This document discusses how Google uses Markov chains and the PageRank algorithm to rank web pages. It begins by explaining Markov chains and how they can model random user behavior on the web. It then describes how Google implemented PageRank as a non-absorbing Markov chain to calculate the probability of a random user reaching any given page. The document outlines issues with applying this to the large-scale web, and proposes techniques like the power method to efficiently approximate PageRank values for the trillion-page internet graph. Finally, it provides an example of how links between related high-authority sites can increase the PageRank of a given page.
Related topics: