The document describes efficient algorithms for projecting a vector onto the l1-ball (sum of absolute values being less than a threshold). It presents two methods: 1) An exact projection algorithm that runs in expected O(n) time, where n is the dimension. 2) A method for vectors with k perturbed elements outside the l1-ball, which projects in O(k log n) time. It demonstrates these algorithms outperform interior point methods on various learning tasks, providing models with high sparsity.