I
          y = f ( x) = x       y




                           I
                           I
     I     I     I    I    I        I   I   I   I
x’




                           I
     -4    -3    -2   -1       0    1   2   3   4
                                                    x


                           I
                           I
                           I




                               Y’
                           I
I
          y = f ( x) = IxI       y




                             I
                             I
     I     I     I    I      I        I   I   I   I




                             I
x’   -4    -3    -2   -1              1   2   3   4
                                 0                    x


                             I
                             I
                             I




                                 Y’
                             I
I
                             y
 Y = f ( x) = 1/x




                         I
                         I
x’   I    I    I    I    I        I   I   I   I




                         I
     -4   -3   -2   -1       0    1   2   3   4   x


                         I
                         I
                         I




                             Y’
                         I
I
                              y
 Y = f ( x) =[ x ]




                          I
                          I
     I    I    I     I    I        I   I   I   I




                          I
x’   -4   -3   -2    -1            1   2   3   4
                              0                    x


                          I
                          I
                          I




                              Y’
                          I
I
                             y




                         I
                         I
     I    I    I    I    I        I   I   I   I
x’




                         I
     -4   -3   -2   -1       0    1   2   3   4
                                                  x


     Y = f ( x) = x 2    I
                         I
                         I




                             Y’
                         I
x 0         / 6 / 3 /2 2 /3 5 /6
sin x 0       5 87 1      87 5 0
                                            1


                                        .5

I   I     I    I     I     I    I    I              I     I   I   I    I   I    I   I   I   I
          - π 5π/6 -2π/3 - π/2 -π/3 - π/6       0   π/6   π/3 π/2 2π/3 5π/6 π
                                        .5


                                            1
x 0          /6       /3      /2    2 /3 5 /6
sin x0         5       87       1      87    5             0
                                           1


                                       .5

I   I    I    I     I     I    I    I              I     I   I   I    I   I    I   I   I   I
         - π 5π/6 -2π/3 - π/2 -π/3 - π/6       0   π/6   π/3 π/2 2π/3 5π/6 π
                                       .5


                                           1
x 0              / 6 / 3 /2 2 /3 5 /6 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2
sin x 0            5 87 1      87 5 0     5     87 1        87 5 0

    1
     I
     I




    .5
I        I     I    I   I    I   I   I    I    I    I   I    I   I    I   I   I   I   I
     0       π/6   π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π
    .5
     I




    1
     I
x 0            /6        /3       /2 2 /3 5 /6         7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2
sin x 0          5        87        1   87    5 0         5     87    1     87     5    0

                                                                                    1




                                                                            I
                                                                            I
                                                                                .5
 I     I     I        I         I    I   I   I   I   I      I    I     I        I       I   I   I   I   I
     - 2π -11π/6 -5π/3 -3π/2 -4π/3 -7π/6 -π - 5π/6 -2π/3 - π/2 - π/3 -π/6   0
                                                                                .5




                                                                            I
                                                                                    1




                                                                            I
x 0           /6       /3 /2 2 /3 5 /6
sin x 1        87        5 0     5 87          1
                                           1


                                          .5


I   I      I         I    I   I   I   I            I     I   I   I     I   I   I   I   I   I
          - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0        π/6   π/3 π/2 2π/3 5π/6 π
                                        .5


                                           1
x 0    /6        /3     /2 2 /3 5 /6
sin x 1 87        5     0      5    87        1
                                      1


                                      .5


I   I    I    I    I    I    I    I          I     I  I    I    I   I   I   I   I   I
        - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0   π/6   π/3 π/2 2π/3 5π/6 π
                                      .5


                                      1
1


   I     I       I      I      I     I    I     I      I   I
-2π    -3 π/2   -π   - π/2    0    π/2   π    3 π/2   2π

                             -1
x 0             / 6 / 3 /2 0 /2 0 2 /3 5 /6  7 / 6 4 / 3 3 / 2 0 3 / 2 0 5 / 3 11 / 6 2
tan x 0          58 1 73             1 73 58 0 58 1.73                      1 73 58 0




    1
     I
     I




    .5
I        I       I    I   I    I    I    I    I    I    I    I    I     I   I   I   I      I   I
             0 π/6   π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π               5π/2
    .5
     I




    1
     I
x 0
tan x 0




                                    1




                                I
                                I
                                 .5
      I     I       I     I      I         I    I     I     I    I
   -2π    -3 π/2   -π   - π/2   0        π/2   π    3 π/2   2π

                                    .5

                                I
                                    1
                                I
x 0 /6                /3       /2 2 /3 5 / 6       0       0 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2       0
cot x 1 73            58        0    58 1 73                  1 73 .58     0      58 1 73




    1
     I
     I




    .5
I        I       I    I     I      I    I       I       I    I     I    I     I     I   I    I   I       I   I
             0 π/6   π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π                            5π/2
    .5
     I




    1
     I
1




                             I
                             I
                              .5
   I     I       I     I      I         I    I     I     I    I
-2π    -3 π/2   -π   - π/2   0        π/2   π    3 π/2   2π

                                 .5

                             I
                                 1
                             I
-2π
                             I
                                          Goes tp + infinity




                            I
                          -3 π/2
                           I
                                        Goes tp + infinity


                          -π
 Goes tp - infinity
                            I
                          - π/2



Goes tp - infinity
                                   1




                      1
                          0
                           I




                                       Goes tp + infinity
                            I
                          π/2




                                       Goes tp + infinity
                           I
                          π




 Goes tp - infinity
                            I
                          3 π/2




Goes tp - infinity
                           I
                          2π
                            I
Goes tp + infinity




                          -2π
                            II
                                          Goes tp + infinity




                          -3 π/2
 Goes tp - infinity



                           I
                          -π
Goes tp - infinity
                            I
                          - π/2
                                        Goes tp + infinity
                                   1




                      1
                          0
                           II
                          π/2




                                        Goes tp + infinity
 Goes tp - infinity
                           I
                          π




Goes tp - infinity                     Goes tp + infinity
                            I
                          3 π/2
                           I
                          2π




                                       Goes tp + infinity
                            I
I
         1
f ( x) sin x




               I
               I
               I
               I
               I
               I
               I
I
                             y

                                          f(x) = x




                         I
                     x
               y e


                         I
     I    I    I    I    I        I       I   I      I




                         I
x’   -4   -3   -2   -1            (1,0)   2   3      4
                             0                           x


                         I
                                  y log e x
                         I
                         I




                             Y’
                         I
I
          y = f ( x) = x       y




                           I
                           I
     I     I     I    I    I        I   I   I   I
x’




                           I
     -4    -3    -2   -1       0    1   2   3   4
                                                    x
      When x increases f( x) also increases.
     f(Y == x is=strictly increasing function
        x) f( x) x is continuous function.
                           I
                           I
                           I




                               Y’
                           I
….- 3 π/2 , π/2 , 5 π/2 …. Are maxima as at
these values of x ,f(x) is maximum.
                                  1



    I          I      I     I       I      I    I     I      I     I
 -2π        -3 π/2   -π   - π/2    0    π/2    π    3 π/2   2π   5π/2



                                  -1




        -
….- π/2 , 3π/2 , …. are minima as at these
 values of x, f(x) is minimum.
                               1



     I      I      I     I       I      I    I     I      I     I
  -2π    -3 π/2   -π   - π/2    0    π/2    π    3 π/2   2π   5π/2



                               -1
At both maxima at minima the
Tangents are parallel to x – axis.
                             1



   I     I       I     I       I     I    I     I      I   I
-2π    -3 π/2   -π   - π/2    0    π/2   π    3 π/2   2π



                             -1
At both maxima at minima the Derivative
of the function is zero. Or f x 0
                              1



    I     I       I     I       I         I    I     I      I   I
 -2π    -3 π/2   -π   - π/2    0        π/2   π    3 π/2   2π
                                    f




                              -1
Slope of the tangent is zero of the tangent is zero
                                     Slope
                                1



      I      I      I      I         I      I       I      I     I   I
-2π       -3 π/2   -π   - π/2    0       π/2    π       3 π/2   2π



                                -1
                        Slope of the tangent is zero
'
                                     f ( x)    cos x
 At maxima slope of the tangent to the
 Derivative is negative.
                     1



   I       I       I     I       I      I      I     I      I   I
-2π      -3 π/2   -π   - π/2    0     π/2     π    3 π/2   2π



                               -1

       ….- maxima as wellπ/2 minima the slope
        At 3 π/2 , π/2 , 5 as …. Are maxima
            ….- π/2 , 3π/2 , …. Are minima
        of the Tangents are zero.

More Related Content

PPSX
Integration by Pratima Nayak
PPT
Series & Progression Mathematics
PPSX
A rapist is not always mentally ill
PPTX
Mathematics of Planet Earth
PPT
Contribution of mathematicians by Pratima Nayak
PPTX
mathematics of planet earth
PPTX
Beliefs,values and attitudes
Integration by Pratima Nayak
Series & Progression Mathematics
A rapist is not always mentally ill
Mathematics of Planet Earth
Contribution of mathematicians by Pratima Nayak
mathematics of planet earth
Beliefs,values and attitudes

More from Pratima Nayak ,Kendriya Vidyalaya Sangathan (20)

PPTX
Sustained & active_engagement_with_every_child - Pratima Nayak
PPTX
Solving addition word problem knowing key words
PPTX
Project based learning Primary Mathematics
PPTX
Triangles(Tribhuja) in odia language
PPTX
Tips to deal with adolescent behavior- for parents
PPTX
Common problems of adolescents
PDF
PDF
Class XII CBSE new Mathematics Question Paper Design-2016-17
PDF
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
PDF
My Teachers day message to teachers- we can win
PPTX
PDF
क्रोध प्रबंधन: Why to Manage anger?
PPTX
Sadness flies away on the wings of time.
PDF
Emotional skills:Dealing with sadness
PPTX
PPTX
Sexting?What would your Grandma Think?
PPSX
Emotions : important survival issue
PPSX
Parents must know about cyber bullying 2
Sustained & active_engagement_with_every_child - Pratima Nayak
Solving addition word problem knowing key words
Project based learning Primary Mathematics
Triangles(Tribhuja) in odia language
Tips to deal with adolescent behavior- for parents
Common problems of adolescents
Class XII CBSE new Mathematics Question Paper Design-2016-17
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
My Teachers day message to teachers- we can win
क्रोध प्रबंधन: Why to Manage anger?
Sadness flies away on the wings of time.
Emotional skills:Dealing with sadness
Sexting?What would your Grandma Think?
Emotions : important survival issue
Parents must know about cyber bullying 2
Ad

Graph oh functions

  • 1. I y = f ( x) = x y I I I I I I I I I I I x’ I -4 -3 -2 -1 0 1 2 3 4 x I I I Y’ I
  • 2. I y = f ( x) = IxI y I I I I I I I I I I I I x’ -4 -3 -2 -1 1 2 3 4 0 x I I I Y’ I
  • 3. I y Y = f ( x) = 1/x I I x’ I I I I I I I I I I -4 -3 -2 -1 0 1 2 3 4 x I I I Y’ I
  • 4. I y Y = f ( x) =[ x ] I I I I I I I I I I I I x’ -4 -3 -2 -1 1 2 3 4 0 x I I I Y’ I
  • 5. I y I I I I I I I I I I I x’ I -4 -3 -2 -1 0 1 2 3 4 x Y = f ( x) = x 2 I I I Y’ I
  • 6. x 0 / 6 / 3 /2 2 /3 5 /6 sin x 0 5 87 1 87 5 0 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 7. x 0 /6 /3 /2 2 /3 5 /6 sin x0 5 87 1 87 5 0 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 8. x 0 / 6 / 3 /2 2 /3 5 /6 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2 sin x 0 5 87 1 87 5 0 5 87 1 87 5 0 1 I I .5 I I I I I I I I I I I I I I I I I I I 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π .5 I 1 I
  • 9. x 0 /6 /3 /2 2 /3 5 /6 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2 sin x 0 5 87 1 87 5 0 5 87 1 87 5 0 1 I I .5 I I I I I I I I I I I I I I I I I I I - 2π -11π/6 -5π/3 -3π/2 -4π/3 -7π/6 -π - 5π/6 -2π/3 - π/2 - π/3 -π/6 0 .5 I 1 I
  • 10. x 0 /6 /3 /2 2 /3 5 /6 sin x 1 87 5 0 5 87 1 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 11. x 0 /6 /3 /2 2 /3 5 /6 sin x 1 87 5 0 5 87 1 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 12. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1
  • 13. x 0 / 6 / 3 /2 0 /2 0 2 /3 5 /6 7 / 6 4 / 3 3 / 2 0 3 / 2 0 5 / 3 11 / 6 2 tan x 0 58 1 73 1 73 58 0 58 1.73 1 73 58 0 1 I I .5 I I I I I I I I I I I I I I I I I I I 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π 5π/2 .5 I 1 I
  • 14. x 0 tan x 0 1 I I .5 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π .5 I 1 I
  • 15. x 0 /6 /3 /2 2 /3 5 / 6 0 0 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2 0 cot x 1 73 58 0 58 1 73 1 73 .58 0 58 1 73 1 I I .5 I I I I I I I I I I I I I I I I I I I 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π 5π/2 .5 I 1 I
  • 16. 1 I I .5 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π .5 I 1 I
  • 17. -2π I Goes tp + infinity I -3 π/2 I Goes tp + infinity -π Goes tp - infinity I - π/2 Goes tp - infinity 1 1 0 I Goes tp + infinity I π/2 Goes tp + infinity I π Goes tp - infinity I 3 π/2 Goes tp - infinity I 2π I
  • 18. Goes tp + infinity -2π II Goes tp + infinity -3 π/2 Goes tp - infinity I -π Goes tp - infinity I - π/2 Goes tp + infinity 1 1 0 II π/2 Goes tp + infinity Goes tp - infinity I π Goes tp - infinity Goes tp + infinity I 3 π/2 I 2π Goes tp + infinity I
  • 19. I 1 f ( x) sin x I I I I I I I
  • 20. I y f(x) = x I x y e I I I I I I I I I I I x’ -4 -3 -2 -1 (1,0) 2 3 4 0 x I y log e x I I Y’ I
  • 21. I y = f ( x) = x y I I I I I I I I I I I x’ I -4 -3 -2 -1 0 1 2 3 4 x When x increases f( x) also increases. f(Y == x is=strictly increasing function x) f( x) x is continuous function. I I I Y’ I
  • 22. ….- 3 π/2 , π/2 , 5 π/2 …. Are maxima as at these values of x ,f(x) is maximum. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π 5π/2 -1 -
  • 23. ….- π/2 , 3π/2 , …. are minima as at these values of x, f(x) is minimum. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π 5π/2 -1
  • 24. At both maxima at minima the Tangents are parallel to x – axis. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1
  • 25. At both maxima at minima the Derivative of the function is zero. Or f x 0 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π f -1
  • 26. Slope of the tangent is zero of the tangent is zero Slope 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1 Slope of the tangent is zero
  • 27. ' f ( x) cos x At maxima slope of the tangent to the Derivative is negative. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1 ….- maxima as wellπ/2 minima the slope At 3 π/2 , π/2 , 5 as …. Are maxima ….- π/2 , 3π/2 , …. Are minima of the Tangents are zero.