SlideShare a Scribd company logo
Google PageRank
Prof. Beat Signer
<bsigner@vub.ac.be>

Department of Computer Science
Vrije Universiteit Brussel

http://www.beatsigner.com




                                 December 9, 2008
Overview
 History of PageRank
 PageRank algorithm
 Examples
 Implications for website development




December 9, 2008    Beat Signer, signer@inf.ethz.ch   2
History of PageRank
 Developed as part of an academic
     project at Stanford University
           research platform to aid under-            Larry Page Sergey Brin
            standing of large-scale web data
            and enable researches to easily
            experiment with new search technologies
           Larry Page and Sergey Brin worked on the project
            about a new kind of search engine (1995-1998) which
            finally led to a functional prototype called Google


December 9, 2008                  Beat Signer, signer@inf.ethz.ch           3
Web Search Until 1998
 Find all documents using a query term
           use information retrieval (IR) solutions
           ranking based on "on-page factors"
             problem: poor quality of search results (order)
 Page and Brin proposed to compute the
     absolute qualtity of a page (PageRank)
           based on the number and quality of pages
            linking to a page (votes)


December 9, 2008               Beat Signer, signer@inf.ethz.ch   4
PageRank                          P1                        P5        P7   P8
                                  R1                        R5        R7   R8


                             P2                  P3              P4        P6
                             R2                  R3              R4        R6


 A page has a high PageRank R if
           there are many pages linking to it
           or, if there are some pages with a high PageRank
            linking to it
 Total score = IR score x PageRank
December 9, 2008              Beat Signer, signer@inf.ethz.ch                   5
PageRank Algorithm
                            R( Pj )
R( Pi )           
                   Pj Bi     Lj
                                                                        P1    P2

                                                                        1.5
                                                                         1    1.5
                                                                               1

 where
           Bi is the set of pages
            that link to page Pi                                              P3

           Lj is the number of                                               0.75
                                                                               1
            outgoing links for page Pj




December 9, 2008                      Beat Signer, signer@inf.ethz.ch                6
Matrix Representation
 Let us define a hyperlink                            P1   P2
     matrix H
       1 L j if Pj  Bi
H ij  
        0    otherwise
                                           0 1 2 1 
and R  RPi 
                                                            P3
                                       H  1 0 0
                                                   
 R  HR                                   0 1 2 0 
                                                   
R is an eigenvector of H
with eigenvalue 1
December 9, 2008     Beat Signer, signer@inf.ethz.ch             7
Matrix Representation ...
 We can use the power method to find R
     t 1
R            HR   t


                    0 1 2 1 
For our example H  1 0 0
                            
                    0 1 2 0 
                            

this results in R  2 2 1 or                           0.4   0.4 0.2

December 9, 2008       Beat Signer, signer@inf.ethz.ch                     8
Dangling Pages
 Problem with pages                                    P1       P2
                                                             C
     that have no outbound
     links (P2)

  0 0                                                          C

H     and R  0 0
  1 0
  0 1 2                  0 1 2
C       and S  H  C       
   0 1 2                 1 1 2
December 9, 2008      Beat Signer, signer@inf.ethz.ch                 9
Strongly Connected Pages (Graph)
                                                                       1-d
 Add new transition                                              P1         P2
     probabilities between
     all pages
           with probability d we follow
                                                                  P4         P3
            the hyperlink structure S
           with probability 1-d we
            choose a random page
                                                                       P5
                                                                 1-d         1-d
G  1  d  1  dS
            1
                                    R  GR
            n
December 9, 2008               Beat Signer, signer@inf.ethz.ch                     10
G  1  d  1  dS
                                                                        1
Examples                                                                n


                   A2

                   0.37



      A1           A3

    0.26           0.37




December 9, 2008          Beat Signer, signer@inf.ethz.ch                 11
G  1  d  1  dS
                                                                                          1
Examples ...                                                                              n


                         A2                                                    B2

                    0.185                                                     0.185



      A1                 A3                                     B1             B3

    0.13            0.185                                  0.13               0.185


           P A  0.5                                               PB   0.5




December 9, 2008              Beat Signer, signer@inf.ethz.ch                               12
G  1  d  1  dS
                                                                                        1
Examples ...                                                                            n


                      A2                                                     B2

                     0.14                                                   0.20



      A1              A3                                      B1             B3

    0.10             0.14                                0.22               0.20


           P A  0.38                                            PB   0.62




December 9, 2008            Beat Signer, signer@inf.ethz.ch                               13
G  1  d  1  dS
                                                                                        1
Examples ...                                                                            n


                      A2                                                     B2

                     0.23                                                   0.095



      A1              A3                                      B1             B3

     0.3             0.18                                0.10               0.095


           P A  0.71                                            PB   0.29




December 9, 2008            Beat Signer, signer@inf.ethz.ch                               14
G  1  d  1  dS
                                                                                        1
Examples ...                                                                            n


                      A2                                                     B2

                     0.24                                                   0.07



      A1              A3                                      B1             B3

    0.35             0.18                                0.09               0.07


           P A  0.77                                            PB   0.23




December 9, 2008            Beat Signer, signer@inf.ethz.ch                               15
G  1  d  1  dS
                                                                                       1
Examples ...                                                                           n


                    A2                                                      B2

                   0.17                                                    0.06



      A1            A3                                       B1             B3

    0.33           0.175                                0.08               0.06



                    A4                                            PB   0.20

P A  0.80
                   0.125



December 9, 2008           Beat Signer, signer@inf.ethz.ch                               16
Implications for Website Development
 First make sure that your page gets indexed
           on-page factors
 Think about your site's internal link structure
           create many internal links for important pages
           be "careful" about where to put outgoing links
 Increase the number of pages
 Ensure that webpages are addressed consistently
           http://www.vub.ac.be  http://www.vub.ac.be/index.php
 Make sure that you get links from good websites
December 9, 2008               Beat Signer, signer@inf.ethz.ch   17
Consistent Addressing of Webpages




December 9, 2008   Beat Signer, signer@inf.ethz.ch   18
Search Engine Optimisations (SEO)
 Internet marketing has become a big business
           white hat and black hat optimisations
 Bad ranking or removal from index can cost a
     company a lot of money
           e.g. supplemental index ("Google hell")




December 9, 2008              Beat Signer, signer@inf.ethz.ch   19
Black Hat Optimisations (Don'ts)
 Link farms
 Spamdexing in guestbooks, Wikipedia etc.
           "solution": <a rel="nofollow" href="…">…</a>
 Doorway pages (cloaking)
           e.g. BMW Germany and Ricoh Germany banned in
            February 2006
 Selling/buying links
 ...
December 9, 2008            Beat Signer, signer@inf.ethz.ch   20
On-Page Factors (Speculative)
 It is assumed that there are over 200 on-page
     and off-page factors
 Positive factors
           keyword in title tag
           keyword in URL
        keyword in domain name
        quality of HTML code
        page freshness (occasional changes)
        …

December 9, 2008                   Beat Signer, signer@inf.ethz.ch
On-Page Factors (Speculative) …
 Negative factors
           links to "bad neighbourhood"
           over optimisation penalty (keyword stuffing)
           text with same colour as background (hidden content)
           automatic redirects via the refresh meta tag
           any copyright violations
           …




December 9, 2008              Beat Signer, signer@inf.ethz.ch
Off-Page Factors (Speculative)
 Positive factors
           high PageRank
           anchor text of inbound links
           links from authority sites (Hilltop algorithm)
           listed in DMOZ (ODP) and Yahoo directories
           site age (stability)
           domain expiration date
           …



December 9, 2008               Beat Signer, signer@inf.ethz.ch
Off-Page Factors (Speculative) …
 Negative factors
           link buying (fast increasing number of inbound links)
           link farms
           cloaking (different pages for spider and user)
           limited (temporal) availability of site
           links from bad neighbourhood?
           competitor attack (e.g. duplicate content)?
           …



December 9, 2008               Beat Signer, signer@inf.ethz.ch
Tools
 Google toolbar
           PageRank information not frequently updated
 Google webmaster tools
           meta description issues
           title tag issues
        non-indexable content issues
        number and URLs of indexed pages
        number and URLs of inbound/outbound links
        ...

December 9, 2008              Beat Signer, signer@inf.ethz.ch   25
Questions
 Is PageRank fair?
 What about Google's power and influence?




December 9, 2008      Beat Signer, signer@inf.ethz.ch   26
Conclusions
 PageRank algorithm
           absolute quality of a page based on incoming links
           random surfer model
           computed as eigenvector of Google matrix G
 Implications for website development and SEO
 PageRank is just one (important) factor



December 9, 2008              Beat Signer, signer@inf.ethz.ch    27
References
 The PageRank Citation Ranking: Bringing Order
     to the Web, L. Page, S. Brin, R. Motwani and
     T. Winograd, January 1998
 The Anatomy of a Large-Scale Hypertextual
     Web Search Engine, S. Brin and L. Page,
     Computer Networks and ISDN Systems, 30(1-7),
     April 1998


December 9, 2008       Beat Signer, signer@inf.ethz.ch
References …
 PageRank Uncovered, C. Ridings and
     M. Shishigin, September 2002
 PageRank Calculator,
     http://www.webworkshop.net/pagerank_
     calculator.php




December 9, 2008      Beat Signer, signer@inf.ethz.ch   29

More Related Content

PPT
Page Rank
PPTX
PageRank
PPTX
Page rank algorithm
PPT
Pagerank Algorithm Explained
PPTX
page ranking algorithm
PPTX
Page rank algortihm
PPTX
PageRank Algorithm In data mining
PPT
Seo and page rank algorithm
Page Rank
PageRank
Page rank algorithm
Pagerank Algorithm Explained
page ranking algorithm
Page rank algortihm
PageRank Algorithm In data mining
Seo and page rank algorithm

What's hot (20)

PPTX
Page rank
PPTX
Community detection in social networks
PPT
Social Network Analysis
PDF
PageRank and Markov Chain
PPTX
HITS + Pagerank
PPTX
Ranking algorithms
PPTX
Page-Rank Algorithm Final
DOCX
NE7012- SOCIAL NETWORK ANALYSIS
PDF
Link Analysis
PPT
Page rank
PPTX
OFF PAGE SEO
PDF
How to dominate SEO 2022
PPTX
Python Seaborn Data Visualization
PDF
PageRank_algorithm_Nfaoui_El_Habib
PPTX
Locality sensitive hashing
PPTX
06 Community Detection
PDF
Analyzing Text Preprocessing and Feature Selection Methods for Sentiment Anal...
PDF
New Seo Proposal
PDF
Basics of Search Engine Optimisation
PPTX
ON PAGE SEO
Page rank
Community detection in social networks
Social Network Analysis
PageRank and Markov Chain
HITS + Pagerank
Ranking algorithms
Page-Rank Algorithm Final
NE7012- SOCIAL NETWORK ANALYSIS
Link Analysis
Page rank
OFF PAGE SEO
How to dominate SEO 2022
Python Seaborn Data Visualization
PageRank_algorithm_Nfaoui_El_Habib
Locality sensitive hashing
06 Community Detection
Analyzing Text Preprocessing and Feature Selection Methods for Sentiment Anal...
New Seo Proposal
Basics of Search Engine Optimisation
ON PAGE SEO
Ad

Viewers also liked (20)

PDF
The Google Pagerank algorithm - How does it work?
PPT
Lec5 Pagerank
PDF
Page rank talk at NTU-EE
PPTX
Google algorithim’s
PPTX
How Google Search Engine Algorithm Works ??
PPT
Clinical Cases from Resource Limited Settings: David Roesel
PPTX
Samana m
PPTX
Implementing page rank algorithm using hadoop map reduce
PPT
Giới thiệu tổng quan về SEO
PDF
Google pagerank là gì
PDF
Hadoop Futures
PDF
PDF
PageRank and Related Methods
PDF
A hadoop implementation of pagerank
PDF
Link Analysis (RBY)
PDF
Understanding search engine algorithms
PDF
Hadoop implementation for algorithms apriori, pcy, son
PDF
Pagerank and hits
PPT
Mathematics project
PPTX
Matrix transformation
The Google Pagerank algorithm - How does it work?
Lec5 Pagerank
Page rank talk at NTU-EE
Google algorithim’s
How Google Search Engine Algorithm Works ??
Clinical Cases from Resource Limited Settings: David Roesel
Samana m
Implementing page rank algorithm using hadoop map reduce
Giới thiệu tổng quan về SEO
Google pagerank là gì
Hadoop Futures
PageRank and Related Methods
A hadoop implementation of pagerank
Link Analysis (RBY)
Understanding search engine algorithms
Hadoop implementation for algorithms apriori, pcy, son
Pagerank and hits
Mathematics project
Matrix transformation
Ad

More from Beat Signer (20)

PDF
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841...
PDF
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
PDF
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
PDF
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (102384...
PDF
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023...
PDF
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interactio...
PDF
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
PDF
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
PDF
Indoor Positioning Using the OpenHPS Framework
PDF
Personalised Learning Environments Based on Knowledge Graphs and the Zone of ...
PDF
Cross-Media Technologies and Applications - Future Directions for Personal In...
PDF
Bridging the Gap: Managing and Interacting with Information Across Media Boun...
PDF
Codeschool in a Box: A Low-Barrier Approach to Packaging Programming Curricula
PDF
The RSL Hypermedia Metamodel and Its Application in Cross-Media Solutions
PDF
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019...
PDF
Dashboards - Lecture 11 - Information Visualisation (4019538FNR)
PDF
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
PDF
View Manipulation and Reduction - Lecture 9 - Information Visualisation (4019...
PDF
Visualisation Techniques - Lecture 8 - Information Visualisation (4019538FNR)
PDF
Design Guidelines and Principles - Lecture 7 - Information Visualisation (401...
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841...
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (102384...
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023...
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interactio...
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
Indoor Positioning Using the OpenHPS Framework
Personalised Learning Environments Based on Knowledge Graphs and the Zone of ...
Cross-Media Technologies and Applications - Future Directions for Personal In...
Bridging the Gap: Managing and Interacting with Information Across Media Boun...
Codeschool in a Box: A Low-Barrier Approach to Packaging Programming Curricula
The RSL Hypermedia Metamodel and Its Application in Cross-Media Solutions
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019...
Dashboards - Lecture 11 - Information Visualisation (4019538FNR)
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
View Manipulation and Reduction - Lecture 9 - Information Visualisation (4019...
Visualisation Techniques - Lecture 8 - Information Visualisation (4019538FNR)
Design Guidelines and Principles - Lecture 7 - Information Visualisation (401...

Recently uploaded (20)

PPTX
A Presentation on Artificial Intelligence
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPT
Teaching material agriculture food technology
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Modernizing your data center with Dell and AMD
PDF
Machine learning based COVID-19 study performance prediction
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Network Security Unit 5.pdf for BCA BBA.
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Big Data Technologies - Introduction.pptx
PDF
KodekX | Application Modernization Development
A Presentation on Artificial Intelligence
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
Encapsulation_ Review paper, used for researhc scholars
Mobile App Security Testing_ A Comprehensive Guide.pdf
Teaching material agriculture food technology
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
MYSQL Presentation for SQL database connectivity
Modernizing your data center with Dell and AMD
Machine learning based COVID-19 study performance prediction
20250228 LYD VKU AI Blended-Learning.pptx
Spectral efficient network and resource selection model in 5G networks
Dropbox Q2 2025 Financial Results & Investor Presentation
The Rise and Fall of 3GPP – Time for a Sabbatical?
Advanced methodologies resolving dimensionality complications for autism neur...
Network Security Unit 5.pdf for BCA BBA.
“AI and Expert System Decision Support & Business Intelligence Systems”
Big Data Technologies - Introduction.pptx
KodekX | Application Modernization Development

Google PageRank

  • 1. Google PageRank Prof. Beat Signer <bsigner@vub.ac.be> Department of Computer Science Vrije Universiteit Brussel http://www.beatsigner.com December 9, 2008
  • 2. Overview  History of PageRank  PageRank algorithm  Examples  Implications for website development December 9, 2008 Beat Signer, signer@inf.ethz.ch 2
  • 3. History of PageRank  Developed as part of an academic project at Stanford University  research platform to aid under- Larry Page Sergey Brin standing of large-scale web data and enable researches to easily experiment with new search technologies  Larry Page and Sergey Brin worked on the project about a new kind of search engine (1995-1998) which finally led to a functional prototype called Google December 9, 2008 Beat Signer, signer@inf.ethz.ch 3
  • 4. Web Search Until 1998  Find all documents using a query term  use information retrieval (IR) solutions  ranking based on "on-page factors"  problem: poor quality of search results (order)  Page and Brin proposed to compute the absolute qualtity of a page (PageRank)  based on the number and quality of pages linking to a page (votes) December 9, 2008 Beat Signer, signer@inf.ethz.ch 4
  • 5. PageRank P1 P5 P7 P8 R1 R5 R7 R8 P2 P3 P4 P6 R2 R3 R4 R6  A page has a high PageRank R if  there are many pages linking to it  or, if there are some pages with a high PageRank linking to it  Total score = IR score x PageRank December 9, 2008 Beat Signer, signer@inf.ethz.ch 5
  • 6. PageRank Algorithm R( Pj ) R( Pi )   Pj Bi Lj P1 P2 1.5 1 1.5 1  where  Bi is the set of pages that link to page Pi P3  Lj is the number of 0.75 1 outgoing links for page Pj December 9, 2008 Beat Signer, signer@inf.ethz.ch 6
  • 7. Matrix Representation  Let us define a hyperlink P1 P2 matrix H 1 L j if Pj  Bi H ij    0 otherwise 0 1 2 1  and R  RPi  P3 H  1 0 0    R  HR 0 1 2 0    R is an eigenvector of H with eigenvalue 1 December 9, 2008 Beat Signer, signer@inf.ethz.ch 7
  • 8. Matrix Representation ...  We can use the power method to find R t 1 R  HR t 0 1 2 1  For our example H  1 0 0   0 1 2 0    this results in R  2 2 1 or 0.4 0.4 0.2 December 9, 2008 Beat Signer, signer@inf.ethz.ch 8
  • 9. Dangling Pages  Problem with pages P1 P2 C that have no outbound links (P2) 0 0  C H  and R  0 0 1 0 0 1 2  0 1 2 C  and S  H  C     0 1 2 1 1 2 December 9, 2008 Beat Signer, signer@inf.ethz.ch 9
  • 10. Strongly Connected Pages (Graph) 1-d  Add new transition P1 P2 probabilities between all pages  with probability d we follow P4 P3 the hyperlink structure S  with probability 1-d we choose a random page P5 1-d 1-d G  1  d  1  dS 1 R  GR n December 9, 2008 Beat Signer, signer@inf.ethz.ch 10
  • 11. G  1  d  1  dS 1 Examples n A2 0.37 A1 A3 0.26 0.37 December 9, 2008 Beat Signer, signer@inf.ethz.ch 11
  • 12. G  1  d  1  dS 1 Examples ... n A2 B2 0.185 0.185 A1 A3 B1 B3 0.13 0.185 0.13 0.185 P A  0.5 PB   0.5 December 9, 2008 Beat Signer, signer@inf.ethz.ch 12
  • 13. G  1  d  1  dS 1 Examples ... n A2 B2 0.14 0.20 A1 A3 B1 B3 0.10 0.14 0.22 0.20 P A  0.38 PB   0.62 December 9, 2008 Beat Signer, signer@inf.ethz.ch 13
  • 14. G  1  d  1  dS 1 Examples ... n A2 B2 0.23 0.095 A1 A3 B1 B3 0.3 0.18 0.10 0.095 P A  0.71 PB   0.29 December 9, 2008 Beat Signer, signer@inf.ethz.ch 14
  • 15. G  1  d  1  dS 1 Examples ... n A2 B2 0.24 0.07 A1 A3 B1 B3 0.35 0.18 0.09 0.07 P A  0.77 PB   0.23 December 9, 2008 Beat Signer, signer@inf.ethz.ch 15
  • 16. G  1  d  1  dS 1 Examples ... n A2 B2 0.17 0.06 A1 A3 B1 B3 0.33 0.175 0.08 0.06 A4 PB   0.20 P A  0.80 0.125 December 9, 2008 Beat Signer, signer@inf.ethz.ch 16
  • 17. Implications for Website Development  First make sure that your page gets indexed  on-page factors  Think about your site's internal link structure  create many internal links for important pages  be "careful" about where to put outgoing links  Increase the number of pages  Ensure that webpages are addressed consistently  http://www.vub.ac.be  http://www.vub.ac.be/index.php  Make sure that you get links from good websites December 9, 2008 Beat Signer, signer@inf.ethz.ch 17
  • 18. Consistent Addressing of Webpages December 9, 2008 Beat Signer, signer@inf.ethz.ch 18
  • 19. Search Engine Optimisations (SEO)  Internet marketing has become a big business  white hat and black hat optimisations  Bad ranking or removal from index can cost a company a lot of money  e.g. supplemental index ("Google hell") December 9, 2008 Beat Signer, signer@inf.ethz.ch 19
  • 20. Black Hat Optimisations (Don'ts)  Link farms  Spamdexing in guestbooks, Wikipedia etc.  "solution": <a rel="nofollow" href="…">…</a>  Doorway pages (cloaking)  e.g. BMW Germany and Ricoh Germany banned in February 2006  Selling/buying links  ... December 9, 2008 Beat Signer, signer@inf.ethz.ch 20
  • 21. On-Page Factors (Speculative)  It is assumed that there are over 200 on-page and off-page factors  Positive factors  keyword in title tag  keyword in URL  keyword in domain name  quality of HTML code  page freshness (occasional changes)  … December 9, 2008 Beat Signer, signer@inf.ethz.ch
  • 22. On-Page Factors (Speculative) …  Negative factors  links to "bad neighbourhood"  over optimisation penalty (keyword stuffing)  text with same colour as background (hidden content)  automatic redirects via the refresh meta tag  any copyright violations  … December 9, 2008 Beat Signer, signer@inf.ethz.ch
  • 23. Off-Page Factors (Speculative)  Positive factors  high PageRank  anchor text of inbound links  links from authority sites (Hilltop algorithm)  listed in DMOZ (ODP) and Yahoo directories  site age (stability)  domain expiration date  … December 9, 2008 Beat Signer, signer@inf.ethz.ch
  • 24. Off-Page Factors (Speculative) …  Negative factors  link buying (fast increasing number of inbound links)  link farms  cloaking (different pages for spider and user)  limited (temporal) availability of site  links from bad neighbourhood?  competitor attack (e.g. duplicate content)?  … December 9, 2008 Beat Signer, signer@inf.ethz.ch
  • 25. Tools  Google toolbar  PageRank information not frequently updated  Google webmaster tools  meta description issues  title tag issues  non-indexable content issues  number and URLs of indexed pages  number and URLs of inbound/outbound links  ... December 9, 2008 Beat Signer, signer@inf.ethz.ch 25
  • 26. Questions  Is PageRank fair?  What about Google's power and influence? December 9, 2008 Beat Signer, signer@inf.ethz.ch 26
  • 27. Conclusions  PageRank algorithm  absolute quality of a page based on incoming links  random surfer model  computed as eigenvector of Google matrix G  Implications for website development and SEO  PageRank is just one (important) factor December 9, 2008 Beat Signer, signer@inf.ethz.ch 27
  • 28. References  The PageRank Citation Ranking: Bringing Order to the Web, L. Page, S. Brin, R. Motwani and T. Winograd, January 1998  The Anatomy of a Large-Scale Hypertextual Web Search Engine, S. Brin and L. Page, Computer Networks and ISDN Systems, 30(1-7), April 1998 December 9, 2008 Beat Signer, signer@inf.ethz.ch
  • 29. References …  PageRank Uncovered, C. Ridings and M. Shishigin, September 2002  PageRank Calculator, http://www.webworkshop.net/pagerank_ calculator.php December 9, 2008 Beat Signer, signer@inf.ethz.ch 29