SlideShare a Scribd company logo
Image Restoration
Subject: Image Procesing & Computer Vision
Dr. Varun Kumar
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 1 / 13
Outlines
1 Image restoration technique
2 Difference between image enhancement and restoration
3 Image formation process and degradation model
4 Degradation model in continuous and discrete formulation
5 Frequency domain technique
6 References
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 2 / 13
Image restoration
Image restoration
⇒ Image restoration is the operation of taking a corrupt/noisy image
and estimating the clean, original image.
Motion blur
Noise
Camera mis-focus
⇒ It is a processes for restoring the image, when certain degradation
parameter affect the image quality.
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 3 / 13
Continued–
Space domain representation
g(x, y) = f (x, y) ∗ h(x, y) + η(x, y) (1)
Frequency domain representation
G(u, v) = F(u, v)H(u, v) + N(u, v) (2)
Definition:
g(x, y) = H[f (x, y)] + η(x, y) (3)
→ For simplicity, let η(x, y) = 0.
→ H is the degradation operator.
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 4 / 13
Properties of H
1. Linearity property
Let f1(x, y) and f2(x, y) are the two 2D signals and k1 and k2 are two
arbitrary constant then
H k1f1(x, y) + k2f2(x, y) = k1H f1(x, y) + k2H f2(x, y) (4)
It shows the linear operation and also follow the superposition theorem →
k1 = k2 = 1 then
H f1(x, y) + f2(x, y) = H f1(x, y) + H f2(x, y) (5)
From (4), let f2(x, y) = 0 then
H k1f1(x, y) = k1H f1(x, y) (6)
From (6), this is called as homogeneity property.
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 5 / 13
2 Position invariant property
H f (x − α, y − β) = g(x − α, y − β) (7)
Since, g(x, y) = H f (x, y) .
Definition of Dirac delta function in 2D
δ(x, y) = 1 x = 0, y = 0
= 0 Otherwise
or
δ(x − x0, y − y0) = 1 x = x0, y = y0
= 0 Otherwise
or ∞
−∞
∞
−∞
f (x, y)δ(x − x0, y − y0)dxdy = f (x0, y0) (8)
or
f (x, y) =
∞
−∞
∞
−∞
f (α, β)δ(α − x, β − y)dαdβ (9)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 6 / 13
Continued–
From the expression of degradation function
g(x, y) = H f (x, y) + η(x, y)
From (9), when η(x, y) = 0
g(x, y) = H
∞
−∞
∞
−∞
f (α, β)δ(α − x, β − y)dαdβ (10)
or
g(x, y) =
∞
−∞
∞
−∞
H f (α, β)δ(α − x, β − y)dαdβ (11)
or
g(x, y) =
∞
−∞
∞
−∞
f (α, β)H δ(α − x, β − y) dαdβ (12)
Here, H δ(α − x, β − y) = h(x, α, y, β) → Impulse response of h.
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 7 / 13
Continued–
g(x, y) =
∞
−∞
∞
−∞
f (α, β)h(x, α, y, β)dαdβ (13)
→ Superposition integral of first kind.
→ If H is a position invariant then H δ(x − α, y − β) = h(x − α, y − β).
Hence,
g(x, y) =
∞
−∞
∞
−∞
f (α, β)h(x − α, y − β)dαdβ
Convolution operation
(14)
Discrete formulation
Analysis of 1D signal: Let f (x) is the input function and h(x) is the
degradation function.
→ f (x) : x = 0, 1, 2, .....A − 1
→ h(x) : x = 0, 1, 2, .....B − 1
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 8 / 13
Continued–
ge(x) =
M−1
m=0
fe(x)he(x − m)
⇒ x : 0, 1, 2, ...M − 1
Matrix form
g = Hf
or
f =





fe(0)
fe(1)
...
fe(M − 1)





g =





ge(0)
ge(1)
...
ge(M − 1)





Here, H → M × M matrix
H =





he(0), he(−1), ....he(−M + 1)
he(1), he(0), ....he(−M + 2)
...
he(M − 1), he(M − 2), ....he(0)





Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 9 / 13
Continued–
Let he(x) is a periodic signal with period M then
he(x) = he(x + M)
or
H =





he(0), he(M − 1), he(M − 2)....he(1)
he(1), he(0), he(M − 1), ....he(2)
...
he(M − 1), he(M − 2), he(M − 3)....he(0)





Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 10 / 13
2D signal analysis
Let f (x, y) and h(x, y) be the 2D input and degradation function.
⇒ f (x, y) : A × B
⇒ h(x, y) : C × D
⇒ {fe(x, y), he(x, y)} : M × N
ge(x, y) =
M−1
m=0
N−1
n=0
fe(m, n)he(x − m, y − n) (15)
or
g = Hf + n (16)
where, the size of g is MN × MN.
H =





H0, HM−1, ....H1
H1, H0, ....H2
...
HM−1, HM−2, ....H0





Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 11 / 13
Continued–
where Hj → N × N
Hj =





he(j, 0), he(j, M − 1), he(j, M − 2)....he(j, 1)
he(j, 1), he(j, 0), he(j, M − 1), ....he(j, 2)
...
he(j, M − 1), he(j, M − 2), he(j, M − 3)....he(j, 0)





Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 12 / 13
References
M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision.
Cengage Learning, 2014.
D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern
approach, vol. 17, pp. 21–48, 2003.
L. Shapiro and G. Stockman, “Computer vision prentice hall,” Inc., New Jersey,
2001.
R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using
MATLAB. Pearson Education India, 2004.
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 13 / 13

More Related Content

PPT
Enhancement in frequency domain
PPTX
Image restoration and degradation model
PPTX
Image Filtering in the Frequency Domain
PPTX
Image Sampling and Quantization.pptx
PPTX
Digital Image Processing
PPT
image enhancement
PPTX
Digital Image restoration
PPTX
5. gray level transformation
Enhancement in frequency domain
Image restoration and degradation model
Image Filtering in the Frequency Domain
Image Sampling and Quantization.pptx
Digital Image Processing
image enhancement
Digital Image restoration
5. gray level transformation

What's hot (20)

PPTX
Walsh transform
PPTX
Image Enhancement in Spatial Domain
PPTX
Image transforms
PPTX
Color image processing Presentation
PPTX
digital image processing
PPTX
Digital Image Processing Fundamental
PPT
Image enhancement
PDF
Lecture 15 DCT, Walsh and Hadamard Transform
PPTX
Region based segmentation
PPTX
Image enhancement lecture
PDF
Digital Image Processing: Image Enhancement in the Frequency Domain
PPT
Image trnsformations
PPTX
Unit3 dip
PPTX
Digital Image Processing
PPTX
Chapter 6 color image processing
PDF
Image sampling and quantization
PPT
Interpixel redundancy
Walsh transform
Image Enhancement in Spatial Domain
Image transforms
Color image processing Presentation
digital image processing
Digital Image Processing Fundamental
Image enhancement
Lecture 15 DCT, Walsh and Hadamard Transform
Region based segmentation
Image enhancement lecture
Digital Image Processing: Image Enhancement in the Frequency Domain
Image trnsformations
Unit3 dip
Digital Image Processing
Chapter 6 color image processing
Image sampling and quantization
Interpixel redundancy
Ad

Similar to Image Restoration (Digital Image Processing) (20)

PDF
Image Restoration 2 (Digital Image Processing)
PDF
Lecture 13 (Usage of Fourier transform in image processing)
PPTX
sodapdf-converzxXxccccCCCCCCCSsted (1).pptx
PDF
Popular image restoration technique
PDF
Linear Smoothing, Median, and Sharpening Filter
PDF
Lecture 14 Properties of Fourier Transform for 2D Signal
PDF
Frequency Domain Operation for Image Enhancement
PDF
Ece3075 a 8
PDF
Lecture 2 Introduction to digital image
PDF
01. Differentiation-Theory & solved example Module-3.pdf
PDF
Plug-and-Play methods for inverse problems in imagine, by Julie Delon
PDF
Image Processing 2
PDF
1.1_The_Definite_Integral.pdf odjoqwddoio
PDF
34032 green func
PDF
Maximum likelihood estimation of regularisation parameters in inverse problem...
PDF
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
DOCX
Bahan ajar kalkulus integral
PDF
PDF
Lecture 9 (Digital Image Processing)
PDF
Lecture 19: Implementation of Histogram Image Operation
Image Restoration 2 (Digital Image Processing)
Lecture 13 (Usage of Fourier transform in image processing)
sodapdf-converzxXxccccCCCCCCCSsted (1).pptx
Popular image restoration technique
Linear Smoothing, Median, and Sharpening Filter
Lecture 14 Properties of Fourier Transform for 2D Signal
Frequency Domain Operation for Image Enhancement
Ece3075 a 8
Lecture 2 Introduction to digital image
01. Differentiation-Theory & solved example Module-3.pdf
Plug-and-Play methods for inverse problems in imagine, by Julie Delon
Image Processing 2
1.1_The_Definite_Integral.pdf odjoqwddoio
34032 green func
Maximum likelihood estimation of regularisation parameters in inverse problem...
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
Bahan ajar kalkulus integral
Lecture 9 (Digital Image Processing)
Lecture 19: Implementation of Histogram Image Operation
Ad

More from VARUN KUMAR (20)

PDF
Distributed rc Model
PDF
Electrical Wire Model
PDF
Interconnect Parameter in Digital VLSI Design
PDF
Introduction to Digital VLSI Design
PDF
Challenges of Massive MIMO System
PDF
E-democracy or Digital Democracy
PDF
Ethics of Parasitic Computing
PDF
Action Lines of Geneva Plan of Action
PDF
Geneva Plan of Action
PDF
Fair Use in the Electronic Age
PDF
Software as a Property
PDF
Orthogonal Polynomial
PDF
Patent Protection
PDF
Copyright Vs Patent and Trade Secrecy Law
PDF
Property Right and Software
PDF
Investigating Data Trials
PDF
Gaussian Numerical Integration
PDF
Censorship and Controversy
PDF
Romberg's Integration
PDF
Introduction to Censorship
Distributed rc Model
Electrical Wire Model
Interconnect Parameter in Digital VLSI Design
Introduction to Digital VLSI Design
Challenges of Massive MIMO System
E-democracy or Digital Democracy
Ethics of Parasitic Computing
Action Lines of Geneva Plan of Action
Geneva Plan of Action
Fair Use in the Electronic Age
Software as a Property
Orthogonal Polynomial
Patent Protection
Copyright Vs Patent and Trade Secrecy Law
Property Right and Software
Investigating Data Trials
Gaussian Numerical Integration
Censorship and Controversy
Romberg's Integration
Introduction to Censorship

Recently uploaded (20)

PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
composite construction of structures.pdf
PDF
Digital Logic Computer Design lecture notes
PPTX
Geodesy 1.pptx...............................................
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
DOCX
573137875-Attendance-Management-System-original
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Sustainable Sites - Green Building Construction
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Lesson 3_Tessellation.pptx finite Mathematics
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
composite construction of structures.pdf
Digital Logic Computer Design lecture notes
Geodesy 1.pptx...............................................
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Mechanical Engineering MATERIALS Selection
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
OOP with Java - Java Introduction (Basics)
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CYBER-CRIMES AND SECURITY A guide to understanding
Embodied AI: Ushering in the Next Era of Intelligent Systems
573137875-Attendance-Management-System-original
Foundation to blockchain - A guide to Blockchain Tech
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Sustainable Sites - Green Building Construction

Image Restoration (Digital Image Processing)

  • 1. Image Restoration Subject: Image Procesing & Computer Vision Dr. Varun Kumar Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 1 / 13
  • 2. Outlines 1 Image restoration technique 2 Difference between image enhancement and restoration 3 Image formation process and degradation model 4 Degradation model in continuous and discrete formulation 5 Frequency domain technique 6 References Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 2 / 13
  • 3. Image restoration Image restoration ⇒ Image restoration is the operation of taking a corrupt/noisy image and estimating the clean, original image. Motion blur Noise Camera mis-focus ⇒ It is a processes for restoring the image, when certain degradation parameter affect the image quality. Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 3 / 13
  • 4. Continued– Space domain representation g(x, y) = f (x, y) ∗ h(x, y) + η(x, y) (1) Frequency domain representation G(u, v) = F(u, v)H(u, v) + N(u, v) (2) Definition: g(x, y) = H[f (x, y)] + η(x, y) (3) → For simplicity, let η(x, y) = 0. → H is the degradation operator. Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 4 / 13
  • 5. Properties of H 1. Linearity property Let f1(x, y) and f2(x, y) are the two 2D signals and k1 and k2 are two arbitrary constant then H k1f1(x, y) + k2f2(x, y) = k1H f1(x, y) + k2H f2(x, y) (4) It shows the linear operation and also follow the superposition theorem → k1 = k2 = 1 then H f1(x, y) + f2(x, y) = H f1(x, y) + H f2(x, y) (5) From (4), let f2(x, y) = 0 then H k1f1(x, y) = k1H f1(x, y) (6) From (6), this is called as homogeneity property. Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 5 / 13
  • 6. 2 Position invariant property H f (x − α, y − β) = g(x − α, y − β) (7) Since, g(x, y) = H f (x, y) . Definition of Dirac delta function in 2D δ(x, y) = 1 x = 0, y = 0 = 0 Otherwise or δ(x − x0, y − y0) = 1 x = x0, y = y0 = 0 Otherwise or ∞ −∞ ∞ −∞ f (x, y)δ(x − x0, y − y0)dxdy = f (x0, y0) (8) or f (x, y) = ∞ −∞ ∞ −∞ f (α, β)δ(α − x, β − y)dαdβ (9) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 6 / 13
  • 7. Continued– From the expression of degradation function g(x, y) = H f (x, y) + η(x, y) From (9), when η(x, y) = 0 g(x, y) = H ∞ −∞ ∞ −∞ f (α, β)δ(α − x, β − y)dαdβ (10) or g(x, y) = ∞ −∞ ∞ −∞ H f (α, β)δ(α − x, β − y)dαdβ (11) or g(x, y) = ∞ −∞ ∞ −∞ f (α, β)H δ(α − x, β − y) dαdβ (12) Here, H δ(α − x, β − y) = h(x, α, y, β) → Impulse response of h. Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 7 / 13
  • 8. Continued– g(x, y) = ∞ −∞ ∞ −∞ f (α, β)h(x, α, y, β)dαdβ (13) → Superposition integral of first kind. → If H is a position invariant then H δ(x − α, y − β) = h(x − α, y − β). Hence, g(x, y) = ∞ −∞ ∞ −∞ f (α, β)h(x − α, y − β)dαdβ Convolution operation (14) Discrete formulation Analysis of 1D signal: Let f (x) is the input function and h(x) is the degradation function. → f (x) : x = 0, 1, 2, .....A − 1 → h(x) : x = 0, 1, 2, .....B − 1 Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 8 / 13
  • 9. Continued– ge(x) = M−1 m=0 fe(x)he(x − m) ⇒ x : 0, 1, 2, ...M − 1 Matrix form g = Hf or f =      fe(0) fe(1) ... fe(M − 1)      g =      ge(0) ge(1) ... ge(M − 1)      Here, H → M × M matrix H =      he(0), he(−1), ....he(−M + 1) he(1), he(0), ....he(−M + 2) ... he(M − 1), he(M − 2), ....he(0)      Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 9 / 13
  • 10. Continued– Let he(x) is a periodic signal with period M then he(x) = he(x + M) or H =      he(0), he(M − 1), he(M − 2)....he(1) he(1), he(0), he(M − 1), ....he(2) ... he(M − 1), he(M − 2), he(M − 3)....he(0)      Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 10 / 13
  • 11. 2D signal analysis Let f (x, y) and h(x, y) be the 2D input and degradation function. ⇒ f (x, y) : A × B ⇒ h(x, y) : C × D ⇒ {fe(x, y), he(x, y)} : M × N ge(x, y) = M−1 m=0 N−1 n=0 fe(m, n)he(x − m, y − n) (15) or g = Hf + n (16) where, the size of g is MN × MN. H =      H0, HM−1, ....H1 H1, H0, ....H2 ... HM−1, HM−2, ....H0      Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 11 / 13
  • 12. Continued– where Hj → N × N Hj =      he(j, 0), he(j, M − 1), he(j, M − 2)....he(j, 1) he(j, 1), he(j, 0), he(j, M − 1), ....he(j, 2) ... he(j, M − 1), he(j, M − 2), he(j, M − 3)....he(j, 0)      Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 12 / 13
  • 13. References M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision. Cengage Learning, 2014. D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern approach, vol. 17, pp. 21–48, 2003. L. Shapiro and G. Stockman, “Computer vision prentice hall,” Inc., New Jersey, 2001. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004. Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 22 13 / 13