This document proposes HistoSketch, a method for sketching streaming histograms that preserves similarity and adapts to concept drift. It works by:
1) Generating weighted samples from histograms such that the probability two sketches match equals histogram similarity.
2) Incrementally updating sketches using a weight decay factor to forget older data and adapt to drift over time.
3) Evaluating HistoSketch on classification tasks involving synthetic and real-world streaming data, finding it approximates histogram similarity well using small, fixed-size sketches while adapting rapidly to drift.