SlideShare a Scribd company logo
2
Most read
9
Most read
Usage of Fourier Transform in Image Processing
Subject: Image Procesing & Computer Vision
Dr. Varun Kumar
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 1 / 13
Outlines
1 Fourier transform for continuous signal
2 Fourier transform for discrete signal
3 Fast Fourier transform
4 References
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 2 / 13
Fourier transform of 1D time varying signal
It is a mathematical operation that convert time domain signal to
frequency domain signal.
Frequency domain signal processing is simpler compare to time
domain.
Mathematical expression:
1 Fourier transform
X(jΩ) =
∞
−∞
x(t)e−jΩt
dt
CTFT
X(ejω
) =
∞
−∞
x(n)e−jωn
DTFT
(1)
2 Inverse Fourier transform
x(t) =
1
2π
∞
−∞
X(jΩ)ejΩt
dΩ
I−CTFT
x(n) =
1
2π
∞
−∞
X(ejω
)ejωn
I−DTFT
(2)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 3 / 13
Fourier transform of 1D space varying signal
1 Fourier transform
F(f (x)) = F(u) =
∞
−∞
f (x)e−j2πux
dx (3)
⇒ Here, f (x) must be continuous and integrable.
⇒ F(u) must be integrable.
2 Inverse Fourier transform
F−1
(F(u)) = f (x) =
∞
−∞
F(u)ej2πux
du (4)
⇒ F(u) is a complex variable.
⇒ F(u) = FRe(u) + jFIm(u) = |F(u)|ejφ(u)
⇒ Amplitude spectrum : |F(u)| = FRe(u)2 + FIm(u)2
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 4 / 13
Fourier transform of 2D signal
⇒ Phase spectrum : ∠φ(u) = tan−1 FIm(u)
FRe (u)
⇒ Power: P = |F(u)|2 = FRe(u)|2 + |FIm(u)|2
Fourier transform of 2D signal
Image is a 2D space varying signal.
Fourier transform of an image signal
F(u, v) =
∞
−∞
∞
−∞
f (x, y)e−j2π(ux+vy)
dxdy (5)
where f (x, y) is the 2D image signal.
Inverse Fourier transform :
f (x, y) =
∞
−∞
∞
−∞
F(u, v)ej2π(ux+vy)
dudv (6)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 5 / 13
Continued–
⇒ F(u, v) = |F(u, v)|ejφ(u,v)
⇒ Amplitude spectrum : |F(u, v)| = FRe(u, v)2 + FIm(u, v)2
⇒ Phase spectrum : φ(u, v) = tan−1 FIm(u,v)
FRe (u,v)
⇒ Power spectrum : P(u, v) = |F(u, v)|2 = FRe(u, v)2 + FIm(u, v)2
Example : Find the Fourier transform of a 2D signal which is as follow
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 6 / 13
Continued–
As per the 2D graphical signal f (x, y)
⇒ f (x, y) = A ∀ 0 ≤ x ≤ X and 0 ≤ y ≤ Y
⇒ f (x, y) = 0 ∀ x > X and y > Y
F(u, v) =
X
0
Y
0
Ae−j(ux+vy)
dxdy
= A
X
0
e−j2πux
dx
Y
0
e−j2πvy
dy
= A
1
j2πu
(1 − e−j2πuX
)
1
j2πv
(1 − e−j2πvY
)
(7)
Amplitude spectrum :
|F(u, v)| = AXY
sin(πuX)
πuX
sin(πvY )
πvY
(8)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 7 / 13
Graphical representation
2D discrete signal (DTFT) (Finite dimension)
F(u, v) =
∞
−∞
∞
−∞
f (x, y)e−j2π(ux+vy)
(9)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 8 / 13
DFT of an image signal
DFT/I-DFT of an 2D signal
DFT
F(u, v) =
1
MN
M−1
x=0
N−1
y=0
f (x, y)e−j2π( ux
M
+vy
N
)
(10)
Here, frequency variable u = 0, 1, ....., M − 1 and v = 0, 1, ...., N − 1
I-DFT
f (x, y) =
1
MN
M−1
u=0
N−1
v=0
F(u, v)ej2π( ux
M
+vy
N
)
(11)
In case of square image, i.e, M = N
F(u, v) =
1
N
N−1
x=0
N−1
y=0
f (x, y)e−j2π( ux
N
+vy
N
)
(12)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 9 / 13
Properties of Fourier transform
1 Separability:
In case of DFT
F(u, v) =
1
N
N−1
x=0
N−1
y=0
f (x, y)e−j2π(ux
N
+vy
N
)
⇒
1
N
N−1
x=0
e−j 2πux
N N.
1
N
N−1
y=0
f (x, y)e−j 2πvy
N
⇒
1
N
N−1
x=0
NF(x, v)e−j 2πux
N
(13)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 10 / 13
Continued–
In case of I-DFT
f (x, y) =
1
N
N−1
u=0
N−1
v=0
F(u, v)ej2π( ux
N
+vy
N
)
⇒
1
N
N−1
u=0
ej 2πux
N N.
1
N
N−1
v=0
F(u, v)ej 2πvy
N
⇒
1
N
N−1
u=0
Nf (u, y)ej 2πux
N
(14)
2 Translation
f (x, y) ⇒ (x0, y0) ⇒ f (x − x0, y − y0)
F(u, v)|x−x0,y−y0 = F(u, v)|x,y e
−j2π
N
(ux0+vy0)
(15)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 11 / 13
Continued–
I-DFT form
F(u − u0, v − v0) ⇒ f (x, y)e
j2π
N
(u0x+v0y)
(16)
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 12 / 13
References
M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision.
Cengage Learning, 2014.
D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern
approach, vol. 17, pp. 21–48, 2003.
L. Shapiro and G. Stockman, “Computer vision prentice hall,” Inc., New Jersey,
2001.
R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using
MATLAB. Pearson Education India, 2004.
Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 13 / 13

More Related Content

PPT
Chapter 5 Image Processing: Fourier Transformation
PDF
Edge linking in image processing
PDF
Lecture 14 Properties of Fourier Transform for 2D Signal
PDF
Lecture 4 Relationship between pixels
PDF
Lecture 15 DCT, Walsh and Hadamard Transform
PDF
User Interface Design - Module 1 Introduction
PPTX
Silicon on Insulator (SOI) Technology
ODP
ppt on sustainable buildings
Chapter 5 Image Processing: Fourier Transformation
Edge linking in image processing
Lecture 14 Properties of Fourier Transform for 2D Signal
Lecture 4 Relationship between pixels
Lecture 15 DCT, Walsh and Hadamard Transform
User Interface Design - Module 1 Introduction
Silicon on Insulator (SOI) Technology
ppt on sustainable buildings

What's hot (20)

PDF
Digital Image Processing: Image Segmentation
PPTX
Digital Image Processing
PPTX
Image Filtering in the Frequency Domain
PPTX
Image processing second unit Notes
PDF
Image sampling and quantization
PPSX
Image Enhancement in Spatial Domain
PPSX
Edge Detection and Segmentation
PPTX
Region based segmentation
PPT
Enhancement in spatial domain
PPTX
Image Enhancement in Spatial Domain
PPTX
Walsh transform
PPTX
Smoothing Filters in Spatial Domain
PDF
Image Segmentation (Digital Image Processing)
PDF
Digital Image Processing: Image Enhancement in the Frequency Domain
PPTX
Image Acquisition and Representation
PDF
From Image Processing To Computer Vision
PPTX
Digital image processing
Digital Image Processing: Image Segmentation
Digital Image Processing
Image Filtering in the Frequency Domain
Image processing second unit Notes
Image sampling and quantization
Image Enhancement in Spatial Domain
Edge Detection and Segmentation
Region based segmentation
Enhancement in spatial domain
Image Enhancement in Spatial Domain
Walsh transform
Smoothing Filters in Spatial Domain
Image Segmentation (Digital Image Processing)
Digital Image Processing: Image Enhancement in the Frequency Domain
Image Acquisition and Representation
From Image Processing To Computer Vision
Digital image processing
Ad

Similar to Lecture 13 (Usage of Fourier transform in image processing) (20)

PPTX
sodapdf-converzxXxccccCCCCCCCSsted (1).pptx
PDF
Popular image restoration technique
PDF
Image Restoration (Digital Image Processing)
PDF
Lecture 2 Introduction to digital image
PDF
Image Restoration 2 (Digital Image Processing)
PDF
Linear Smoothing, Median, and Sharpening Filter
PPT
Image trnsformations
PDF
Frequency Domain Operation for Image Enhancement
PDF
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
PPT
07 frequency domain DIP
PDF
Lecture 12 (Image transformation)
PDF
CVD020 - Lecture Week 2
PDF
2-D DFT in images.pdf
PDF
Frequency Domain Filtering of Digital Images
PDF
Lecture 5 Relationship between pixel-2
PPTX
imagetransforms1-210417050321.pptx
PDF
Image sampling and quantization
PDF
Newton's Forward/Backward Difference Interpolation
PDF
discrete-time-systems and discetre time fourier
sodapdf-converzxXxccccCCCCCCCSsted (1).pptx
Popular image restoration technique
Image Restoration (Digital Image Processing)
Lecture 2 Introduction to digital image
Image Restoration 2 (Digital Image Processing)
Linear Smoothing, Median, and Sharpening Filter
Image trnsformations
Frequency Domain Operation for Image Enhancement
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
07 frequency domain DIP
Lecture 12 (Image transformation)
CVD020 - Lecture Week 2
2-D DFT in images.pdf
Frequency Domain Filtering of Digital Images
Lecture 5 Relationship between pixel-2
imagetransforms1-210417050321.pptx
Image sampling and quantization
Newton's Forward/Backward Difference Interpolation
discrete-time-systems and discetre time fourier
Ad

More from VARUN KUMAR (20)

PDF
Distributed rc Model
PDF
Electrical Wire Model
PDF
Interconnect Parameter in Digital VLSI Design
PDF
Introduction to Digital VLSI Design
PDF
Challenges of Massive MIMO System
PDF
E-democracy or Digital Democracy
PDF
Ethics of Parasitic Computing
PDF
Action Lines of Geneva Plan of Action
PDF
Geneva Plan of Action
PDF
Fair Use in the Electronic Age
PDF
Software as a Property
PDF
Orthogonal Polynomial
PDF
Patent Protection
PDF
Copyright Vs Patent and Trade Secrecy Law
PDF
Property Right and Software
PDF
Investigating Data Trials
PDF
Gaussian Numerical Integration
PDF
Censorship and Controversy
PDF
Romberg's Integration
PDF
Introduction to Censorship
Distributed rc Model
Electrical Wire Model
Interconnect Parameter in Digital VLSI Design
Introduction to Digital VLSI Design
Challenges of Massive MIMO System
E-democracy or Digital Democracy
Ethics of Parasitic Computing
Action Lines of Geneva Plan of Action
Geneva Plan of Action
Fair Use in the Electronic Age
Software as a Property
Orthogonal Polynomial
Patent Protection
Copyright Vs Patent and Trade Secrecy Law
Property Right and Software
Investigating Data Trials
Gaussian Numerical Integration
Censorship and Controversy
Romberg's Integration
Introduction to Censorship

Recently uploaded (20)

PPTX
bas. eng. economics group 4 presentation 1.pptx
PPT
Project quality management in manufacturing
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Geodesy 1.pptx...............................................
PPT
Mechanical Engineering MATERIALS Selection
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Structs to JSON How Go Powers REST APIs.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
PPT on Performance Review to get promotions
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Digital Logic Computer Design lecture notes
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Strings in CPP - Strings in C++ are sequences of characters used to store and...
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
bas. eng. economics group 4 presentation 1.pptx
Project quality management in manufacturing
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Geodesy 1.pptx...............................................
Mechanical Engineering MATERIALS Selection
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Internet of Things (IOT) - A guide to understanding
Structs to JSON How Go Powers REST APIs.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPT on Performance Review to get promotions
Foundation to blockchain - A guide to Blockchain Tech
Digital Logic Computer Design lecture notes
Lecture Notes Electrical Wiring System Components
UNIT 4 Total Quality Management .pptx
Strings in CPP - Strings in C++ are sequences of characters used to store and...
Operating System & Kernel Study Guide-1 - converted.pdf

Lecture 13 (Usage of Fourier transform in image processing)

  • 1. Usage of Fourier Transform in Image Processing Subject: Image Procesing & Computer Vision Dr. Varun Kumar Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 1 / 13
  • 2. Outlines 1 Fourier transform for continuous signal 2 Fourier transform for discrete signal 3 Fast Fourier transform 4 References Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 2 / 13
  • 3. Fourier transform of 1D time varying signal It is a mathematical operation that convert time domain signal to frequency domain signal. Frequency domain signal processing is simpler compare to time domain. Mathematical expression: 1 Fourier transform X(jΩ) = ∞ −∞ x(t)e−jΩt dt CTFT X(ejω ) = ∞ −∞ x(n)e−jωn DTFT (1) 2 Inverse Fourier transform x(t) = 1 2π ∞ −∞ X(jΩ)ejΩt dΩ I−CTFT x(n) = 1 2π ∞ −∞ X(ejω )ejωn I−DTFT (2) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 3 / 13
  • 4. Fourier transform of 1D space varying signal 1 Fourier transform F(f (x)) = F(u) = ∞ −∞ f (x)e−j2πux dx (3) ⇒ Here, f (x) must be continuous and integrable. ⇒ F(u) must be integrable. 2 Inverse Fourier transform F−1 (F(u)) = f (x) = ∞ −∞ F(u)ej2πux du (4) ⇒ F(u) is a complex variable. ⇒ F(u) = FRe(u) + jFIm(u) = |F(u)|ejφ(u) ⇒ Amplitude spectrum : |F(u)| = FRe(u)2 + FIm(u)2 Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 4 / 13
  • 5. Fourier transform of 2D signal ⇒ Phase spectrum : ∠φ(u) = tan−1 FIm(u) FRe (u) ⇒ Power: P = |F(u)|2 = FRe(u)|2 + |FIm(u)|2 Fourier transform of 2D signal Image is a 2D space varying signal. Fourier transform of an image signal F(u, v) = ∞ −∞ ∞ −∞ f (x, y)e−j2π(ux+vy) dxdy (5) where f (x, y) is the 2D image signal. Inverse Fourier transform : f (x, y) = ∞ −∞ ∞ −∞ F(u, v)ej2π(ux+vy) dudv (6) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 5 / 13
  • 6. Continued– ⇒ F(u, v) = |F(u, v)|ejφ(u,v) ⇒ Amplitude spectrum : |F(u, v)| = FRe(u, v)2 + FIm(u, v)2 ⇒ Phase spectrum : φ(u, v) = tan−1 FIm(u,v) FRe (u,v) ⇒ Power spectrum : P(u, v) = |F(u, v)|2 = FRe(u, v)2 + FIm(u, v)2 Example : Find the Fourier transform of a 2D signal which is as follow Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 6 / 13
  • 7. Continued– As per the 2D graphical signal f (x, y) ⇒ f (x, y) = A ∀ 0 ≤ x ≤ X and 0 ≤ y ≤ Y ⇒ f (x, y) = 0 ∀ x > X and y > Y F(u, v) = X 0 Y 0 Ae−j(ux+vy) dxdy = A X 0 e−j2πux dx Y 0 e−j2πvy dy = A 1 j2πu (1 − e−j2πuX ) 1 j2πv (1 − e−j2πvY ) (7) Amplitude spectrum : |F(u, v)| = AXY sin(πuX) πuX sin(πvY ) πvY (8) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 7 / 13
  • 8. Graphical representation 2D discrete signal (DTFT) (Finite dimension) F(u, v) = ∞ −∞ ∞ −∞ f (x, y)e−j2π(ux+vy) (9) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 8 / 13
  • 9. DFT of an image signal DFT/I-DFT of an 2D signal DFT F(u, v) = 1 MN M−1 x=0 N−1 y=0 f (x, y)e−j2π( ux M +vy N ) (10) Here, frequency variable u = 0, 1, ....., M − 1 and v = 0, 1, ...., N − 1 I-DFT f (x, y) = 1 MN M−1 u=0 N−1 v=0 F(u, v)ej2π( ux M +vy N ) (11) In case of square image, i.e, M = N F(u, v) = 1 N N−1 x=0 N−1 y=0 f (x, y)e−j2π( ux N +vy N ) (12) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 9 / 13
  • 10. Properties of Fourier transform 1 Separability: In case of DFT F(u, v) = 1 N N−1 x=0 N−1 y=0 f (x, y)e−j2π(ux N +vy N ) ⇒ 1 N N−1 x=0 e−j 2πux N N. 1 N N−1 y=0 f (x, y)e−j 2πvy N ⇒ 1 N N−1 x=0 NF(x, v)e−j 2πux N (13) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 10 / 13
  • 11. Continued– In case of I-DFT f (x, y) = 1 N N−1 u=0 N−1 v=0 F(u, v)ej2π( ux N +vy N ) ⇒ 1 N N−1 u=0 ej 2πux N N. 1 N N−1 v=0 F(u, v)ej 2πvy N ⇒ 1 N N−1 u=0 Nf (u, y)ej 2πux N (14) 2 Translation f (x, y) ⇒ (x0, y0) ⇒ f (x − x0, y − y0) F(u, v)|x−x0,y−y0 = F(u, v)|x,y e −j2π N (ux0+vy0) (15) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 11 / 13
  • 12. Continued– I-DFT form F(u − u0, v − v0) ⇒ f (x, y)e j2π N (u0x+v0y) (16) Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 12 / 13
  • 13. References M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision. Cengage Learning, 2014. D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern approach, vol. 17, pp. 21–48, 2003. L. Shapiro and G. Stockman, “Computer vision prentice hall,” Inc., New Jersey, 2001. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004. Subject: Image Procesing & Computer Vision Dr. Varun Kumar (IIIT Surat)Lecture 13 13 / 13