Video Lectures for MBA 
By: 
Video.edhole.com
Laplace Transform 
BIOE 4200 
Video.edhole.com
Why use Laplace Transforms? 
Find solution to differential equation 
using algebra 
Relationship to Fourier Transform 
allows easy way to characterize 
systems 
No need for convolution of input and 
differential equation solution 
Useful with multiple processes in 
system 
Video.edhole.com
How to use Laplace 
Find differential equations that describe 
system 
Obtain Laplace transform 
Perform algebra to solve for output or 
variable of interest 
Apply inverse transform to find solution 
Video.edhole.com
What are Laplace transforms? 
F(s) L{f (t)} f (t)e dt 
ò 
ò 
s+ ¥ 
f (t) L {F(s)} 1 
1 st 
s- ¥ 
= = 
- 
¥ 
- 
p 
= = 
j 
j 
0 
st 
F(s)e ds 
2 j 
 t is real, s is complex! 
 Inverse requires complex analysis to solve 
 Note “transform”: f(t) ® F(s), where t is integrated 
and s is variable 
 Conversely F(s) ® f(t), t is variable and s is 
integrated 
Video.eAdshsoulem.ceosm f(t) = 0 for all t < 0
Evaluating F(s) = L{f(t)} 
Hard Way – do the integral 
let f (t) 1 
¥ 
ò 
= 
(0 1) 1 
s 
= = - - = 
¥ ¥ 
F(s) e e dt e dt 1 
ò ò 
at st (s a )t 
0 0 
f (t) sin t 
¥ 
ò 
- - - + 
- 
- 
- 
= 
= 
= 
+ 
= = = 
0 
st 
at 
0 
st 
F(s) e sin(t)dt 
s a 
f (t) e 
s 
F(s) e dt 1 
let 
let 
Integrate by parts 
Video.edhole.com
Evaluating F(s)=L{f(t)}- Hard Way 
remember òudv = uv - ò vdu 
= - = - - 
u e st ,du se stdt 
= = - 
dv sin(t)dt, v cos(t) 
¥ ¥ 
e - sin(t)dt [ e - cos(t)] ¥ s e - 
cos(t)dt 
ò ò 
 = - - = 
0 0 
¥ 
ò 
- - 
st st 
- - 
0 
st 
0 
st st 
e (1) s e cos(t)dt 
= - = - - 
u e st ,du se stdt 
= = 
dv cos(t)dt, v sin(t) 
 = 
ò ò 
ò 
¥ 
- - 
¥ 
e cos(t)dt 
] 
- ¥ - 
¥ 
- 
st st 
- + = - + 
0 
0 
st 
0 
st 
0 
st 
¥ ¥ 
ò ò 
- - 
st 2 st 
= - = 
se sin(t)dt 1 s e sin(t)dt 
0 0 
+ = 
(1 s ) e sin(t)dt 1 
[ e sin(t) s e sin(t)dt e (0) s e sin(t)dt 
2 
0 
e st 
sin(t)dt 1 
2 st 
0 
+ 
1 s 
= 
ò 
ò 
¥ 
- 
¥ 
- 
let 
let 
Substituting, we get: 
Video.edhole.com It only gets worse…
Evaluating F(s) = L{f(t)} 
This is the easy way ... 
Recognize a few different transforms 
See table 2.3 on page 42 in textbook 
Or see handout .... 
Learn a few different properties 
Do a little math 
Video.edhole.com
Table of selected Laplace 
Transforms 
f (t) = u(t) Û F(s) = 
1 
f (t) e u(t) F(s) 1 
+ 
s a 
- 
= Û = 
f (t) cos(t)u(t) F(s) s 
2 
s 1 
f (t) sin(t)u(t) F(s) 1 
s 1 
s 
2 
at 
+ 
= Û = 
+ 
= Û = 
Video.edhole.com
More transforms 
f (t) t u(t) F(s) n!+ = Û = 
n 1 
n 
s 
120 
n 0, f (t) u(t) F(s) 0! 
= = Û = = 
n = 1, f (t) = tu(t) Û F(s) = 
1! 
n 5,f (t) t u(t) F(s) 5! 
1 
6 6 
5 
1 
2 
s 
s 
s 
s 
s 
= = Û = = 
f (t) = d(t)ÛF(s) =1 
Video.edhole.com
Note on step functions in Laplace 
Unit step function definition: 
= ³ 
u(t) 1, t 0 
= < 
u(t) 0, t 0 
Used in conjunction with f(t) ® f(t)u(t) 
because of Laplace integral limits: 
¥ 
= - 
ò 
L{f (t)} f (t)e stdt 
0 
Video.edhole.com
Properties of Laplace Transforms 
Linearity 
Scaling in time 
Time shift 
“frequency” or s-plane shift 
Multiplication by tn 
Integration 
Differentiation 
Video.edhole.com
Properties: Linearity 
L{c f (t) c f (t)} c F (s) c F (s) 1 1 2 2 1 1 2 2 + = + 
Example : 
- = 
- = 
) 1 
s 1 
L{sinh(t)} 
e 1 
2 
t t 
L{e } 1 
2 
t t 
1 
( 1 
2 
+ - - 
((s 1) (s 1) 
2 
s 1 
1 
) 
s 1 
s 1 
1 
L{e } 
2 
1 
e } 
2 
y{1 
2 2 
- 
= 
- 
= 
+ 
- 
- 
= 
- 
- 
Proof : 
+ = 
L{c f (t) c f (t)} 
1 1 2 2 
+ = 
[c f (t) c f (t)]e dt 
ò ò 
c f (t)e dt c f (t)e dt 
c F (s) c F (s) 
1 1 2 2 
0 
st 
2 2 
0 
st 
1 1 
st 
2 2 
0 
1 1 
+ 
+ = 
ò 
¥ 
- 
¥ 
- 
- 
¥ 
Video.edhole.com
Properties: Scaling in Time 
F( s 
a 
) 
a 
L{f (at)} = 1 
Example : 
w Proof : 
L{sin( t)} 
1 ( 1 
w 
2 2 
w 
2 2 
2 
2 
s 
) 
s 
1 ( 
1) 
( s ) 
+w 
= 
+w 
w 
+ = 
w w 
L{f (at)} 
1 
f (at)e dt 
= = = 
F( s 
a 
) 
a 
1 
,dt 1 
a 
( s 
f (u)e du 
a 
du 
a 
u at, t u 
a 
0 
)u 
a 
0 
st 
ò 
ò 
¥ 
- 
¥ 
- 
= 
= 
= 
let 
Video.edhole.com
Properties: Time Shift 
L{f (t - t )u(t - t )} = e - 
st0F(s) 
0 0 
Example : 
L{e u(t 10)} 
e 
10s 
s a 
a (t 10) 
+ 
- = 
- 
- - Proof : 
- - = 
L{f (t t )u(t t )} 
0 0 
- - = 
f (t t )u(t t )e dt 
- = 
f (t t )e dt 
ò 
u t t , t u t 
0 0 
- + 
f (u)e du 
st su 
¥- 
= 
e 0 f (u)e du e 0 
F(s) 
0 
0 
0 
st 
0 
t 
0 
s(u t ) 
t 
st 
0 
0 
st 
0 0 
- 
¥ 
- - 
¥ 
- 
¥ 
- 
ò 
ò 
ò 
= 
= - = + 
let 
Video.edhole.com
Properties: S-plane (frequency) 
shift 
L{e-atf (t)} = F(s + a) 
Example : 
- w = Proof : 
L{e sin( t)} 
w 
2 2 
at 
+ +w 
(s a) 
at 
- 
L{e f (t)} 
at st 
e f (t)e dt 
(s a )t 
f (t)e dt 
ò 
0 
¥ 
0 
+ 
F(s a) 
= 
= 
= 
ò 
- + 
¥ 
- - 
Video.edhole.com
Properties: Multiplication by tn 
F(s) 
n 
L{t f (t)} ( 1) d n 
ds 
n = - n 
Example : 
L{t u(t)} 
( 1) d 
- = 
n! 
n 1 
n 
n 
n 
n 
s 
(1 
) 
s 
ds 
+ 
= 
Proof : 
n 
= = 
= - ¶ 
F(s) 
s 
n n st 
L{t f (t)} t f (t)e dt 
f (t)t e dt 
n 
- ¶ 
f (t)e dt ( 1) 
n 
- ¶ 
s 
( 1) 
e dt 
s 
( 1) f (t) 
n 
n 
0 
st 
n 
n 
0 
st 
n 
n 
0 
n st 
0 
¶ 
¶ 
= 
¶ 
= 
ò 
ò 
ò 
ò 
¥ 
- 
¥ 
- 
¥ 
- 
¥ 
- 
Video.edhole.com
The “D” Operator 
1. Differentiation shorthand 
2. Integration shorthand 
Df (t) df (t) 
f (t) 
dt 
= 
D f (t) d 
2 
dt 
2 
2 = 
t 
if g(t) = ò 
f (t)dt 
= ò 
-¥ 
then Dg(t) = 
f (t) 
then 
t 
g(t) f (t)dt 
a 
= - 
1 
a 
g(t) D f (t) 
if 
Video.edhole.com
Properties: Integrals 
L{D 1f (t)} F(s) 
s 
0 - = 
Example : 
- = 
1 
0 
L{D cos(t)} 
)( s 
s 
L{sin(t)} 
) 1 
s 1 
s 1 
(1 
2 2 
+ 
= 
+ 
Proof : 
let 
¥ 
- 
- 
= 
= 
ò 
L{sin(t)} g(t)e dt 
0 
st 
1 
0 
= = 
u g(t),du f (t)dt 
dv e dt, v 1 
st st 
e 
s 
g(t) D f (t) 
- - 
= = - 
f (t)e dt F(s) 
s 
[ 1 
= - - ¥ + - = 
ò 
ò 
= 
t 
0 
st 
0 
st 
g(t) f (t)dt 
s 
g(t)e ] 1 
s 
If t=0, g(t)=0 
¥ 
ò 
for (t = ¥ ) Þ f (t)e - stdt 
< ¥ 
so 
ò slower than 
Video.edhole.com f (t)dt g(t) 0 
e-st ®0 
¥ 
= ®¥ 
0
Properties: Derivatives 
(this is the big one) 
L{Df (t)} = sF(s) - f (0+ ) 
Example : 
L{Dcos(t)} 
s 
s 
- = 
+ 
- = 
+ 
2 2 
- + 
s (s 1) 
s 1 
L{ sin(t)} 
1 
- 
s 1 
1 
s 1 
f (0 ) 
s 1 
2 
2 
2 
2 
2 
2 
= - 
+ 
+ 
= 
+ 
Proof : 
¥ 
L{Df (t)} d 
f (t)e dt 
dt 
0 
= 
- - 
= = - 
u e ,du se 
dv d 
= = 
f (t)dt, v f (t) 
dt 
[e f (t)] s f (t)e dt 
0 
f (0 ) sF(s) 
st 
0 
st 
st st 
st 
- + 
+ = 
+ 
¥ 
- ¥ - 
- 
ò 
ò 
let 
Video.edhole.com
Difference in 
f (0+ ), f (0- ) & f (0) 
The values are only different if f(t) is not 
continuous @ t=0 
Example of discontinuous function: u(t) 
= = 
- 
f (0 ) lim u(t) 0 
® 
t 0 
- 
= = 
+ 
f (0 ) lim u(t) 1 
® 
t 0 
+ 
= = 
f (0) u(0) 1 
Video.edhole.com
Properties: Nth order derivatives 
L{D2f (t)} = ? 
let = = = 
g(t) Df (t),g(0) Df (0) f '(0) 
2 
= = - = - 
L{D g(t)} sG(s) g(0) sL{Df (t)} f '(0) 
2 
= - - = - - 
s(sF(s) f (0)) f '(0) s F(s) sF(0) f '(0) 
L{Dnf (t)} = snF(s) - s(n-1)f (0) - s(n-2)f '(0) -- sf (n-2)' (0) - f (n-1)' (0) 
NOTE: to take 
you need the value @ t=0 for 
called initial conditions! 
L{Dnf (t)} 
Dn-1f (t),Dn-2f (t),...Df (t),f (t)® 
We will use this to solve differential equations! 
Video.edhole.com
Properties: Nth order derivatives 
Start with 
Now apply again 
L{Df (t)} = sF(s) - f (0) 
L{D2f (t)} 
g(t) = Df (t) and Dg(t) = 
D2f (t) 
= - 
L{Dg(t)} sG(s) g(0) 
= 
g(t) Df (t) 
 = 
g(0) f '(0) 
= = = - 
G(s) L{g(t)} L{Df (t)} sF(s) f (0) 
L{Dg(t)} = sG(s) - g(0) = s[sF(s) - f (0)]- f '(0) = s2F(s) -sf (0) - f '(0) 
D3f (t), D4f (t), etc. 
let 
then 
remember 
Can repeat for 
L{Dnf (t)} = snF(s) - s(n-1)f (0) - s(n-2)f '(0) -- sf (n-2)' (0) - f (n-1)' (0) 
Video.edhole.com
Relevant Book Sections 
Modeling - 2.2 
Linear Systems - 2.3, page 38 only 
Laplace - 2.4 
Transfer functions – 2.5 thru ex 2.4 
Video.edhole.com

More Related Content

PPT
PDF
Fourier transform
PPT
Advance Engineering Mathematics
PDF
PDF
Convolution Neural Network
PPT
Derivative Rules Calc I
PDF
脳の計算論 第3章「リズム活動と位相応答」
PDF
Learning to Sample
Fourier transform
Advance Engineering Mathematics
Convolution Neural Network
Derivative Rules Calc I
脳の計算論 第3章「リズム活動と位相応答」
Learning to Sample

What's hot (8)

PPT
PDF
The Ring programming language version 1.2 book - Part 40 of 84
PPT
4 matched filters and ambiguity functions for radar signals-2
PDF
PythonScripting
PDF
Lecture 9
PDF
Ece4510 notes03
PDF
Slides ensae-2016-8
The Ring programming language version 1.2 book - Part 40 of 84
4 matched filters and ambiguity functions for radar signals-2
PythonScripting
Lecture 9
Ece4510 notes03
Slides ensae-2016-8
Ad

Similar to free Video lecture (20)

PPT
Fourier Transform
PPT
free Video lecture
PDF
corripio
PDF
Capitulo 2 corripio
PDF
Laplace1
PPT
fourier transforms
PPT
Admission in India
PDF
Sheet with useful_formulas
PDF
Inverse laplace
PPT
Admission in india
PDF
lec04.pdf
PPT
Fourier transform
PPT
Laplace
PPT
Top School in india
PPT
Laplace transforms
PDF
Laplace table
PDF
Laplace table
PPT
Mba top schools in india
PDF
laplace.pdf
PDF
Calculus III
Fourier Transform
free Video lecture
corripio
Capitulo 2 corripio
Laplace1
fourier transforms
Admission in India
Sheet with useful_formulas
Inverse laplace
Admission in india
lec04.pdf
Fourier transform
Laplace
Top School in india
Laplace transforms
Laplace table
Laplace table
Mba top schools in india
laplace.pdf
Calculus III
Ad

More from Edhole.com (20)

PPT
Ca in patna
PPT
Chartered accountant in dwarka
PPT
Ca in dwarka
PPT
Ca firm in dwarka
PPT
Website development company surat
PPTX
Website designing company in surat
PPTX
Website dsigning company in india
PPT
Website designing company in delhi
PPT
Ca in patna
PPT
Chartered accountant in dwarka
PPT
Ca firm in dwarka
PPTX
Ca in dwarka
PPTX
Website development company surat
PPT
Website designing company in surat
PPT
Website designing company in india
PPT
Website designing company in delhi
PPT
Website designing company in mumbai
PPT
Website development company surat
PPT
Website desinging company in surat
PPT
Website designing company in india
Ca in patna
Chartered accountant in dwarka
Ca in dwarka
Ca firm in dwarka
Website development company surat
Website designing company in surat
Website dsigning company in india
Website designing company in delhi
Ca in patna
Chartered accountant in dwarka
Ca firm in dwarka
Ca in dwarka
Website development company surat
Website designing company in surat
Website designing company in india
Website designing company in delhi
Website designing company in mumbai
Website development company surat
Website desinging company in surat
Website designing company in india

Recently uploaded (20)

PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
International_Financial_Reporting_Standa.pdf
PPTX
20th Century Theater, Methods, History.pptx
PDF
HVAC Specification 2024 according to central public works department
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Computer Architecture Input Output Memory.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
IGGE1 Understanding the Self1234567891011
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
B.Sc. DS Unit 2 Software Engineering.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Paper A Mock Exam 9_ Attempt review.pdf.
International_Financial_Reporting_Standa.pdf
20th Century Theater, Methods, History.pptx
HVAC Specification 2024 according to central public works department
What if we spent less time fighting change, and more time building what’s rig...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Complications of Minimal Access-Surgery.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Computer Architecture Input Output Memory.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Virtual and Augmented Reality in Current Scenario
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
IGGE1 Understanding the Self1234567891011
TNA_Presentation-1-Final(SAVE)) (1).pptx
Share_Module_2_Power_conflict_and_negotiation.pptx

free Video lecture

  • 1. Video Lectures for MBA By: Video.edhole.com
  • 2. Laplace Transform BIOE 4200 Video.edhole.com
  • 3. Why use Laplace Transforms? Find solution to differential equation using algebra Relationship to Fourier Transform allows easy way to characterize systems No need for convolution of input and differential equation solution Useful with multiple processes in system Video.edhole.com
  • 4. How to use Laplace Find differential equations that describe system Obtain Laplace transform Perform algebra to solve for output or variable of interest Apply inverse transform to find solution Video.edhole.com
  • 5. What are Laplace transforms? F(s) L{f (t)} f (t)e dt ò ò s+ ¥ f (t) L {F(s)} 1 1 st s- ¥ = = - ¥ - p = = j j 0 st F(s)e ds 2 j  t is real, s is complex!  Inverse requires complex analysis to solve  Note “transform”: f(t) ® F(s), where t is integrated and s is variable  Conversely F(s) ® f(t), t is variable and s is integrated Video.eAdshsoulem.ceosm f(t) = 0 for all t < 0
  • 6. Evaluating F(s) = L{f(t)} Hard Way – do the integral let f (t) 1 ¥ ò = (0 1) 1 s = = - - = ¥ ¥ F(s) e e dt e dt 1 ò ò at st (s a )t 0 0 f (t) sin t ¥ ò - - - + - - - = = = + = = = 0 st at 0 st F(s) e sin(t)dt s a f (t) e s F(s) e dt 1 let let Integrate by parts Video.edhole.com
  • 7. Evaluating F(s)=L{f(t)}- Hard Way remember òudv = uv - ò vdu = - = - - u e st ,du se stdt = = - dv sin(t)dt, v cos(t) ¥ ¥ e - sin(t)dt [ e - cos(t)] ¥ s e - cos(t)dt ò ò = - - = 0 0 ¥ ò - - st st - - 0 st 0 st st e (1) s e cos(t)dt = - = - - u e st ,du se stdt = = dv cos(t)dt, v sin(t) = ò ò ò ¥ - - ¥ e cos(t)dt ] - ¥ - ¥ - st st - + = - + 0 0 st 0 st 0 st ¥ ¥ ò ò - - st 2 st = - = se sin(t)dt 1 s e sin(t)dt 0 0 + = (1 s ) e sin(t)dt 1 [ e sin(t) s e sin(t)dt e (0) s e sin(t)dt 2 0 e st sin(t)dt 1 2 st 0 + 1 s = ò ò ¥ - ¥ - let let Substituting, we get: Video.edhole.com It only gets worse…
  • 8. Evaluating F(s) = L{f(t)} This is the easy way ... Recognize a few different transforms See table 2.3 on page 42 in textbook Or see handout .... Learn a few different properties Do a little math Video.edhole.com
  • 9. Table of selected Laplace Transforms f (t) = u(t) Û F(s) = 1 f (t) e u(t) F(s) 1 + s a - = Û = f (t) cos(t)u(t) F(s) s 2 s 1 f (t) sin(t)u(t) F(s) 1 s 1 s 2 at + = Û = + = Û = Video.edhole.com
  • 10. More transforms f (t) t u(t) F(s) n!+ = Û = n 1 n s 120 n 0, f (t) u(t) F(s) 0! = = Û = = n = 1, f (t) = tu(t) Û F(s) = 1! n 5,f (t) t u(t) F(s) 5! 1 6 6 5 1 2 s s s s s = = Û = = f (t) = d(t)ÛF(s) =1 Video.edhole.com
  • 11. Note on step functions in Laplace Unit step function definition: = ³ u(t) 1, t 0 = < u(t) 0, t 0 Used in conjunction with f(t) ® f(t)u(t) because of Laplace integral limits: ¥ = - ò L{f (t)} f (t)e stdt 0 Video.edhole.com
  • 12. Properties of Laplace Transforms Linearity Scaling in time Time shift “frequency” or s-plane shift Multiplication by tn Integration Differentiation Video.edhole.com
  • 13. Properties: Linearity L{c f (t) c f (t)} c F (s) c F (s) 1 1 2 2 1 1 2 2 + = + Example : - = - = ) 1 s 1 L{sinh(t)} e 1 2 t t L{e } 1 2 t t 1 ( 1 2 + - - ((s 1) (s 1) 2 s 1 1 ) s 1 s 1 1 L{e } 2 1 e } 2 y{1 2 2 - = - = + - - = - - Proof : + = L{c f (t) c f (t)} 1 1 2 2 + = [c f (t) c f (t)]e dt ò ò c f (t)e dt c f (t)e dt c F (s) c F (s) 1 1 2 2 0 st 2 2 0 st 1 1 st 2 2 0 1 1 + + = ò ¥ - ¥ - - ¥ Video.edhole.com
  • 14. Properties: Scaling in Time F( s a ) a L{f (at)} = 1 Example : w Proof : L{sin( t)} 1 ( 1 w 2 2 w 2 2 2 2 s ) s 1 ( 1) ( s ) +w = +w w + = w w L{f (at)} 1 f (at)e dt = = = F( s a ) a 1 ,dt 1 a ( s f (u)e du a du a u at, t u a 0 )u a 0 st ò ò ¥ - ¥ - = = = let Video.edhole.com
  • 15. Properties: Time Shift L{f (t - t )u(t - t )} = e - st0F(s) 0 0 Example : L{e u(t 10)} e 10s s a a (t 10) + - = - - - Proof : - - = L{f (t t )u(t t )} 0 0 - - = f (t t )u(t t )e dt - = f (t t )e dt ò u t t , t u t 0 0 - + f (u)e du st su ¥- = e 0 f (u)e du e 0 F(s) 0 0 0 st 0 t 0 s(u t ) t st 0 0 st 0 0 - ¥ - - ¥ - ¥ - ò ò ò = = - = + let Video.edhole.com
  • 16. Properties: S-plane (frequency) shift L{e-atf (t)} = F(s + a) Example : - w = Proof : L{e sin( t)} w 2 2 at + +w (s a) at - L{e f (t)} at st e f (t)e dt (s a )t f (t)e dt ò 0 ¥ 0 + F(s a) = = = ò - + ¥ - - Video.edhole.com
  • 17. Properties: Multiplication by tn F(s) n L{t f (t)} ( 1) d n ds n = - n Example : L{t u(t)} ( 1) d - = n! n 1 n n n n s (1 ) s ds + = Proof : n = = = - ¶ F(s) s n n st L{t f (t)} t f (t)e dt f (t)t e dt n - ¶ f (t)e dt ( 1) n - ¶ s ( 1) e dt s ( 1) f (t) n n 0 st n n 0 st n n 0 n st 0 ¶ ¶ = ¶ = ò ò ò ò ¥ - ¥ - ¥ - ¥ - Video.edhole.com
  • 18. The “D” Operator 1. Differentiation shorthand 2. Integration shorthand Df (t) df (t) f (t) dt = D f (t) d 2 dt 2 2 = t if g(t) = ò f (t)dt = ò -¥ then Dg(t) = f (t) then t g(t) f (t)dt a = - 1 a g(t) D f (t) if Video.edhole.com
  • 19. Properties: Integrals L{D 1f (t)} F(s) s 0 - = Example : - = 1 0 L{D cos(t)} )( s s L{sin(t)} ) 1 s 1 s 1 (1 2 2 + = + Proof : let ¥ - - = = ò L{sin(t)} g(t)e dt 0 st 1 0 = = u g(t),du f (t)dt dv e dt, v 1 st st e s g(t) D f (t) - - = = - f (t)e dt F(s) s [ 1 = - - ¥ + - = ò ò = t 0 st 0 st g(t) f (t)dt s g(t)e ] 1 s If t=0, g(t)=0 ¥ ò for (t = ¥ ) Þ f (t)e - stdt < ¥ so ò slower than Video.edhole.com f (t)dt g(t) 0 e-st ®0 ¥ = ®¥ 0
  • 20. Properties: Derivatives (this is the big one) L{Df (t)} = sF(s) - f (0+ ) Example : L{Dcos(t)} s s - = + - = + 2 2 - + s (s 1) s 1 L{ sin(t)} 1 - s 1 1 s 1 f (0 ) s 1 2 2 2 2 2 2 = - + + = + Proof : ¥ L{Df (t)} d f (t)e dt dt 0 = - - = = - u e ,du se dv d = = f (t)dt, v f (t) dt [e f (t)] s f (t)e dt 0 f (0 ) sF(s) st 0 st st st st - + + = + ¥ - ¥ - - ò ò let Video.edhole.com
  • 21. Difference in f (0+ ), f (0- ) & f (0) The values are only different if f(t) is not continuous @ t=0 Example of discontinuous function: u(t) = = - f (0 ) lim u(t) 0 ® t 0 - = = + f (0 ) lim u(t) 1 ® t 0 + = = f (0) u(0) 1 Video.edhole.com
  • 22. Properties: Nth order derivatives L{D2f (t)} = ? let = = = g(t) Df (t),g(0) Df (0) f '(0) 2 = = - = - L{D g(t)} sG(s) g(0) sL{Df (t)} f '(0) 2 = - - = - - s(sF(s) f (0)) f '(0) s F(s) sF(0) f '(0) L{Dnf (t)} = snF(s) - s(n-1)f (0) - s(n-2)f '(0) -- sf (n-2)' (0) - f (n-1)' (0) NOTE: to take you need the value @ t=0 for called initial conditions! L{Dnf (t)} Dn-1f (t),Dn-2f (t),...Df (t),f (t)® We will use this to solve differential equations! Video.edhole.com
  • 23. Properties: Nth order derivatives Start with Now apply again L{Df (t)} = sF(s) - f (0) L{D2f (t)} g(t) = Df (t) and Dg(t) = D2f (t) = - L{Dg(t)} sG(s) g(0) = g(t) Df (t) = g(0) f '(0) = = = - G(s) L{g(t)} L{Df (t)} sF(s) f (0) L{Dg(t)} = sG(s) - g(0) = s[sF(s) - f (0)]- f '(0) = s2F(s) -sf (0) - f '(0) D3f (t), D4f (t), etc. let then remember Can repeat for L{Dnf (t)} = snF(s) - s(n-1)f (0) - s(n-2)f '(0) -- sf (n-2)' (0) - f (n-1)' (0) Video.edhole.com
  • 24. Relevant Book Sections Modeling - 2.2 Linear Systems - 2.3, page 38 only Laplace - 2.4 Transfer functions – 2.5 thru ex 2.4 Video.edhole.com