SlideShare a Scribd company logo
1 
DDrr..VV..RRaammaannaa rreeddddyy
2 
Fluoroscopy 
PPuurrppoossee 
TToo vviissuuaalliizzee,, iinn rreeaall ttiimmee:: 
 oorrggaann mmoottiioonn 
 iinnggeesstteedd oorr iinnjjeecctteedd ccoonnttrraasstt aaggeennttss 
 iinnsseerrtt sstteennttss 
 ccaatthheettaarriizzee ssmmaallll bblloooodd vveesssseellss 
REAL TIME IMAGING
3 
X-rays were discovered because of 
there ability to cause fluorescence . 
The first x-ray image of human part was 
observed fluoroscopically-Dr. Glasser.
THE FLUOROSCOPE 
 First generation fluoroscopes consisted of an x-ray 
tube, an x-ray table and a fluoroscopic screen. 
 The fluorescent material used in screen was copper 
activated zinc cadmium sulfide that emitted light in 
yellow-green spectrum. 
 A sheet of lead glass covered the screen, so that 
radiologist could stare directly into the screen with out 
having the x-ray beam strike his eyes. 
 Screen fluoroscence was very faint so, the 
examination was carried out in a dark room by the 
radiologist who had to adapt his eyes by wearing red 
goggles for 20-30 mins prior to the examination  
technique is now obsolete & gone. 
4
5 
FFLLUUOORROOSSCCOOPPEE
PPhhoottooggrraapphh 
sshhoowwss aann eeaarrllyy 
((1993333)) 
fflluuoorroossccooppiicc 
ssyysstteemm iinn uussee 
bbeeffoorree tthhee 
ddeevveellooppmmeenntt 
ooff iimmaaggee 
iinntteennssiiffiiccaattiioonn.. 
AAnn aaccttuuaall 
fflluuoorroossccooppiicc 
eexxaammiinnaattiioonn 
wwiitthh tthhiiss 
ddeevviiccee wwoouulldd 
hhaavvee ooccccuurrrreedd 
iinn aa ddaarrkkeenneedd 
6 
rroooomm..
IMAGE INTENSIFIER DESIGN 
 Image intensifier was discovered in 1950s-to 
produce an image bright enough to allow cone 
vision without giving the pt an excess radiation 
exposure. 
 The components of an x-ray image intensifier 
 The tube itself is an evacuated glass 
envelope ,a vacuum tube containing- 
1.input phosphor and photocathode . 
2.electrostatic focusing lens. 
3.accelerating anode. 
4.out put phosphor. 
7
 After an x-ray beam passes the pt it enters the image 
intensifier tube the input fluorescent screen absorbs 
x-ray photons and converts their energy into light 
photons. 
 The light photons strike the photo cathode, causing it 
to emit photoelectrons  these electrons are 
immediately drawn away from the photocathode by 
the high potential difference betn it &the accelerating 
anode. 
 As the electrons flow from the cathode towards the 
anode, they are focused by an electrostatic lens which 
guides them to the output fluorescent screen without 
distorting their geometric configuration. 
8
 The electrons strike the output screen, which 
emits the light photons that carry the 
fluoroscopic images to the eye of the observer. 
 In intensifier tube, the image is first carried by 
the x-ray photons, then by the light photons, 
next by the electrons &finally by the light 
photons. 
9
IMAGE INTENSIFIER 
10
11
IINNPPUUTT PPHHOOSSPPHHOORR && PPHHOOTTOO CCAATTHHOODDEE:: 
 The input fluorescent screen in image intensifiers is 
cesium iodide (CsI). (older intensifier- silver activated 
zinc cadmium sulfide). 
 CsI is deposited on a thin aluminum substrate by a 
process called “vapor deposition”.  an interesting & 
useful characteristic of CsI is that during the 
deposition process the crystals of CsI grow in tiny 
needles perpendicular to the substrate.  There by 
reducing scattering. 
12
IINNPPUUTT PPHHOOSSPPHHOORR && PPHHOOTTOO CCAATTHHOODDEE:: 
 Image quality is dramatically better with CSI input 
screen than it was with zinc cadmium sulfide screens. 
 Three physical characteristics of CsI make it superior. 
1. vertical orientation of the crystals. 
2. A greater packing density & 
3. A more favorable effective atomic number. 
Phosphor thickness have been reduced comparably 
from app. 0.3mm with Zn-Cd su to 0.1mm with CsI. The 
principal advantage of thinner phosphor layer combined 
with needle shaped crystals is improved resolution. 
13
PPHHOOTTOO CCAATTHHOODDEE:: 
 The photo cathode is a photoemissive metal 
(commonly a combination of antimony & cesium 
compounds). 
 When the light from the fluorescent screen strikes the 
photo cathode, photo electrons are emitted in numbers 
proportional to the brightness of the screen. 
 The photo cathode is applied directly to the CsI input 
phosphor. 
 The photoelectrons thus produced has to be moved to 
the other end of the image intensifier. This can be 
done using an electrostatic focusing lens and an 
accelerating aannooddee.. 
14
ELECTROSTATIC FOCUSING CUP: 
 The lens is made up of a series positively charged 
electrodes that are usually plated on to the inside surface 
of the glass envelope. 
 These electrodes focus the electron beam as it flows from 
the photocathode toward the output phosphor. 
 Electron focusing inverts & reverses the image which is 
called “point inversion” because all the electrons pass 
through a common focal point on their way to output 
phosphor. 
 The input phosphor is curved to ensure that electrons 
emitted at the peripheral regions of the photocathode 
travel the same distance as those emitted from the 
central region. 
 The image on the output phosphor is reduced in size 
,which is one of the principle reasons why 15 
it is brighter.
AACCCCEELLEERRAATTIINNGG AANNOODDEE :: 
 The anode is located in the neck of the image tube. 
 Its function is to accelerate electrons emitted from the 
photocathode towards the output screen. the anode has a 
+ve potential of 25 to 35 kv relative to the photocathode, 
so it accelerates electrons to a tremendous velocity. 
OOUUTTPPUUTT PPHHOOSSPPHHOORR:: 
 TThhee oouuttppuutt fflluuoorreesscceenntt ssccrreeeenn ooff iimmaaggee iinntteennssiiffiieerrss iiss 
ssiillvveerr aaccttiivvaatteedd zznn--ccdd ssuullffiiddee,, tthhee ssaammee uusseedd iinn IIsstt 
ggeenneerraattiioonn iinnppuutt pphhoosspphhoorr.. 
 CCrryyssttaall ssiizzee aanndd llaayyeerr tthhiicckknneessss aarree rreedduucceedd ttoo mmaaiinnttaaiinn 
rreessoolluuttiioonn iinn tthhee mmiinniiffiieedd iimmaaggee.. 
 AA tthhiinn llaayyeerr ooff aalluummiinnuumm iiss ppllaatteedd oonnttoo tthhee fflluuoorreesscceenntt 
ssccrreeeenn pprreevveenntt lliigghhtt ffrroomm mmoovviinngg rreettrrooggrraaddee tthhrroouugghh 
tthhee ttuubbee && aaccttiivvaattiinngg tthhee pphhoottooccaatthhooddee.. 
16
 The glass tube of the image intensifier is abt 2 to 4mm 
thick &is enclosed in a lead lined metal container 
protects the operator from stray radiation. 
 The output phosphor image is viewed either directly 
through a series of lenses and mirrors or indirectly 
through closed circuit TV. 
BBRRIIGGHHTTNNEESSSS GGAAIINN:: 
 Two methods are used to evaluate the brightness gain 
of image intensifiers. the first compares the luminance 
of an intensifier output screen to that of a Patterson 
type B2 fluoroscopy screen when both are exposed to 
same quantity of radiation. 
 The brightness gain is the ratio of the two 
illuminations. 
 Brightness gain=intensifier luminance/Patterson b-2 
lumin. 
17
 Another way of evaluation of brightness gain is called as 
“conversion factor” 
 Conversion factor =cd/m2 by mR/sec 
 Output screen luminance is measured in candelas. 
 Radiation quality & output luminance are explicitly 
defined, so the method is accurate & reproducible. 
 The brightness gain tends to deteriorate as the image 
intensifier ages. ie the pt dose with an older image 
intensifier tends to be higher than with a new intensifier 
of the same type. 
 The brightness gain of an imag inten comes from 2 
completely unrelated sources called minification gain 
&flux gain. 
18
MMIINNIIFFIICCAATTIIOONN GGAAIINN:: 
 The brightness gain from minification is produced by a 
reduction in image size. 
 The quantity of gain depends on the relative areas of 
input &output screens. coz the size of the intensifier is 
usually indicated by its diameter, so minif gain is 
expressed as MG=(d1/d0)2.d1=diameter of input 
screen,d0=diameter of output screen. 
 Most img inten have an input screen from 5 to9 in.& an 
output screen of app 1in in diameter. 
 Theoretically minification can be increased indefinitely 
as we can see from above formula, but as the 
minification is increased the image becomes smaller.- 
disadvantage. 
 Hence image has to be magnified and viewed which will 
result in reduce brightness & precipitous drop in 
resolution. 
19
20 
FFLLUUXX GGAAIINN:: 
 FLUX gain increases the brightness of the fluoroscopic 
image by a factor of app 50. 
 The total brightness of an imag intes is product of 
minification & flux gain: ie 
Brightness gain =minification gain x flux gain.
MMUULLTTIIPPLLEE--FFIIEELLDD IIMMAAGGEE IINNTTEENNSSIIFFIIEERRSS 
 Dual field or triple field imsg intes attempt to 
resolve the conflicts btn image size & quality. 
 They can be operated in several modes, including 
the 4.5in, a 6in, or a 9in mode. the 9in mode is 
used to view large anatomic areas. When size is 
unimportant the 4.5in or 6in mode is used coz of 
better resultant image quality. 
 Field size is changed by a simple electronic 
principle: the higher the voltage on the 
electrostatic focusing lens, the more the electron 
beam is focused. 
21
22 
 This figure shows this principle 
applied to a dual field imag 
intes. 
 In the 9in mode, the 
electrostatic focusing voltage is 
decreased. the electrons focus to 
a point or cross, close to the 
output phosphor & the final 
image is actually smaller than 
the phosphor. 
 In 6in mode the electrostatic 
focusing voltage is increased & 
the electrons focus farther away 
from the output phosphor. after 
the electrons cross they diverge, 
so the image on the output 
phosphor is larger than in the 
9in mode.
23 
OOppttiiccaall ccoouupplliinngg 
 OOppttiiccaall ssyysstteemm ttrraannssmmiittss tthhee oouuttppuutt ooff tthhee iimmaaggee 
iinntteennssiiffiieerr ttoo tthhee lliigghhtt sseennssiittiivvee aarreeaa ooff tthhee vviiddeeoo 
ccaammeerraa 
 TThhee ooppttiiccaall ddiissttrriibbuuttoorr iinncclluuddee bbeeaamm--sspplliittttiinngg 
mmiirrrroorr,, wwhhiicchh ddiirreeccttss aa ppoorrttiioonn ooff tthhee lliigghhtt ffrroomm 
tthhee iimmaaggee iinntteennssiiffiieerr oouuttppuutt wwiinnddooww ttoo aann 
aacccceessssoorryy ddeevviiccee ffoorr iimmaaggee rreeccoorrddiinngg aanndd ppaasssseess 
tthhee rreemmaaiinnddeerr ttoo tthhee vviiddeeoo ccaammeerraa.. 
 TTwwoo lleennsseess aarree mmoouunntteedd iinn ttaannddeemm 
 TThhee IIII aanndd tthhee vviiddiiccoonn aarree ppllaacceedd aatt tthhee ffooccaall 
ppllaanneess ooff tthhee ttwwoo lleennsseess
24
Closed-circuit Television System 
 used to view the iimmaaggee iinntteennssiiffiieerr oouuttppuutt iimmaaggee 
 CCoonnssiissttss ooff 
25 
11))TTeelleevviissiioonn ccaammeerraa 
22)) CCaammeerraa ccoonnttrrooll uunniitt 
33)) MMoonniittoorr 
 TThhee tteelleevviissiioonn ssyysstteemm aalllloowwss ffoorr rreeaall--ttiimmee 
vviieewwiinngg ooff tthhee fflluuoorroossccooppiicc iimmaaggee bbyy sseevveerraall 
ppeeooppllee aatt oonnccee ffrroomm oonnee mmoonniittoorr oorr mmuullttiippllee 
mmoonniittoorrss
TTeelleevviissiioonn CCaammeerraa TTuubbee 
 Output phosphor is directly coupled to a TV 
camera tube 
26 
 Plumbicon 
 Vidicon 
 CCD
 The basic video camera consists of 
1) vacuum tube cylinder (approximately 2.5 cm in 
diameter) surrounded by electromagnetic focusing 
coils ,2 pairs of electrostatic deflecting coils 
2) photoconductive target 
3) a scanning electron beam 
27 
Target assembly: 
a) Glass plate assembly 
b) signal plate 
c) Target
PICK UP TUBE 28
29 
Target 
 Functionally most important i n tube 
 Thin film of photoconductive material, antimony sulfide 
suspended as globules in mica matrix. 
 The optical coupling lens focuses the image intensifier output 
image onto the target, forming a charge image within the 
photoconductive layer 
 This latent image is read out by the electron beam, which 
scans across the target in a series of horizontal raster lines. 
 As the scanning electron beam moves across the target, a 
current signal is produced that represents the two-dimensional 
image as a continuous series of raster lines with varying 
voltage levels.
30 
Video signal 
 When globules absorbs light ,,pphhoottooeelleeccttrroonnss aarree 
eemmiitttteedd 
 TThhee gglloobbuullee bbeeccoommeess ppoossiittiivveellyy cchhaarrggeedd 
 TThhee eelleeccttrroonn bbeeaamm ssccaannss tthhee eelleeccttrriiccaall iimmaaggee ssttoorreedd 
oonn tthhee ttaarrggeett && ffiillllss iinn tthhee hhoolleess lleefftt bbyy tthhee eemmiitttteedd 
pphhoottooeelleeccttrroonnss,, ddiisscchhaarrggiinngg tthhee ttiinnyy gglloobbuullaarr 
ccaappaacciittoorrss 
 WWhheenn tthhee eelleeccttrroonnss iinn bbeeaamm nneeuuttrraalliizzee tthhee ppoossiittiivvee 
cchhaarrggee iinn tthhee gglloobbuulleess ,, tthhee eelleeccttrroonnss oonn tthhee ssiiggnnaall 
ppllaattee lleeaavvee tthhee ppllaattee vviiaa rreessiissttoorr 
 TThheessee mmoovviinngg eelleeccttrroonnss ffoorrmm aa ccuurrrreenntt fflloowwiinngg 
tthhrroouugghh aa rreessiissttoorr aanndd vvoollttaaggee aaccrroossss tthhee rreessiissttoorr 
 TThhiiss vvoollttaaggee ,,wwhheenn ccoolllleecctteedd ffoorr eeaacchh nneeuuttrraalliizzeedd 
gglloobbuullee,, ccoonnssttiittuutteess tthhee vviiddeeoo ssiiggnnaall
31
32 
TTeelleevviissiioonn mmoonniittoorr 
 The video signal produced by the video camera is converted into a visible 
image by the monitor 
 Contains picture tube & controls for regulating brightness & contrast 
 Picture tube contains- 
Electron gun 
control grid 
anode 
focusing coil, deflecting coil-control the electron beam 
synchrony with the camera tube 
 Control grid-receive video signal from Camera control unit ,uses this signal 
to regulate the no. of electrons in electron beam 
 Anode –carries higher potential (10,000V) accelerates the electron beam to 
much higher velocity 
 The electron Strike the fluorescent screen ,emit large number of light 
photons.
33
34 
IImmaaggee RReeccoorrddiinngg 
 Two modes of recording th flouroscopic 
image - 
1) light image from output phosphor of II 
recorded on film with a photospot camera 
or cine camera 
2) electrical signal generated by TV camera-includes 
magnetic tape, magnetic discs & 
optical discs
DIRECT FILM RECORDING 
35 
SPOT FILM DEVICES: 
 FFlluuoorroossccooppiicc ssyysstteemmss ddeessiiggnneedd ffoorr ggaassttrrooiinntteessttiinnaall iimmaaggiinngg 
aarree ggeenneerraallllyy eeqquuiippppeedd wwiitthh aa ssppoott ffiillmm ddeevviiccee.. 
 TThhee ssppoott ffiillmm ddeevviiccee aalllloowwss eexxppoossuurree ooff aa ccoonnvveennttiioonnaall 
ssccrreeeenn--ffiillmm ccaasssseettttee iinn ccoonnjjuunnccttiioonn wwiitthh fflluuoorroossccooppiicc 
vviieewwiinngg.. TThhiiss rraatthheerr ffaammiilliiaarr ssyysstteemm,, llooccaatteedd iinn ffrroonntt ooff tthhee 
iimmaaggee iinntteennssiiffiieerr,, aacccceeppttss tthhee ssccrreeeenn--ffiillmm ccaasssseettttee aanndd 
""ppaarrkkss"" iitt oouutt ooff tthhee wwaayy dduurriinngg fflluuoorroossccooppyy 
 CCaasssseetttteess mmaayy bbee llooaaddeedd ffrroomm tthhee ffrroonntt oorr rreeaarr ddeeppeennddiinngg oonn 
tthhee ddeessiiggnn ooff tthhee ssyysstteemm..
SSttaannddaarrdd ssppoott ffiillmm 
iimmaaggiinngg ccoonnffiigguurraattiioonn 
ttyyppiiccaall ooff 
ggaassttrrooiinntteessttiinnaall 
fflluuoorroossccooppyy eeqquuiippmmeenntt.. 
TThhee ssccrreeeenn--ffiillmm ccaasssseettttee 
iiss ppaarrkkeedd oouutt ooff tthhee xx-- 
rraayy ffiieelldd uunnttiill tthhee ssppoott 
ffiillmm ttrriiggggeerr iiss pprreesssseedd,, 
ccaauussiinngg bbootthh tthhee 
ccaasssseettttee aanndd tthhee 
ffoorrmmaattttiinngg mmaasskk ttoo 
mmoovvee iinnttoo ppoossiittiioonn.. 
36
 The x-ray field size is also reduced automatically by the 
collimators at the time of exposure to minimize scattered 
radiation and patient radiation dose. 
 The fluoroscopist can override this automatic collimation to 
further reduce the x-ray field. 
 Spot film imaging uses essentially the same technology as 
conventional screen-film radiography. 
Differences and limitations of spot film imaging 
compared with general radiography. 
 One major limitation is the range of film sizes available for 
spot film imaging. Although some older fluoroscopy 
equipment is limited to a single size, usually 24 x 24 cm, 
current equipment allows a range of film sizes to be used, 
from 20 x 25 cm to 24 x 35 cm. 
 Spot film devices usually allow more than one image to be 
obtained on a single film. 
 Formats typically include one, two, three, four, or six images 
on a film. 
37
 Moving the spot film device closer to the patient 
reduces the amount of magnification and decreases 
the patient radiation dose. 
 A number of factors affect patient doses in spot film 
imaging. 
 The source-to-skin distance is shorter in spot film imaging 
than in general radiography. 
 Although the automatic exposure control system fixes the 
exposure to the screen, the shorter source-to-skin distance 
increases the inverse square reduction in radiation intensity 
as it passes through the patient. 
 This increase tends to make the skin entrance exposure 
higher. 
 The field size in spot film imaging is generally smaller than 
that used in general radiography. 
 This smaller field size reduces scatter and therefore tends to 
reduce dose. For the same reason, grids used in fluoroscopy 
generally have a lower grid ratio and therefore a smaller 
Bucky factor, which also leads to lower dose. 
 These effects tend to offset each other to a large extent. 
38
 One of the major shortcomings of conventional spot 
film devices is the delay involved in moving the 
cassette into position for exposure. 
 In gastrointestinal imaging, this delay can be 
overcome by using photofluorography. 
 In vascular imaging, more rapid film movement is 
achieved with automatic film changers. 
39
AUTOMATIC FILM CHANGERS 
 The automatic film changers used in vascular imaging are 
also screen-film systems. 
 They can be found in several varieties. Some are large, 
floor-mounted boxes, but systems more commonly used 
today mount on the image intensifier 
 The system consists of a supply magazine for holding 
unexposed film, a receiving magazine, a pair of 
radiographic screens, and a mechanism for transferring the 
film. 
 When an exposure is required, the screens are mechanically 
separated, the film is pulled into place between them, and 
they are closed. 
 After the film is exposed, the screens separate again. 
 The film is moved to the receiver, and another film is pulled 
into place for the next exposure. 
 The number of films and filming rates must be 
preprogrammed for proper operation. 
40
Photospot camera 
 Records the the image output of an II on a film 
 Film – role film/cut film(10 cm) 
 Advantage –1)reduction in pt exposure 
2)film does not have to be changed 
b/w exposures 
3)exposure times are shorter-motion is less 
41 
likely problem 
4)films can be taken more rapidly 
5)possible to record & view image at same 
time
FFrraammiinngg wwiitthh ssppoott ffiillmm ccaammeerraass:: 
 FFrraammiinngg ––uuttiilliissaattiioonn ooff aavvaaiillaabbllee aarreeaa oonn ffiillmm 
 TThhee oouuttppuutt pphhoosspphhoorr ooff IIII ttuubbee iiss rroouunndd, 
42 
sshhaappee ooff ffiillmm iiss ssqquuaarree 
 44 ffrraammiinngg ppaatttteerrnnss 
11)) EExxaacctt ffrraammiinngg 
22)) EEqquuaall aarreeaa ffrraammiinngg 
33)) mmeeaann ddiiaammeetteerr ffrraammiinngg 
44)) ttoottaall aarreeaa ffrraammiinngg 
 EEqquuaall aarreeaa ffrraammiinngg oorr mmeeaann ddiiaammeetteerr ffrraammiinngg 
iiss rreeccoommmmeennddeedd ffoorr mmoosstt cclliinniiccaall ssiittuuaattiioonnss..
43
44 
CCiinneefflloouurrooggrraapphhyy 
 PPrroocceessss ooff rreeccoorrddiinngg fflluuoorroossccooppiicc iimmaaggeess oonn 
mmoovviiee ((cciinnee)) ffiillmm 
 TTwwoo ffiillmm ssiizzeess-- 1166 mmmm, 3355 mmmm 
 CCiinnee ccaammeerraa--ccoommppoonneennttss aarree lleennss, iirriiss 
ddiiaapphhrraaggmm, sshhuutttteerr, aappeerrttuurree, pprreessssuurree ppllaattee, ppuullll 
ddoowwnn aarrmm && ffiillmm ttrraannssppoorrtt mmeecchhaanniissmm
45
TV image recorders : 
1) TAPE RECORDER : used for both recoding& playback 
• as a recorder receives video signal from camera 
46 
control unit 
• for playback transmits the signal to one or more 
several TV monitors 
Components:1)magnetic tube 
2)writing head 
3) tape transport system 
Writing head converts an electrical signal in to magnetic 
field for recoding & converts magnetic signal to electric 
signal for replay
47
48
DIGITAL FLUOROGRAPHY 
Digital charge-coupled device (CCD) TV cameras are 
rapidly replacing conventional TV cameras in fluoroscopic 
systems. 
An analog, high-resolution (1,023-line) TV camera has 
49 
a vertical resolution of about 358 line pairs. 
A high-resolution CCD camera with a 1,024 x 1,024 
matrix will provide equivalent vertical resolution. However, 
the digital camera will have the same vertical and 
horizontal resolution, whereas the horizontal resolution of 
the analog camera is defined by its electronic band-pass.
For a 15-cm-diameter intensifier input, the 
limiting resolution of the CCD camera would be 
358 lp/150 mm or 2.4 lp/mm. This result is about 
half the resolution of a photospot film. This 
resolution loss is made up for by the ability to 
digitally increase display contrast, reduce noise, 
and enhance the edges of digital images. 
There are several other advantages to digital 
photospot images. Mechanical devices are not 
needed for film transport. Film processing is not 
required. Images can be viewed immediately. The 
linear response of the digital system makes it very 
forgiving of under- or overexposure. 
50
Fluoroscopic Equipment Configurations 
The basic configurations include radiography/fluoroscopy (R/F) tables with 
either an under-table or over-table x-ray tube and fixed C-arm, mobile C-arm, 
and mini C-arm 
R/F Units with Under-Table X-ray Tube: 
most common fluoroscopic equipment configuration 
The x-ray tube and collimator are mounted below the tabletop with the image 
intensifier tower mounted above the table on a carriage that can be panned 
over the patient. 
In addition to the standard fluoroscopic imaging chain, R/F systems include 
an overhead x-ray tube that can be used for regular radiography with a Bucky 
incorporated into the table. 
Other common features include a tilting table and image recording devices. 
51
Under-table x-ray tube R/F system. Photograph sshhoowwss aann eexxaammppllee ooff aann 
RR//FF ttaabbllee tthhaatt iinncclluuddeess aa ssppoott ffiillmm ddeevviiccee aanndd ssiiddee--mmoouunntteedd vviiddeeoo ccaammeerraa.. 
52
RR//FF UUnniittss wwiitthh OOvveerr--TTaabbllee XX--rraayy TTuubbee 
 xx--rraayy ttuubbee mmoouunntteedd oovveerr tthhee ttaabbllee wwiitthh tthhee 
iimmaaggee iinntteennssiiffiieerr bbeellooww.. 
 tthhiiss ccoonnffiigguurraattiioonn rreessuullttss iinn iinnccrreeaasseedd ppaattiieenntt 
aacccceessss,, wwhhiicchh iiss hheellppffuull ffoorr iinntteerrvveennttiioonnaall 
pprroocceedduurreess.. 
 RRaaddiiooggrraapphhyy ccaann bbee ppeerrffoorrmmeedd wwiitthh tthhee ssaammee xx-- 
rraayy ttuubbee aanndd aa BBuucckkyy iinnccoorrppoorraatteedd iinnttoo tthhee ttaabbllee.. 
 TThhee xx--rraayy ttuubbee ccaann bbee aanngglleedd ttoo aaccqquuiirree 
aanngguullaatteedd pprroojjeeccttiioonnss oorr ttoommooggrraammss.. 
53
Over-table x-ray tube R/F system. Photograph sshhoowwss aa ssaammppllee ssyysstteemm 
tthhaatt ccaann bbee ccoonnttrroolllleedd ffrroomm wwiitthhiinn tthhee pprroocceedduurree rroooomm wwiitthh tthhee ppeeddeessttaall 
ccoonnttrrooll ppaanneell ((lleefftt)) oorr ffrroomm oouuttssiiddee tthhee rroooomm ffrroomm tthhee rreemmoottee ddeesskk ccoonnttrroollss 
((rriigghhtt)).. 
54
55 
SUMMARY: 
 Early fluroscopy was accomplished by 
radiologists looking directly at a fluoroscopic 
screen. 
 The image on the screen was only 0.0001 as bright 
as the image of a routinely viewed radiograph, so 
dark adaptation of eyes was required. 
 In 1950s the image intensifier alleviated this 
situation by producing an image bright enough to 
be viewed with cone vision. 
 The input phosphor of modern image intensifier 
is CsI; the output phosphor is zinc cadmium 
sulfide
 Brightness gain is the product of minification gain and 
flux gain. 
 Imaging characteristics important in the evaluation of 
image intensifier fluoroscopy include contrast, lag and 
distortion. 
 Large field of view image intensifier tubes are available 
to fill special needs, such as digital and spot film 
angiography. 
 Most image intensifiers allow dual field or triple field 
imaging. 
56
 Output phospher image iiss pprroocceesssseedd bbyy tteelleevviissiioonn 
ccaammeerraa ttuubbee ((vviiddiiccoonn,, pplluummbbiiccoonn,, CCCCDD)) 
 TThhee iimmaaggee iiss ddiissppllaayyeedd oonn TTVV mmoonniittoorr 
 SSttaannddaarrdd xx--rraayy cclloosseedd--cciirrccuuiitt tteelleevviissiioonn uusseess 
552255xx552255 ffoorrmmaatt wwiitthh 55--MMHHZZ bbaanndd ppaassss 
 VVeerrttiiccaall rreessoolluuttiioonn lliimmiitteedd bbyy ssccaann lliinnee ffoorrmmaatt,, 
hhoorriizzoonnttaall rreessoolluuttiioonn iiss aa ffuunnccttiioonn ooff bbaanndd ppaassss 
 LLiigghhtt iimmaaggee iiss rreeccoorrddeedd bbyy pphhoottoo ssppoott ccaammeerraa oorr 
cciinnee ccaammeerraa 
57
58

More Related Content

PPTX
Xray beam restrictors 1436711280968
PPTX
Photographic Characteristic of X ray Film.pptx
PPT
Fluoroscopy systems
PPTX
CT numbers, window width and window level
PPTX
Post processing of computed tomography
PPTX
Fluoroscopy-Rohit.pptx
PPTX
Automatic exposure control
PPTX
CT Image Reconstruction- Avinesh Shrestha
Xray beam restrictors 1436711280968
Photographic Characteristic of X ray Film.pptx
Fluoroscopy systems
CT numbers, window width and window level
Post processing of computed tomography
Fluoroscopy-Rohit.pptx
Automatic exposure control
CT Image Reconstruction- Avinesh Shrestha

What's hot (20)

PDF
conventional fluoroscopy imaging system
PPTX
Flat Panel Digital Fluoroscopy by Akash Das
PPTX
Computer tomography components
PPTX
TOMOSYNTHESIS.pptx
PPTX
Computed radiography
PPTX
Coronary CT
PPTX
CT protocol of Spine
PPTX
CAROTID AND VERTEBRAL ANGIOGRAPHY.pptx
PDF
Filters
PPTX
Mammography physics and technique
PPTX
Ultrasound contrast agents
PPTX
Mammography
PPTX
OIL CONTRAST MEDIA IN RADIOLOGY
PPTX
Digital Breast Tomosynthesis
PPTX
Fluoroscopy
PPTX
K Space in MRI
PPTX
DIGITAL FLUOROSCOPY DMR.pptx
PDF
computedtomography-170122041110.pdf
PPTX
Magnetic Resonance Angiography and techniques
PPT
Production of x rays & generators
conventional fluoroscopy imaging system
Flat Panel Digital Fluoroscopy by Akash Das
Computer tomography components
TOMOSYNTHESIS.pptx
Computed radiography
Coronary CT
CT protocol of Spine
CAROTID AND VERTEBRAL ANGIOGRAPHY.pptx
Filters
Mammography physics and technique
Ultrasound contrast agents
Mammography
OIL CONTRAST MEDIA IN RADIOLOGY
Digital Breast Tomosynthesis
Fluoroscopy
K Space in MRI
DIGITAL FLUOROSCOPY DMR.pptx
computedtomography-170122041110.pdf
Magnetic Resonance Angiography and techniques
Production of x rays & generators
Ad

Similar to Flouroscopic imaging (20)

PDF
flouroscopicimging-120617043323-phpapp01.pdf
PPT
Flouroscopic imging
PPTX
fluoroscopic 0605.pptxhhhhhhhhhhhhhhhhhhh
PPTX
8. IITV , Digital Fluoroscopy and DSA by Ravindra Kumar.pptx
PPT
Fluroscopic imaging ppt
PPTX
fluoroscopy-3.pptx
PPT
Fluoroscopy presentation1
PPTX
IITV,_DIGITAL_FLUOROSCOPY,_DSA_AND_ADVANCEMENT_by_Joginder_singh (1).pptx
PPTX
Fluoroscopic Imaging.pptx
PPTX
image intensifier.pptx
PPTX
The fluoroscopy Radiological investigation
PPT
Mi ppt fi print this
PPTX
Image-Intensifier Tube (II Tube) by T.R.B.
PPTX
Fluroscopy
PPT
FLUOROSCOPIC IMAGING.ppt
PPTX
Fluroscopy
PPTX
fluoroscopy imaging
PPTX
Fluoroscopy
PPT
Floroscopynewmicrosoftofficepowerpoint97 2003presentation2-131218145222-phpapp01
PPT
Floroscopy new microsoft office powerpoint 97 2003 presentation (2)
flouroscopicimging-120617043323-phpapp01.pdf
Flouroscopic imging
fluoroscopic 0605.pptxhhhhhhhhhhhhhhhhhhh
8. IITV , Digital Fluoroscopy and DSA by Ravindra Kumar.pptx
Fluroscopic imaging ppt
fluoroscopy-3.pptx
Fluoroscopy presentation1
IITV,_DIGITAL_FLUOROSCOPY,_DSA_AND_ADVANCEMENT_by_Joginder_singh (1).pptx
Fluoroscopic Imaging.pptx
image intensifier.pptx
The fluoroscopy Radiological investigation
Mi ppt fi print this
Image-Intensifier Tube (II Tube) by T.R.B.
Fluroscopy
FLUOROSCOPIC IMAGING.ppt
Fluroscopy
fluoroscopy imaging
Fluoroscopy
Floroscopynewmicrosoftofficepowerpoint97 2003presentation2-131218145222-phpapp01
Floroscopy new microsoft office powerpoint 97 2003 presentation (2)
Ad

Recently uploaded (20)

PPTX
introduction to high performance computing
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Current and future trends in Computer Vision.pptx
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPT
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
introduction to high performance computing
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Current and future trends in Computer Vision.pptx
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Visual Aids for Exploratory Data Analysis.pdf
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
R24 SURVEYING LAB MANUAL for civil enggi
Information Storage and Retrieval Techniques Unit III
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...

Flouroscopic imaging

  • 2. 2 Fluoroscopy PPuurrppoossee TToo vviissuuaalliizzee,, iinn rreeaall ttiimmee::  oorrggaann mmoottiioonn  iinnggeesstteedd oorr iinnjjeecctteedd ccoonnttrraasstt aaggeennttss  iinnsseerrtt sstteennttss  ccaatthheettaarriizzee ssmmaallll bblloooodd vveesssseellss REAL TIME IMAGING
  • 3. 3 X-rays were discovered because of there ability to cause fluorescence . The first x-ray image of human part was observed fluoroscopically-Dr. Glasser.
  • 4. THE FLUOROSCOPE  First generation fluoroscopes consisted of an x-ray tube, an x-ray table and a fluoroscopic screen.  The fluorescent material used in screen was copper activated zinc cadmium sulfide that emitted light in yellow-green spectrum.  A sheet of lead glass covered the screen, so that radiologist could stare directly into the screen with out having the x-ray beam strike his eyes.  Screen fluoroscence was very faint so, the examination was carried out in a dark room by the radiologist who had to adapt his eyes by wearing red goggles for 20-30 mins prior to the examination  technique is now obsolete & gone. 4
  • 6. PPhhoottooggrraapphh sshhoowwss aann eeaarrllyy ((1993333)) fflluuoorroossccooppiicc ssyysstteemm iinn uussee bbeeffoorree tthhee ddeevveellooppmmeenntt ooff iimmaaggee iinntteennssiiffiiccaattiioonn.. AAnn aaccttuuaall fflluuoorroossccooppiicc eexxaammiinnaattiioonn wwiitthh tthhiiss ddeevviiccee wwoouulldd hhaavvee ooccccuurrrreedd iinn aa ddaarrkkeenneedd 6 rroooomm..
  • 7. IMAGE INTENSIFIER DESIGN  Image intensifier was discovered in 1950s-to produce an image bright enough to allow cone vision without giving the pt an excess radiation exposure.  The components of an x-ray image intensifier  The tube itself is an evacuated glass envelope ,a vacuum tube containing- 1.input phosphor and photocathode . 2.electrostatic focusing lens. 3.accelerating anode. 4.out put phosphor. 7
  • 8.  After an x-ray beam passes the pt it enters the image intensifier tube the input fluorescent screen absorbs x-ray photons and converts their energy into light photons.  The light photons strike the photo cathode, causing it to emit photoelectrons  these electrons are immediately drawn away from the photocathode by the high potential difference betn it &the accelerating anode.  As the electrons flow from the cathode towards the anode, they are focused by an electrostatic lens which guides them to the output fluorescent screen without distorting their geometric configuration. 8
  • 9.  The electrons strike the output screen, which emits the light photons that carry the fluoroscopic images to the eye of the observer.  In intensifier tube, the image is first carried by the x-ray photons, then by the light photons, next by the electrons &finally by the light photons. 9
  • 11. 11
  • 12. IINNPPUUTT PPHHOOSSPPHHOORR && PPHHOOTTOO CCAATTHHOODDEE::  The input fluorescent screen in image intensifiers is cesium iodide (CsI). (older intensifier- silver activated zinc cadmium sulfide).  CsI is deposited on a thin aluminum substrate by a process called “vapor deposition”.  an interesting & useful characteristic of CsI is that during the deposition process the crystals of CsI grow in tiny needles perpendicular to the substrate.  There by reducing scattering. 12
  • 13. IINNPPUUTT PPHHOOSSPPHHOORR && PPHHOOTTOO CCAATTHHOODDEE::  Image quality is dramatically better with CSI input screen than it was with zinc cadmium sulfide screens.  Three physical characteristics of CsI make it superior. 1. vertical orientation of the crystals. 2. A greater packing density & 3. A more favorable effective atomic number. Phosphor thickness have been reduced comparably from app. 0.3mm with Zn-Cd su to 0.1mm with CsI. The principal advantage of thinner phosphor layer combined with needle shaped crystals is improved resolution. 13
  • 14. PPHHOOTTOO CCAATTHHOODDEE::  The photo cathode is a photoemissive metal (commonly a combination of antimony & cesium compounds).  When the light from the fluorescent screen strikes the photo cathode, photo electrons are emitted in numbers proportional to the brightness of the screen.  The photo cathode is applied directly to the CsI input phosphor.  The photoelectrons thus produced has to be moved to the other end of the image intensifier. This can be done using an electrostatic focusing lens and an accelerating aannooddee.. 14
  • 15. ELECTROSTATIC FOCUSING CUP:  The lens is made up of a series positively charged electrodes that are usually plated on to the inside surface of the glass envelope.  These electrodes focus the electron beam as it flows from the photocathode toward the output phosphor.  Electron focusing inverts & reverses the image which is called “point inversion” because all the electrons pass through a common focal point on their way to output phosphor.  The input phosphor is curved to ensure that electrons emitted at the peripheral regions of the photocathode travel the same distance as those emitted from the central region.  The image on the output phosphor is reduced in size ,which is one of the principle reasons why 15 it is brighter.
  • 16. AACCCCEELLEERRAATTIINNGG AANNOODDEE ::  The anode is located in the neck of the image tube.  Its function is to accelerate electrons emitted from the photocathode towards the output screen. the anode has a +ve potential of 25 to 35 kv relative to the photocathode, so it accelerates electrons to a tremendous velocity. OOUUTTPPUUTT PPHHOOSSPPHHOORR::  TThhee oouuttppuutt fflluuoorreesscceenntt ssccrreeeenn ooff iimmaaggee iinntteennssiiffiieerrss iiss ssiillvveerr aaccttiivvaatteedd zznn--ccdd ssuullffiiddee,, tthhee ssaammee uusseedd iinn IIsstt ggeenneerraattiioonn iinnppuutt pphhoosspphhoorr..  CCrryyssttaall ssiizzee aanndd llaayyeerr tthhiicckknneessss aarree rreedduucceedd ttoo mmaaiinnttaaiinn rreessoolluuttiioonn iinn tthhee mmiinniiffiieedd iimmaaggee..  AA tthhiinn llaayyeerr ooff aalluummiinnuumm iiss ppllaatteedd oonnttoo tthhee fflluuoorreesscceenntt ssccrreeeenn pprreevveenntt lliigghhtt ffrroomm mmoovviinngg rreettrrooggrraaddee tthhrroouugghh tthhee ttuubbee && aaccttiivvaattiinngg tthhee pphhoottooccaatthhooddee.. 16
  • 17.  The glass tube of the image intensifier is abt 2 to 4mm thick &is enclosed in a lead lined metal container protects the operator from stray radiation.  The output phosphor image is viewed either directly through a series of lenses and mirrors or indirectly through closed circuit TV. BBRRIIGGHHTTNNEESSSS GGAAIINN::  Two methods are used to evaluate the brightness gain of image intensifiers. the first compares the luminance of an intensifier output screen to that of a Patterson type B2 fluoroscopy screen when both are exposed to same quantity of radiation.  The brightness gain is the ratio of the two illuminations.  Brightness gain=intensifier luminance/Patterson b-2 lumin. 17
  • 18.  Another way of evaluation of brightness gain is called as “conversion factor”  Conversion factor =cd/m2 by mR/sec  Output screen luminance is measured in candelas.  Radiation quality & output luminance are explicitly defined, so the method is accurate & reproducible.  The brightness gain tends to deteriorate as the image intensifier ages. ie the pt dose with an older image intensifier tends to be higher than with a new intensifier of the same type.  The brightness gain of an imag inten comes from 2 completely unrelated sources called minification gain &flux gain. 18
  • 19. MMIINNIIFFIICCAATTIIOONN GGAAIINN::  The brightness gain from minification is produced by a reduction in image size.  The quantity of gain depends on the relative areas of input &output screens. coz the size of the intensifier is usually indicated by its diameter, so minif gain is expressed as MG=(d1/d0)2.d1=diameter of input screen,d0=diameter of output screen.  Most img inten have an input screen from 5 to9 in.& an output screen of app 1in in diameter.  Theoretically minification can be increased indefinitely as we can see from above formula, but as the minification is increased the image becomes smaller.- disadvantage.  Hence image has to be magnified and viewed which will result in reduce brightness & precipitous drop in resolution. 19
  • 20. 20 FFLLUUXX GGAAIINN::  FLUX gain increases the brightness of the fluoroscopic image by a factor of app 50.  The total brightness of an imag intes is product of minification & flux gain: ie Brightness gain =minification gain x flux gain.
  • 21. MMUULLTTIIPPLLEE--FFIIEELLDD IIMMAAGGEE IINNTTEENNSSIIFFIIEERRSS  Dual field or triple field imsg intes attempt to resolve the conflicts btn image size & quality.  They can be operated in several modes, including the 4.5in, a 6in, or a 9in mode. the 9in mode is used to view large anatomic areas. When size is unimportant the 4.5in or 6in mode is used coz of better resultant image quality.  Field size is changed by a simple electronic principle: the higher the voltage on the electrostatic focusing lens, the more the electron beam is focused. 21
  • 22. 22  This figure shows this principle applied to a dual field imag intes.  In the 9in mode, the electrostatic focusing voltage is decreased. the electrons focus to a point or cross, close to the output phosphor & the final image is actually smaller than the phosphor.  In 6in mode the electrostatic focusing voltage is increased & the electrons focus farther away from the output phosphor. after the electrons cross they diverge, so the image on the output phosphor is larger than in the 9in mode.
  • 23. 23 OOppttiiccaall ccoouupplliinngg  OOppttiiccaall ssyysstteemm ttrraannssmmiittss tthhee oouuttppuutt ooff tthhee iimmaaggee iinntteennssiiffiieerr ttoo tthhee lliigghhtt sseennssiittiivvee aarreeaa ooff tthhee vviiddeeoo ccaammeerraa  TThhee ooppttiiccaall ddiissttrriibbuuttoorr iinncclluuddee bbeeaamm--sspplliittttiinngg mmiirrrroorr,, wwhhiicchh ddiirreeccttss aa ppoorrttiioonn ooff tthhee lliigghhtt ffrroomm tthhee iimmaaggee iinntteennssiiffiieerr oouuttppuutt wwiinnddooww ttoo aann aacccceessssoorryy ddeevviiccee ffoorr iimmaaggee rreeccoorrddiinngg aanndd ppaasssseess tthhee rreemmaaiinnddeerr ttoo tthhee vviiddeeoo ccaammeerraa..  TTwwoo lleennsseess aarree mmoouunntteedd iinn ttaannddeemm  TThhee IIII aanndd tthhee vviiddiiccoonn aarree ppllaacceedd aatt tthhee ffooccaall ppllaanneess ooff tthhee ttwwoo lleennsseess
  • 24. 24
  • 25. Closed-circuit Television System  used to view the iimmaaggee iinntteennssiiffiieerr oouuttppuutt iimmaaggee  CCoonnssiissttss ooff 25 11))TTeelleevviissiioonn ccaammeerraa 22)) CCaammeerraa ccoonnttrrooll uunniitt 33)) MMoonniittoorr  TThhee tteelleevviissiioonn ssyysstteemm aalllloowwss ffoorr rreeaall--ttiimmee vviieewwiinngg ooff tthhee fflluuoorroossccooppiicc iimmaaggee bbyy sseevveerraall ppeeooppllee aatt oonnccee ffrroomm oonnee mmoonniittoorr oorr mmuullttiippllee mmoonniittoorrss
  • 26. TTeelleevviissiioonn CCaammeerraa TTuubbee  Output phosphor is directly coupled to a TV camera tube 26  Plumbicon  Vidicon  CCD
  • 27.  The basic video camera consists of 1) vacuum tube cylinder (approximately 2.5 cm in diameter) surrounded by electromagnetic focusing coils ,2 pairs of electrostatic deflecting coils 2) photoconductive target 3) a scanning electron beam 27 Target assembly: a) Glass plate assembly b) signal plate c) Target
  • 29. 29 Target  Functionally most important i n tube  Thin film of photoconductive material, antimony sulfide suspended as globules in mica matrix.  The optical coupling lens focuses the image intensifier output image onto the target, forming a charge image within the photoconductive layer  This latent image is read out by the electron beam, which scans across the target in a series of horizontal raster lines.  As the scanning electron beam moves across the target, a current signal is produced that represents the two-dimensional image as a continuous series of raster lines with varying voltage levels.
  • 30. 30 Video signal  When globules absorbs light ,,pphhoottooeelleeccttrroonnss aarree eemmiitttteedd  TThhee gglloobbuullee bbeeccoommeess ppoossiittiivveellyy cchhaarrggeedd  TThhee eelleeccttrroonn bbeeaamm ssccaannss tthhee eelleeccttrriiccaall iimmaaggee ssttoorreedd oonn tthhee ttaarrggeett && ffiillllss iinn tthhee hhoolleess lleefftt bbyy tthhee eemmiitttteedd pphhoottooeelleeccttrroonnss,, ddiisscchhaarrggiinngg tthhee ttiinnyy gglloobbuullaarr ccaappaacciittoorrss  WWhheenn tthhee eelleeccttrroonnss iinn bbeeaamm nneeuuttrraalliizzee tthhee ppoossiittiivvee cchhaarrggee iinn tthhee gglloobbuulleess ,, tthhee eelleeccttrroonnss oonn tthhee ssiiggnnaall ppllaattee lleeaavvee tthhee ppllaattee vviiaa rreessiissttoorr  TThheessee mmoovviinngg eelleeccttrroonnss ffoorrmm aa ccuurrrreenntt fflloowwiinngg tthhrroouugghh aa rreessiissttoorr aanndd vvoollttaaggee aaccrroossss tthhee rreessiissttoorr  TThhiiss vvoollttaaggee ,,wwhheenn ccoolllleecctteedd ffoorr eeaacchh nneeuuttrraalliizzeedd gglloobbuullee,, ccoonnssttiittuutteess tthhee vviiddeeoo ssiiggnnaall
  • 31. 31
  • 32. 32 TTeelleevviissiioonn mmoonniittoorr  The video signal produced by the video camera is converted into a visible image by the monitor  Contains picture tube & controls for regulating brightness & contrast  Picture tube contains- Electron gun control grid anode focusing coil, deflecting coil-control the electron beam synchrony with the camera tube  Control grid-receive video signal from Camera control unit ,uses this signal to regulate the no. of electrons in electron beam  Anode –carries higher potential (10,000V) accelerates the electron beam to much higher velocity  The electron Strike the fluorescent screen ,emit large number of light photons.
  • 33. 33
  • 34. 34 IImmaaggee RReeccoorrddiinngg  Two modes of recording th flouroscopic image - 1) light image from output phosphor of II recorded on film with a photospot camera or cine camera 2) electrical signal generated by TV camera-includes magnetic tape, magnetic discs & optical discs
  • 35. DIRECT FILM RECORDING 35 SPOT FILM DEVICES:  FFlluuoorroossccooppiicc ssyysstteemmss ddeessiiggnneedd ffoorr ggaassttrrooiinntteessttiinnaall iimmaaggiinngg aarree ggeenneerraallllyy eeqquuiippppeedd wwiitthh aa ssppoott ffiillmm ddeevviiccee..  TThhee ssppoott ffiillmm ddeevviiccee aalllloowwss eexxppoossuurree ooff aa ccoonnvveennttiioonnaall ssccrreeeenn--ffiillmm ccaasssseettttee iinn ccoonnjjuunnccttiioonn wwiitthh fflluuoorroossccooppiicc vviieewwiinngg.. TThhiiss rraatthheerr ffaammiilliiaarr ssyysstteemm,, llooccaatteedd iinn ffrroonntt ooff tthhee iimmaaggee iinntteennssiiffiieerr,, aacccceeppttss tthhee ssccrreeeenn--ffiillmm ccaasssseettttee aanndd ""ppaarrkkss"" iitt oouutt ooff tthhee wwaayy dduurriinngg fflluuoorroossccooppyy  CCaasssseetttteess mmaayy bbee llooaaddeedd ffrroomm tthhee ffrroonntt oorr rreeaarr ddeeppeennddiinngg oonn tthhee ddeessiiggnn ooff tthhee ssyysstteemm..
  • 36. SSttaannddaarrdd ssppoott ffiillmm iimmaaggiinngg ccoonnffiigguurraattiioonn ttyyppiiccaall ooff ggaassttrrooiinntteessttiinnaall fflluuoorroossccooppyy eeqquuiippmmeenntt.. TThhee ssccrreeeenn--ffiillmm ccaasssseettttee iiss ppaarrkkeedd oouutt ooff tthhee xx-- rraayy ffiieelldd uunnttiill tthhee ssppoott ffiillmm ttrriiggggeerr iiss pprreesssseedd,, ccaauussiinngg bbootthh tthhee ccaasssseettttee aanndd tthhee ffoorrmmaattttiinngg mmaasskk ttoo mmoovvee iinnttoo ppoossiittiioonn.. 36
  • 37.  The x-ray field size is also reduced automatically by the collimators at the time of exposure to minimize scattered radiation and patient radiation dose.  The fluoroscopist can override this automatic collimation to further reduce the x-ray field.  Spot film imaging uses essentially the same technology as conventional screen-film radiography. Differences and limitations of spot film imaging compared with general radiography.  One major limitation is the range of film sizes available for spot film imaging. Although some older fluoroscopy equipment is limited to a single size, usually 24 x 24 cm, current equipment allows a range of film sizes to be used, from 20 x 25 cm to 24 x 35 cm.  Spot film devices usually allow more than one image to be obtained on a single film.  Formats typically include one, two, three, four, or six images on a film. 37
  • 38.  Moving the spot film device closer to the patient reduces the amount of magnification and decreases the patient radiation dose.  A number of factors affect patient doses in spot film imaging.  The source-to-skin distance is shorter in spot film imaging than in general radiography.  Although the automatic exposure control system fixes the exposure to the screen, the shorter source-to-skin distance increases the inverse square reduction in radiation intensity as it passes through the patient.  This increase tends to make the skin entrance exposure higher.  The field size in spot film imaging is generally smaller than that used in general radiography.  This smaller field size reduces scatter and therefore tends to reduce dose. For the same reason, grids used in fluoroscopy generally have a lower grid ratio and therefore a smaller Bucky factor, which also leads to lower dose.  These effects tend to offset each other to a large extent. 38
  • 39.  One of the major shortcomings of conventional spot film devices is the delay involved in moving the cassette into position for exposure.  In gastrointestinal imaging, this delay can be overcome by using photofluorography.  In vascular imaging, more rapid film movement is achieved with automatic film changers. 39
  • 40. AUTOMATIC FILM CHANGERS  The automatic film changers used in vascular imaging are also screen-film systems.  They can be found in several varieties. Some are large, floor-mounted boxes, but systems more commonly used today mount on the image intensifier  The system consists of a supply magazine for holding unexposed film, a receiving magazine, a pair of radiographic screens, and a mechanism for transferring the film.  When an exposure is required, the screens are mechanically separated, the film is pulled into place between them, and they are closed.  After the film is exposed, the screens separate again.  The film is moved to the receiver, and another film is pulled into place for the next exposure.  The number of films and filming rates must be preprogrammed for proper operation. 40
  • 41. Photospot camera  Records the the image output of an II on a film  Film – role film/cut film(10 cm)  Advantage –1)reduction in pt exposure 2)film does not have to be changed b/w exposures 3)exposure times are shorter-motion is less 41 likely problem 4)films can be taken more rapidly 5)possible to record & view image at same time
  • 42. FFrraammiinngg wwiitthh ssppoott ffiillmm ccaammeerraass::  FFrraammiinngg ––uuttiilliissaattiioonn ooff aavvaaiillaabbllee aarreeaa oonn ffiillmm  TThhee oouuttppuutt pphhoosspphhoorr ooff IIII ttuubbee iiss rroouunndd, 42 sshhaappee ooff ffiillmm iiss ssqquuaarree  44 ffrraammiinngg ppaatttteerrnnss 11)) EExxaacctt ffrraammiinngg 22)) EEqquuaall aarreeaa ffrraammiinngg 33)) mmeeaann ddiiaammeetteerr ffrraammiinngg 44)) ttoottaall aarreeaa ffrraammiinngg  EEqquuaall aarreeaa ffrraammiinngg oorr mmeeaann ddiiaammeetteerr ffrraammiinngg iiss rreeccoommmmeennddeedd ffoorr mmoosstt cclliinniiccaall ssiittuuaattiioonnss..
  • 43. 43
  • 44. 44 CCiinneefflloouurrooggrraapphhyy  PPrroocceessss ooff rreeccoorrddiinngg fflluuoorroossccooppiicc iimmaaggeess oonn mmoovviiee ((cciinnee)) ffiillmm  TTwwoo ffiillmm ssiizzeess-- 1166 mmmm, 3355 mmmm  CCiinnee ccaammeerraa--ccoommppoonneennttss aarree lleennss, iirriiss ddiiaapphhrraaggmm, sshhuutttteerr, aappeerrttuurree, pprreessssuurree ppllaattee, ppuullll ddoowwnn aarrmm && ffiillmm ttrraannssppoorrtt mmeecchhaanniissmm
  • 45. 45
  • 46. TV image recorders : 1) TAPE RECORDER : used for both recoding& playback • as a recorder receives video signal from camera 46 control unit • for playback transmits the signal to one or more several TV monitors Components:1)magnetic tube 2)writing head 3) tape transport system Writing head converts an electrical signal in to magnetic field for recoding & converts magnetic signal to electric signal for replay
  • 47. 47
  • 48. 48
  • 49. DIGITAL FLUOROGRAPHY Digital charge-coupled device (CCD) TV cameras are rapidly replacing conventional TV cameras in fluoroscopic systems. An analog, high-resolution (1,023-line) TV camera has 49 a vertical resolution of about 358 line pairs. A high-resolution CCD camera with a 1,024 x 1,024 matrix will provide equivalent vertical resolution. However, the digital camera will have the same vertical and horizontal resolution, whereas the horizontal resolution of the analog camera is defined by its electronic band-pass.
  • 50. For a 15-cm-diameter intensifier input, the limiting resolution of the CCD camera would be 358 lp/150 mm or 2.4 lp/mm. This result is about half the resolution of a photospot film. This resolution loss is made up for by the ability to digitally increase display contrast, reduce noise, and enhance the edges of digital images. There are several other advantages to digital photospot images. Mechanical devices are not needed for film transport. Film processing is not required. Images can be viewed immediately. The linear response of the digital system makes it very forgiving of under- or overexposure. 50
  • 51. Fluoroscopic Equipment Configurations The basic configurations include radiography/fluoroscopy (R/F) tables with either an under-table or over-table x-ray tube and fixed C-arm, mobile C-arm, and mini C-arm R/F Units with Under-Table X-ray Tube: most common fluoroscopic equipment configuration The x-ray tube and collimator are mounted below the tabletop with the image intensifier tower mounted above the table on a carriage that can be panned over the patient. In addition to the standard fluoroscopic imaging chain, R/F systems include an overhead x-ray tube that can be used for regular radiography with a Bucky incorporated into the table. Other common features include a tilting table and image recording devices. 51
  • 52. Under-table x-ray tube R/F system. Photograph sshhoowwss aann eexxaammppllee ooff aann RR//FF ttaabbllee tthhaatt iinncclluuddeess aa ssppoott ffiillmm ddeevviiccee aanndd ssiiddee--mmoouunntteedd vviiddeeoo ccaammeerraa.. 52
  • 53. RR//FF UUnniittss wwiitthh OOvveerr--TTaabbllee XX--rraayy TTuubbee  xx--rraayy ttuubbee mmoouunntteedd oovveerr tthhee ttaabbllee wwiitthh tthhee iimmaaggee iinntteennssiiffiieerr bbeellooww..  tthhiiss ccoonnffiigguurraattiioonn rreessuullttss iinn iinnccrreeaasseedd ppaattiieenntt aacccceessss,, wwhhiicchh iiss hheellppffuull ffoorr iinntteerrvveennttiioonnaall pprroocceedduurreess..  RRaaddiiooggrraapphhyy ccaann bbee ppeerrffoorrmmeedd wwiitthh tthhee ssaammee xx-- rraayy ttuubbee aanndd aa BBuucckkyy iinnccoorrppoorraatteedd iinnttoo tthhee ttaabbllee..  TThhee xx--rraayy ttuubbee ccaann bbee aanngglleedd ttoo aaccqquuiirree aanngguullaatteedd pprroojjeeccttiioonnss oorr ttoommooggrraammss.. 53
  • 54. Over-table x-ray tube R/F system. Photograph sshhoowwss aa ssaammppllee ssyysstteemm tthhaatt ccaann bbee ccoonnttrroolllleedd ffrroomm wwiitthhiinn tthhee pprroocceedduurree rroooomm wwiitthh tthhee ppeeddeessttaall ccoonnttrrooll ppaanneell ((lleefftt)) oorr ffrroomm oouuttssiiddee tthhee rroooomm ffrroomm tthhee rreemmoottee ddeesskk ccoonnttrroollss ((rriigghhtt)).. 54
  • 55. 55 SUMMARY:  Early fluroscopy was accomplished by radiologists looking directly at a fluoroscopic screen.  The image on the screen was only 0.0001 as bright as the image of a routinely viewed radiograph, so dark adaptation of eyes was required.  In 1950s the image intensifier alleviated this situation by producing an image bright enough to be viewed with cone vision.  The input phosphor of modern image intensifier is CsI; the output phosphor is zinc cadmium sulfide
  • 56.  Brightness gain is the product of minification gain and flux gain.  Imaging characteristics important in the evaluation of image intensifier fluoroscopy include contrast, lag and distortion.  Large field of view image intensifier tubes are available to fill special needs, such as digital and spot film angiography.  Most image intensifiers allow dual field or triple field imaging. 56
  • 57.  Output phospher image iiss pprroocceesssseedd bbyy tteelleevviissiioonn ccaammeerraa ttuubbee ((vviiddiiccoonn,, pplluummbbiiccoonn,, CCCCDD))  TThhee iimmaaggee iiss ddiissppllaayyeedd oonn TTVV mmoonniittoorr  SSttaannddaarrdd xx--rraayy cclloosseedd--cciirrccuuiitt tteelleevviissiioonn uusseess 552255xx552255 ffoorrmmaatt wwiitthh 55--MMHHZZ bbaanndd ppaassss  VVeerrttiiccaall rreessoolluuttiioonn lliimmiitteedd bbyy ssccaann lliinnee ffoorrmmaatt,, hhoorriizzoonnttaall rreessoolluuttiioonn iiss aa ffuunnccttiioonn ooff bbaanndd ppaassss  LLiigghhtt iimmaaggee iiss rreeccoorrddeedd bbyy pphhoottoo ssppoott ccaammeerraa oorr cciinnee ccaammeerraa 57
  • 58. 58