SlideShare a Scribd company logo
2
Most read
7
Most read
9
Most read
FORD FULKERSON
ALGORITHM
Adarsh V R
ME Scholar, UVCE
K R Circle, Bangalore
 Flow network is a directed graph G=(V,E) such that each
edge has a non-negative capacity c(u,v)≥0.
 Two distinguished vertices exist in G namely :
• Source (denoted by s) : In-degree of this vertex is 0.
• Sink (denoted by t) : Out-degree of this vertex is 0.
 Flow in a network is an integer-valued function f defined on
the edges of G satisfying 0 ≤ f(u,v) ≤ c(u,v), for every
Edge(u,v) in E.
 Augmented Path is a path from source s to sink t in a
residual graph.
 Residual Graph is graph after sending the flow through the
network with edges having remaining capacities (residual
capacity).
2
• FORD-FULKERSON(G,s,t)
• for each edge (u,v)  E[G]
• do f[u,v] 0
• f[v,u] 0
• while there exists a path p from s to t in the residual
network Gf
• do cf(p) min{cf(u,v): (u,v) is in p}
• for each edge (u,v) in p
• do f[u,v] f[u,v]+cf(p) 3




Ford Fulkerson Algorithm
 After every step in the algorithm the following is
maintained:
• Capacity Constraints : ∀ 𝑢, 𝑣 𝜖 𝐸 𝑓 𝑢, 𝑣 ≤ 𝑐(𝑢, 𝑣)
 The flow along an edge can not exceed its capacity.
• Skew Symmetry : ∀ 𝑢, 𝑣 𝜖 𝐸 𝑓 𝑢, 𝑣 = −𝑓(𝑣, 𝑢)
 The net flow from u to v must be the opposite of the net flow from v to u
• Flow Conservation :
 Unless u is s or t. The net flow to a node is zero, except for the source, which
"produces" flow, and the sink, which "consumes" flow.
4
When the algorithm terminates?
All paths from s to t are blocked by either a
• Full forward edge
• Empty backward edge
5
EXAMPLE:
s
2
3
4
5 t10
10
9
8
4
10
1062
0
0
0
0 0 0
0
0
G:
Flow value = 0
0
flow
capacity
6
s
2
3
4
5 t10
10
9
8
4
10
1062
0
0
0
0 0 0
0
0
G:
s
2
3
4
5 t10 9
4
1062
Gf:
10 8
10
8 8
8
X X
X
0
Flow value = 0
capacity
residual capacity
flow
7
s
2
3
4
5 t10
10
9
8
4
10
1062
8
0
0
0 0 8
8
0 0
G:
s
2
3
4
5 t10
4
106
Gf:
8
8
8
9
22
2
10
2
10
X
X
X2X
Flow value = 8
8
0
s
2
3
4
5 t10
10
9
8
4
10
1062
10
0
0
0 2 10
8
2
G:
s
2
3
4
5 t
4
2
Gf:
10
810
2
10 7
106
X
6
6
6
X
X
8X
Flow value = 10
9
s
2
3
4
5 t10
10
9
8
4
10
1062
10
0
6
6 8 10
8
2
G:
s
2
3
4
5 t1
6
Gf:
10
810
8
6
6
6
4
4
4
2
X
8
2
8
X
X
0
X
Flow value = 16
10
s
2
3
4
5 t10
10
9
8
4
10
1062
10
2
8
8 8 10
8
0
G:
s
2
3
4
5 t
62
Gf:
10
10
8
6
8
8
2
2 1
2
8 2
X
9
7 9
X
X
9X
X 3
Flow value = 18
11
s
2
3
4
5 t10
10
9
8
4
10
1062
10
3
9
9 9 10
7
0
G:
s
2
3
4
5 t1 9
1
162
Gf:
10
710
6
9
9
3
1
Flow value = 19
12
s
2
3
4
5 t10
10
9
8
4
10
1062
10
3
9
9 9 10
7
0
G:
s
2
3
4
5 t1 9
1
162
Gf:
10
710
6
9
9
3
1
Flow value = 19
13
14

More Related Content

PPT
Maximum flow
PDF
Network flow problems
PDF
Minimum spanning tree
PPT
SINGLE-SOURCE SHORTEST PATHS
PPTX
Network flows
PPTX
Bellman ford algorithm
PPT
Prim Algorithm and kruskal algorithm
PPT
Prim's Algorithm on minimum spanning tree
Maximum flow
Network flow problems
Minimum spanning tree
SINGLE-SOURCE SHORTEST PATHS
Network flows
Bellman ford algorithm
Prim Algorithm and kruskal algorithm
Prim's Algorithm on minimum spanning tree

What's hot (20)

PDF
Ford Fulkerson Algorithm
PPTX
Ford fulkerson
PPTX
Kruskal Algorithm
PPTX
Dijkstra s algorithm
PPT
Single source stortest path bellman ford and dijkstra
PPTX
Prims and kruskal algorithms
PPTX
GRAPH APPLICATION - MINIMUM SPANNING TREE (MST)
PPTX
My presentation minimum spanning tree
PPT
Minimum spanning tree
PPTX
Bellman ford Algorithm
PPTX
Breadth First Search & Depth First Search
PPTX
Dijkstra's Algorithm
PPTX
Prim's algorithm
PPT
Spanning trees
PPTX
Bellman ford algorithm
PPTX
Divide and Conquer - Part 1
PPTX
Dijkstra’s algorithm
PPT
Floyd Warshall Algorithm
PPTX
Vertex cover Problem
PPTX
Dijkstra’S Algorithm
Ford Fulkerson Algorithm
Ford fulkerson
Kruskal Algorithm
Dijkstra s algorithm
Single source stortest path bellman ford and dijkstra
Prims and kruskal algorithms
GRAPH APPLICATION - MINIMUM SPANNING TREE (MST)
My presentation minimum spanning tree
Minimum spanning tree
Bellman ford Algorithm
Breadth First Search & Depth First Search
Dijkstra's Algorithm
Prim's algorithm
Spanning trees
Bellman ford algorithm
Divide and Conquer - Part 1
Dijkstra’s algorithm
Floyd Warshall Algorithm
Vertex cover Problem
Dijkstra’S Algorithm
Ad

Viewers also liked (8)

PPT
Max flow min cut
PPTX
A Maximum Flow Min cut theorem for Optimizing Network
PDF
Embedding Watermarks into Deep Neural Networks
PDF
Deep Networks with Neuromorphic VLSI devices
PDF
「人工知能で作る楽しい未来」
PDF
PDF
Low power vlsi design ppt
PDF
機械学習によるデータ分析まわりのお話
Max flow min cut
A Maximum Flow Min cut theorem for Optimizing Network
Embedding Watermarks into Deep Neural Networks
Deep Networks with Neuromorphic VLSI devices
「人工知能で作る楽しい未来」
Low power vlsi design ppt
機械学習によるデータ分析まわりのお話
Ad

Similar to Ford Fulkerson Algorithm (20)

PPT
PDF
Ford Fulkerson wjgnejgbnhjbdreryjerhsrgjhegeujtgsruyw (1).pdf
PPTX
Advanced_ Algorithm_ fulk 002410702012.pptx
PPT
Ford Fulkerson Algorithm with example .ppt
PPT
Flow Network Talk
PPTX
86303192-Network-Flow-Problem.pptxnhghvvgcfbch f g hxg s
PDF
08-network-flow-problems that are usefull in Oops
PPTX
Minimum cost maximum flow
PDF
22 - Max Flow Porblem Ford Fulkerson Method.pdf
PPT
MaximumFlow.ppt
PDF
Max Flow Problem
PPTX
23-Maximum Flows_ Ford-Fulkerson algorithm-26-02-2025.pptx
PDF
maxflow.4up.pdf for the Maximam flow to solve using flord fulkerson algorithm
PPT
PDF
CS253: Network Flow (2019)
PPT
maxflow.ppt
PDF
aads_assignment1_answer-1.pdf
PPTX
Ford_Fulkerson_Algorithm_uptade.ppt[1].pptx
PPT
L21-MaxFlowPr.ppt
PPTX
Chapter 9 DESCRIBE THE CONCEPT OF NETWORK MODELS.pptx
Ford Fulkerson wjgnejgbnhjbdreryjerhsrgjhegeujtgsruyw (1).pdf
Advanced_ Algorithm_ fulk 002410702012.pptx
Ford Fulkerson Algorithm with example .ppt
Flow Network Talk
86303192-Network-Flow-Problem.pptxnhghvvgcfbch f g hxg s
08-network-flow-problems that are usefull in Oops
Minimum cost maximum flow
22 - Max Flow Porblem Ford Fulkerson Method.pdf
MaximumFlow.ppt
Max Flow Problem
23-Maximum Flows_ Ford-Fulkerson algorithm-26-02-2025.pptx
maxflow.4up.pdf for the Maximam flow to solve using flord fulkerson algorithm
CS253: Network Flow (2019)
maxflow.ppt
aads_assignment1_answer-1.pdf
Ford_Fulkerson_Algorithm_uptade.ppt[1].pptx
L21-MaxFlowPr.ppt
Chapter 9 DESCRIBE THE CONCEPT OF NETWORK MODELS.pptx

Recently uploaded (20)

DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Well-logging-methods_new................
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Construction Project Organization Group 2.pptx
DOCX
573137875-Attendance-Management-System-original
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
Sustainable Sites - Green Building Construction
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Operating System & Kernel Study Guide-1 - converted.pdf
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Lecture Notes Electrical Wiring System Components
Well-logging-methods_new................
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Construction Project Organization Group 2.pptx
573137875-Attendance-Management-System-original
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Sustainable Sites - Green Building Construction
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx

Ford Fulkerson Algorithm

  • 1. FORD FULKERSON ALGORITHM Adarsh V R ME Scholar, UVCE K R Circle, Bangalore
  • 2.  Flow network is a directed graph G=(V,E) such that each edge has a non-negative capacity c(u,v)≥0.  Two distinguished vertices exist in G namely : • Source (denoted by s) : In-degree of this vertex is 0. • Sink (denoted by t) : Out-degree of this vertex is 0.  Flow in a network is an integer-valued function f defined on the edges of G satisfying 0 ≤ f(u,v) ≤ c(u,v), for every Edge(u,v) in E.  Augmented Path is a path from source s to sink t in a residual graph.  Residual Graph is graph after sending the flow through the network with edges having remaining capacities (residual capacity). 2
  • 3. • FORD-FULKERSON(G,s,t) • for each edge (u,v)  E[G] • do f[u,v] 0 • f[v,u] 0 • while there exists a path p from s to t in the residual network Gf • do cf(p) min{cf(u,v): (u,v) is in p} • for each edge (u,v) in p • do f[u,v] f[u,v]+cf(p) 3     Ford Fulkerson Algorithm
  • 4.  After every step in the algorithm the following is maintained: • Capacity Constraints : ∀ 𝑢, 𝑣 𝜖 𝐸 𝑓 𝑢, 𝑣 ≤ 𝑐(𝑢, 𝑣)  The flow along an edge can not exceed its capacity. • Skew Symmetry : ∀ 𝑢, 𝑣 𝜖 𝐸 𝑓 𝑢, 𝑣 = −𝑓(𝑣, 𝑢)  The net flow from u to v must be the opposite of the net flow from v to u • Flow Conservation :  Unless u is s or t. The net flow to a node is zero, except for the source, which "produces" flow, and the sink, which "consumes" flow. 4
  • 5. When the algorithm terminates? All paths from s to t are blocked by either a • Full forward edge • Empty backward edge 5
  • 6. EXAMPLE: s 2 3 4 5 t10 10 9 8 4 10 1062 0 0 0 0 0 0 0 0 G: Flow value = 0 0 flow capacity 6
  • 7. s 2 3 4 5 t10 10 9 8 4 10 1062 0 0 0 0 0 0 0 0 G: s 2 3 4 5 t10 9 4 1062 Gf: 10 8 10 8 8 8 X X X 0 Flow value = 0 capacity residual capacity flow 7
  • 8. s 2 3 4 5 t10 10 9 8 4 10 1062 8 0 0 0 0 8 8 0 0 G: s 2 3 4 5 t10 4 106 Gf: 8 8 8 9 22 2 10 2 10 X X X2X Flow value = 8 8
  • 9. 0 s 2 3 4 5 t10 10 9 8 4 10 1062 10 0 0 0 2 10 8 2 G: s 2 3 4 5 t 4 2 Gf: 10 810 2 10 7 106 X 6 6 6 X X 8X Flow value = 10 9
  • 10. s 2 3 4 5 t10 10 9 8 4 10 1062 10 0 6 6 8 10 8 2 G: s 2 3 4 5 t1 6 Gf: 10 810 8 6 6 6 4 4 4 2 X 8 2 8 X X 0 X Flow value = 16 10
  • 11. s 2 3 4 5 t10 10 9 8 4 10 1062 10 2 8 8 8 10 8 0 G: s 2 3 4 5 t 62 Gf: 10 10 8 6 8 8 2 2 1 2 8 2 X 9 7 9 X X 9X X 3 Flow value = 18 11
  • 12. s 2 3 4 5 t10 10 9 8 4 10 1062 10 3 9 9 9 10 7 0 G: s 2 3 4 5 t1 9 1 162 Gf: 10 710 6 9 9 3 1 Flow value = 19 12
  • 13. s 2 3 4 5 t10 10 9 8 4 10 1062 10 3 9 9 9 10 7 0 G: s 2 3 4 5 t1 9 1 162 Gf: 10 710 6 9 9 3 1 Flow value = 19 13
  • 14. 14