SlideShare a Scribd company logo
Image	
  processing	
  algorithms	
  
with	
  structure	
  transferring	
  proper4es	
  
on	
  the	
  basis	
  of	
  gamma-­‐normal	
  model	
  
Gracheva	
  Inessa,	
  gia1509@mail.ru,	
  
Kopylov	
  Andrey,	
  and.kopylov@gmail.com,	
  
Russia,	
  Tula,	
  Tula	
  State	
  University,	
  
	
  
	
  
	
  
AIST	
  Conference,	
  Yekaterinburg,	
  2016	
  
Related	
  Work	
  
( , )tY y t T= ∈ ( , )tX x t T= ∈
Analyzed Image Processing Result
1 2 1 1 2 2{ ( , ): 1,..., , 1,..., }T t t t t N t N= = = =
We will consider an analyzed image and processing result
as, respectively, the observed and hidden components of the two-component random
field (X, Y ).
( , )tY y t T= ∈ ( , )tX x t T= ∈
Probabilis4c	
  Data	
  Model	
  
Joint conditional probability density:
where is the variance of the observation noise.
A priori joint distribution:
where is factors of the unknown local variability
of the sought for processing result; V is the neighborhood
graphs of image elements having the form of a lattice.
1 2 1 2
2
( )/2 ( )/2
1 1
( | , ) exp( ( ) )
(2 ) 2
t tN N N N
t T
Y X y xδ
δ π δ ∈
Φ = − −∑
1 2
2
1/2
,( )/2
1 1 1
( | , ) exp ( )
2
(2 )
t t
t t V tN N
t
t T
X x xδ
δλ
δλ π
ʹ′ ʹ′ʹ′
ʹ′ ʹ′ʹ′∈
∈
⎛ ⎞
Ψ Λ ∝ × − −⎜ ⎟
⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠
∑
∏
δ=)( 2
teE
tλ
1 N1t1
1
N2
t2
Gamma-­‐Normal	
  Model	
  
2 1
2
(1/ | , , ) (1/ ) exp (1/ )
2
t t t
µ
δµ λ
γ λ δ λ µ λ λ
δµ
+
⎛ ⎞
∝ −⎜ ⎟
⎝ ⎠
2
1)1(
2)/1(,
1)1(
)/1(
λ
µδ
δµλ
λ
µδ
λ
++
=
++
= tt VarE
1 1 1
( | , , ) exp ln
2
t
t T t
G δ λ µ λ λ
δµ λ λ∈
⎡ ⎤⎛ ⎞
Λ = − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑
Gamma-distribution of the inverse factors :tλ/1
with mathematical expectations and variances:
A priori distribution density:
Joint prior normal gamma-distribution: ( , | , , ) ( | , ) ( | , , )H X X Gδ λ µ δ δ λ µΛ = Ψ Λ Λ
,
2 2
' ''
', ''
( , | , ) argmin ( , | , , ),
1 1
( , | , , ) ( ) ( ) (1 )ln .
X
t t t t t
t T t t V t
X J X Y
J X Y y x x x
λ µ λ µ
λ
λ µ λ
λ µ µ
Λ
∈ ∈
⎧ Λ = Λ
⎪⎪
⎨ ⎧ ⎫⎡ ⎤
⎪ Λ = − + − + + +⎨ ⎬⎢ ⎥
⎪ ⎣ ⎦⎩ ⎭⎩
∑ ∑
) )
Bayesian estimate of :( , )X Λ
Gracheva I., Kopylov A., Krasotkina O.: Fast global image denoising algorithm on the
basis of nonstationary gamma-normal statistical model. Communications in Computer and
Information Science. Springer. 542, 71-83 (2015).
New	
  Formula4on	
  of	
  the	
  
Problem	
  
He K., Sun J., Tang X.: Guided Image Filtering. IEEE Trans. on Pattern Analysis and
Machine Intel. 35(6), 1397-1409 (2013).
Analyzed Image
Guided Image
( , )tY y t T= ∈
( , )g g
tX x t T= ∈
( , )tX x t T= ∈
( , , , ) arg min ( | , , , )
X
X Y J X Yµ µΛ = Λλ λ
( , , ) arg min ( | , , )g g
X J Xµ µ
Λ
Λ = Λλ λ
Processing Result
1 2 1 1 2 2{ ( , ): 1,..., , 1,..., }T t t t t N t N= = = =
Image haze removal
problem:
Analyzed Image Processing Result Guided Image
( , )tY y t T= ∈ ( , )tX x t T= ∈ ( , )g g
tX x t T= ∈
HDR image
compression
problem:
Edge refinement of
an image:
Examples	
  of	
  Problems	
  
Structure-­‐Transferring	
  
Proper4es	
  
2
' ''
'
(1/ )( ) 1/
( , , )
1 1/
g g
g t t
t
x x
X
λ µ
λ λ µ λ
µ
− +
=
+
)
( , )t t TλΛ = ∈
))
( , )g g
tX x t T= ∈
( , )tX x t T= ∈ ( , )tY y t T= ∈
The estimates of factors represent the edges of objects in the guide
image . This makes it possible to transfer structure from the guide image
to the output image , even if the analyzed image
is smooth.
( , )g g
tX x t T= ∈
2 2
' ''
', '' '
( , ) argmin ( , | , , )
1
argmin ( ) ( ) .
X
t t t t
X t T t t V t
X x t T J X Y
y x x x
λ µ
λ∈ ∈
= ∈ = Λ =
⎧ ⎫
= − + −⎨ ⎬
⎩ ⎭
∑ ∑
) )
Edge	
  Refinement	
  
of	
  an	
  image	
  
( , )g g
tX x t T= ∈
( , )tY y t T= ∈
( , )t t TλΛ = ∈
))
( , )tX x t T= ∈
Image	
  Haze	
  Removal	
  
3
Ra ∈
g
t
t
t
x a
x a
x
−
= +%
( , )t t TλΛ = ∈
))
( , )g g
tX x t T= ∈
( , )tY y t T= ∈
( , )tX x t T= ∈% %
( , )tX x t T= ∈
Compression	
  HDR	
  
( ( ))t t tx y x mean xα= − +
) )
%
α is contrast sensitivity and will compress contrasts for values<1,0.	
  
( , )tY y t T= ∈ ( , )g g
tX x t T= ∈( , )tX x t T= ∈
Experimental	
  Result	
  
Comparison experimental results on structure-transferring filtering.
a) Original image; b) Binary mask; c) Our algorithm; d) Guided filter;
e) Fast Guided filter; f) In the zoom-in patches, our algorithm
compare with the Guided filter and the fast Guided filter.
Experimental	
  Result	
  
Experimental	
  Result	
  
Computa4on	
  Time	
  
Computation time of Guided filter, fast Guided filter (with s = 2), fast
Guided filter (with s = 4) and our algorithm for processing of images of
different sizes.
 
	
  
THANK	
  YOU	
  FOR	
  ATTENTION!	
  

More Related Content

PPT
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
PPT
Computer vision 3 4
PPT
Deconvolution
PDF
Mixed Spectra for Stable Signals from Discrete Observations
PPTX
Interpolation
PDF
Ss 2013 midterm
PDF
Section4 stochastic
PPT
Numerical Methods
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
Computer vision 3 4
Deconvolution
Mixed Spectra for Stable Signals from Discrete Observations
Interpolation
Ss 2013 midterm
Section4 stochastic
Numerical Methods

What's hot (17)

PPTX
Convolution
PDF
Manual solucoes ex_extras
PPS
A Tutorial On Ip 1
PDF
PDF
TENSOR DECOMPOSITION WITH PYTHON
PDF
D04302031042
PPTX
Paper Introduction "Density-aware person detection and tracking in crowds"
PPT
PPTX
Adaptive Median Filters
PPTX
Image seg using_thresholding
PDF
Image Restoration (Digital Image Processing)
PDF
Recsys matrix-factorizations
PPTX
Optimization algorithms for solving computer vision problems
PDF
A brief survey of tensors
PDF
Math behind the kernels
PDF
Presentation OCIP2014
PDF
Convolution
Manual solucoes ex_extras
A Tutorial On Ip 1
TENSOR DECOMPOSITION WITH PYTHON
D04302031042
Paper Introduction "Density-aware person detection and tracking in crowds"
Adaptive Median Filters
Image seg using_thresholding
Image Restoration (Digital Image Processing)
Recsys matrix-factorizations
Optimization algorithms for solving computer vision problems
A brief survey of tensors
Math behind the kernels
Presentation OCIP2014
Ad

Similar to Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Structure Transferring Propertie on the Basis of Gamma-normal Model (20)

PDF
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
PDF
Deep IRL by C language
PDF
A Note on TopicRNN
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
An Approach For Solving Nonlinear Programming Problems
PDF
On problem-of-parameters-identification-of-dynamic-object
PDF
sada_pres
PPTX
Unit 1 Operation on signals
PDF
Fixed point theorems for random variables in complete metric spaces
PPT
Lect02.ppt
PDF
Solution Manual Image Processing for Engineers by Yagle and Ulaby
PDF
Iceaa07 Foils
PDF
Introduction to Artificial Neural Networks
PDF
Introducing Zap Q-Learning
PDF
Tensor train to solve stochastic PDEs
PDF
KAUST_talk_short.pdf
PPT
chap3.ppt
PDF
Neutrosophic Soft Topological Spaces on New Operations
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Deep IRL by C language
A Note on TopicRNN
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
An Approach For Solving Nonlinear Programming Problems
On problem-of-parameters-identification-of-dynamic-object
sada_pres
Unit 1 Operation on signals
Fixed point theorems for random variables in complete metric spaces
Lect02.ppt
Solution Manual Image Processing for Engineers by Yagle and Ulaby
Iceaa07 Foils
Introduction to Artificial Neural Networks
Introducing Zap Q-Learning
Tensor train to solve stochastic PDEs
KAUST_talk_short.pdf
chap3.ppt
Neutrosophic Soft Topological Spaces on New Operations
Ad

More from AIST (20)

PDF
Alexey Mikhaylichenko - Automatic Detection of Bone Contours in X-Ray Images
PDF
Алена Ильина и Иван Бибилов, GoTo - GoTo школы, конкурсы и хакатоны
PDF
Станислав Кралин, Сайтсофт - Связанные открытые данные федеральных органов ис...
PDF
Павел Браславский,Velpas - Velpas: мобильный визуальный поиск
PDF
Евгений Цымбалов, Webgames - Методы машинного обучения для задач игровой анал...
PDF
Александр Москвичев, EveResearch - Алгоритмы анализа данных в маркетинговых и...
PDF
Петр Ермаков, HeadHunter - Модерация резюме: от людей к роботам. Машинное обу...
PPTX
Иосиф Иткин, Exactpro - TBA
PPTX
Nikolay Karpov - Evolvable Semantic Platform for Facilitating Knowledge Exchange
PDF
George Moiseev - Classification of E-commerce Websites by Product Categories
PDF
Elena Bruches - The Hybrid Approach to Part-of-Speech Disambiguation
PDF
Marina Danshina - The methodology of automated decryption of znamenny chants
PDF
Edward Klyshinsky - The Corpus of Syntactic Co-occurences: the First Glance
PPTX
Galina Lavrentyeva - Anti-spoofing Methods for Automatic Speaker Verification...
PDF
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
PDF
Kaytoue Mehdi - Finding duplicate labels in behavioral data: an application f...
PPTX
Valeri Labunets - The bichromatic excitable Schrodinger metamedium
PPTX
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
PDF
Alexander Karkishchenko - Threefold Symmetry Detection in Hexagonal Images Ba...
PPTX
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
Alexey Mikhaylichenko - Automatic Detection of Bone Contours in X-Ray Images
Алена Ильина и Иван Бибилов, GoTo - GoTo школы, конкурсы и хакатоны
Станислав Кралин, Сайтсофт - Связанные открытые данные федеральных органов ис...
Павел Браславский,Velpas - Velpas: мобильный визуальный поиск
Евгений Цымбалов, Webgames - Методы машинного обучения для задач игровой анал...
Александр Москвичев, EveResearch - Алгоритмы анализа данных в маркетинговых и...
Петр Ермаков, HeadHunter - Модерация резюме: от людей к роботам. Машинное обу...
Иосиф Иткин, Exactpro - TBA
Nikolay Karpov - Evolvable Semantic Platform for Facilitating Knowledge Exchange
George Moiseev - Classification of E-commerce Websites by Product Categories
Elena Bruches - The Hybrid Approach to Part-of-Speech Disambiguation
Marina Danshina - The methodology of automated decryption of znamenny chants
Edward Klyshinsky - The Corpus of Syntactic Co-occurences: the First Glance
Galina Lavrentyeva - Anti-spoofing Methods for Automatic Speaker Verification...
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
Kaytoue Mehdi - Finding duplicate labels in behavioral data: an application f...
Valeri Labunets - The bichromatic excitable Schrodinger metamedium
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Alexander Karkishchenko - Threefold Symmetry Detection in Hexagonal Images Ba...
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising

Recently uploaded (20)

PDF
Lecture1 pattern recognition............
PPTX
Computer network topology notes for revision
PDF
Mega Projects Data Mega Projects Data
PDF
Foundation of Data Science unit number two notes
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
Moving the Public Sector (Government) to a Digital Adoption
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Global journeys: estimating international migration
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPT
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
Lecture1 pattern recognition............
Computer network topology notes for revision
Mega Projects Data Mega Projects Data
Foundation of Data Science unit number two notes
IBA_Chapter_11_Slides_Final_Accessible.pptx
Moving the Public Sector (Government) to a Digital Adoption
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
.pdf is not working space design for the following data for the following dat...
Global journeys: estimating international migration
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
climate analysis of Dhaka ,Banglades.pptx
Fluorescence-microscope_Botany_detailed content
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
Introduction to Knowledge Engineering Part 1
Business Ppt On Nestle.pptx huunnnhhgfvu
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
oil_refinery_comprehensive_20250804084928 (1).pptx

Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Structure Transferring Propertie on the Basis of Gamma-normal Model

  • 1. Image  processing  algorithms   with  structure  transferring  proper4es   on  the  basis  of  gamma-­‐normal  model   Gracheva  Inessa,  gia1509@mail.ru,   Kopylov  Andrey,  and.kopylov@gmail.com,   Russia,  Tula,  Tula  State  University,         AIST  Conference,  Yekaterinburg,  2016  
  • 2. Related  Work   ( , )tY y t T= ∈ ( , )tX x t T= ∈ Analyzed Image Processing Result 1 2 1 1 2 2{ ( , ): 1,..., , 1,..., }T t t t t N t N= = = = We will consider an analyzed image and processing result as, respectively, the observed and hidden components of the two-component random field (X, Y ). ( , )tY y t T= ∈ ( , )tX x t T= ∈
  • 3. Probabilis4c  Data  Model   Joint conditional probability density: where is the variance of the observation noise. A priori joint distribution: where is factors of the unknown local variability of the sought for processing result; V is the neighborhood graphs of image elements having the form of a lattice. 1 2 1 2 2 ( )/2 ( )/2 1 1 ( | , ) exp( ( ) ) (2 ) 2 t tN N N N t T Y X y xδ δ π δ ∈ Φ = − −∑ 1 2 2 1/2 ,( )/2 1 1 1 ( | , ) exp ( ) 2 (2 ) t t t t V tN N t t T X x xδ δλ δλ π ʹ′ ʹ′ʹ′ ʹ′ ʹ′ʹ′∈ ∈ ⎛ ⎞ Ψ Λ ∝ × − −⎜ ⎟ ⎛ ⎞ ⎝ ⎠ ⎜ ⎟ ⎝ ⎠ ∑ ∏ δ=)( 2 teE tλ 1 N1t1 1 N2 t2
  • 4. Gamma-­‐Normal  Model   2 1 2 (1/ | , , ) (1/ ) exp (1/ ) 2 t t t µ δµ λ γ λ δ λ µ λ λ δµ + ⎛ ⎞ ∝ −⎜ ⎟ ⎝ ⎠ 2 1)1( 2)/1(, 1)1( )/1( λ µδ δµλ λ µδ λ ++ = ++ = tt VarE 1 1 1 ( | , , ) exp ln 2 t t T t G δ λ µ λ λ δµ λ λ∈ ⎡ ⎤⎛ ⎞ Λ = − +⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦ ∑ Gamma-distribution of the inverse factors :tλ/1 with mathematical expectations and variances: A priori distribution density: Joint prior normal gamma-distribution: ( , | , , ) ( | , ) ( | , , )H X X Gδ λ µ δ δ λ µΛ = Ψ Λ Λ , 2 2 ' '' ', '' ( , | , ) argmin ( , | , , ), 1 1 ( , | , , ) ( ) ( ) (1 )ln . X t t t t t t T t t V t X J X Y J X Y y x x x λ µ λ µ λ λ µ λ λ µ µ Λ ∈ ∈ ⎧ Λ = Λ ⎪⎪ ⎨ ⎧ ⎫⎡ ⎤ ⎪ Λ = − + − + + +⎨ ⎬⎢ ⎥ ⎪ ⎣ ⎦⎩ ⎭⎩ ∑ ∑ ) ) Bayesian estimate of :( , )X Λ Gracheva I., Kopylov A., Krasotkina O.: Fast global image denoising algorithm on the basis of nonstationary gamma-normal statistical model. Communications in Computer and Information Science. Springer. 542, 71-83 (2015).
  • 5. New  Formula4on  of  the   Problem   He K., Sun J., Tang X.: Guided Image Filtering. IEEE Trans. on Pattern Analysis and Machine Intel. 35(6), 1397-1409 (2013). Analyzed Image Guided Image ( , )tY y t T= ∈ ( , )g g tX x t T= ∈ ( , )tX x t T= ∈ ( , , , ) arg min ( | , , , ) X X Y J X Yµ µΛ = Λλ λ ( , , ) arg min ( | , , )g g X J Xµ µ Λ Λ = Λλ λ Processing Result
  • 6. 1 2 1 1 2 2{ ( , ): 1,..., , 1,..., }T t t t t N t N= = = = Image haze removal problem: Analyzed Image Processing Result Guided Image ( , )tY y t T= ∈ ( , )tX x t T= ∈ ( , )g g tX x t T= ∈ HDR image compression problem: Edge refinement of an image: Examples  of  Problems  
  • 7. Structure-­‐Transferring   Proper4es   2 ' '' ' (1/ )( ) 1/ ( , , ) 1 1/ g g g t t t x x X λ µ λ λ µ λ µ − + = + ) ( , )t t TλΛ = ∈ )) ( , )g g tX x t T= ∈ ( , )tX x t T= ∈ ( , )tY y t T= ∈ The estimates of factors represent the edges of objects in the guide image . This makes it possible to transfer structure from the guide image to the output image , even if the analyzed image is smooth. ( , )g g tX x t T= ∈ 2 2 ' '' ', '' ' ( , ) argmin ( , | , , ) 1 argmin ( ) ( ) . X t t t t X t T t t V t X x t T J X Y y x x x λ µ λ∈ ∈ = ∈ = Λ = ⎧ ⎫ = − + −⎨ ⎬ ⎩ ⎭ ∑ ∑ ) )
  • 8. Edge  Refinement   of  an  image   ( , )g g tX x t T= ∈ ( , )tY y t T= ∈ ( , )t t TλΛ = ∈ )) ( , )tX x t T= ∈
  • 9. Image  Haze  Removal   3 Ra ∈ g t t t x a x a x − = +% ( , )t t TλΛ = ∈ )) ( , )g g tX x t T= ∈ ( , )tY y t T= ∈ ( , )tX x t T= ∈% % ( , )tX x t T= ∈
  • 10. Compression  HDR   ( ( ))t t tx y x mean xα= − + ) ) % α is contrast sensitivity and will compress contrasts for values<1,0.   ( , )tY y t T= ∈ ( , )g g tX x t T= ∈( , )tX x t T= ∈
  • 11. Experimental  Result   Comparison experimental results on structure-transferring filtering. a) Original image; b) Binary mask; c) Our algorithm; d) Guided filter; e) Fast Guided filter; f) In the zoom-in patches, our algorithm compare with the Guided filter and the fast Guided filter.
  • 14. Computa4on  Time   Computation time of Guided filter, fast Guided filter (with s = 2), fast Guided filter (with s = 4) and our algorithm for processing of images of different sizes.
  • 15.     THANK  YOU  FOR  ATTENTION!