SlideShare a Scribd company logo
Fast Global Image Denoising Algorithm
on the Basis of Nonstationary Gamma-
Normal Statistical Model
Gracheva Inessa, gia1509@mail.ru,
Kopylov Andrey, and.kopylov@gmail.com,
Krasotkina Olga, O.V.Krasotkina@yandex.ru
Tula State University, Tula, Russia
AIST Conference, April 2015, Ekaterinburg
Formulation of the problem
What do we want?
 the method should effectively remove Gaussian noise as well as
Poissonian noise;
 the method should satisfy strict constraints in terms of computational
cost, so as to be able to process large data sets;
the algorithm required as less user input as possible in order to facilitate
its application and to enhance the reproducibility of its results.
To achieve these purpose a nonstationary gamma-normal noise model
has been proposed in the framework of Bayesian approach to the problem of
image processing. This model allows us to develop a fast global algorithm
on the basis of Gauss-Seudel procedure and Kalman filter-interpolator.
Image denoising
( , )tY y t T= ∈ ( , )tX x t T= ∈
1 2 1 1 2 2{ ( , ): 1,..., , 1,..., }T t t t t N t N= = = =
x X∈y Y∈
The analyzed
image
The processing
result
Probabilistic data model
The joint conditional probability density:
where is the variance of the observation noise.
The a priori joint distribution:
where is the proportionality coefficients to the variance
of the observation noise ; V is the neighborhood
graphs of image elements having the form of a lattice.
2
/2 /2
1 1
( | , ) exp( ( ) )
(2 ) 2
t tN N
t T
Y X y xδ
δ π δ ∈
Φ = − −∑
2
1/2
,( 1)/2
1 1 1
( | , ) exp ( )
2
(2 )
t t
t t V tn N
t
t T
X x xδ
δλ
δλ π
′ ′′
′ ′′∈−
∈
 
Ψ Λ µ × − − ÷
   
 ÷
 
∑
∏
δ=)( 2
teE
tλ
t tr λδ=
1 N1t1
1
N2
t2
Gamma - distribution
))/1(exp()/1(),|/1( 1
ttt λϑλϑαλγ α
−∝ −
2 1
2
(1/ | , , ) (1/ ) exp (1/ )
2
t t t
µ
δµ λ
γ λ δ λ µ λ λ
δµ
+
 
µ − ÷
 
2
1)1(
2)/1(,
1)1(
)/1(
λ
µδ
δµλ
λ
µδ
λ
++
=
++
= tt VarE2
(1/ ) , (1/ )t tE Var
α α
λ λ
ϑ ϑ
= =
1
1
( | , ) ( | , )
1 1
exp exp ( 1) ln
t
t T t T t
t
t T t T t Tt t
G
α
α ϑ γ λ α ϑ
λ
ϑ α λ ϑ
λ λ
−
∈ ∈
∈ ∈ ∈
 
Λ = µ × ÷
 
   
× − = − − − ÷  
   
∏ ∏
∑ ∑ ∑
( | , , )
1 1 1
exp ln ,
2
t
t T t
G δ λ µ
λ λ
δµ λ λ∈
Λ =
  
= − +  ÷
  
∑
where
1 1 1
1 1 ,
2 2
λ
α ϑ
δ µ δµ
  
= + + =  ÷
  
Gamma-distributed of the inverse factors :tλ/1
with mathematical expectations and variances:
We come to the a priori distribution density:
Normal gamma-distribution
So, have completely defined the joint prior normal gamma-distribution
of both hidden fields and
Coupled with the conditional density of the observable field, it makes
basis for Bayesian estimation of the field .
The joint a posteriori distribution of hidden elements, namely, those of
field and its instantaneous factors
( , )tX x t T= ∈ ( , )t t TλΛ = ∈
( , | , , ) ( | , ) ( | , , )H X X Gδ λ µ δ δ λ µΛ = Ψ Λ Λ
( , )tX x t T= ∈
( | , ) ( | , ) ( | , )
( , | , , , )
( '| ', ) ( '| , ) ( | ', ) ' '
X G Y X
P X Y
X G Y X dX d
δ α ϑ δ
δ α ϑ
δ α ϑ δ
Ψ Λ Λ Φ
Λ =
Ψ Λ Λ Φ Λ∫∫
( , )tX x t T= ∈ ( , )t t TλΛ = ∈
The Bayesian estimate of the
hidden random field
The Bayesian estimate of is the maximum point of the numerator
The conditionally optimal factors are
defined independently of each other:
The zero conditions for the derivatives, excluding the trivial solutions
lead to the equalities
( , )X Λ
,
2
2
' ''
', ''
( , | , ) arg min ( , | , , ),
( , | , , ) ( )
1
( ) / (1 1/ )ln .
X
t t
t T
t t t
t t V t
X J X Y
J X Y y x
x x
λ µ λ µ
λ µ
λ µ µ λ
λ
Λ
∈
∈

 Λ = Λ


Λ = − +

  
 + − + + +  
  
∑
∑
) )
,
2
1
2
' ''
', ''
( , | , ) arg min ( , | , , ),
( , | , , ) ( )
(1/ )( ) 1/
(1 1/ )ln .
1 1/
X
N
t t
t
t t
t t V
X J X Y
J X Y y x
x x
λ µ λ µ
λ µ
λ µ
µ
µ
Λ
=
∈

 Λ = Λ


Λ = − +

  − +
 + 
+  
∑
∑
) )
( , , ) [ ( , , ), ]tX X t Tλ µ λ λ µΛ = ∈
))
2
' ''
1
( , , ) arg min ( | , , ) : [( ) / ] (1 1/ )ln 0t t t
t t
X J X x xλ µ λ µ λ µ µ λ
λ λΛ
 ∂
Λ = Λ − + + + = 
∂  
)
,∞→tλ
2
' ''(1/ )( ) 1/
( , , )
1 1/
t t
t
x x
X
λ µ
λ λ µ λ
µ
− +
=
+
)
“The saturation effect”
“The saturation effect” of the unsmoothness penalty for sufficiently large
values of the parameter µ and fixed value λ =1.
The Gauss - Seudel procedure
Minimize of the objective function gives the approximation to the
estimate of the mutually agreed field starting with the initial values
, and new value of the hidden component gives the
solution of the conditional optimization problem
( , )k k
tX x t T= ∈
) )
2 2
' ''
', '' '
( , 1,..., ) arg min ( , | , , )
1
arg min ( ) ( ) .
k k k
X
t t t t
X t T t t V t
X x t N J X Y
y x x x
λ µ
λ∈ ∈
= = = Λ =
 
− + − 
 
∑ ∑
) )
1
2 2
' ''
', '' '
arg min ( , | , , )
1
arg min ( ) ( ) .
k k
k k
t t t t
t T t t V t
J X Y
y x x x
λ µ
λ
+
Λ
Λ ∈ ∈
Λ = Λ =
 
= − + − 
 
∑ ∑
) )
) ) )
0 0
( , )t t Tλ λΛ = = ∈
))
Approximation trellis
neighborhood graph sequence trees
For finding the values of the hidden field at each vertical row of the picture,
we use a separate pixel neighborhood tree which is defined, on the whole
pixel set and has the same horizontal branches as the others.
The resulting image processing procedure is aimed at finding optimal
values only for the hidden variables at the stem nodes in each tree.
The simplicity of such a succession of elementary trees allows for a
significant simplification of the optimization procedure.
1
Comparison of Poissonian and
Gaussian noise removal algorithms
Image
Peak intensity
Input PSNR
Peppers 256x256
120 60 30
23.92 20.92 17.91
Haar-Fisz 29.27 27.30 24.54
Platelet 29.07 27.44 25.73
PURE-LET 30.28 28.51 26.72
Our algorithm 29.53 28.65 25.77
Image
Peak intensity
Input PSNR
Einstein 512x512
120 60 30
8.34 14.35 19.23
FBF 24.86 26.21 29.63
SURE-LET 24.56 26.30 29.43
BM3D 25.03 26.59 29.99
Our algorithm 24.76 26.44 29.88
Gaussian noisePoissonian noise
Relative computation time of
various denoising techniques (sec)
Methods Image size
256x256 512x512
Platelet 856 1112
PURE-LET 4.6 8.2
BM3D 4.1 7.2
Haar-Fisz 1.3 3.2
FBF 0.5 1.8
SURE-LET 0.4 1.6
Our
algorithm
0.16 0.53
A plot of the time of the algorithm (s) on
the image size.
Experimental results
a) b)
c) d)
a)The original Einstein image. b)Noisy version with simulated Gaussian noise.
c)Denoised with our algorithm. d)Denoised with BM3D.
Experimental results
a)
b) c)
a)Part of the original MRI slice from the IGBMC Imaging Center data sets.
b)Denoised with our algorithm. c)Denoised with PURE-LET
THANKS FOR YOUR ATTENTION!
Acknowledgements
This research is funded by RFBR grant,13-07-00529.

More Related Content

PDF
Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Struct...
PPT
Deconvolution
PDF
勾配法
PPT
Numerical Methods
PDF
線形回帰モデル
PDF
Random Matrix Theory and Machine Learning - Part 2
PDF
Mixed Spectra for Stable Signals from Discrete Observations
PDF
Random Matrix Theory and Machine Learning - Part 3
Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Struct...
Deconvolution
勾配法
Numerical Methods
線形回帰モデル
Random Matrix Theory and Machine Learning - Part 2
Mixed Spectra for Stable Signals from Discrete Observations
Random Matrix Theory and Machine Learning - Part 3

What's hot (20)

PDF
Random Matrix Theory and Machine Learning - Part 1
PPTX
Introduction to Image Processing
PDF
Random Matrix Theory and Machine Learning - Part 4
PDF
Introducing Zap Q-Learning
PPTX
Digital signal processing on arm new
PDF
Section5 stochastic
PPTX
Newton's forward difference
PDF
Section3 stochastic
PDF
Average Sensitivity of Graph Algorithms
PPTX
Paper Introduction "Density-aware person detection and tracking in crowds"
DOC
Unit v rpq1
PPTX
Newton Forward Difference Interpolation Method
PPTX
Newton’s Divided Difference Formula
PPTX
Newton's Backward Interpolation Formula with Example
PDF
22 01 2014_03_23_31_eee_formula_sheet_final
PDF
Newton's Forward/Backward Difference Interpolation
PPTX
Interpolation
PDF
Applied numerical methods lec12
PDF
MLP輪読スパース8章 トレースノルム正則化
DOC
Gamma beta functions-1
Random Matrix Theory and Machine Learning - Part 1
Introduction to Image Processing
Random Matrix Theory and Machine Learning - Part 4
Introducing Zap Q-Learning
Digital signal processing on arm new
Section5 stochastic
Newton's forward difference
Section3 stochastic
Average Sensitivity of Graph Algorithms
Paper Introduction "Density-aware person detection and tracking in crowds"
Unit v rpq1
Newton Forward Difference Interpolation Method
Newton’s Divided Difference Formula
Newton's Backward Interpolation Formula with Example
22 01 2014_03_23_31_eee_formula_sheet_final
Newton's Forward/Backward Difference Interpolation
Interpolation
Applied numerical methods lec12
MLP輪読スパース8章 トレースノルム正則化
Gamma beta functions-1
Ad

Viewers also liked (13)

PPTX
Curved Wavelet Transform For Image Denoising using MATLAB.
PPTX
Image denoising
PPTX
Image denoising algorithms
PPTX
Image denoising
PDF
DOCX
final_project
PPTX
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
PPT
Image denoising using curvelet transform
PPTX
image denoising technique using disctere wavelet transform
PPT
Image Denoising Using Wavelet
PDF
AutoEncoderで特徴抽出
PDF
Introduction to Digital Image Processing Using MATLAB
PDF
survey paper for image denoising
Curved Wavelet Transform For Image Denoising using MATLAB.
Image denoising
Image denoising algorithms
Image denoising
final_project
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
Image denoising using curvelet transform
image denoising technique using disctere wavelet transform
Image Denoising Using Wavelet
AutoEncoderで特徴抽出
Introduction to Digital Image Processing Using MATLAB
survey paper for image denoising
Ad

Similar to Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonstationary Gamma-Normal Statistical Model (20)

PDF
KAUST_talk_short.pdf
PDF
Tensor train to solve stochastic PDEs
PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
PDF
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
PDF
An Approach For Solving Nonlinear Programming Problems
PDF
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
PDF
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
PDF
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
PDF
Finite frequency H∞ control for wind turbine systems in T-S form
PDF
research paper publication
PDF
Response Surface in Tensor Train format for Uncertainty Quantification
PDF
Fourier_Pricing_ICCF_2022.pdf
PDF
MVPA with SpaceNet: sparse structured priors
PDF
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
PDF
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
PDF
A lambda calculus for density matrices with classical and probabilistic controls
PDF
sada_pres
PDF
LINEAR SYSTEMS
PDF
Automatic bayesian cubature
PDF
Mixed Spectra for Stable Signals from Discrete Observations
KAUST_talk_short.pdf
Tensor train to solve stochastic PDEs
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
An Approach For Solving Nonlinear Programming Problems
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
Finite frequency H∞ control for wind turbine systems in T-S form
research paper publication
Response Surface in Tensor Train format for Uncertainty Quantification
Fourier_Pricing_ICCF_2022.pdf
MVPA with SpaceNet: sparse structured priors
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
A lambda calculus for density matrices with classical and probabilistic controls
sada_pres
LINEAR SYSTEMS
Automatic bayesian cubature
Mixed Spectra for Stable Signals from Discrete Observations

More from AIST (20)

PDF
Alexey Mikhaylichenko - Automatic Detection of Bone Contours in X-Ray Images
PDF
Алена Ильина и Иван Бибилов, GoTo - GoTo школы, конкурсы и хакатоны
PDF
Станислав Кралин, Сайтсофт - Связанные открытые данные федеральных органов ис...
PDF
Павел Браславский,Velpas - Velpas: мобильный визуальный поиск
PDF
Евгений Цымбалов, Webgames - Методы машинного обучения для задач игровой анал...
PDF
Александр Москвичев, EveResearch - Алгоритмы анализа данных в маркетинговых и...
PDF
Петр Ермаков, HeadHunter - Модерация резюме: от людей к роботам. Машинное обу...
PPTX
Иосиф Иткин, Exactpro - TBA
PPTX
Nikolay Karpov - Evolvable Semantic Platform for Facilitating Knowledge Exchange
PDF
George Moiseev - Classification of E-commerce Websites by Product Categories
PDF
Elena Bruches - The Hybrid Approach to Part-of-Speech Disambiguation
PDF
Marina Danshina - The methodology of automated decryption of znamenny chants
PDF
Edward Klyshinsky - The Corpus of Syntactic Co-occurences: the First Glance
PPTX
Galina Lavrentyeva - Anti-spoofing Methods for Automatic Speaker Verification...
PDF
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
PDF
Kaytoue Mehdi - Finding duplicate labels in behavioral data: an application f...
PPTX
Valeri Labunets - The bichromatic excitable Schrodinger metamedium
PPTX
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
PDF
Alexander Karkishchenko - Threefold Symmetry Detection in Hexagonal Images Ba...
PPT
Olesia Kushnir - Reflection Symmetry of Shapes Based on Skeleton Primitive Ch...
Alexey Mikhaylichenko - Automatic Detection of Bone Contours in X-Ray Images
Алена Ильина и Иван Бибилов, GoTo - GoTo школы, конкурсы и хакатоны
Станислав Кралин, Сайтсофт - Связанные открытые данные федеральных органов ис...
Павел Браславский,Velpas - Velpas: мобильный визуальный поиск
Евгений Цымбалов, Webgames - Методы машинного обучения для задач игровой анал...
Александр Москвичев, EveResearch - Алгоритмы анализа данных в маркетинговых и...
Петр Ермаков, HeadHunter - Модерация резюме: от людей к роботам. Машинное обу...
Иосиф Иткин, Exactpro - TBA
Nikolay Karpov - Evolvable Semantic Platform for Facilitating Knowledge Exchange
George Moiseev - Classification of E-commerce Websites by Product Categories
Elena Bruches - The Hybrid Approach to Part-of-Speech Disambiguation
Marina Danshina - The methodology of automated decryption of znamenny chants
Edward Klyshinsky - The Corpus of Syntactic Co-occurences: the First Glance
Galina Lavrentyeva - Anti-spoofing Methods for Automatic Speaker Verification...
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
Kaytoue Mehdi - Finding duplicate labels in behavioral data: an application f...
Valeri Labunets - The bichromatic excitable Schrodinger metamedium
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Alexander Karkishchenko - Threefold Symmetry Detection in Hexagonal Images Ba...
Olesia Kushnir - Reflection Symmetry of Shapes Based on Skeleton Primitive Ch...

Recently uploaded (20)

PDF
natwest.pdf company description and business model
PDF
Swiggy’s Playbook: UX, Logistics & Monetization
PPTX
nose tajweed for the arabic alphabets for the responsive
PDF
Nykaa-Strategy-Case-Fixing-Retention-UX-and-D2C-Engagement (1).pdf
PPTX
The spiral of silence is a theory in communication and political science that...
PPTX
Introduction-to-Food-Packaging-and-packaging -materials.pptx
PPTX
PHIL.-ASTRONOMY-AND-NAVIGATION of ..pptx
PPTX
Non-Verbal-Communication .mh.pdf_110245_compressed.pptx
PPTX
Introduction to Effective Communication.pptx
DOCX
ENGLISH PROJECT FOR BINOD BIHARI MAHTO KOYLANCHAL UNIVERSITY
PDF
Tunisia's Founding Father(s) Pitch-Deck 2022.pdf
PPTX
Learning-Plan-5-Policies-and-Practices.pptx
PPTX
Human Mind & its character Characteristics
PPTX
An Unlikely Response 08 10 2025.pptx
PDF
Presentation1 [Autosaved].pdf diagnosiss
PPTX
Project and change Managment: short video sequences for IBA
PPTX
Self management and self evaluation presentation
PPTX
S. Anis Al Habsyi & Nada Shobah - Klasifikasi Hambatan Depresi.pptx
PPTX
Primary and secondary sources, and history
PPTX
Intro to ISO 9001 2015.pptx wareness raising
natwest.pdf company description and business model
Swiggy’s Playbook: UX, Logistics & Monetization
nose tajweed for the arabic alphabets for the responsive
Nykaa-Strategy-Case-Fixing-Retention-UX-and-D2C-Engagement (1).pdf
The spiral of silence is a theory in communication and political science that...
Introduction-to-Food-Packaging-and-packaging -materials.pptx
PHIL.-ASTRONOMY-AND-NAVIGATION of ..pptx
Non-Verbal-Communication .mh.pdf_110245_compressed.pptx
Introduction to Effective Communication.pptx
ENGLISH PROJECT FOR BINOD BIHARI MAHTO KOYLANCHAL UNIVERSITY
Tunisia's Founding Father(s) Pitch-Deck 2022.pdf
Learning-Plan-5-Policies-and-Practices.pptx
Human Mind & its character Characteristics
An Unlikely Response 08 10 2025.pptx
Presentation1 [Autosaved].pdf diagnosiss
Project and change Managment: short video sequences for IBA
Self management and self evaluation presentation
S. Anis Al Habsyi & Nada Shobah - Klasifikasi Hambatan Depresi.pptx
Primary and secondary sources, and history
Intro to ISO 9001 2015.pptx wareness raising

Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonstationary Gamma-Normal Statistical Model

  • 1. Fast Global Image Denoising Algorithm on the Basis of Nonstationary Gamma- Normal Statistical Model Gracheva Inessa, gia1509@mail.ru, Kopylov Andrey, and.kopylov@gmail.com, Krasotkina Olga, O.V.Krasotkina@yandex.ru Tula State University, Tula, Russia AIST Conference, April 2015, Ekaterinburg
  • 2. Formulation of the problem What do we want?  the method should effectively remove Gaussian noise as well as Poissonian noise;  the method should satisfy strict constraints in terms of computational cost, so as to be able to process large data sets; the algorithm required as less user input as possible in order to facilitate its application and to enhance the reproducibility of its results. To achieve these purpose a nonstationary gamma-normal noise model has been proposed in the framework of Bayesian approach to the problem of image processing. This model allows us to develop a fast global algorithm on the basis of Gauss-Seudel procedure and Kalman filter-interpolator.
  • 3. Image denoising ( , )tY y t T= ∈ ( , )tX x t T= ∈ 1 2 1 1 2 2{ ( , ): 1,..., , 1,..., }T t t t t N t N= = = = x X∈y Y∈ The analyzed image The processing result
  • 4. Probabilistic data model The joint conditional probability density: where is the variance of the observation noise. The a priori joint distribution: where is the proportionality coefficients to the variance of the observation noise ; V is the neighborhood graphs of image elements having the form of a lattice. 2 /2 /2 1 1 ( | , ) exp( ( ) ) (2 ) 2 t tN N t T Y X y xδ δ π δ ∈ Φ = − −∑ 2 1/2 ,( 1)/2 1 1 1 ( | , ) exp ( ) 2 (2 ) t t t t V tn N t t T X x xδ δλ δλ π ′ ′′ ′ ′′∈− ∈   Ψ Λ µ × − − ÷      ÷   ∑ ∏ δ=)( 2 teE tλ t tr λδ= 1 N1t1 1 N2 t2
  • 5. Gamma - distribution ))/1(exp()/1(),|/1( 1 ttt λϑλϑαλγ α −∝ − 2 1 2 (1/ | , , ) (1/ ) exp (1/ ) 2 t t t µ δµ λ γ λ δ λ µ λ λ δµ +   µ − ÷   2 1)1( 2)/1(, 1)1( )/1( λ µδ δµλ λ µδ λ ++ = ++ = tt VarE2 (1/ ) , (1/ )t tE Var α α λ λ ϑ ϑ = = 1 1 ( | , ) ( | , ) 1 1 exp exp ( 1) ln t t T t T t t t T t T t Tt t G α α ϑ γ λ α ϑ λ ϑ α λ ϑ λ λ − ∈ ∈ ∈ ∈ ∈   Λ = µ × ÷       × − = − − − ÷       ∏ ∏ ∑ ∑ ∑ ( | , , ) 1 1 1 exp ln , 2 t t T t G δ λ µ λ λ δµ λ λ∈ Λ =    = − +  ÷    ∑ where 1 1 1 1 1 , 2 2 λ α ϑ δ µ δµ    = + + =  ÷    Gamma-distributed of the inverse factors :tλ/1 with mathematical expectations and variances: We come to the a priori distribution density:
  • 6. Normal gamma-distribution So, have completely defined the joint prior normal gamma-distribution of both hidden fields and Coupled with the conditional density of the observable field, it makes basis for Bayesian estimation of the field . The joint a posteriori distribution of hidden elements, namely, those of field and its instantaneous factors ( , )tX x t T= ∈ ( , )t t TλΛ = ∈ ( , | , , ) ( | , ) ( | , , )H X X Gδ λ µ δ δ λ µΛ = Ψ Λ Λ ( , )tX x t T= ∈ ( | , ) ( | , ) ( | , ) ( , | , , , ) ( '| ', ) ( '| , ) ( | ', ) ' ' X G Y X P X Y X G Y X dX d δ α ϑ δ δ α ϑ δ α ϑ δ Ψ Λ Λ Φ Λ = Ψ Λ Λ Φ Λ∫∫ ( , )tX x t T= ∈ ( , )t t TλΛ = ∈
  • 7. The Bayesian estimate of the hidden random field The Bayesian estimate of is the maximum point of the numerator The conditionally optimal factors are defined independently of each other: The zero conditions for the derivatives, excluding the trivial solutions lead to the equalities ( , )X Λ , 2 2 ' '' ', '' ( , | , ) arg min ( , | , , ), ( , | , , ) ( ) 1 ( ) / (1 1/ )ln . X t t t T t t t t t V t X J X Y J X Y y x x x λ µ λ µ λ µ λ µ µ λ λ Λ ∈ ∈   Λ = Λ   Λ = − +      + − + + +      ∑ ∑ ) ) , 2 1 2 ' '' ', '' ( , | , ) arg min ( , | , , ), ( , | , , ) ( ) (1/ )( ) 1/ (1 1/ )ln . 1 1/ X N t t t t t t t V X J X Y J X Y y x x x λ µ λ µ λ µ λ µ µ µ Λ = ∈   Λ = Λ   Λ = − +    − +  +  +   ∑ ∑ ) ) ( , , ) [ ( , , ), ]tX X t Tλ µ λ λ µΛ = ∈ )) 2 ' '' 1 ( , , ) arg min ( | , , ) : [( ) / ] (1 1/ )ln 0t t t t t X J X x xλ µ λ µ λ µ µ λ λ λΛ  ∂ Λ = Λ − + + + =  ∂   ) ,∞→tλ 2 ' ''(1/ )( ) 1/ ( , , ) 1 1/ t t t x x X λ µ λ λ µ λ µ − + = + )
  • 8. “The saturation effect” “The saturation effect” of the unsmoothness penalty for sufficiently large values of the parameter µ and fixed value λ =1.
  • 9. The Gauss - Seudel procedure Minimize of the objective function gives the approximation to the estimate of the mutually agreed field starting with the initial values , and new value of the hidden component gives the solution of the conditional optimization problem ( , )k k tX x t T= ∈ ) ) 2 2 ' '' ', '' ' ( , 1,..., ) arg min ( , | , , ) 1 arg min ( ) ( ) . k k k X t t t t X t T t t V t X x t N J X Y y x x x λ µ λ∈ ∈ = = = Λ =   − + −    ∑ ∑ ) ) 1 2 2 ' '' ', '' ' arg min ( , | , , ) 1 arg min ( ) ( ) . k k k k t t t t t T t t V t J X Y y x x x λ µ λ + Λ Λ ∈ ∈ Λ = Λ =   = − + −    ∑ ∑ ) ) ) ) ) 0 0 ( , )t t Tλ λΛ = = ∈ ))
  • 10. Approximation trellis neighborhood graph sequence trees For finding the values of the hidden field at each vertical row of the picture, we use a separate pixel neighborhood tree which is defined, on the whole pixel set and has the same horizontal branches as the others. The resulting image processing procedure is aimed at finding optimal values only for the hidden variables at the stem nodes in each tree. The simplicity of such a succession of elementary trees allows for a significant simplification of the optimization procedure. 1
  • 11. Comparison of Poissonian and Gaussian noise removal algorithms Image Peak intensity Input PSNR Peppers 256x256 120 60 30 23.92 20.92 17.91 Haar-Fisz 29.27 27.30 24.54 Platelet 29.07 27.44 25.73 PURE-LET 30.28 28.51 26.72 Our algorithm 29.53 28.65 25.77 Image Peak intensity Input PSNR Einstein 512x512 120 60 30 8.34 14.35 19.23 FBF 24.86 26.21 29.63 SURE-LET 24.56 26.30 29.43 BM3D 25.03 26.59 29.99 Our algorithm 24.76 26.44 29.88 Gaussian noisePoissonian noise
  • 12. Relative computation time of various denoising techniques (sec) Methods Image size 256x256 512x512 Platelet 856 1112 PURE-LET 4.6 8.2 BM3D 4.1 7.2 Haar-Fisz 1.3 3.2 FBF 0.5 1.8 SURE-LET 0.4 1.6 Our algorithm 0.16 0.53 A plot of the time of the algorithm (s) on the image size.
  • 13. Experimental results a) b) c) d) a)The original Einstein image. b)Noisy version with simulated Gaussian noise. c)Denoised with our algorithm. d)Denoised with BM3D.
  • 14. Experimental results a) b) c) a)Part of the original MRI slice from the IGBMC Imaging Center data sets. b)Denoised with our algorithm. c)Denoised with PURE-LET
  • 15. THANKS FOR YOUR ATTENTION! Acknowledgements This research is funded by RFBR grant,13-07-00529.