SlideShare a Scribd company logo
Wayne Eckerson Director, TDWI Research Going MAD:  A Framework for Delivering Pervasive BI Solutions
Agenda Barriers to usage Self-service BI MAD Framework “ Self Service BI or Self Serving BI?”
Pre-DW: IT and User Imprisonment
The Data Warehouse
Post DW: Liberation!
But old habits are tough to change… …  and the report backlog got BIGGER!
What now?
Give them self-service BI tools! Let them eat cake!!! Marie Antoinette
BI Tool Liberation
Percentage of Active BI Users Based on 675 respondents, Wayne Eckerson, “Pervasive BI: Techniques and Technologies for Deploying BI on an Enterprise Scale,” TDWI Research, 2008.
Close Inspection Power Users (20%) Create lots of reports Create inconsistent reports  Create runaway queries Waste time & money Casual Users (80%) Can’t find the right report  No single version of truth Slow response times   Too complex to use
Barriers to Usage Based on 675 respondents, Wayne Eckerson, “Pervasive BI: Techniques and Technologies for Deploying BI on an Enterprise Scale,” TDWI Research, 2008.
Ways to Accelerate Usage Based on 675 respondents, Wayne Eckerson, “Pervasive BI: Techniques and Technologies for Deploying BI on an Enterprise Scale,” TDWI Research, 2008.
Common Definition of Self Service BI “ Empower users to create their own reports so users get what they want when they want it without having to ask IT.”
So what do users  really  want??  Do they want to:   1) Form queries to retrieve and format data?? OR…   2) Monitor & analyze data to make decisions??
How to create a report Log on to your BI tool. Remember how to use your BI tool. Find the query panel OR… Find an existing report to extend. Select query objects… Figure out what the query objects mean. Place query objects in the right bands or frames. Format the report output. Format the report output again… and again…. Schedule the report. Try to find the report the next time you log in!
Usability Self service
Two Types of Self-Service Ad hoc report creation  (Power Users) Select facts and measures from a folder Query databases; Format output “ Ad hoc BI” Ad hoc report navigation  (Casual Users) Click to drill, filter, or navigate Select filters; respond to prompts “ Tailored delivery”
What is Tailored Delivery? Ad hoc report navigation  An interactive, information sandbox!  -  A more elegant way to deliver self service to casual users! -  Meets 60%-80% of the information needs of 80% of  the users
What is Tailored Delivery? A layered information delivery system Tailored to a specific group of users That individuals can personalize A performance dashboard or parameterized report
Tailored Delivery  Each contains about 20 dimensions and 12 metrics Users think they are doing “ad hoc” but they’re not Each can replace dozens or hundreds of reports
Performance Dashboard Detailed Data Summarized Data Graphical  Data  Detailed Data MAD  Sandbox Executives/ Managers Analysts Workers  Users M onitor A nalyze D rill thru Functionality
Cisco System’s BI Framework Measure Performance  Improve Accountability  Increase Productivity Intelligence  &  Knowledge Intelligent Business Actions Information &  Data Purpose, Audience, Architecture  Actionable Metrics Contributing Metrics Detail  Metrics
This is Insane!! Not MAD Detailed Data Summarized Data Reports OLAP Spreadsheets Everyone Analysts Managers Graphical  Data
Evolution – Double MAD! Detailed Data Summarized Data Graphical  Data  Detailed Data M odel A dvanced Analytics D ecide & Do  Functionality Adjacent Applications M onitor A nalyze D rill thru
User Inventory – New School Tailored Ad hoc  Drill thru Analyze MAD Dashboard Data Mining  Predict Excel/Planning   Visual discovery BI search Tool OLAP/Visual discovery Excel/Planning Report design tool MAD  Dashboard Tool Task Task Analyze Monitor Plan Create plans Drill thru Discover trends Analyze 20% of the Time 80% of the Time Issue queries Author Power Users Monitor Casual Users
Who develops the MAD Framework?
IT must be totally involved!! - Understand users and business processes! Train “super users” to create ad hoc reports! - Develop and manage the MAD framework! Evaluate super user extensions to MAD!
Summary Gut check: Self-service or self serving BI? You can’t abdicate responsibility! Engage with users to liberate yourself! Tailored BI is the key A more elegant way to implement self service The key to pervasive BI Know your users and their roles Summarized Data Graphical  Data  Detailed Data Detailed Data

More Related Content

PPTX
TDWI Boston Keynote - The New BI/Analytics Synergy - 7 30-2015 - tdwi keynote
PDF
Self-Service Analytics Framework - Connected Brains 2018
PDF
Death of the Dashboard
PPTX
The Ultimate Guide To Embedded Analytics
PPT
Gartner: The BI, Analytics and Performance Management Framework
PPTX
The Evolution of Self-Service Analytics
PDF
Strategy session 5 - unlocking the data dividend - andy steer
PDF
Case Manager for Content Management - A Customer's Perspective
TDWI Boston Keynote - The New BI/Analytics Synergy - 7 30-2015 - tdwi keynote
Self-Service Analytics Framework - Connected Brains 2018
Death of the Dashboard
The Ultimate Guide To Embedded Analytics
Gartner: The BI, Analytics and Performance Management Framework
The Evolution of Self-Service Analytics
Strategy session 5 - unlocking the data dividend - andy steer
Case Manager for Content Management - A Customer's Perspective

What's hot (20)

PDF
Critical success factors to develop and deliver a forward-looking BI strategy...
PDF
Slides: The Automated Business Glossary
PDF
Information Driven Enterprise Architecture - Connected Brains 2018
PPTX
Finding Meaning in the Numbers: Tools for Data Analysis & Dashboards
PPTX
Microsoft Business Intelligence Vision and Strategy
PDF
Enable Better Decision Making with Power BI Visualizations & Modern Data Estate
 
PDF
How to Build a Rock-Solid Analytics and Business Intelligence Strategy
PPTX
The New Enterprise Data Platform
PPTX
Competing IT Priorities - An Operating Model for Data Stewardship and Busines...
PDF
Drive your business with predictive analytics
PDF
Data Catalog as the Platform for Data Intelligence
PDF
The Shifting Landscape of Data Integration
PDF
RWDG Slides: Governing Your Data Catalog, Business Glossary, and Data Dictionary
PDF
Data and analytics strategy PUBLIC - ADHB 2021
PDF
Modern Business Intelligence - Design and Implementations
PDF
data-to-insight-to-action-taking-a-business-process-view-for-analytics-to-del...
PDF
ADV Slides: The Data Needed to Evolve an Enterprise Artificial Intelligence S...
PPTX
Cloud and Analytics -- 2020 sparksummit
PDF
Predictive analytics in decision management systems
PDF
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Critical success factors to develop and deliver a forward-looking BI strategy...
Slides: The Automated Business Glossary
Information Driven Enterprise Architecture - Connected Brains 2018
Finding Meaning in the Numbers: Tools for Data Analysis & Dashboards
Microsoft Business Intelligence Vision and Strategy
Enable Better Decision Making with Power BI Visualizations & Modern Data Estate
 
How to Build a Rock-Solid Analytics and Business Intelligence Strategy
The New Enterprise Data Platform
Competing IT Priorities - An Operating Model for Data Stewardship and Busines...
Drive your business with predictive analytics
Data Catalog as the Platform for Data Intelligence
The Shifting Landscape of Data Integration
RWDG Slides: Governing Your Data Catalog, Business Glossary, and Data Dictionary
Data and analytics strategy PUBLIC - ADHB 2021
Modern Business Intelligence - Design and Implementations
data-to-insight-to-action-taking-a-business-process-view-for-analytics-to-del...
ADV Slides: The Data Needed to Evolve an Enterprise Artificial Intelligence S...
Cloud and Analytics -- 2020 sparksummit
Predictive analytics in decision management systems
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Ad

Viewers also liked (18)

PPTX
Business Intelligence In The Cloud
PPTX
Executive BI, Analytics, Modeling and Insights Strategy Framework Practices
PDF
Tdwi solution spotlight presentation slides
PDF
One on One with Wayne Eckerson
PDF
All Grown Up: Maturation of Analytics in the Cloud
PDF
Tdwi agile data warehouse - dv, what is the buzz about
PPT
Business Intelligence Challenges 2009
PDF
TDWI Roundtable: The HANA EDW
PPTX
Rivers of Information Tools
PPTX
Эволюция Big Data и Information Management. Reference Architecture.
PDF
Big Data at #WADAY11
PPTX
Hadoop and Manufacturing
PPTX
Microsoft Cloud Database & Cloud BI
PPTX
Data as a Product by Wayne Eckerson
PPTX
Integration of Spago BI in Axelor FrameWork
PDF
Fulfilling Real-Time Analytics on Oracle BI Applications Platform
PPTX
Which data should you move to Hadoop?
PPT
Business Intelligence in the Cloud I
Business Intelligence In The Cloud
Executive BI, Analytics, Modeling and Insights Strategy Framework Practices
Tdwi solution spotlight presentation slides
One on One with Wayne Eckerson
All Grown Up: Maturation of Analytics in the Cloud
Tdwi agile data warehouse - dv, what is the buzz about
Business Intelligence Challenges 2009
TDWI Roundtable: The HANA EDW
Rivers of Information Tools
Эволюция Big Data и Information Management. Reference Architecture.
Big Data at #WADAY11
Hadoop and Manufacturing
Microsoft Cloud Database & Cloud BI
Data as a Product by Wayne Eckerson
Integration of Spago BI in Axelor FrameWork
Fulfilling Real-Time Analytics on Oracle BI Applications Platform
Which data should you move to Hadoop?
Business Intelligence in the Cloud I
Ad

Similar to Going MAD: A Framework For Delivering Pervasive BI Solutions (20)

PPTX
Introducing Smart Data Discovery
PPT
BI and Predictive analytics 2011 shyam desigan presentation
PDF
Intro of Key Features of SoftCAAT BI SQL Software
PPT
In memory analysis 衍華
PDF
BI on Big Data Presentation
PPTX
Into the Big Data Future with Watson Analytics
PDF
Intro of Key Features of SoftCAAT BI Software
PPTX
Big Data BI Simplified
PPTX
Latest trends in Business Analytics
PDF
eLuminous Technologies - Business Intelligence
PDF
Augmentation, Collaboration, Governance: Defining the Future of Self-Service BI
PDF
IIBA 2020 November - BAs Guide to Data Analysis & Reporting
PPTX
Succeeding with Analytics: Mastering People, Process, and Technology
 
PPTX
Analytics & Data Strategy 101 by Deko Dimeski
PPTX
Unit-I_Big data life cycle.pptx, sources of Big Data
PPTX
March 2016 PHXTUG Meeting
PPTX
data mining and warehousing computer science
PDF
Spring 2017 Sage 300 (Accpac) Users Group
PPTX
Yoann Clombe : Fail fast, iterate quickly with power bi and google analytics
Introducing Smart Data Discovery
BI and Predictive analytics 2011 shyam desigan presentation
Intro of Key Features of SoftCAAT BI SQL Software
In memory analysis 衍華
BI on Big Data Presentation
Into the Big Data Future with Watson Analytics
Intro of Key Features of SoftCAAT BI Software
Big Data BI Simplified
Latest trends in Business Analytics
eLuminous Technologies - Business Intelligence
Augmentation, Collaboration, Governance: Defining the Future of Self-Service BI
IIBA 2020 November - BAs Guide to Data Analysis & Reporting
Succeeding with Analytics: Mastering People, Process, and Technology
 
Analytics & Data Strategy 101 by Deko Dimeski
Unit-I_Big data life cycle.pptx, sources of Big Data
March 2016 PHXTUG Meeting
data mining and warehousing computer science
Spring 2017 Sage 300 (Accpac) Users Group
Yoann Clombe : Fail fast, iterate quickly with power bi and google analytics

Recently uploaded (20)

PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Machine learning based COVID-19 study performance prediction
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Approach and Philosophy of On baking technology
PDF
KodekX | Application Modernization Development
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPT
Teaching material agriculture food technology
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Diabetes mellitus diagnosis method based random forest with bat algorithm
Network Security Unit 5.pdf for BCA BBA.
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Empathic Computing: Creating Shared Understanding
Machine learning based COVID-19 study performance prediction
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Dropbox Q2 2025 Financial Results & Investor Presentation
NewMind AI Monthly Chronicles - July 2025
Reach Out and Touch Someone: Haptics and Empathic Computing
Approach and Philosophy of On baking technology
KodekX | Application Modernization Development
Chapter 3 Spatial Domain Image Processing.pdf
Teaching material agriculture food technology
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy

Going MAD: A Framework For Delivering Pervasive BI Solutions

  • 1. Wayne Eckerson Director, TDWI Research Going MAD: A Framework for Delivering Pervasive BI Solutions
  • 2. Agenda Barriers to usage Self-service BI MAD Framework “ Self Service BI or Self Serving BI?”
  • 3. Pre-DW: IT and User Imprisonment
  • 6. But old habits are tough to change… … and the report backlog got BIGGER!
  • 8. Give them self-service BI tools! Let them eat cake!!! Marie Antoinette
  • 10. Percentage of Active BI Users Based on 675 respondents, Wayne Eckerson, “Pervasive BI: Techniques and Technologies for Deploying BI on an Enterprise Scale,” TDWI Research, 2008.
  • 11. Close Inspection Power Users (20%) Create lots of reports Create inconsistent reports Create runaway queries Waste time & money Casual Users (80%) Can’t find the right report No single version of truth Slow response times Too complex to use
  • 12. Barriers to Usage Based on 675 respondents, Wayne Eckerson, “Pervasive BI: Techniques and Technologies for Deploying BI on an Enterprise Scale,” TDWI Research, 2008.
  • 13. Ways to Accelerate Usage Based on 675 respondents, Wayne Eckerson, “Pervasive BI: Techniques and Technologies for Deploying BI on an Enterprise Scale,” TDWI Research, 2008.
  • 14. Common Definition of Self Service BI “ Empower users to create their own reports so users get what they want when they want it without having to ask IT.”
  • 15. So what do users really want?? Do they want to: 1) Form queries to retrieve and format data?? OR… 2) Monitor & analyze data to make decisions??
  • 16. How to create a report Log on to your BI tool. Remember how to use your BI tool. Find the query panel OR… Find an existing report to extend. Select query objects… Figure out what the query objects mean. Place query objects in the right bands or frames. Format the report output. Format the report output again… and again…. Schedule the report. Try to find the report the next time you log in!
  • 18. Two Types of Self-Service Ad hoc report creation (Power Users) Select facts and measures from a folder Query databases; Format output “ Ad hoc BI” Ad hoc report navigation (Casual Users) Click to drill, filter, or navigate Select filters; respond to prompts “ Tailored delivery”
  • 19. What is Tailored Delivery? Ad hoc report navigation An interactive, information sandbox! - A more elegant way to deliver self service to casual users! - Meets 60%-80% of the information needs of 80% of the users
  • 20. What is Tailored Delivery? A layered information delivery system Tailored to a specific group of users That individuals can personalize A performance dashboard or parameterized report
  • 21. Tailored Delivery Each contains about 20 dimensions and 12 metrics Users think they are doing “ad hoc” but they’re not Each can replace dozens or hundreds of reports
  • 22. Performance Dashboard Detailed Data Summarized Data Graphical Data Detailed Data MAD Sandbox Executives/ Managers Analysts Workers Users M onitor A nalyze D rill thru Functionality
  • 23. Cisco System’s BI Framework Measure Performance Improve Accountability Increase Productivity Intelligence & Knowledge Intelligent Business Actions Information & Data Purpose, Audience, Architecture Actionable Metrics Contributing Metrics Detail Metrics
  • 24. This is Insane!! Not MAD Detailed Data Summarized Data Reports OLAP Spreadsheets Everyone Analysts Managers Graphical Data
  • 25. Evolution – Double MAD! Detailed Data Summarized Data Graphical Data Detailed Data M odel A dvanced Analytics D ecide & Do Functionality Adjacent Applications M onitor A nalyze D rill thru
  • 26. User Inventory – New School Tailored Ad hoc Drill thru Analyze MAD Dashboard Data Mining Predict Excel/Planning Visual discovery BI search Tool OLAP/Visual discovery Excel/Planning Report design tool MAD Dashboard Tool Task Task Analyze Monitor Plan Create plans Drill thru Discover trends Analyze 20% of the Time 80% of the Time Issue queries Author Power Users Monitor Casual Users
  • 27. Who develops the MAD Framework?
  • 28. IT must be totally involved!! - Understand users and business processes! Train “super users” to create ad hoc reports! - Develop and manage the MAD framework! Evaluate super user extensions to MAD!
  • 29. Summary Gut check: Self-service or self serving BI? You can’t abdicate responsibility! Engage with users to liberate yourself! Tailored BI is the key A more elegant way to implement self service The key to pervasive BI Know your users and their roles Summarized Data Graphical Data Detailed Data Detailed Data

Editor's Notes

  • #2: I talk to a lot of BI professionals and most cite self-service BI as a benefit of investing in data warehouses and business intelligence tools. Their argument is logically flawless: BI empowers user to get the data they need directly from a data warehouse and create their own reports without having to wait forever for IT to build them for them. Self-service BI eliminates IT as an intermediary and frustrating bottleneck. Self service is a good thing, but we know in life that sometimes too much of a good thing can make you sick! Sometimes I wonder if self-service BI isn’t actually self-serving BI. Are we eager to embrace self-service BI because it truly meets the needs of our user community or because it offloads us from the unwanted work of creating custom reports? The answer to that question is the focus of this session.
  • #4: To start this analysis, let’s take a short walk back through time. Before there were data warehouses, IT was in prison when it came to delivering information to business users for decision making purposes. IT created all the reports, usually by hand coding them in a 3GL or 4GL language. If an executive or manager wanted a slightly different view of the data, they would submit a request to IT and then wait, perhaps weeks or months before getting the custom report, which often didn’t provide the view the user was looking for or was no longer needed. In the eyes of the business, IT was slow, incompetent, and a very expensive cost center. No wonder many companies sought to outsource all of IT to third party providers. From the IT perspective, IT was in jail. But in some respects, users were in jail too, since they were held hostage by IT to get information to make decisions.
  • #5: Then along came the data warehouse whose purpose was to create a repository of data designed exclusively for query and reporting purposes. The data warehouse was supposed to suck up all corporate data like a black hole and make it available directly to end-users. The data warehouse in essence was a playground in which users could ask any question they wanted or create any report they could imagine without bogging down the performance of operational systems or submitting requests to IT for custom reports.
  • #6: And this was great news for IT. The data warehouse could liberate them once and for all from reporting prison and finally get on the good side of business users by giving them what they had sought for years: direct, unfettered access to data for query and reporting. Shortly thereafter, IT realized that data warehousing was also a full employment act and a great career path. So, by now in the mid-1990s, IT professionals were jumping for joy about data warehousing.
  • #7: But things didn’t pan out as planned. While some users took the bait and ran with it, most still continued to request reports from IT. Running SQL directly against a DW proved very challenging for most people. In fact, impossible! And IT in some ways didn’t want to lose complete control of the reporting environment. So instead of reducing the report backlog, it got BIGGER!
  • #9: JSo what did IT do next? Well, we decided if giving users the data wasn’t enough, we needed to give them better tools, self-service BI tools to be exact. These tools could enable them to access, analyze, and report on the data without IT intervention. And thus a new mantra was born. Self-service BI. It’s now the holy grail of BI professionals. Let’s empower the users to help themselves. ust as Marie Antoinette was completely oblivious to the needs of the French citizenry, so too are many BI professionals completely oblivious to the needs of their users when they recommend a tool that is impossible for them to use.
  • #10: Ok, after one false start, now we’ve figured it out, and we are really happy now!! We’ve fixed this report backlog problem!
  • #12: Let’s examine what happens when we give users unfettered access to data. First of all, the 20 percent of your users who had been bugging you for direct access to data embrace data warehousing and BI tools with gusto. These are typically business analysts or power users who are hungry for data and not intimidated by technology. They end up creating tens of thousands of reports and in doing so, waste a tremendous amount of their time creating and formatting reports for themselves and their colleagues. Some of them use the new BI tools to expedite the way they’ve always done things. That is they issue a humongous runaway query to download all the data they might ever need to stick in an Access database, predictive modeling tool, or spreadsheet where they perform their real analysis. These runaway queries bog down the performance of the whole system discouraging other users who suffer poor query response times. Most importantly, these users – although they are sourcing data from the same place – often create their own metrics, account structures, and definitions which they embed in their reports. Consequently, there is no consistency among these reports which confuses other users and executives seeking the final word on corporate performance in specific areas. Worse yet, the other 80% of your users – the casual users who look at reports and information periodically to do their jobs – get completely lost in the shuffle. They can’t find the report, the tools are too complex for them to remember how to use from one sitting to the next and the response times due to runaway queries are poor. Often, the reports they do find don’t exactly map to their processes but they don’ t know how to custom the view so they either stop using the tool or ask a colleague or IT to develop the view for them. And guess what, we are back to where we were before data warehousing ever appeared on the scene. So how did we get into this pickle? How did we spend millions of dollars on data warehousing and BI tools and infrastructure only to create shelfware and users unhappy about IT backlogs and lack of responsiveness? One common thread that I’ve noticed is that power users – those 15 to 20% of most user populations – wield way too much influence over the selection of BI tools. Once you let the chicken (i.e. power users) out of the henhouse, it’s hard to get them back in.
  • #13: Survey respondents cited numerous impediments to usage, none of which stood out from the rest. Rather, BI teams looking to accelerate usage of BI tools face a plethora of challenges. The top two challenges, if I may paraphrase the answer choices here, are change management and data quality. The hardest thing about getting users to adopt a new tool is to get them to stop using their current tool. As one respondent wrote, “The only way to move users within our company to new BI tools is to eliminate their ability to rely on the crutches they currently use.” Lack of executive backing is also a challenge. If executives aren’t promoting and using the tools, all their subordinates won’t feel compelled to either. But the reverse is also true: if the executive uses the tools, by default, everyone else in the organization must as well. Ironically, data quality is as much a change management issue as a technical one, because users often reject new reports and BI tools that present data in a different format with different metrics or results even though the data is accurate. In an ironic twist, one BI manager said they knowingly published erroneous data that users had become used to seeing to ensure the adoption of a new tool. Obviously, we humans don’t deal with change, even if it’s for the better! My notion about tools being too complex registered in third place, while poor performance finished in a close fourth. Performance expectations among casual users are tough to satisfy. Says one BI director, “People won’t use a tool that doesn’t perform. Users expect to run a query and get results back within seconds. I call this the Google effect.”
  • #14: The good news is that BI teams have quite a few levers they can pull to increase usage. Chief among these is integrating the BI environment with Microsoft Office. Since many users need to work in Excel to develop complex business plans and models and use PowerPoint to display results to managers and teams, it only makes sense to bring Microsoft Office more closely into the BI tool orbit. Many BI vendors have done just that in recent years, making these tools full-fledged clients to their BI applications. Second on the list, performance dashboards provide a highly interactive and intuitive interface that resonates with casual users and requires little or no training to use. When designed properly, a performance dashboard can replace a multitude of “legacy” reporting systems. We’ll talk more about how to design performance dashboards when we discuss the MAD framework. Many users also said that the best way to increase BI usage is to embed it into existing processes. And many respondents believe that delivering users a high degree of report interactivity and self-service will increase usage.
  • #15: This sounds good and few would argue with it. But I see a couple of problems here: 1) Most users can’t create reports 2) users don’t really know what they want 3) and when they run into difficulty, they are still going to ask IT for help.
  • #18: As you can see here, each leverage point is complex in its own right, consisting of multiple components and subcomponents, each of which can affect the usability of the system or the effectiveness of a project overall. Typically, BI teams need to address all the components within a leverage point to ensure a successful outcome. This is the equivalent of juggling multiple balls at once without dropping any. I can’t possibly review every element on this chart to show you how to deliver a more usable BI system, which will help create positive reinforcing cycle, that will lead to a successful and pervasive BI solution. But suffice to say, the four key components of usability, which are arrayed at the center of this diagram, are: good design, great user support, a solid architecture, and attention to change management. It is interesting to note that two of these four elements have little to do with technology and a lot to do with communications and people skills. Excellent technical skills are only ticket that get you in the BI game, and to succeed you need to master the soft skills of sales, marketing, education, and support. I drew much of this concept map based on responses to an open ended question on the survey that asked, “What strategies do you use to drive adoption of BI tools and increase usage?” So, most BI managers already understand the importance of the “soft stuff.” For the rest of this Webinar, I’d like to examine a single element in this chart. If you follow the path from the word Usability in the center to Design just above it, and then to Framework, you’ll see the word MAD. I suspect some of you might want to know what this is all about or if I’ve gone mad myself! By the way, the report goes into more detail on each of the elements displayed here.
  • #21: So what is tailored delivery? Very simply, tailored delivery involves having a central group generate a standard set of interactive reports for specific domains of the business. These reports usually take the form of a dashboard, scorecard, or parameterized report that enables users to change a predefined view by selecting filters from a pick list or other graphical mechanism. A performance dashboard is the best. As a result, these reports often give users the impression that they performing ad hoc queries against all the data in the warehouse when, in reality, their access is circumscribed by a predefined set of metrics, attributes, and filters. The BI team needs to monitor usage and examine which elements are being used and which aren’t and perform periodic selective pruning to keep the reports relevant and fresh.
  • #22: Actually, it’s more like 60% to 80% of the questions for casual users. A well designed interactive report can replace dozens if not hundreds of existing reports. Each report typically focuses on a specific domain and contains about 20 dimensions and 12 metrics. These standard reports are broad without being overwhelming because the present a simple, intuitive interface that makes it easy for users to apply filters to navigation and analyze the predefined data set. Once users navigate to a particularly useful view of information, they can subscribe to that view so it’s available with fresh data the next time they open their reporting tool.
  • #23: This is the ideal framework to implement tailored delivery. It is the conceptual architecture for a performance dashboard. The pyramid represents layers of data. Graphical data is usually delivered via a dashboard/scorecard display or portal. Summarized data is delivered via an OLAP tool. Detailed data is delivered via a DW or OLTP systems. Each layer has an accompanying activity (Monitor, Analyze, Drill thru – hence MAD). Each level is used by all users, but each major group may start in a different place. Managers start at the graphical layer, analysts at the summarized layer, workers at the detail layer. KPIs at the top should be cascaded all the way to the bottom. The layers also represent the evolution of BI. In the 1980s, BI was just detailed data. In the 1990s, we added the analysis layer, and in the 2000s, we added the monitoring layer. Instead of delivering these separately, you should integrate all into a seamless, layered information delivery system called a performance dashboard. (See my book: Performance Dashboards: Measuring, Monitoring, and Managing Your Business – available online.)
  • #24: Cisco has deployed this in marketing, HR, and now in finance. Beautiful!
  • #25: Unfortunately, most companies turn the pyramid upside down! This is insane, not MAD! Systems that look like this overwhelm users with reports that contain all metrics and all data. And each layer is supported by a different tool so that users have to switch between tools to move from one layer to the next, and usually the data is not synchronized.
  • #26: There are several adjacent applications that are gradually being integrated into the MAD sandbox. Planning today creates the goals and targets that comprise the conditional formatting of KPIs in the graphical layer. It also supports the what-if modeling to help organizations understand the ramifications of proposed actions. Wouldn’t it be great if the models were baked into the dashboard? And the plans were automatically integrated with the dashboard? Advanced analytics includes the predictive models that are being built into dashboards. Decide involves collaboration, such as annotating charts and tables and embedding workflow, which is common today in scorecards but not dashboards. Act involves closing the loop between decisions and updates, sending updates implemented via application APIs, stored procedures, or SQL. Many ERP vendors are creating composite applications that close the loop between analytical and operational applications.
  • #29: Information Technology Department Understands process and requirements! Populates subject areas in the DW Develops the dashboard framework Develops the initial dashboard Trains power users to expand the dashboard Evaluates adherence to guidelines Select Power users – “SuperUsers” Expand dashboard with new views/reports Submit designs to IT for review Submit requests for new dashboards