The document provides an introduction to using network information in prediction models. It discusses representing a network as a graph with a Laplacian matrix. The Laplacian captures properties like random walks on the graph and heat diffusion. Eigenvectors of the Laplacian related to small eigenvalues are strongly tied to graph structure. The document discusses using the Laplacian in prediction models by working in the feature space defined by the Laplacian eigenvectors or directly regularizing a linear model with the Laplacian. This introduces network information and encourages similar contributions from connected nodes. The approaches are applied to problems like predicting phenotypes from gene expression using a known gene network.