
Properties of logarithms
PPTX
Approximating area
PPT
Tessellation project
PPTX
Approximating area
PPTX
Properties of rational exponents
PPTX
Evaluate nth roots and use rational exponents
PPTX
Ap calculus sem exam item analysis
PPTX
Chapter 4 review
PPTX
Optimization
PPTX
Ap calculus extrema v2
PPTX
3.2 Derivative as a Function
PPTX
3.2 Derivative as a Function
PPTX
Precalc review for calc p pt
Additional review problems
Savanah presentatiom
Inverse functions
Properties of logarithms
Approximating area
Tessellation project
Approximating area
Properties of rational exponents
Evaluate nth roots and use rational exponents
Ap calculus sem exam item analysis
Chapter 4 review
Optimization
Ap calculus extrema v2
3.2 Derivative as a Function
3.2 Derivative as a Function
Precalc review for calc p pt

Finding volume of a solid using cross sectional areas

  • 1. Stephanie Yang G11 AP-Calculus
  • 2. Find the volume of a solid with given base and cross-sections. 2 Base: y 16- x , [ 4, 4 ] Cross sections perpendicular to the x - axis are equilateral triangles .
  • 3. 2 Base: y 16 x , [ 4,4] Cross sections perpendicular to the x - axis are equilateral triangles . 4 4 -4
  • 4. 2 Base: y 16 x , [ 4,4] Cross sections perpendicular to the x - axis are equilateral triangles . ( x, 16 x2 ) s ( 16 x 2 0) 2 ( x x) 2 ( 16 x 2 ) 2 s 16 x 2 (x,0) Distance formula to find the length of a side
  • 5. 2 Base: y 16 x , [ 4,4] Cross sections perpendicular to the x - axis are equilateral triangles . Area of an equilatera l triangle ( x, 16 x 2 ) 3 2 s 4 s s 16 x 2 (x,0) s 3 3 Area of each cross - section ( 16 x 2 ) 2 (16 x 2 ) 4 4 3 2 4 3 x 4
  • 6. 2 Base: y 16 x , [ 4,4] Cross sections perpendicular to the x - axis are equilateral triangles . ( x, 16 x2 ) 4 4 3 2 3 3 s V (4 3 x )dx 4 3x x (x,0) 4 4 12 4 3 3 3 4 3 (4) (4) (4 3 ( 4) ( 4) 3 ) 12 12 16 3 16 3 16 3 16 3 3 3 32 3 (96 32) 3 32 3 3 3 The volume of the solid formed is 64 3 64 3 . 3 3