Understanding rankings of financial analysts
Artur Aiguzhinov1
Carlos Soares1
Ana Paula Serra2
1
LIAAD-INESC Porto LA & Faculdade de Economia da Universidade do Porto
2
Faculdade de Economia da Universidade do Porto & CEFUP - Centro de Economia e Finan¸cas
da Universidade do Porto
October 23rd, 2010
FMA Annual Meeting, New York
1 of 23
Motivation: the value of the recommendations
Efficient Market Hypothesis (Fama, 1970);
High information costs provide possibilities for abnormal returns
(Grossman & Stiglitz, 1980);
On average, recommendations bring value to investors (Womack, 1996);
Analysts’ accuracy in forecasts is valuable (Brown & Mohammad, 2003);
2 of 23
Motivation: rankings of the analysts
StarMine R
issues annual analyst rankings:
Ranks the analysts based on recommendation performance and EPS
forecast accuracy;
Why not to predict stock prices directly?
Analysts’ relative performance (rankings) is more predictable than the stock
prices.
Is it possible to predict these rankings?:
If yes, can we use those predictions in profitable strategy?;
3 of 23
The Goals of the Research
Accurately predict the rankings of financial analysts;
4 of 23
Research contributions
Interdisciplinary approach to an interesting research topic;
Financial Economics contributions:
analysis of the financial analysts based on state variables concerning market
conditions and stock characteristics;
first methodology to predict the rankings;
verify if there is a ranking consistency over time;
identify variables that discriminate the rankings;
5 of 23
Research design: an overview
Initial rankings of the analysts (target rankings):
Analysts evaluation models (Clement, 1999; Brown, 2001; Creamer &
Stolfo, 2009);
Predict rankings of the analysts (label ranking):
Evaluate the ranking accuracy;
Identify discriminative independent variables;
6 of 23
Database to use
ThomsonOne I/B/E/S Detailed History:
Quarterly EPS forecasts (1989Q1-2009Q4);
ThomsonOne DataStream:
Accounting data;
Market data;
7 of 23
Description of the data
Table: Summary of the data
Sector # analysts # stocks mean forecasts mean stocks
per stock per quarter per analysts per quarter
Energy 135 34 7.57 1.91
Industrials 208 66 3.66 1.05
Materials 147 30 5.14 1.16
IT 301 106 7.85 2.76
Total 791 236 6.06 1.72
8 of 23
Average forecasts
Figure: Average issued forecasts per quarter
0 20 40 60 80
010203040506070
Quarters
Averagenumberofforecastsperquarter
Sectors
Energy
Industrials
IT
Materials
9 of 23
Creating target rankings: indexing of the analysts
Based on previous research, we use EPS mean adjusted forecast error
(MAFE) as a measure of analysts predicting accuracy:
FEq,a,s = |ActEPSq,s − EPSq,a,s| (1)
FEq,s =
1
n
n
a=1
FEq,a,s (2)
MAFEq,a,s =
FEq,a,s
FEq,s
(3)
10 of 23
Context characterization: state variables
Variables that describe market conditions and stock characteristics
(Jegadeesh, Kim, Krische, & Lee, 2004):
Analysts variables:
Lagged forecasting error;
Change in consensus;
Earnings momentum:
Standardized Unexpected Earnings;
Growth indicators:
Sales growth;
Fundamentals:
Total accruals to total assets ratio;
Valuation multiples:
Earnings-to-price ratio;
Market volatility;
11 of 23
Label ranking algorithm
Table: Example of analysts rankings based on the observed variables x1 . . . x4
Quarters x1 x2 x3 x4 Ranks
Alex Brown Craig
1 High Low High Medium 1 2 3
2 High High High Low 2 3 1
3 Medium Medium High Low 1 2 3
4 Low Low Low High 1 3 2
5 Medium High High Medium 1 2 3
6 High Medium High Low 3 1 2
Naive Bayes algorithm for label ranking (Aiguzhinov, Soares, & Serra, 2010):
ˆπ = arg max
π∈ΠL
PLR (π)
m
a=1
PLR (xi,a|π) (4)
12 of 23
Predicted vs. default ranking
Table: Summary of the results compared to default ranking
Sectors Outperformed Outperformed- # stocks with p-values
the default ranking to-total rate 1% 5% 10%
Energy 18 0.53 7 9 9
Industrials 31 0.47 16 18 23
Materials 12 0.40 5 7 8
IT 51 0.48 18 27 30
Total 112 0.47 46 61 70
13 of 23
Predicted vs naive ranking
Table: Summary of the results compared to naive ranking
Sectors Outperformed Outperformed- # stocks with p-values
the naive ranking to-total rate 1% 5% 10%
Energy 11 0.32 5 7 7
Industrials 27 0.41 5 6 7
Materials 11 0.37 0 0 1
IT 36 0.34 1 1 1
Total 85 0.36 11 14 16
14 of 23
Discriminative Value
Лист1
First Step: Calculate the rankings similarity matrix
Quarters Ind. Variables Rankings Similarity matrix
X1 X2 X3 X4 a b c 1 2 3 4 5
1 c1 d2 d3 c4 1 2 3 1 1,00 0,25 1,00 0,00 0,00
2 d1 c2 a3 b4 2 3 1 2 0,25 1,00 0,25 0,75 0,75
3 a1 b2 d3 a4 1 2 3 3 1,00 0,25 1,00 0,00 0,00
4 b1 d2 d3 c4 3 2 1 4 0,00 0,75 0,00 1,00 1,00
5 c1 a2 d3 d4 3 2 1 5 0,00 0,75 0,00 1,00 1,00
15 of 23
Discriminative Value
Лист1
Second step:
X1=(a1,b1,c1,d1)
a1 vs b1
X1 1 2 3 4 5
1 c1 1 2 3 1 1,00 0,25 1,00 0,00 0,00
2 d1 2 3 1 2 0,25 1,00 0,25 0,75 0,75
3 a1 1 2 3 3 1,00 0,25 1,00 0,00 0,00
4 b1 3 2 1 4 0,00 0,75 0,00 1,00 1,00
5 c1 3 2 1 5 0,00 0,75 0,00 1,00 1,00
mean(a1 vs b1) = (0)/1=0
16 of 23
Discriminative Value
Лист1
a1 vs c1
X1 1 2 3 4 5
1 c1 1 2 3 1 1,00 0,25 1,00 0,00 0,00
2 d1 2 3 1 2 0,25 1,00 0,25 0,75 0,75
3 a1 1 2 3 3 1,00 0,25 1,00 0,00 0,00
4 b1 3 2 1 4 0,00 0,75 0,00 1,00 1,00
5 c1 3 2 1 5 0,00 0,75 0,00 1,00 1,00
mean(a1 vs c1) = (1+0)/2=0,5
17 of 23
Discriminative Value
Лист1
a1 vs d1
1 2 3 4 5
1 1,00 0,25 1,00 0,00 0,00
2 0,25 1,00 0,25 0,75 0,75
3 1,00 0,25 1,00 0,00 0,00
4 0,00 0,75 0,00 1,00 1,00
5 0,00 0,75 0,00 1,00 1,00
mean(a1 vs d1) = (0,25)/1=0,25
18 of 23
Discriminative Value
X1 average Weights Weighted average
a1 vs. b1 0.00 1 0.00
a1 vs. c1 0.50 2 1.00
a1 vs. d1 0.25 3 0.75
b1 vs. c1 0.50 1 0.50
b1 vs. d1 0.75 2 1.50
c1 vs. d1 0.50 1 0.50
0.708
Discriminative Power : 1-0.708=0.292 The higher the discriminative power,
the more different are the rankings
19 of 23
Discriminative power
Table: Discriminative power of independent variables
Sectors FELAG SUE consensus EP SG TA MKT
Energy 0.235 0.211 0.234 0.208 0.194 0.341 0.148
Industrials 0.248 0.230 0.279 0.233 0.263 0.282 0.089
Materials 0.180 0.197 0.278 0.232 0.156 0.378 0.051
IT 0.213 0.238 0.243 0.230 0.185 0.298 0.155
Total 0.219 0.219 0.258 0.226 0.199 0.325 0.111
20 of 23
References (1)
Aiguzhinov, A., Soares, C., & Serra, A. P. (2010). A similarity-based
adaptation of naive bayes for label ranking: Application to the
metalearning problem of algorithm recommendation. In B. Pfahringer,
G. Holmes, & A. Hoffmann (Eds.), Discovery science (Vol. 6332, pp.
16–26). Springer.
Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial
Analysts Journal, 48(5), 28–43.
Brazdil, P., Soares, C., & Costa, J. (2003). Ranking Learning Algorithms:
Using IBL and Meta-Learning on Accuracy and Time Results.
Machine Learning, 50(3), 251–277.
Brown, L. (2001). How Important is Past Analyst Earnings Forecast
Accuracy? Financial Analysts Journal, 57(6), 44–49.
Brown, L., & Mohammad, E. (2003). The Predictive Value of Analyst
Characteristics. Journal of Accounting, Auditing and Finance, 18(4).
21 of 23
References (2)
Clement, M. (1999). Analyst forecast accuracy: Do ability, resources, and
portfolio complexity matter? Journal of Accounting and Economics,
27(3), 285–303.
Creamer, G., & Stolfo, S. (2009). A link mining algorithm for earnings
forecast and trading. Data Mining and Knowledge Discovery, 18(3),
419–445.
Fama, E. (1970). Efficient Capital Markets: A Review of Empirical Work.
The Journal of Finance, 25, 383–417.
Grauer, R. (2008). Benchmarking measures of investment performance with
perfect-foresight and bankrupt asset allocation strategies. The Journal
of Portfolio Management, 34(4), 43–57.
Grossman, S., & Stiglitz, J. (1980). On the Impossibility of Informationally
Efficient Prices. American Economic Review, 70, 393–408.
H¨ullermeier, E., F¨urnkranz, J., Cheng, W., & Brinker, K. (2008). Label
ranking by learning pairwise preferences. Artificial Intelligence,
172(2008), 1897–1916.
22 of 23
References (3)
Jegadeesh, N., Kim, J., Krische, S., & Lee, C. (2004). Analyzing the
Analysts: When Do Recommendations Add Value? The Journal of
Finance, 59(3), 1083–1124.
Ljungqvist, A., Malloy, C., & Marston, F. (2009). Rewriting history. The
Journal of Finance, 64(4), 1935–1960.
Vembu, S., & G¨artner, T. (2010, October). Preference learning. Springer.
Vogt, M., Godden, J., & Bajorath, J. (2007). Bayesian interpretation of a
distance function for navigating high-dimensional descriptor spaces.
Journal of chemical information and modeling, 47(1), 39-46.
Womack, K. (1996). Do Brokerage Analysts’ Recommendations Have
Investment Value? The Journal of Finance, 51, 137–168.
23 of 23
Similarity-based Naive Bayes for Label Ranking: Prior
probability of label ranking
Table: Demonstration of the prior probability for label ranking
Quarters x1 x2 x3 x4 Ranks
Alex Brown Craig
1 High Low High Medium 1 2 3
2 High High High Low 2 3 1
3 Medium Medium High Low 1 2 3
4 Low Low Low High 1 3 2
...
...
...
...
...
...
...
...
14 Medium High High Medium 1 2 3
15 High Medium High Low 3 1 2
Maximizing the likelihood is equivalent to minimizing the distance (i.e.,
maximizing the similarity) in a Euclidean space (Vogt, Godden, & Bajorath,
2007)
Label ranking: formalization
Instance: X ⊆ {V1, . . . , Vm}
Labels: L = {λ1, . . . , λk }
Output: Y = ΠL
Training set: T = {xi , yi }i∈{1,...,n} ⊆ X × Y
Learn a mapping h : X → Y such that a loss function is minimized:
=
n
i=1 ρ(πi , ˆπi )
n
(5)
with ρ being a Spearman correlation coefficient:
ρ(π, ˆπ) = 1 −
6
k
j=1(πj − ˆπj )2
k3 − k
(6)
where π and ˆπ are, respectively, the target and predicted rankings for a
given instance.
Posterior probability of label ranking
Proir probability of label ranking:
PLR (π) =
n
i=1 ρ(π, πi )
n
(7)
Conditional probability of label ranking:
PLR (va,i |π) =
i:xi,a=va,i
ρ(π, πi )
|{i : xi,a = va,i }|
(8)
Estimated ranking:
ˆπ = arg max
π∈ΠL
PLR (π)
m
a=1
PLR (xi,a|π) (9)

More Related Content

PDF
Artur-eea-presentation
PPT
Chapter 03
PPT
Bba 3274 qm week 6 part 1 regression models
PDF
Business mathematics gmb 105 pres
PDF
Econometrics project
PPT
Rsh qam11 ch05 ge
PDF
161783709 chapter-04-answers
PPT
Rsh qam11 ch04 ge
Artur-eea-presentation
Chapter 03
Bba 3274 qm week 6 part 1 regression models
Business mathematics gmb 105 pres
Econometrics project
Rsh qam11 ch05 ge
161783709 chapter-04-answers
Rsh qam11 ch04 ge

What's hot (11)

PPT
Multiple Regression
PDF
Final project, student carmine gelormini
PPT
Chapter 12
PPTX
Random Forest Regression Analysis Reveals Impact of Variables on Target Values
PDF
Modeling+pricing+strategies+using+game+theory+and+support+vector+machines
PPTX
Chapter 6
PPTX
What is the Holt-Winters Forecasting Algorithm and How Can it be Used for Ent...
PPTX
Experimental design data analysis
PPT
Ch2 slides
PPTX
What is ARIMAX Forecasting and How is it Used for Enterprise Analysis?
PPTX
Basic Statistics Presentation
Multiple Regression
Final project, student carmine gelormini
Chapter 12
Random Forest Regression Analysis Reveals Impact of Variables on Target Values
Modeling+pricing+strategies+using+game+theory+and+support+vector+machines
Chapter 6
What is the Holt-Winters Forecasting Algorithm and How Can it be Used for Ent...
Experimental design data analysis
Ch2 slides
What is ARIMAX Forecasting and How is it Used for Enterprise Analysis?
Basic Statistics Presentation
Ad

Viewers also liked (17)

PDF
Programa Zuzendu
PPTX
Swoop Projects
DOCX
Wdt Practical19
PPTX
Día especial de alex
PDF
технопаркнедра
PDF
 Allungamento E Ingrossamento Del Pene
PDF
La lengua y los hablantes raúl ávila
PDF
MS_Learning_Transcript.PDF
PDF
Apostila 18/03/13 - Melhen
PPT
Games MOOC 3 Intro to Week 1
PPTX
Processo de Execução - Parte 01
PDF
Sub contracting update 20 02 13
PDF
The Australasian Fruit Culturist; by David Alexander Crichton (1893)
PPTX
La practica educativa cómo enseñar
PPTX
Malattie veneree
PPTX
13. Internet business models
PPTX
Linking words
Programa Zuzendu
Swoop Projects
Wdt Practical19
Día especial de alex
технопаркнедра
 Allungamento E Ingrossamento Del Pene
La lengua y los hablantes raúl ávila
MS_Learning_Transcript.PDF
Apostila 18/03/13 - Melhen
Games MOOC 3 Intro to Week 1
Processo de Execução - Parte 01
Sub contracting update 20 02 13
The Australasian Fruit Culturist; by David Alexander Crichton (1893)
La practica educativa cómo enseñar
Malattie veneree
13. Internet business models
Linking words
Ad

Similar to fma.ny.presentation (20)

PPTX
ONE WAY ANOVA LINEAR MODELS.pptx notes,,
PPTX
Query Optimization By Example on Database Apps
PPTX
Chapter-1-section 2.1 Exploring data-Edition-5.pptx
DOCX
Example 33.2 Principal Factor Analysis This example uses t.docx
PPT
Demand forecasting methods 1 gp
PDF
Portfolio Theory of Information Retrieval
PDF
PDF
How to do ahp analysis in excel
PPTX
Introduction to Regression for SECOND year MBA.pptx
PPT
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
PDF
International journal of applied sciences and innovation vol 2015 - no 2 - ...
PDF
ffm vignette 08 29 16
PPT
Intro to quant_analysis_students
PPTX
Descriptive Statistics, Numerical Description
PDF
Final Report
DOCX
Marketing Research Approaches .docx
PPT
Data analysis
PPTX
3.2 Measures of variation
PDF
201977 1-1-3-pb
DOCX
Tutorial 8 Solutions.docx
ONE WAY ANOVA LINEAR MODELS.pptx notes,,
Query Optimization By Example on Database Apps
Chapter-1-section 2.1 Exploring data-Edition-5.pptx
Example 33.2 Principal Factor Analysis This example uses t.docx
Demand forecasting methods 1 gp
Portfolio Theory of Information Retrieval
How to do ahp analysis in excel
Introduction to Regression for SECOND year MBA.pptx
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
International journal of applied sciences and innovation vol 2015 - no 2 - ...
ffm vignette 08 29 16
Intro to quant_analysis_students
Descriptive Statistics, Numerical Description
Final Report
Marketing Research Approaches .docx
Data analysis
3.2 Measures of variation
201977 1-1-3-pb
Tutorial 8 Solutions.docx

fma.ny.presentation

  • 1. Understanding rankings of financial analysts Artur Aiguzhinov1 Carlos Soares1 Ana Paula Serra2 1 LIAAD-INESC Porto LA & Faculdade de Economia da Universidade do Porto 2 Faculdade de Economia da Universidade do Porto & CEFUP - Centro de Economia e Finan¸cas da Universidade do Porto October 23rd, 2010 FMA Annual Meeting, New York 1 of 23
  • 2. Motivation: the value of the recommendations Efficient Market Hypothesis (Fama, 1970); High information costs provide possibilities for abnormal returns (Grossman & Stiglitz, 1980); On average, recommendations bring value to investors (Womack, 1996); Analysts’ accuracy in forecasts is valuable (Brown & Mohammad, 2003); 2 of 23
  • 3. Motivation: rankings of the analysts StarMine R issues annual analyst rankings: Ranks the analysts based on recommendation performance and EPS forecast accuracy; Why not to predict stock prices directly? Analysts’ relative performance (rankings) is more predictable than the stock prices. Is it possible to predict these rankings?: If yes, can we use those predictions in profitable strategy?; 3 of 23
  • 4. The Goals of the Research Accurately predict the rankings of financial analysts; 4 of 23
  • 5. Research contributions Interdisciplinary approach to an interesting research topic; Financial Economics contributions: analysis of the financial analysts based on state variables concerning market conditions and stock characteristics; first methodology to predict the rankings; verify if there is a ranking consistency over time; identify variables that discriminate the rankings; 5 of 23
  • 6. Research design: an overview Initial rankings of the analysts (target rankings): Analysts evaluation models (Clement, 1999; Brown, 2001; Creamer & Stolfo, 2009); Predict rankings of the analysts (label ranking): Evaluate the ranking accuracy; Identify discriminative independent variables; 6 of 23
  • 7. Database to use ThomsonOne I/B/E/S Detailed History: Quarterly EPS forecasts (1989Q1-2009Q4); ThomsonOne DataStream: Accounting data; Market data; 7 of 23
  • 8. Description of the data Table: Summary of the data Sector # analysts # stocks mean forecasts mean stocks per stock per quarter per analysts per quarter Energy 135 34 7.57 1.91 Industrials 208 66 3.66 1.05 Materials 147 30 5.14 1.16 IT 301 106 7.85 2.76 Total 791 236 6.06 1.72 8 of 23
  • 9. Average forecasts Figure: Average issued forecasts per quarter 0 20 40 60 80 010203040506070 Quarters Averagenumberofforecastsperquarter Sectors Energy Industrials IT Materials 9 of 23
  • 10. Creating target rankings: indexing of the analysts Based on previous research, we use EPS mean adjusted forecast error (MAFE) as a measure of analysts predicting accuracy: FEq,a,s = |ActEPSq,s − EPSq,a,s| (1) FEq,s = 1 n n a=1 FEq,a,s (2) MAFEq,a,s = FEq,a,s FEq,s (3) 10 of 23
  • 11. Context characterization: state variables Variables that describe market conditions and stock characteristics (Jegadeesh, Kim, Krische, & Lee, 2004): Analysts variables: Lagged forecasting error; Change in consensus; Earnings momentum: Standardized Unexpected Earnings; Growth indicators: Sales growth; Fundamentals: Total accruals to total assets ratio; Valuation multiples: Earnings-to-price ratio; Market volatility; 11 of 23
  • 12. Label ranking algorithm Table: Example of analysts rankings based on the observed variables x1 . . . x4 Quarters x1 x2 x3 x4 Ranks Alex Brown Craig 1 High Low High Medium 1 2 3 2 High High High Low 2 3 1 3 Medium Medium High Low 1 2 3 4 Low Low Low High 1 3 2 5 Medium High High Medium 1 2 3 6 High Medium High Low 3 1 2 Naive Bayes algorithm for label ranking (Aiguzhinov, Soares, & Serra, 2010): ˆπ = arg max π∈ΠL PLR (π) m a=1 PLR (xi,a|π) (4) 12 of 23
  • 13. Predicted vs. default ranking Table: Summary of the results compared to default ranking Sectors Outperformed Outperformed- # stocks with p-values the default ranking to-total rate 1% 5% 10% Energy 18 0.53 7 9 9 Industrials 31 0.47 16 18 23 Materials 12 0.40 5 7 8 IT 51 0.48 18 27 30 Total 112 0.47 46 61 70 13 of 23
  • 14. Predicted vs naive ranking Table: Summary of the results compared to naive ranking Sectors Outperformed Outperformed- # stocks with p-values the naive ranking to-total rate 1% 5% 10% Energy 11 0.32 5 7 7 Industrials 27 0.41 5 6 7 Materials 11 0.37 0 0 1 IT 36 0.34 1 1 1 Total 85 0.36 11 14 16 14 of 23
  • 15. Discriminative Value Лист1 First Step: Calculate the rankings similarity matrix Quarters Ind. Variables Rankings Similarity matrix X1 X2 X3 X4 a b c 1 2 3 4 5 1 c1 d2 d3 c4 1 2 3 1 1,00 0,25 1,00 0,00 0,00 2 d1 c2 a3 b4 2 3 1 2 0,25 1,00 0,25 0,75 0,75 3 a1 b2 d3 a4 1 2 3 3 1,00 0,25 1,00 0,00 0,00 4 b1 d2 d3 c4 3 2 1 4 0,00 0,75 0,00 1,00 1,00 5 c1 a2 d3 d4 3 2 1 5 0,00 0,75 0,00 1,00 1,00 15 of 23
  • 16. Discriminative Value Лист1 Second step: X1=(a1,b1,c1,d1) a1 vs b1 X1 1 2 3 4 5 1 c1 1 2 3 1 1,00 0,25 1,00 0,00 0,00 2 d1 2 3 1 2 0,25 1,00 0,25 0,75 0,75 3 a1 1 2 3 3 1,00 0,25 1,00 0,00 0,00 4 b1 3 2 1 4 0,00 0,75 0,00 1,00 1,00 5 c1 3 2 1 5 0,00 0,75 0,00 1,00 1,00 mean(a1 vs b1) = (0)/1=0 16 of 23
  • 17. Discriminative Value Лист1 a1 vs c1 X1 1 2 3 4 5 1 c1 1 2 3 1 1,00 0,25 1,00 0,00 0,00 2 d1 2 3 1 2 0,25 1,00 0,25 0,75 0,75 3 a1 1 2 3 3 1,00 0,25 1,00 0,00 0,00 4 b1 3 2 1 4 0,00 0,75 0,00 1,00 1,00 5 c1 3 2 1 5 0,00 0,75 0,00 1,00 1,00 mean(a1 vs c1) = (1+0)/2=0,5 17 of 23
  • 18. Discriminative Value Лист1 a1 vs d1 1 2 3 4 5 1 1,00 0,25 1,00 0,00 0,00 2 0,25 1,00 0,25 0,75 0,75 3 1,00 0,25 1,00 0,00 0,00 4 0,00 0,75 0,00 1,00 1,00 5 0,00 0,75 0,00 1,00 1,00 mean(a1 vs d1) = (0,25)/1=0,25 18 of 23
  • 19. Discriminative Value X1 average Weights Weighted average a1 vs. b1 0.00 1 0.00 a1 vs. c1 0.50 2 1.00 a1 vs. d1 0.25 3 0.75 b1 vs. c1 0.50 1 0.50 b1 vs. d1 0.75 2 1.50 c1 vs. d1 0.50 1 0.50 0.708 Discriminative Power : 1-0.708=0.292 The higher the discriminative power, the more different are the rankings 19 of 23
  • 20. Discriminative power Table: Discriminative power of independent variables Sectors FELAG SUE consensus EP SG TA MKT Energy 0.235 0.211 0.234 0.208 0.194 0.341 0.148 Industrials 0.248 0.230 0.279 0.233 0.263 0.282 0.089 Materials 0.180 0.197 0.278 0.232 0.156 0.378 0.051 IT 0.213 0.238 0.243 0.230 0.185 0.298 0.155 Total 0.219 0.219 0.258 0.226 0.199 0.325 0.111 20 of 23
  • 21. References (1) Aiguzhinov, A., Soares, C., & Serra, A. P. (2010). A similarity-based adaptation of naive bayes for label ranking: Application to the metalearning problem of algorithm recommendation. In B. Pfahringer, G. Holmes, & A. Hoffmann (Eds.), Discovery science (Vol. 6332, pp. 16–26). Springer. Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28–43. Brazdil, P., Soares, C., & Costa, J. (2003). Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning, 50(3), 251–277. Brown, L. (2001). How Important is Past Analyst Earnings Forecast Accuracy? Financial Analysts Journal, 57(6), 44–49. Brown, L., & Mohammad, E. (2003). The Predictive Value of Analyst Characteristics. Journal of Accounting, Auditing and Finance, 18(4). 21 of 23
  • 22. References (2) Clement, M. (1999). Analyst forecast accuracy: Do ability, resources, and portfolio complexity matter? Journal of Accounting and Economics, 27(3), 285–303. Creamer, G., & Stolfo, S. (2009). A link mining algorithm for earnings forecast and trading. Data Mining and Knowledge Discovery, 18(3), 419–445. Fama, E. (1970). Efficient Capital Markets: A Review of Empirical Work. The Journal of Finance, 25, 383–417. Grauer, R. (2008). Benchmarking measures of investment performance with perfect-foresight and bankrupt asset allocation strategies. The Journal of Portfolio Management, 34(4), 43–57. Grossman, S., & Stiglitz, J. (1980). On the Impossibility of Informationally Efficient Prices. American Economic Review, 70, 393–408. H¨ullermeier, E., F¨urnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(2008), 1897–1916. 22 of 23
  • 23. References (3) Jegadeesh, N., Kim, J., Krische, S., & Lee, C. (2004). Analyzing the Analysts: When Do Recommendations Add Value? The Journal of Finance, 59(3), 1083–1124. Ljungqvist, A., Malloy, C., & Marston, F. (2009). Rewriting history. The Journal of Finance, 64(4), 1935–1960. Vembu, S., & G¨artner, T. (2010, October). Preference learning. Springer. Vogt, M., Godden, J., & Bajorath, J. (2007). Bayesian interpretation of a distance function for navigating high-dimensional descriptor spaces. Journal of chemical information and modeling, 47(1), 39-46. Womack, K. (1996). Do Brokerage Analysts’ Recommendations Have Investment Value? The Journal of Finance, 51, 137–168. 23 of 23
  • 24. Similarity-based Naive Bayes for Label Ranking: Prior probability of label ranking Table: Demonstration of the prior probability for label ranking Quarters x1 x2 x3 x4 Ranks Alex Brown Craig 1 High Low High Medium 1 2 3 2 High High High Low 2 3 1 3 Medium Medium High Low 1 2 3 4 Low Low Low High 1 3 2 ... ... ... ... ... ... ... ... 14 Medium High High Medium 1 2 3 15 High Medium High Low 3 1 2 Maximizing the likelihood is equivalent to minimizing the distance (i.e., maximizing the similarity) in a Euclidean space (Vogt, Godden, & Bajorath, 2007)
  • 25. Label ranking: formalization Instance: X ⊆ {V1, . . . , Vm} Labels: L = {λ1, . . . , λk } Output: Y = ΠL Training set: T = {xi , yi }i∈{1,...,n} ⊆ X × Y Learn a mapping h : X → Y such that a loss function is minimized: = n i=1 ρ(πi , ˆπi ) n (5) with ρ being a Spearman correlation coefficient: ρ(π, ˆπ) = 1 − 6 k j=1(πj − ˆπj )2 k3 − k (6) where π and ˆπ are, respectively, the target and predicted rankings for a given instance.
  • 26. Posterior probability of label ranking Proir probability of label ranking: PLR (π) = n i=1 ρ(π, πi ) n (7) Conditional probability of label ranking: PLR (va,i |π) = i:xi,a=va,i ρ(π, πi ) |{i : xi,a = va,i }| (8) Estimated ranking: ˆπ = arg max π∈ΠL PLR (π) m a=1 PLR (xi,a|π) (9)