SlideShare a Scribd company logo
강태욱 연구위원
공학박사
Ph.D Taewook, Kang
laputa99999@gmail.com
https://daddynkidsmakers.blogspot.com
건설AI 히치하이커를 위한 가이드
GEN AI + LLM에 초점을 맞춘
KICT
Intro
Advanture. usecase from AI to Gen AI
My lab tools. open source
Jackpot and hallucination
Deep dive. Gen AI + LLM
Journey. Breadcrumbs
The Hitchhiker’s Guide to the Galaxy
KICT
Intro
Maker, Ph.D.
12 books author
BIM principle and Digital transformation: BIM principle & DX
사이트 소개, Profile (dxbim.blogspot.com)
Study history
P4
Life cycle
“If it isn’t fun, you’re doing the wrong
technology.” - ivan sutherland
Study history
P4
Roadmap
Computer graphics, CAD
BIM-GIS + ISO (2012)
BIM + IoT + Scan (2014)
Scan to BIM + Robotics + AI (2017)
Digital Twin + AI (2021)
BIM
VDCO
Mining
IoT
Scan
Virtual
Design
Construction
Operations
1D, 2D
3D, nD
Semantic
Knowledge
Sensors
Robotics
Usecase
advanture
CG
SCAN
ROBOT
AI
GEN AI
LLM
AEC
Generative AI identified by Deloitte
• Marketing content assistant
• Code assistant for developers
• Customer support on demand
• Product design assistant
• Research-based report generation
• Synthetic data generation
• Enterprise-wide data search and access
• Game content development
• Language translation
• Simulation of urban planning scenarios
• Hyper-personalised education
• Onboarding assistant
Usecase
Generative AI in AECO
• Multi Agent
• Anomaly detection in contract documents
• Reasoning in IoT dataset for O&M
• Risk management
• Optimization in Construction Management
• Concept design generation
• Report summarization and generation
• Training data generation
• Query using LLM
• Language translation
• Simulation of urban planning scenarios
• Personalised education and guidance system
Usecase
Scenario
CPS & DT
Digital
Twin
Structural
health
monitoring
Track and
trace
Remote
diagnosis
Remote
services
Remote
control
Condition
monitoring
Systems
health
monitoring
BIM
as i-DB
IoT…
AI
Sensor device
ICBM
Simulation
Robotics
Scan-Vision
Smart contract
based on Blockchain
Gen AI
Multi Agent
Scenario
IoT
Big data
management
AI + Simulation using LLM
Cloud
platform
Machine control
Field monitoring
IoT
sensor
Usecase
for safety, accuracy, productivity
sensing
Data analysis
& prediction
GIS IoT based monitoring
Field control
Infra IoT
service
connection
Plant control system (SCADA)
Field monitoring system
LoRA, BLE,
WiFi…
Layer 8 | IISL
(Infra IoT Service Layer)
Worker
Agency
<device_definition id=‘dd#1’>
<device id=‘T#1’name=‘temp’type=‘temperature’>
<maker name=‘CH korea’ email=‘laputa99999_9@gmail.com’ tel=‘82-0330-0802-1013’ location=‘…’/>
<specification>
<op_range name=‘voltage’ unit=‘V’type=‘real’value=‘3.3’/>
<op_range name=‘temperature’ unit=‘degree’ type=‘real’begin=‘-10.0’end=’60.0’/>
<op_range name=‘humidity’unit=‘%R.H’type=‘real’begin=‘0.0’end=’50.0’/>
<op_range name=‘GPS’unit=‘WGS84’type=‘vector2D’begin=‘(0,0)’ end=‘(127, 32)’/>
<op_range name=‘characteristic_curve’unit1=‘temperature’ unit2=‘voltage’ type=‘vector2D’>
(0,0), (1.2, 2.4), (3.5, 6.2), (4.1, 7.2)
</op_range>
<op_range name=‘period’unit=‘year’value=‘2’/>
</specification>
</device>
</device_definition>
Intelligent IoT sensor
•Self diagnose
•IISL protocol
•Security
•Availability
1
1
2
3
4
5
6
7
8
Plant sensing
Overview
AI ConTech $3B funding from 2021 (Daniel Laboe, 2023.10)
2024년 상반기 스마트 건설과 BIM 기술 동향 (buildingSMART )
Machine
learning
Deep
learning
Gen AI
Multi-
agent
AGI
Usecase
AI 기반 텍스트 렌더링 Revit 애드인 (VERAS, EnvolveLAB)
Usecase
https://daddynkidsmakers.blogspot.com/2023/04/ope
nai-for-grasshopper.html
OpenAI for Grasshopper
Usecase
Usecase
Technology to create 2D drawings with perfect dimensions from 3D
models with one click (Autodesk Fusion, November 2023)
Usecase
CreationAI-based design system AiCorb
(Obayashi Corporation)
Usecase
AI-based structural frame, automatic creation of member
cross sections SYMPREST (Shimizu Construction)
Usecase
Usecase
Funding $56.5M, 2021
Usecase
Pillar Technology
Usecase
Spot-R
Usecase
ANYbotics AG
Usecase
www.builtrobotics.com
Usecase
Rebar Tying 로봇(Florida DoT, 2020)
Usecase
Energy savings through
machine learning
AMR DNA, Energy savings through machine learning,
http://www.energyassets.co.uk/service/amr-dna
Usecase
Siemens Process Simulate (left) connects to NVIDIA Omniverse (right) to enable
a full-design-fidelity, photorealistic, real-time digital twin.
https://www.robotics247.com/article/siemens_xcelerator_nvidia_omniverse_accel
erate_digital_twins_manufacturing
NVIDIA Founder and CEO Jensen Huang (left)
and Siemens CEO Roland Busch
My lab tools
open source
Open source
Alberto Rizzoli, 2022, 27+ Most Popular Computer Vision Applications and Use
Cases in 2022, V7
Open source
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb
https://github.com/mac999/gen_ai_gpt
Open source
Generative Adversarial Networks
Fake Obama created using AI video tool -
BBC News. Jul 19, 2017
https://www.vegaitglobal.com/media-center/knowledge-
base/what-is-stable-diffusion-and-how-does-it-work
Open source CARLA - Open Urban Driving Simulator
https://github.com/carla-simulator/carla
YOUTUBE
Open source
Alberto Rizzoli, 2022, 27+ Most Popular Computer Vision Applications and Use
Cases in 2022, V7
YOLACT (You Only Look At CoefficienTs)
Detectron
Open source
Alberto Rizzoli, 2022, 27+ Most Popular Computer Vision Applications and Use
Cases in 2022, V7
Tesseract-OCR
Use Google Cloud Vision API to process
invoices and receipts
Open source
Open Neural Network eXchange
Open source
Cesium
http://cesiumjs.org/Seattle/
Open source
KICT
Open source
Open source
https://github.com/ZiwenZhuang/parkour?tab=readme-ov-file
Open source - github
Open source
Open source
http://guswnsxodlf.github.io/software-license
GNU General Public License(GPL) 2.0
– 의무 엄격. SW 수정 및 링크 경우 소스코드 제공 의무
GNU Lesser GPL(LGPL) 2.1
– 저작권 표시. LPGL 명시. 수정한 라이브러리 소스코드 공개
Berkeley Software Distribution(BSD) License
– 소스코드 공개의무 없음. 상용 SW 무제한 사용 가능
Apache License
– BSD와 유사. 소스코드 공개의무 없음.
Mozilla Public License(MPL)
– 소스코드 공개의무 없음. 수정 코드는 MPL에 의해 배포. 이외 결합 프로그램 코드는 공개
필요 없음
MIT License
– 라이선스 / 저작권만 명시 조건
Gym for AI Research
Gym for AI Research
Install pythonDownload Python | Python.org
Install anaconda Free Download | Anaconda
Install vscode Download Visual Studio Code -
Mac, Linux, Windows
Install sublime Download -Sublime Text
cmd*관리자권한으로실행해야함
cd 
mkdirprojects
cd projects
mkdirtest
pip install virtualenv
pip install jupyterlab
pip install ipywidgets
Gym for AI Research
1. pip install tensorflow pip로 TensorFlow 설치
2. pip install keras keras · PyPI
3. pip install torch torchvision torchaudio Start Locally | PyTorch
Gym for AI Research
Kaggle
Gym for AI Research
Gym for AI Research
pip install virtualenv
pip3 install virtualenv
.venvScriptsactivate
source ./venv/bin/activate
Gym for AI Research
Gym for AI Research
Install Docker Get Started | Docker
Creating a Simple Web Server with Docker: A Step-by-Step Guide to Running
Your Web Server as a Container | by Srija Anaparthy | AWS Tip
Run cmd
docker run -d -p 8080:80 nginxdemos/hello nginxdemos/hello - Docker Image |
Docker Hub
Gym for AI Research
Gym for AI Research
1. Install Node.JS Download | Node.js (nodejs.org)
2. Run cmd
3. cd c:projects
4. mkdir test
5. cd test
6. npm install -g --unsafe-perm node-red
7. node-red
Gym for AI Research
Gym for AI Research
https://colab.research.google.com/
example
Trimble
2021.3
Deep Learning
IoT
GIS
example
Con Tech 2020.5
example
RANSAC
Dataset
= 730
example
Linear(4, out = 6)
ReLU()
BatchNorm1d(in = 6)
Linear(in = 6, out = 16)
ReLU()
BatchNorm1d(in = 16)
Linear(in = 16, out = 9)
ReLU()
…
ReLU()
BatchNorm1d(in = 3)
Linear(in = 3, out = 1))
epochs = 5000
learning_rate = 0.001
batch_size = 64
Loss=0.002. Train MAPE & Acc = (0.025, 95.30%). Test
MAPE & Acc = (0.292, 70.76%)
example
Trimble
GPS
카메라
카메라
스캐너
IMU
DMI
KICT
example https://github.com/mac999
Jackpot and hallucination
Gen AI core
Embedding
Gen AI core
https://daddynkidsmakers.b
logspot.com/2023/12/blog-
post.html
Gen AI core multi-modal
Variational autoencoder
Gen AI core
잠재공간에 맵핑된(인코딩된) 데이터(Alexej Klushyn, 2019.12, Learning Hierarchical Priors in VAEs)
Gen AI core multi-modal
CLIP(Contrastive
Language-Image Pre-
Training. Open AI. 2021
https://daddynkidsmakers.blogspot.com/2024/02/clip.html
Gen AI core
https://daddynkidsmakers.blogspot.
com/2024/02/llama-2.html
Gen AI core
Gen AI core
https://daddynkidsmakers.blogspot.
com/2024/02/llama-2.html
Gen AI core
Gen AI core
Gen AI core
Gen AI core
스테이블 디퓨전 기술 개발 주역 Computer Vision & Learning Group (ommer-lab.com)
Prof. Dr. Björn Ommer University of Munich
Jackpot & hallucination
Jackpot & hallucination
Jackpot & hallucination
Jackpot & hallucination
Jackpot & hallucination
output.append((transformer.generate(t
exts = ['bridge chair','computer table',
'chair table'] , temperature = 1) ))
output.append((transformer.generate(texts =
['sofa','bed', 'computer screen', 'bench', 'chair', 'table' ] ,
temperature = 0.0) ))
Not
practical.
MeshGPT
Jackpot & hallucination Large Language Models as General Pattern Machines
Jackpot & hallucination Large Language Models as General Pattern Machines
Deep Dive
Gen AI + LLM
Gen AI + LLM table data query
Gen AI + LLM LLAMA & Ollama & Langchain
A100 (80GB) GPU =
21 day (traning)
ollama run llava
"describe this
iamge: ./cat.jpg"
"테이블 다리로 보이는 것 옆에 똑바로 앉아 있는 얼룩무늬 고양이
의 이미지입니다. 고양이는 뚜렷한 어두운 줄무늬가 있는 밝은 주황
색 털을 가지고 있는데, 이는 흔히 볼 수 있는 패턴입니다. 얼룩 고
양이는 눈을 크게 뜨고 카메라를 정면으로 차분한 태도로 바라보고
있는 모습입니다.
배경에는 바닥에 다음과 같은 패턴의 러그가 깔려 있습니다. 베이지
색과 기타 중성색이 포함됩니다. 전경에 테이블 다리가 있기 때문에
다이닝 룸과 같은 생활 공간처럼 보입니다."
Gen AI + LLM LLAMA & Ollama & Langchain
Langchain CEO. 2022.
30M$ in 2023.
https://daddynkidsmakers.blogsp
ot.com/2024/04/blog-
post_21.html
Gen AI + LLM
Chroma CEO. Jeff Huber, Anton Troynikov
18M$. 2023
Gen AI + LLM
Gen AI + LLM
class ChatPDF:
vector_store = None
retriever = None
chain = None
def __init__(self):
# OLLAMA의 mistral 모델 이용
self.model = ChatOllama(model="mistral")
# PDF 텍스트 분할
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=100)
self.prompt = PromptTemplate.from_template(
"""
<s> [INST] You are an assistant for question-answering tasks.
Use the following pieces of retrieved context
to answer the question. If you don't know the answer,
just say that you don't know. Use three sentences
maximum and keep the answer concise. [/INST] </s>
[INST] Question: {question}
Context: {context}
Answer: [/INST]
"""
)
Gen AI + LLM
class ChatPDF:
def ingest(self, pdf_file_path: str):
docs = PyPDFLoader(file_path=pdf_file_path).load() # 랭체인의 PDF 모듈 이용해 문서 로딩
chunks = self.text_splitter.split_documents(docs) # 문서를 청크로 분할
chunks = filter_complex_metadata(chunks)
# 임메딩 벡터 저장소 생성 및 청크 설정
vector_store = Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
self.retriever = vector_store.as_retriever(search_type="similarity_score_threshold",
search_kwargs={
"k": 3,
"score_threshold": 0.5,
},
) # 유사도 스코어 기반 벡터 검색 설정
self.chain = ({"context": self.retriever, "question": RunnablePassthrough()} | self.prompt | self.model |
StrOutputParser()) # 프롬프트 입력에 대한 모델 실행, 출력 파서 방법 설정
def ask(self, query: str): # 질문 프롬프트 입력 시 호출
if not self.chain:
return "Please, add a PDF document first."
return self.chain.invoke(query)
Gen AI + LLM
https://daddynkidsmakers.blogspot.com/2024/
02/github-copilot-ai.html
Gen AI + LLM GeoLLM
Gen AI + LLM GeoLLM
Gen AI + LLM earthwork quantity takeoff
H1 H1 H2
H1 H2
H3 H1 H2
H3
H4
H1 H2
H3
H4
L={H1, H2, H3, H4}
F1=L1
F2=L2
Step 1. Step 2.
Step 3. Step 4.
Step 5. Step 6.
Gen AI + LLM
Gen AI + LLM
Gen AI + LLM
Gen AI + LLM
Gen AI + LLM
ENA Model ID Batch
size
Epochs Layer architecture Normaliza
tion &
Activation
Learning
rate
Pre-trained model
embedding transformers
M1.1. MLP 32 150 [14]-[128,64,32]-[10] ReLU,
batch
normal,
dropout
0.001 - -
M1.2. MLP 32 150 [14]-[64,128,64]-[10] 0.001 - -
M1.3. MLP 32 150 [14]-[64,128,64,32]-[10] 0.001 - -
M1.4. MLP 32 150 [14]-[32,64,32]-[10] 0.001 - -
M2.1. LSTM 32 150 [14]-LSTM[128]-[10] dropout 0.001 - -
M2.2. LSTM 32 150 [14]-LSTM[128]-[64,32]-[10] 0.001 - -
M2.3. LSTM 32 150 [14]-LSTM[256]-[128,64]-[10] 0.001 - -
M3.1. Transformers
32 300 [320,512]-ENC[512]-[64]-[10]
multi-head
attention,
layer
normal,
dropout
1.00E-05
BERT-base-
uncased
-
M3.2.Transformers
64 300 [320,512]-ENC[512]-[64]-[10] 1.00E-05
BERT-base-
uncased
-
M3.3.Transformers
128 300 [320,512]-ENC[512]-[64]-[10] 1.00E-05
BERT-base-
uncased
-
M4.1. LLM
32 150 [293]-EMB-ENC-[10] 1.00E-05
BERT-base-
uncased
BERT
M4.2 LLM
32 300 [293]-EMB-ENC-[10] 1.00E-05
BERT-base-
uncased
BERT
1
Gen AI + LLM
ENA Model ID Train No Loss Accuracy Model size
(kb)
Time performance
(minutes)
M1.1. MLP 1650 0.0870 0.9494 61 0:02:34
M1.2. MLP 1714 0.0852 0.9519 84 0:02:36
M1.3. MLP 1716 0.0882 0.9544 93 0:02:42
M1.4. MLP 1718 0.1322 0.9507 30 0:02:25
M2.1. LSTM 1730 0.0889 0.9408 812 0:02:13
M2.2. LSTM 1732 0.0851 0.9420 850 0:02:17
M2.3. LSTM 1734 0.0886 0.9408 3,312 0:02:00
M3.1. Transformers 2003 0.3533 0.7744 74,557 0:11:06
M3.2.Transformers 2014 0.3551 0.7719 74,557 0:07:48
M3.3.Transformers 2021 0.3596 0.7423 74,557 0:06:25
M4.1. LLM 0103 0.0587 0.9507 427,783 3:12:05
M4.2. LLM 2334 0.0534 0.9531 427,783 7:59:00
Gen AI + LLM
Gen AI + LLM BIM RAG
Gen AI + LLM BIM RAG
Gen AI + LLM
Gen AI + LLM
Gen AI + LLM
Gen AI + LLM BIM RAG
Accuracy = 41% (7 / 17)
Domain specific RAG
challenge, direction
• Limited input context
for LLM
• No vocaboary
• Long token distance
• Hallucination
Gen AI + LLM how to make LLM dataset
Gen AI + LLM how to make LLM dataset
Gen AI + LLM how to make LLM dataset
Gen AI + LLM how to make LLM dataset
Gen AI + LLM how to make LLM dataset
Gen AI + LLM domain knowledge fine tuning. ex) BIM-GIS
No fine tuning
Gen AI + LLM domain knowledge fine tuning. ex) BIM-GIS
Gen AI + LLM
Gen AI + LLM
fine tuning. Epoch = 3 (90 min)
Gen AI + LLM
fine tuning. Epoch = 10 (over 5 hours)
Journey
breadcrumbs
guide
생성AI 시대 BIM 기술 동향과 해외
스마트 건설 사례 – 이강, 정숭용
생성AI LLM과 스테이블 디퓨전 최신 기술 및
활용 동향 - 최돈현, 김태영
guide
https://www.slideshare.net/laputa999
guide
https://github.com/mac999
guide
https://daddynkidsmakers.blogspot.com
Conclusion
conclusion
• Google, Meta, MS 등 선진국 테크기업 중심 생성AI 잠재력 테스트 중
• 파운데이션 모델 개발은 이미 선진국 테크기업 및 중국 중심
• AI 개발 시 빅테크기업 공개 플랫폼&도구, Huggingface, W&B 등 사용
은 필수. 아키텍처 모델 직접 개발은 극소수.
• LLM 은 멀티모달, 다중 에이전트 플랫폼으로 발전
• GPU 리소스 한계로 RAG, finetuning 등 다양한 기술 발전
• 온라인 문제로 생성AI가 스마트폰, 노트북 같은 모바일 장치에 내장되
는 추세
• Langchain과 같은 RAG, 에이전트 기술 테크 기업 출현
• 일부 선진국 중심으로 생성AI 기반 건설 테크 기업 출현
• 생성AI가 제대로 동작될려면 챌린지와 연구가 많이 남아 있음
conclusion
conclusion
Hitchhiker's Guide - Earth Destroyed and Guide
Join Gen AI world

More Related Content

PDF
CAT-320DL-Electrical-Schematic.pdf
PDF
How to install AI open source tool and environment
PDF
Koss 1605 machine_learning_mariocho_t10
PPTX
AI - Media Art. 인공지능과 미디어아트
PPTX
Kinect kunkuk final_
PDF
PyTorch 튜토리얼 (Touch to PyTorch)
PDF
Amazon AI/ML Overview
PPTX
Pytorch kr devcon
CAT-320DL-Electrical-Schematic.pdf
How to install AI open source tool and environment
Koss 1605 machine_learning_mariocho_t10
AI - Media Art. 인공지능과 미디어아트
Kinect kunkuk final_
PyTorch 튜토리얼 (Touch to PyTorch)
Amazon AI/ML Overview
Pytorch kr devcon

Similar to Gen AI with LLM for construction technology (20)

PPTX
Caffe framework tutorial2
PDF
2024_개보위_개인정보 미래포럼_의료 인공지능 모델과 프라이버시 이슈.pdf
PDF
개발자가 알아두면 좋은 5가지 AWS 인공 지능 서비스 깨알 지식 (윤석찬, AWS 테크에반젤리스트) :: AWS DevDay 2018
PDF
[AWS Dev Day] 인공지능 / 기계 학습 | AWS 기반 기계 학습 자동화 및 최적화를 위한 실전 기법 - 남궁영환 AWS 솔루션...
PDF
[부스트캠프 Tech Talk] 고지형_내 자식 하나쯤은 있어야죠
PPTX
IoT 기반 건설 지능화와 BIM
PDF
ICGIS 2018 - Cloud-powered Machine Learnings on Geospactial Services (Channy ...
PPTX
Deep Learning for AI (3)
PDF
Torch intro
PDF
Parallelformers
PPTX
딥러닝프레임워크비교
PPTX
Large scale gpu cluster for ai
PDF
Deep learning image recognition for autonomous driving(classification, objec...
PDF
Koss Lab 세미나 오픈소스 인공지능(AI) 프레임웍파헤치기
PPTX
Graph Neural Network #2-1 (PinSage)
PDF
NVIDIA cuda programming, open source and AI
PDF
[금융사를 위한 AWS Generative AI Day 2023] 7_다양한 AI 워크로드를 위한 최적의 ...
PDF
1-bit semantic segmentation
PDF
Recent advances of AI for medical imaging : Engineering perspectives
PDF
2018 Oracle Impact 발표자료: Oracle Enterprise AI
Caffe framework tutorial2
2024_개보위_개인정보 미래포럼_의료 인공지능 모델과 프라이버시 이슈.pdf
개발자가 알아두면 좋은 5가지 AWS 인공 지능 서비스 깨알 지식 (윤석찬, AWS 테크에반젤리스트) :: AWS DevDay 2018
[AWS Dev Day] 인공지능 / 기계 학습 | AWS 기반 기계 학습 자동화 및 최적화를 위한 실전 기법 - 남궁영환 AWS 솔루션...
[부스트캠프 Tech Talk] 고지형_내 자식 하나쯤은 있어야죠
IoT 기반 건설 지능화와 BIM
ICGIS 2018 - Cloud-powered Machine Learnings on Geospactial Services (Channy ...
Deep Learning for AI (3)
Torch intro
Parallelformers
딥러닝프레임워크비교
Large scale gpu cluster for ai
Deep learning image recognition for autonomous driving(classification, objec...
Koss Lab 세미나 오픈소스 인공지능(AI) 프레임웍파헤치기
Graph Neural Network #2-1 (PinSage)
NVIDIA cuda programming, open source and AI
[금융사를 위한 AWS Generative AI Day 2023] 7_다양한 AI 워크로드를 위한 최적의 ...
1-bit semantic segmentation
Recent advances of AI for medical imaging : Engineering perspectives
2018 Oracle Impact 발표자료: Oracle Enterprise AI
Ad

More from Tae wook kang (20)

PDF
AI based computer vision use cases for researcher
PDF
3D 모델러 ADDIN 개발과정 요약
PDF
오픈소스로 쉽게 따라해보는 Unreal과 IoT 연계 및 개발 방법 소개.pdf
PDF
Python과 node.js기반 데이터 분석 및 가시화
PDF
BIM 표준과 구현 (standard and development)
PDF
ISO 19166 BIM-GIS conceptual mapping
PDF
SBF(Scan-BIM-Field) 기반 스마트 시설물 관리 기술 개발
PPTX
오픈소스 ROS기반 건설 로보틱스 기술 개발
PDF
한국 건설 기술 전망과 건설 테크 스타트업 소개
PDF
Coding, maker and SDP
PPTX
오픈 데이터, 팹시티와 메이커
PDF
ISO 19166 BIM to GIS conceptual mapping China (WUHAN) meeting
PDF
건설 스타트업과 오픈소스
PPTX
블록체인 기반 건설 스마트 서비스와 계약
PDF
4차산업혁명과 건설, 그리고 블록체인
PDF
Case Study about BIM on GIS platform development project with the standard model
PPTX
도시 인프라 공간정보 데이터 커넥션-통합 기술 표준화를 위한 ISO TC211 19166 개발 이야기
PPTX
Smart BIM for Facility Management
PDF
메이커 시티와 메이커 운동 참여를 통해 얻은 것
PDF
최신 3차원 이미지 스캔 역설계 기술 전망 및 건설 활용
AI based computer vision use cases for researcher
3D 모델러 ADDIN 개발과정 요약
오픈소스로 쉽게 따라해보는 Unreal과 IoT 연계 및 개발 방법 소개.pdf
Python과 node.js기반 데이터 분석 및 가시화
BIM 표준과 구현 (standard and development)
ISO 19166 BIM-GIS conceptual mapping
SBF(Scan-BIM-Field) 기반 스마트 시설물 관리 기술 개발
오픈소스 ROS기반 건설 로보틱스 기술 개발
한국 건설 기술 전망과 건설 테크 스타트업 소개
Coding, maker and SDP
오픈 데이터, 팹시티와 메이커
ISO 19166 BIM to GIS conceptual mapping China (WUHAN) meeting
건설 스타트업과 오픈소스
블록체인 기반 건설 스마트 서비스와 계약
4차산업혁명과 건설, 그리고 블록체인
Case Study about BIM on GIS platform development project with the standard model
도시 인프라 공간정보 데이터 커넥션-통합 기술 표준화를 위한 ISO TC211 19166 개발 이야기
Smart BIM for Facility Management
메이커 시티와 메이커 운동 참여를 통해 얻은 것
최신 3차원 이미지 스캔 역설계 기술 전망 및 건설 활용
Ad

Recently uploaded (20)

PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PPTX
Software Engineering and software moduleing
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPTX
communication and presentation skills 01
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
introduction to high performance computing
PPT
Occupational Health and Safety Management System
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Software Engineering and software moduleing
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
communication and presentation skills 01
"Array and Linked List in Data Structures with Types, Operations, Implementat...
introduction to high performance computing
Occupational Health and Safety Management System
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Module 8- Technological and Communication Skills.pptx
Management Information system : MIS-e-Business Systems.pptx
Current and future trends in Computer Vision.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...

Gen AI with LLM for construction technology

  • 1. 강태욱 연구위원 공학박사 Ph.D Taewook, Kang laputa99999@gmail.com https://daddynkidsmakers.blogspot.com 건설AI 히치하이커를 위한 가이드 GEN AI + LLM에 초점을 맞춘
  • 2. KICT Intro Advanture. usecase from AI to Gen AI My lab tools. open source Jackpot and hallucination Deep dive. Gen AI + LLM Journey. Breadcrumbs The Hitchhiker’s Guide to the Galaxy
  • 4. Maker, Ph.D. 12 books author BIM principle and Digital transformation: BIM principle & DX 사이트 소개, Profile (dxbim.blogspot.com)
  • 5. Study history P4 Life cycle “If it isn’t fun, you’re doing the wrong technology.” - ivan sutherland
  • 6. Study history P4 Roadmap Computer graphics, CAD BIM-GIS + ISO (2012) BIM + IoT + Scan (2014) Scan to BIM + Robotics + AI (2017) Digital Twin + AI (2021) BIM VDCO Mining IoT Scan Virtual Design Construction Operations 1D, 2D 3D, nD Semantic Knowledge Sensors Robotics
  • 8. Generative AI identified by Deloitte • Marketing content assistant • Code assistant for developers • Customer support on demand • Product design assistant • Research-based report generation • Synthetic data generation • Enterprise-wide data search and access • Game content development • Language translation • Simulation of urban planning scenarios • Hyper-personalised education • Onboarding assistant Usecase
  • 9. Generative AI in AECO • Multi Agent • Anomaly detection in contract documents • Reasoning in IoT dataset for O&M • Risk management • Optimization in Construction Management • Concept design generation • Report summarization and generation • Training data generation • Query using LLM • Language translation • Simulation of urban planning scenarios • Personalised education and guidance system Usecase
  • 10. Scenario CPS & DT Digital Twin Structural health monitoring Track and trace Remote diagnosis Remote services Remote control Condition monitoring Systems health monitoring BIM as i-DB IoT… AI Sensor device ICBM Simulation Robotics Scan-Vision Smart contract based on Blockchain Gen AI Multi Agent
  • 11. Scenario IoT Big data management AI + Simulation using LLM Cloud platform Machine control Field monitoring IoT sensor Usecase for safety, accuracy, productivity sensing Data analysis & prediction GIS IoT based monitoring Field control Infra IoT service connection Plant control system (SCADA) Field monitoring system LoRA, BLE, WiFi… Layer 8 | IISL (Infra IoT Service Layer) Worker Agency <device_definition id=‘dd#1’> <device id=‘T#1’name=‘temp’type=‘temperature’> <maker name=‘CH korea’ email=‘laputa99999_9@gmail.com’ tel=‘82-0330-0802-1013’ location=‘…’/> <specification> <op_range name=‘voltage’ unit=‘V’type=‘real’value=‘3.3’/> <op_range name=‘temperature’ unit=‘degree’ type=‘real’begin=‘-10.0’end=’60.0’/> <op_range name=‘humidity’unit=‘%R.H’type=‘real’begin=‘0.0’end=’50.0’/> <op_range name=‘GPS’unit=‘WGS84’type=‘vector2D’begin=‘(0,0)’ end=‘(127, 32)’/> <op_range name=‘characteristic_curve’unit1=‘temperature’ unit2=‘voltage’ type=‘vector2D’> (0,0), (1.2, 2.4), (3.5, 6.2), (4.1, 7.2) </op_range> <op_range name=‘period’unit=‘year’value=‘2’/> </specification> </device> </device_definition> Intelligent IoT sensor •Self diagnose •IISL protocol •Security •Availability 1 1 2 3 4 5 6 7 8 Plant sensing
  • 12. Overview AI ConTech $3B funding from 2021 (Daniel Laboe, 2023.10) 2024년 상반기 스마트 건설과 BIM 기술 동향 (buildingSMART ) Machine learning Deep learning Gen AI Multi- agent AGI
  • 13. Usecase AI 기반 텍스트 렌더링 Revit 애드인 (VERAS, EnvolveLAB)
  • 16. Usecase Technology to create 2D drawings with perfect dimensions from 3D models with one click (Autodesk Fusion, November 2023)
  • 17. Usecase CreationAI-based design system AiCorb (Obayashi Corporation)
  • 18. Usecase AI-based structural frame, automatic creation of member cross sections SYMPREST (Shimizu Construction)
  • 26. Usecase Energy savings through machine learning AMR DNA, Energy savings through machine learning, http://www.energyassets.co.uk/service/amr-dna
  • 27. Usecase Siemens Process Simulate (left) connects to NVIDIA Omniverse (right) to enable a full-design-fidelity, photorealistic, real-time digital twin. https://www.robotics247.com/article/siemens_xcelerator_nvidia_omniverse_accel erate_digital_twins_manufacturing NVIDIA Founder and CEO Jensen Huang (left) and Siemens CEO Roland Busch
  • 29. Open source Alberto Rizzoli, 2022, 27+ Most Popular Computer Vision Applications and Use Cases in 2022, V7
  • 31. Open source Generative Adversarial Networks Fake Obama created using AI video tool - BBC News. Jul 19, 2017 https://www.vegaitglobal.com/media-center/knowledge- base/what-is-stable-diffusion-and-how-does-it-work
  • 32. Open source CARLA - Open Urban Driving Simulator https://github.com/carla-simulator/carla YOUTUBE
  • 33. Open source Alberto Rizzoli, 2022, 27+ Most Popular Computer Vision Applications and Use Cases in 2022, V7 YOLACT (You Only Look At CoefficienTs) Detectron
  • 34. Open source Alberto Rizzoli, 2022, 27+ Most Popular Computer Vision Applications and Use Cases in 2022, V7 Tesseract-OCR Use Google Cloud Vision API to process invoices and receipts
  • 35. Open source Open Neural Network eXchange
  • 40. Open source - github
  • 42. Open source http://guswnsxodlf.github.io/software-license GNU General Public License(GPL) 2.0 – 의무 엄격. SW 수정 및 링크 경우 소스코드 제공 의무 GNU Lesser GPL(LGPL) 2.1 – 저작권 표시. LPGL 명시. 수정한 라이브러리 소스코드 공개 Berkeley Software Distribution(BSD) License – 소스코드 공개의무 없음. 상용 SW 무제한 사용 가능 Apache License – BSD와 유사. 소스코드 공개의무 없음. Mozilla Public License(MPL) – 소스코드 공개의무 없음. 수정 코드는 MPL에 의해 배포. 이외 결합 프로그램 코드는 공개 필요 없음 MIT License – 라이선스 / 저작권만 명시 조건
  • 43. Gym for AI Research
  • 44. Gym for AI Research Install pythonDownload Python | Python.org Install anaconda Free Download | Anaconda Install vscode Download Visual Studio Code - Mac, Linux, Windows Install sublime Download -Sublime Text cmd*관리자권한으로실행해야함 cd mkdirprojects cd projects mkdirtest pip install virtualenv pip install jupyterlab pip install ipywidgets
  • 45. Gym for AI Research 1. pip install tensorflow pip로 TensorFlow 설치 2. pip install keras keras · PyPI 3. pip install torch torchvision torchaudio Start Locally | PyTorch
  • 46. Gym for AI Research Kaggle
  • 47. Gym for AI Research
  • 48. Gym for AI Research pip install virtualenv pip3 install virtualenv .venvScriptsactivate source ./venv/bin/activate
  • 49. Gym for AI Research
  • 50. Gym for AI Research Install Docker Get Started | Docker Creating a Simple Web Server with Docker: A Step-by-Step Guide to Running Your Web Server as a Container | by Srija Anaparthy | AWS Tip Run cmd docker run -d -p 8080:80 nginxdemos/hello nginxdemos/hello - Docker Image | Docker Hub
  • 51. Gym for AI Research
  • 52. Gym for AI Research 1. Install Node.JS Download | Node.js (nodejs.org) 2. Run cmd 3. cd c:projects 4. mkdir test 5. cd test 6. npm install -g --unsafe-perm node-red 7. node-red
  • 53. Gym for AI Research
  • 54. Gym for AI Research https://colab.research.google.com/
  • 58. example Linear(4, out = 6) ReLU() BatchNorm1d(in = 6) Linear(in = 6, out = 16) ReLU() BatchNorm1d(in = 16) Linear(in = 16, out = 9) ReLU() … ReLU() BatchNorm1d(in = 3) Linear(in = 3, out = 1)) epochs = 5000 learning_rate = 0.001 batch_size = 64 Loss=0.002. Train MAPE & Acc = (0.025, 95.30%). Test MAPE & Acc = (0.292, 70.76%)
  • 64. Gen AI core multi-modal Variational autoencoder
  • 65. Gen AI core 잠재공간에 맵핑된(인코딩된) 데이터(Alexej Klushyn, 2019.12, Learning Hierarchical Priors in VAEs)
  • 66. Gen AI core multi-modal CLIP(Contrastive Language-Image Pre- Training. Open AI. 2021 https://daddynkidsmakers.blogspot.com/2024/02/clip.html
  • 73. Gen AI core 스테이블 디퓨전 기술 개발 주역 Computer Vision & Learning Group (ommer-lab.com) Prof. Dr. Björn Ommer University of Munich
  • 78. Jackpot & hallucination output.append((transformer.generate(t exts = ['bridge chair','computer table', 'chair table'] , temperature = 1) )) output.append((transformer.generate(texts = ['sofa','bed', 'computer screen', 'bench', 'chair', 'table' ] , temperature = 0.0) )) Not practical. MeshGPT
  • 79. Jackpot & hallucination Large Language Models as General Pattern Machines
  • 80. Jackpot & hallucination Large Language Models as General Pattern Machines
  • 82. Gen AI + LLM table data query
  • 83. Gen AI + LLM LLAMA & Ollama & Langchain A100 (80GB) GPU = 21 day (traning) ollama run llava "describe this iamge: ./cat.jpg" "테이블 다리로 보이는 것 옆에 똑바로 앉아 있는 얼룩무늬 고양이 의 이미지입니다. 고양이는 뚜렷한 어두운 줄무늬가 있는 밝은 주황 색 털을 가지고 있는데, 이는 흔히 볼 수 있는 패턴입니다. 얼룩 고 양이는 눈을 크게 뜨고 카메라를 정면으로 차분한 태도로 바라보고 있는 모습입니다. 배경에는 바닥에 다음과 같은 패턴의 러그가 깔려 있습니다. 베이지 색과 기타 중성색이 포함됩니다. 전경에 테이블 다리가 있기 때문에 다이닝 룸과 같은 생활 공간처럼 보입니다."
  • 84. Gen AI + LLM LLAMA & Ollama & Langchain Langchain CEO. 2022. 30M$ in 2023. https://daddynkidsmakers.blogsp ot.com/2024/04/blog- post_21.html
  • 85. Gen AI + LLM Chroma CEO. Jeff Huber, Anton Troynikov 18M$. 2023
  • 86. Gen AI + LLM
  • 87. Gen AI + LLM class ChatPDF: vector_store = None retriever = None chain = None def __init__(self): # OLLAMA의 mistral 모델 이용 self.model = ChatOllama(model="mistral") # PDF 텍스트 분할 self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=100) self.prompt = PromptTemplate.from_template( """ <s> [INST] You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. [/INST] </s> [INST] Question: {question} Context: {context} Answer: [/INST] """ )
  • 88. Gen AI + LLM class ChatPDF: def ingest(self, pdf_file_path: str): docs = PyPDFLoader(file_path=pdf_file_path).load() # 랭체인의 PDF 모듈 이용해 문서 로딩 chunks = self.text_splitter.split_documents(docs) # 문서를 청크로 분할 chunks = filter_complex_metadata(chunks) # 임메딩 벡터 저장소 생성 및 청크 설정 vector_store = Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings()) self.retriever = vector_store.as_retriever(search_type="similarity_score_threshold", search_kwargs={ "k": 3, "score_threshold": 0.5, }, ) # 유사도 스코어 기반 벡터 검색 설정 self.chain = ({"context": self.retriever, "question": RunnablePassthrough()} | self.prompt | self.model | StrOutputParser()) # 프롬프트 입력에 대한 모델 실행, 출력 파서 방법 설정 def ask(self, query: str): # 질문 프롬프트 입력 시 호출 if not self.chain: return "Please, add a PDF document first." return self.chain.invoke(query)
  • 89. Gen AI + LLM https://daddynkidsmakers.blogspot.com/2024/ 02/github-copilot-ai.html
  • 90. Gen AI + LLM GeoLLM
  • 91. Gen AI + LLM GeoLLM
  • 92. Gen AI + LLM earthwork quantity takeoff H1 H1 H2 H1 H2 H3 H1 H2 H3 H4 H1 H2 H3 H4 L={H1, H2, H3, H4} F1=L1 F2=L2 Step 1. Step 2. Step 3. Step 4. Step 5. Step 6.
  • 93. Gen AI + LLM
  • 94. Gen AI + LLM
  • 95. Gen AI + LLM
  • 96. Gen AI + LLM
  • 97. Gen AI + LLM ENA Model ID Batch size Epochs Layer architecture Normaliza tion & Activation Learning rate Pre-trained model embedding transformers M1.1. MLP 32 150 [14]-[128,64,32]-[10] ReLU, batch normal, dropout 0.001 - - M1.2. MLP 32 150 [14]-[64,128,64]-[10] 0.001 - - M1.3. MLP 32 150 [14]-[64,128,64,32]-[10] 0.001 - - M1.4. MLP 32 150 [14]-[32,64,32]-[10] 0.001 - - M2.1. LSTM 32 150 [14]-LSTM[128]-[10] dropout 0.001 - - M2.2. LSTM 32 150 [14]-LSTM[128]-[64,32]-[10] 0.001 - - M2.3. LSTM 32 150 [14]-LSTM[256]-[128,64]-[10] 0.001 - - M3.1. Transformers 32 300 [320,512]-ENC[512]-[64]-[10] multi-head attention, layer normal, dropout 1.00E-05 BERT-base- uncased - M3.2.Transformers 64 300 [320,512]-ENC[512]-[64]-[10] 1.00E-05 BERT-base- uncased - M3.3.Transformers 128 300 [320,512]-ENC[512]-[64]-[10] 1.00E-05 BERT-base- uncased - M4.1. LLM 32 150 [293]-EMB-ENC-[10] 1.00E-05 BERT-base- uncased BERT M4.2 LLM 32 300 [293]-EMB-ENC-[10] 1.00E-05 BERT-base- uncased BERT 1
  • 98. Gen AI + LLM ENA Model ID Train No Loss Accuracy Model size (kb) Time performance (minutes) M1.1. MLP 1650 0.0870 0.9494 61 0:02:34 M1.2. MLP 1714 0.0852 0.9519 84 0:02:36 M1.3. MLP 1716 0.0882 0.9544 93 0:02:42 M1.4. MLP 1718 0.1322 0.9507 30 0:02:25 M2.1. LSTM 1730 0.0889 0.9408 812 0:02:13 M2.2. LSTM 1732 0.0851 0.9420 850 0:02:17 M2.3. LSTM 1734 0.0886 0.9408 3,312 0:02:00 M3.1. Transformers 2003 0.3533 0.7744 74,557 0:11:06 M3.2.Transformers 2014 0.3551 0.7719 74,557 0:07:48 M3.3.Transformers 2021 0.3596 0.7423 74,557 0:06:25 M4.1. LLM 0103 0.0587 0.9507 427,783 3:12:05 M4.2. LLM 2334 0.0534 0.9531 427,783 7:59:00
  • 99. Gen AI + LLM
  • 100. Gen AI + LLM BIM RAG
  • 101. Gen AI + LLM BIM RAG
  • 102. Gen AI + LLM
  • 103. Gen AI + LLM
  • 104. Gen AI + LLM
  • 105. Gen AI + LLM BIM RAG Accuracy = 41% (7 / 17) Domain specific RAG challenge, direction • Limited input context for LLM • No vocaboary • Long token distance • Hallucination
  • 106. Gen AI + LLM how to make LLM dataset
  • 107. Gen AI + LLM how to make LLM dataset
  • 108. Gen AI + LLM how to make LLM dataset
  • 109. Gen AI + LLM how to make LLM dataset
  • 110. Gen AI + LLM how to make LLM dataset
  • 111. Gen AI + LLM domain knowledge fine tuning. ex) BIM-GIS No fine tuning
  • 112. Gen AI + LLM domain knowledge fine tuning. ex) BIM-GIS
  • 113. Gen AI + LLM
  • 114. Gen AI + LLM fine tuning. Epoch = 3 (90 min)
  • 115. Gen AI + LLM fine tuning. Epoch = 10 (over 5 hours)
  • 117. guide 생성AI 시대 BIM 기술 동향과 해외 스마트 건설 사례 – 이강, 정숭용 생성AI LLM과 스테이블 디퓨전 최신 기술 및 활용 동향 - 최돈현, 김태영
  • 122. conclusion • Google, Meta, MS 등 선진국 테크기업 중심 생성AI 잠재력 테스트 중 • 파운데이션 모델 개발은 이미 선진국 테크기업 및 중국 중심 • AI 개발 시 빅테크기업 공개 플랫폼&도구, Huggingface, W&B 등 사용 은 필수. 아키텍처 모델 직접 개발은 극소수. • LLM 은 멀티모달, 다중 에이전트 플랫폼으로 발전 • GPU 리소스 한계로 RAG, finetuning 등 다양한 기술 발전 • 온라인 문제로 생성AI가 스마트폰, 노트북 같은 모바일 장치에 내장되 는 추세 • Langchain과 같은 RAG, 에이전트 기술 테크 기업 출현 • 일부 선진국 중심으로 생성AI 기반 건설 테크 기업 출현 • 생성AI가 제대로 동작될려면 챌린지와 연구가 많이 남아 있음
  • 124. conclusion Hitchhiker's Guide - Earth Destroyed and Guide Join Gen AI world