Learning from (dis)similarity data
Nathalie Vialaneix
nathalie.vialaneix@inra.fr
http://www.nathalievialaneix.eu
MelbURN 2018
July 16th, 2018 - Melbourne, Australia
Nathalie Vialaneix | Learning from (dis)similarity data 1/24
What are my data like?
Nathalie Vialaneix | Learning from (dis)similarity data 2/24
A medieval social network [Boulet et al., 2008, Rossi et al., 2013]
corpus with more than 6,000
transactions, 3 centuries, all
related to
Castelnau Montratier
Nathalie Vialaneix | Learning from (dis)similarity data 3/24
A medieval social network [Boulet et al., 2008, Rossi et al., 2013]
corpus with more than 6,000
transactions, 3 centuries, all
related to
Castelnau Montratier
Individual
Transaction
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Ratier
Ratier (II) Castelnau
Jean Laperarede
Bertrande Audoy
Gailhard Gourdon
Guy Moynes (de)
Pierre Piret (de)
Bernard Audoy
Hélène Castelnau
Guiral Baro
Bernard Audoy
Arnaud Bernard Laperarede
Guilhem Bernard Prestis
Jean Manas
Jean Laperarede
Jean Laperarede
Jean Roquefeuil
Jean Pojols
Ramond Belpech
Raymond Laperarede
Bertrand Prestis (de)
Ratier
(Monseigneur) Roquefeuil (de)
Guilhem Bernard Prestis
Arnaud Gasbert Castanhier (del)
Ratier (III) Castelnau
Pierre Prestis (de)
P Valeribosc
Guillaume Marsa
Berenguier Roquefeuil
Arnaud Bernard Perarede
Jean Roquefeuil
Arnaud I Audoy
Arnaud Bernard Perarede
bipartite network with more than 17,000
nodes (∼ 10,000 individuals)
What can we learn from the French
medieval society?
Nathalie Vialaneix | Learning from (dis)similarity data 3/24
Career paths [Olteanu and Villa-Vialaneix, 2015]
Survey “Génération 98”: labor market
status (9 categories) on more than
16,000 people having graduated in 1998
during 94 months. 1
1. Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre Maurice Halbwachs (CMH).
Nathalie Vialaneix | Learning from (dis)similarity data 4/24
Career paths [Olteanu and Villa-Vialaneix, 2015]
Survey “Génération 98”: labor market
status (9 categories) on more than
16,000 people having graduated in 1998
during 94 months. 1
How to cluster career paths into
homogeneous groups?
1. Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre Maurice Halbwachs (CMH).
Nathalie Vialaneix | Learning from (dis)similarity data 4/24
Career paths [Olteanu and Villa-Vialaneix, 2015]
Survey “Génération 98”: labor market
status (9 categories) on more than
16,000 people having graduated in 1998
during 94 months. 1
How to cluster career paths into
homogeneous groups?
It is all about distance...
χ2
dissimilarity emphasizes the
contemporary identical situations
Optimal-matching dissimilarities is
more focused on the sequences
similarities
[Needleman and Wunsch, 1970]
(or “edit distance”, “Levenshtein
distance”)
1. Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre Maurice Halbwachs (CMH).
Nathalie Vialaneix | Learning from (dis)similarity data 4/24
and then I went into NGS data...
and again...
distances are everywhere
Nathalie Vialaneix | Learning from (dis)similarity data 5/24
a collection of NGS data...
DNA barcoding
Astraptes fulgerator
optimal matching
(edit) distances to
differentiate species
Nathalie Vialaneix | Learning from (dis)similarity data 6/24
a collection of NGS data...
DNA barcoding
Astraptes fulgerator
optimal matching
(edit) distances to
differentiate species
Hi-C data
pairwise measure (similarity) related to
the physical 3D distance between loci in
the cell, at genome scale
Nathalie Vialaneix | Learning from (dis)similarity data 6/24
a collection of NGS data...
DNA barcoding
Astraptes fulgerator
optimal matching
(edit) distances to
differentiate species
Hi-C data
pairwise measure (similarity) related to
the physical 3D distance between loci in
the cell, at genome scale
Metagenomics
dissemblance between
samples is better
captured when
phylogeny between
species is taken into
account (unifrac
distances)
Nathalie Vialaneix | Learning from (dis)similarity data 6/24
Relational Self-Organizing Map
algorithm
Nathalie Vialaneix | Learning from (dis)similarity data 7/24
Basics on (standard) stochastic SOM
[Kohonen, 2001]
x
x
x
(xi)i=1,...,n ⊂ Rd
are affected to a unit f(xi) ∈ {1, . . . , U}
the grid is equipped with a “distance” between units: d(u, u ) and
observations affected to close units are close in Rd
every unit u corresponds to a prototype, pu (x) in Rd
Nathalie Vialaneix | Learning from (dis)similarity data 8/24
Basics on (standard) stochastic SOM
[Kohonen, 2001]
x
x
x
Iterative learning (assignment step): xi is picked at random within (xk )k
and affected to best matching unit:
ft
(xi) = arg min
u
xi − pt
u
2
Nathalie Vialaneix | Learning from (dis)similarity data 8/24
Basics on (standard) stochastic SOM
[Kohonen, 2001]
x
x
x
Iterative learning (representation step): all prototypes in neighboring units
are updated with a gradient descent like step:
pt+1
u ←− pt
u + µ(t)Ht
(d(f(xi), u))(xi − pt
u)
Nathalie Vialaneix | Learning from (dis)similarity data 8/24
Extension of SOM to data described by a kernel or a
dissimilarity
[Olteanu and Villa-Vialaneix, 2015]
Data: (xi)i=1,...,n ∈ Rd
1: Initialization:
randomly set p0
1
, ..., p0
U
in Rd
2: for t = 1 → T do
3: pick at random i ∈ {1, . . . , n}
4: Assignment
ft
(xi) = arg min
u=1,...,U
xi − pt
u
2
βt
u
5: for all u = 1 → U do Representation
6:
pt+1
u = pt
u + µ(t)Ht
(d(ft
(xi), u))
7: end for
8: end for
Nathalie Vialaneix | Learning from (dis)similarity data 9/24
Extension of SOM to data described by a kernel or a
dissimilarity
[Olteanu and Villa-Vialaneix, 2015]
Data: (xi)i=1,...,n ∈ X
1: Initialization:
randomly set p0
1
, ..., p0
U
in Rd
2: for t = 1 → T do
3: pick at random i ∈ {1, . . . , n}
4: Assignment
ft
(xi) = arg min
u=1,...,U
xi − pt
u
2
βt
u
5: for all u = 1 → U do Representation
6:
pt+1
u = pt
u + µ(t)Ht
(d(ft
(xi), u))
7: end for
8: end for
Nathalie Vialaneix | Learning from (dis)similarity data 9/24
Extension of SOM to data described by a kernel or a
dissimilarity
[Olteanu and Villa-Vialaneix, 2015]
Data: (xi)i=1,...,n ∈ X
1: Initialization:
p0
u ∼ n
i=1 β0
ui
xi (convex combination)
2: for t = 1 → T do
3: pick at random i ∈ {1, . . . , n}
4: Assignment
ft
(xi) = arg min
u=1,...,U
xi − pt
u
2
βt
u
5: for all u = 1 → U do Representation
6:
pt+1
u = pt
u + µ(t)Ht
(d(ft
(xi), u))
7: end for
8: end for
Nathalie Vialaneix | Learning from (dis)similarity data 9/24
Extension of SOM to data described by a kernel or a
dissimilarity
[Olteanu and Villa-Vialaneix, 2015]
Data: (xi)i=1,...,n ∈ X
1: Initialization:
p0
u ∼ n
i=1 β0
ui
xi (convex combination)
2: for t = 1 → T do
3: pick at random i ∈ {1, . . . , n}
4: Assignment
ft
(xi) = arg min
u=1,...,U
βt
uD(pt
u, xi)
5: for all u = 1 → U do Representation
6:
pt+1
u = pt
u + µ(t)Ht
(d(ft
(xi), u))
7: end for
8: end for
Nathalie Vialaneix | Learning from (dis)similarity data 9/24
Extension of SOM to data described by a kernel or a
dissimilarity
[Olteanu and Villa-Vialaneix, 2015]
Data: (xi)i=1,...,n ∈ X
1: Initialization:
p0
u ∼ n
i=1 β0
ui
xi (convex combination)
2: for t = 1 → T do
3: pick at random i ∈ {1, . . . , n}
4: Assignment
ft
(xi) = arg min
u=1,...,U
βt
uD(pt
u, xi)
5: for all u = 1 → U do Representation
6:
pt+1
u = pt
u + µ(t)Ht
(d(ft
(xi), u)) ∼ xi − pt
u
7: end for
8: end for
Nathalie Vialaneix | Learning from (dis)similarity data 9/24
Extension of SOM to data described by a kernel or a
dissimilarity
[Olteanu and Villa-Vialaneix, 2015]
Data: (xi)i=1,...,n ∈ X
1: Initialization:
p0
u ∼ n
i=1 β0
ui
xi (convex combination)
2: for t = 1 → T do
3: pick at random i ∈ {1, . . . , n}
4: Assignment
ft
(xi) = arg min
u=1,...,U
βt
u(βt
u) D(., xi) −
1
2
(βt
u) Dβt
u
5: for all u = 1 → U do Representation
6:
βt+1
u = βt
u + µ(t)Ht
(d(ft
(xi), u)) 1i − βt
u
7: end for
8: end for
Nathalie Vialaneix | Learning from (dis)similarity data 9/24
Note on drawbacks of RSOM
Two main drawbacks:
For T ∼ γn iterations, complexity of RSOM is O(γn3
U) (compared to
O(γUdn) for numeric) [Rossi, 2014]
Nathalie Vialaneix | Learning from (dis)similarity data 10/24
Note on drawbacks of RSOM
Two main drawbacks:
For T ∼ γn iterations, complexity of RSOM is O(γn3
U) (compared to
O(γUdn) for numeric) [Rossi, 2014]
Exact solution proposed in [Mariette et al., 2017] to reduce the
complexity to O(γn2
U) with additional storage memory of O(Un)
Nathalie Vialaneix | Learning from (dis)similarity data 10/24
Note on drawbacks of RSOM
Two main drawbacks:
For T ∼ γn iterations, complexity of RSOM is O(γn3
U) (compared to
O(γUdn) for numeric) [Rossi, 2014]
Exact solution proposed in [Mariette et al., 2017] to reduce the
complexity to O(γn2
U) with additional storage memory of O(Un)
For the non Euclidean case, the learning algorithm can be very
unstable (saddle points)
Nathalie Vialaneix | Learning from (dis)similarity data 10/24
Note on drawbacks of RSOM
Two main drawbacks:
For T ∼ γn iterations, complexity of RSOM is O(γn3
U) (compared to
O(γUdn) for numeric) [Rossi, 2014]
Exact solution proposed in [Mariette et al., 2017] to reduce the
complexity to O(γn2
U) with additional storage memory of O(Un)
For the non Euclidean case, the learning algorithm can be very
unstable (saddle points)
clip or flip? [Chen et al., 2009]
Nathalie Vialaneix | Learning from (dis)similarity data 10/24
SOMbrero
[Villa-Vialaneix, 2017]
SOMbrero is an R package implementing stochastic variants of SOM
for non vectorial data
Specifically well adapted to...
non expert use and teaching
use with graphs and obtain simplified representations
first release: March 2013; latest release: Feb. 2018 (version 1.2.3)
depends on R (version ≥ 3.1.0) http://www.r-project.org
and on several packages available on CRAN:
wordcloud, igraph, RColorBrewer, scatterplot3d, knitr, shiny
available at https://cran.r-project.org/package=SOMbrero
(licence GPL) and can be installed from inside R using
install.packages("SOMbrero")
Nathalie Vialaneix | Learning from (dis)similarity data 11/24
Training
mysom <- trainSOM(iris[ ,1:4], ...)
Options to train the SOM:
grid: square grid, with arbitrary width and length
distance between units: standard distances as in dist or "letremy" (Euclidean then
"maximum")
neighborhood relationship: Gaussian or "letremy"
prototypes: initialized randomly, with a PCA, with random observations from the training
sample
preprocessing: centering, scaling to unit variance or nothing
training: number of iterations, standard or Heskes’s assignment step
ft
(xi) ← arg min
u=1,...,U
U
u =1
Ht
(d(u, u )) xi − pt−1
u
2
Nathalie Vialaneix | Learning from (dis)similarity data 12/24
Diagnostic tools
quality(mysom)
topographic error: average frequency (over the samples) for which the
prototypes that comes closest is in the direct neighborhood on the
grid of the BMU
quantization error
Q =
1
n
n
i=1
xi − pf(xi)
2
Nathalie Vialaneix | Learning from (dis)similarity data 13/24
Plots...
plot(mysom,
what = c("observations", "prototypes", "add"),
type = ..., ...)
Nathalie Vialaneix | Learning from (dis)similarity data 14/24
Super-clustering
mysom.sc <- superClass(mysom)
Nathalie Vialaneix | Learning from (dis)similarity data 15/24
Start with SOMbrero
3 datasets corresponding to the three types of data that SOMbrero
can handle (iris, presidentielles2002 and lesmis, a graph from
“Les Misérables”)
Nathalie Vialaneix | Learning from (dis)similarity data 16/24
Start with SOMbrero
3 datasets corresponding to the three types of data that SOMbrero
can handle (iris, presidentielles2002 and lesmis, a graph from
“Les Misérables”)
comprehensive (HTML) vignettes included in the package and
available on the website
Nathalie Vialaneix | Learning from (dis)similarity data 16/24
Start with SOMbrero
3 datasets corresponding to the three types of data that SOMbrero
can handle (iris, presidentielles2002 and lesmis, a graph from
“Les Misérables”)
comprehensive (HTML) vignettes included in the package and
available on the website
Web User Interface (made with shiny) for using the package even if
you do not know R programming language (included in the package
with sombreroGUI() Tested and approved on an historian!
Nathalie Vialaneix | Learning from (dis)similarity data 16/24
RSOM for mining a medieval social network
with the heat kernel
Individual
Transaction
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Ratier
Ratier (II) Castelnau
Jean Laperarede
Bertrande Audoy
Gailhard Gourdon
Guy Moynes (de)
Pierre Piret (de)
Bernard Audoy
Hélène Castelnau
Guiral Baro
Bernard Audoy
Arnaud Bernard Laperarede
Guilhem Bernard Prestis
Jean Manas
Jean Laperarede
Jean Laperarede
Jean Roquefeuil
Jean Pojols
Ramond Belpech
Raymond Laperarede
Bertrand Prestis (de)
Ratier
(Monseigneur) Roquefeuil (de)
Guilhem Bernard Prestis
Arnaud Gasbert Castanhier (del)
Ratier (III) Castelnau
Pierre Prestis (de)
P Valeribosc
Guillaume Marsa
Berenguier Roquefeuil
Arnaud Bernard Perarede
Jean Roquefeuil
Arnaud I Audoy
Arnaud Bernard Perarede
[Boulet et al., 2008]
Graph induced by clusters:
has nice relations with space and time
emphasizes leading people
has helped to identify problems in the
database (namesakes)
But: biggest communities are still
very complex
Nathalie Vialaneix | Learning from (dis)similarity data 17/24
RSOM for typology of Astraptes fulgerator from DNA
barcoding
Edit distances between DNA sequences [Olteanu and Villa-Vialaneix, 2015]
Almost perfect clustering (identifying a possible label error on one sample)
with (in addition) information on relations between species.
Nathalie Vialaneix | Learning from (dis)similarity data 18/24
RSOM for typology of school-to-time transitions
Edit distance between 12,000 categorical time series
Nathalie Vialaneix | Learning from (dis)similarity data 19/24
Also in SOMbrero: KORRESP
[Cottrell and Letrémy, 2005]
Data: contingency table T = (nij)ij with p rows and q columns transformed
into a numeric dataset X:
X =
columns rows
columns
rows
column profile
row profile
with
∀ i = 1, . . . , p and ∀ j = 1, . . . , q, xij =
nij
ni.
× n
n.j
Nathalie Vialaneix | Learning from (dis)similarity data 20/24
Also in SOMbrero: KORRESP
[Cottrell and Letrémy, 2005]
Data: contingency table T = (nij)ij with p rows and q columns transformed
into a numeric dataset X:
X =
columns rows
columns
rows
augmented
column profile
augmented row
profile
with
∀ i = 1, . . . , p and ∀ j = q + 1, . . . , q + p, xij = xk(i)+p,j with
k(i) = arg maxk=1,...,q xik
Nathalie Vialaneix | Learning from (dis)similarity data 20/24
Also in SOMbrero: KORRESP
[Cottrell and Letrémy, 2005]
Data: contingency table T = (nij)ij with p rows and q columns transformed
into a numeric dataset X:
X =
columns rows
columns
rows
augmented
column profile
augmented row
profile
column profile
row profile
assignment uses reduced profile
representation uses augmented profile
alternatively process row profiles and column profiles
Nathalie Vialaneix | Learning from (dis)similarity data 20/24
Also available in SOMbrero
mysom <- trainSOM(presidentielles2002 , type = "korresp")
plot(mysom, what = "obs", type = "names")
Nathalie Vialaneix | Learning from (dis)similarity data 21/24
SOMbrero
Madalina Olteanu,
Fabrice Rossi, Marie Cottrell,
Laura Bendhaïba and
Julien Boelaert
SOMbrero and mixKernel
Jérôme Mariette
adjclust
Pierre Neuvial, Guillem Rigail, Christophe Ambroise and
Shubham Chaturvedi
Nathalie Vialaneix | Learning from (dis)similarity data 22/24
Don’t miss useR! 2019
user2019.r-project.org
Nathalie Vialaneix | Learning from (dis)similarity data 23/24
Credits for pictures
Slide 2: Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae,
Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
Slide 3: Picture of Castelnau Montratier from
https://commons.wikimedia.org/wiki/File:
Place_Gambetta,_Castelnau-Montratier.JPG by Duch.seb CC BY-SA 3.0
Slide 4: image based on ENCODE project, by Darryl Leja (NHGRI), Ian Dunham
(EBI) and Michael Pazin (NHGRI)
Slide 6: Astraptes picture is from
https://www.flickr.com/photos/39139121@N00/2045403823/ by Anne Toal
(CC BY-SA 2.0), Hi-C experiment is taken from the article Matharu et al., 2015
DOI:10.1371/journal.pgen.1005640 (CC BY-SA 4.0) and metagenomics illustration is
taken from the article Sommer et al., 2010 DOI:10.1038/msb.2010.16 (CC BY-NC-SA
3.0)
Slide 12: TADS picture is from the article Fraser et al., 2015
DOI:10.15252/msb.20156492 (CC BY-SA 4.0)
Nathalie Vialaneix | Learning from (dis)similarity data 24/24
References
Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008).
Batch kernel SOM and related Laplacian methods for social network analysis.
Neurocomputing, 71(7-9):1257–1273.
Chen, Y., Garcia, E., Gupta, M., Rahimi, A., and Cazzanti, L. (2009).
Similarity-based classification: concepts and algorithm.
Journal of Machine Learning Research, 10:747–776.
Cottrell, M. and Letrémy, P. (2005).
How to use the Kohonen algorithm to simultaneously analyse individuals in a survey.
Neurocomputing, 63:193–207.
Kohonen, T. (2001).
Self-Organizing Maps, 3rd Edition, volume 30.
Springer, Berlin, Heidelberg, New York.
Mariette, J., Rossi, F., Olteanu, M., and Villa-Vialaneix, N. (2017).
Accelerating stochastic kernel som.
In Verleysen, M., editor, XXVth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2017), pages 269–274, Bruges, Belgium. i6doc.
Needleman, S. and Wunsch, C. (1970).
A general method applicable to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453.
Olteanu, M. and Villa-Vialaneix, N. (2015).
On-line relational and multiple relational SOM.
Neurocomputing, 147:15–30.
Rossi, F. (2014).
How many dissimilarity/kernel self organizing map variants do we need?
Nathalie Vialaneix | Learning from (dis)similarity data 24/24
In Villmann, T., Schleif, F., Kaden, M., and Lange, M., editors, Advances in Self-Organizing Maps and Learning Vector
Quantization (Proceedings of WSOM 2014), volume 295 of Advances in Intelligent Systems and Computing, pages 3–23,
Mittweida, Germany. Springer Verlag, Berlin, Heidelberg.
Rossi, F., Villa-Vialaneix, N., and Hautefeuille, F. (2013).
Exploration of a large database of French notarial acts with social network methods.
Digital Medievalist, 9.
Villa-Vialaneix, N. (2017).
Stochastic self-organizing map variants with the R package SOMbrero.
In Lamirel, J., Cottrell, M., and Olteanu, M., editors, 12th International Workshop on Self-Organizing Maps and Learning Vector
Quantization, Clustering and Data Visualization (Proceedings of WSOM 2017), Nancy, France. IEEE.
Nathalie Vialaneix | Learning from (dis)similarity data 24/24

More Related Content

PDF
Explanable models for time series with random forest
PDF
La statistique et le machine learning pour l'intégration de données de la bio...
PDF
Kernel methods for data integration in systems biology
PDF
Kernel methods and variable selection for exploratory analysis and multi-omic...
PDF
A short and naive introduction to epistasis in association studies
PDF
Kernel methods for data integration in systems biology
PDF
About functional SIR
PDF
Graph Neural Network for Phenotype Prediction
Explanable models for time series with random forest
La statistique et le machine learning pour l'intégration de données de la bio...
Kernel methods for data integration in systems biology
Kernel methods and variable selection for exploratory analysis and multi-omic...
A short and naive introduction to epistasis in association studies
Kernel methods for data integration in systems biology
About functional SIR
Graph Neural Network for Phenotype Prediction

What's hot (20)

PDF
'ACCOST' for differential HiC analysis
PDF
Reproducibility and differential analysis with selfish
PDF
A short introduction to statistical learning
PDF
Random Forest for Big Data
PDF
About functional SIR
PDF
Convolutional networks and graph networks through kernels
PDF
Investigating the 3D structure of the genome with Hi-C data analysis
PDF
Selective inference and single-cell differential analysis
PDF
Generative models : VAE and GAN
PDF
Deep Learning Opening Workshop - Domain Adaptation Challenges in Genomics: a ...
PDF
Multiple kernel Self-Organizing Maps
PPSX
Prototype-based models in machine learning
PDF
Consensual gene co-expression network inference with multiple samples
PDF
Pattern learning and recognition on statistical manifolds: An information-geo...
PDF
When Classifier Selection meets Information Theory: A Unifying View
PDF
Probabilistic Modelling with Information Filtering Networks
PDF
Autoregressive Convolutional Neural Networks for Asynchronous Time Series
PDF
Presentation
PDF
Multiple kernel learning applied to the integration of Tara oceans datasets
PDF
Probability distributions for ml
'ACCOST' for differential HiC analysis
Reproducibility and differential analysis with selfish
A short introduction to statistical learning
Random Forest for Big Data
About functional SIR
Convolutional networks and graph networks through kernels
Investigating the 3D structure of the genome with Hi-C data analysis
Selective inference and single-cell differential analysis
Generative models : VAE and GAN
Deep Learning Opening Workshop - Domain Adaptation Challenges in Genomics: a ...
Multiple kernel Self-Organizing Maps
Prototype-based models in machine learning
Consensual gene co-expression network inference with multiple samples
Pattern learning and recognition on statistical manifolds: An information-geo...
When Classifier Selection meets Information Theory: A Unifying View
Probabilistic Modelling with Information Filtering Networks
Autoregressive Convolutional Neural Networks for Asynchronous Time Series
Presentation
Multiple kernel learning applied to the integration of Tara oceans datasets
Probability distributions for ml
Ad

Similar to Learning from (dis)similarity data (20)

PDF
Can we estimate a constant?
PDF
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
PDF
Approximate Bayesian model choice via random forests
PDF
Interpretable Sparse Sliced Inverse Regression for digitized functional data
PDF
Clustering Financial Time Series using their Correlations and their Distribut...
PDF
Numerical methods for variational principles in traffic
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
PDF
Multiple estimators for Monte Carlo approximations
PDF
NBBC15, Reyjavik, June 08, 2015
PDF
Classification and regression based on derivatives: a consistency result for ...
PDF
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
PDF
Laplace's Demon: seminar #1
PDF
Congrès SMAI 2019
PDF
asymptotics of ABC
PDF
Regression on gaussian symbols
PDF
Classification
PDF
Dictionary Learning for Massive Matrix Factorization
PDF
Supervised Planetary Unmixing with Optimal Transport
PDF
Wavelet-based Reflection Symmetry Detection via Textural and Color Histograms
Can we estimate a constant?
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Approximate Bayesian model choice via random forests
Interpretable Sparse Sliced Inverse Regression for digitized functional data
Clustering Financial Time Series using their Correlations and their Distribut...
Numerical methods for variational principles in traffic
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Talk at 2013 WSC, ISI Conference in Hong Kong, August 26, 2013
Multiple estimators for Monte Carlo approximations
NBBC15, Reyjavik, June 08, 2015
Classification and regression based on derivatives: a consistency result for ...
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
Laplace's Demon: seminar #1
Congrès SMAI 2019
asymptotics of ABC
Regression on gaussian symbols
Classification
Dictionary Learning for Massive Matrix Factorization
Supervised Planetary Unmixing with Optimal Transport
Wavelet-based Reflection Symmetry Detection via Textural and Color Histograms
Ad

More from tuxette (20)

PDF
Analyse comparative de données de génomique 3D
PDF
Detecting differences between 3D genomic data: a benchmark study
PDF
Racines en haut et feuilles en bas : les arbres en maths
PDF
Méthodes à noyaux pour l’intégration de données hétérogènes
PDF
Méthodologies d'intégration de données omiques
PDF
Projets autour de l'Hi-C
PDF
Can deep learning learn chromatin structure from sequence?
PDF
Multi-omics data integration methods: kernel and other machine learning appro...
PDF
ASTERICS : une application pour intégrer des données omiques
PDF
Autour des projets Idefics et MetaboWean
PDF
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
PDF
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
PDF
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
PDF
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
PDF
Journal club: Validation of cluster analysis results on validation data
PDF
Overfitting or overparametrization?
PDF
SOMbrero : un package R pour les cartes auto-organisatrices
PDF
A short and naive introduction to using network in prediction models
PDF
Présentation du projet ASTERICS
PDF
Présentation du projet ASTERICS
Analyse comparative de données de génomique 3D
Detecting differences between 3D genomic data: a benchmark study
Racines en haut et feuilles en bas : les arbres en maths
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodologies d'intégration de données omiques
Projets autour de l'Hi-C
Can deep learning learn chromatin structure from sequence?
Multi-omics data integration methods: kernel and other machine learning appro...
ASTERICS : une application pour intégrer des données omiques
Autour des projets Idefics et MetaboWean
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Journal club: Validation of cluster analysis results on validation data
Overfitting or overparametrization?
SOMbrero : un package R pour les cartes auto-organisatrices
A short and naive introduction to using network in prediction models
Présentation du projet ASTERICS
Présentation du projet ASTERICS

Recently uploaded (20)

PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PPTX
Platelet disorders - thrombocytopenia.pptx
PPTX
Introduction to Immunology (Unit-1).pptx
PPT
Cell Structure Description and Functions
PDF
Chapter 3 - Human Development Poweroint presentation
PDF
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
PPTX
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
PDF
From Molecular Interactions to Solubility in Deep Eutectic Solvents: Explorin...
PPTX
limit test definition and all limit tests
PPTX
endocrine - management of adrenal incidentaloma.pptx
PDF
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
PDF
Science Form five needed shit SCIENEce so
PPTX
gene cloning powerpoint for general biology 2
PDF
CuO Nps photocatalysts 15156456551564161
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
gene cloning powerpoint for general biology 2
PPT
LEC Synthetic Biology and its application.ppt
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PPTX
2currentelectricity1-201006102815 (1).pptx
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
Platelet disorders - thrombocytopenia.pptx
Introduction to Immunology (Unit-1).pptx
Cell Structure Description and Functions
Chapter 3 - Human Development Poweroint presentation
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
From Molecular Interactions to Solubility in Deep Eutectic Solvents: Explorin...
limit test definition and all limit tests
endocrine - management of adrenal incidentaloma.pptx
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
Science Form five needed shit SCIENEce so
gene cloning powerpoint for general biology 2
CuO Nps photocatalysts 15156456551564161
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
gene cloning powerpoint for general biology 2
LEC Synthetic Biology and its application.ppt
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
2currentelectricity1-201006102815 (1).pptx

Learning from (dis)similarity data

  • 1. Learning from (dis)similarity data Nathalie Vialaneix nathalie.vialaneix@inra.fr http://www.nathalievialaneix.eu MelbURN 2018 July 16th, 2018 - Melbourne, Australia Nathalie Vialaneix | Learning from (dis)similarity data 1/24
  • 2. What are my data like? Nathalie Vialaneix | Learning from (dis)similarity data 2/24
  • 3. A medieval social network [Boulet et al., 2008, Rossi et al., 2013] corpus with more than 6,000 transactions, 3 centuries, all related to Castelnau Montratier Nathalie Vialaneix | Learning from (dis)similarity data 3/24
  • 4. A medieval social network [Boulet et al., 2008, Rossi et al., 2013] corpus with more than 6,000 transactions, 3 centuries, all related to Castelnau Montratier Individual Transaction q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Ratier Ratier (II) Castelnau Jean Laperarede Bertrande Audoy Gailhard Gourdon Guy Moynes (de) Pierre Piret (de) Bernard Audoy Hélène Castelnau Guiral Baro Bernard Audoy Arnaud Bernard Laperarede Guilhem Bernard Prestis Jean Manas Jean Laperarede Jean Laperarede Jean Roquefeuil Jean Pojols Ramond Belpech Raymond Laperarede Bertrand Prestis (de) Ratier (Monseigneur) Roquefeuil (de) Guilhem Bernard Prestis Arnaud Gasbert Castanhier (del) Ratier (III) Castelnau Pierre Prestis (de) P Valeribosc Guillaume Marsa Berenguier Roquefeuil Arnaud Bernard Perarede Jean Roquefeuil Arnaud I Audoy Arnaud Bernard Perarede bipartite network with more than 17,000 nodes (∼ 10,000 individuals) What can we learn from the French medieval society? Nathalie Vialaneix | Learning from (dis)similarity data 3/24
  • 5. Career paths [Olteanu and Villa-Vialaneix, 2015] Survey “Génération 98”: labor market status (9 categories) on more than 16,000 people having graduated in 1998 during 94 months. 1 1. Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre Maurice Halbwachs (CMH). Nathalie Vialaneix | Learning from (dis)similarity data 4/24
  • 6. Career paths [Olteanu and Villa-Vialaneix, 2015] Survey “Génération 98”: labor market status (9 categories) on more than 16,000 people having graduated in 1998 during 94 months. 1 How to cluster career paths into homogeneous groups? 1. Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre Maurice Halbwachs (CMH). Nathalie Vialaneix | Learning from (dis)similarity data 4/24
  • 7. Career paths [Olteanu and Villa-Vialaneix, 2015] Survey “Génération 98”: labor market status (9 categories) on more than 16,000 people having graduated in 1998 during 94 months. 1 How to cluster career paths into homogeneous groups? It is all about distance... χ2 dissimilarity emphasizes the contemporary identical situations Optimal-matching dissimilarities is more focused on the sequences similarities [Needleman and Wunsch, 1970] (or “edit distance”, “Levenshtein distance”) 1. Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre Maurice Halbwachs (CMH). Nathalie Vialaneix | Learning from (dis)similarity data 4/24
  • 8. and then I went into NGS data... and again... distances are everywhere Nathalie Vialaneix | Learning from (dis)similarity data 5/24
  • 9. a collection of NGS data... DNA barcoding Astraptes fulgerator optimal matching (edit) distances to differentiate species Nathalie Vialaneix | Learning from (dis)similarity data 6/24
  • 10. a collection of NGS data... DNA barcoding Astraptes fulgerator optimal matching (edit) distances to differentiate species Hi-C data pairwise measure (similarity) related to the physical 3D distance between loci in the cell, at genome scale Nathalie Vialaneix | Learning from (dis)similarity data 6/24
  • 11. a collection of NGS data... DNA barcoding Astraptes fulgerator optimal matching (edit) distances to differentiate species Hi-C data pairwise measure (similarity) related to the physical 3D distance between loci in the cell, at genome scale Metagenomics dissemblance between samples is better captured when phylogeny between species is taken into account (unifrac distances) Nathalie Vialaneix | Learning from (dis)similarity data 6/24
  • 12. Relational Self-Organizing Map algorithm Nathalie Vialaneix | Learning from (dis)similarity data 7/24
  • 13. Basics on (standard) stochastic SOM [Kohonen, 2001] x x x (xi)i=1,...,n ⊂ Rd are affected to a unit f(xi) ∈ {1, . . . , U} the grid is equipped with a “distance” between units: d(u, u ) and observations affected to close units are close in Rd every unit u corresponds to a prototype, pu (x) in Rd Nathalie Vialaneix | Learning from (dis)similarity data 8/24
  • 14. Basics on (standard) stochastic SOM [Kohonen, 2001] x x x Iterative learning (assignment step): xi is picked at random within (xk )k and affected to best matching unit: ft (xi) = arg min u xi − pt u 2 Nathalie Vialaneix | Learning from (dis)similarity data 8/24
  • 15. Basics on (standard) stochastic SOM [Kohonen, 2001] x x x Iterative learning (representation step): all prototypes in neighboring units are updated with a gradient descent like step: pt+1 u ←− pt u + µ(t)Ht (d(f(xi), u))(xi − pt u) Nathalie Vialaneix | Learning from (dis)similarity data 8/24
  • 16. Extension of SOM to data described by a kernel or a dissimilarity [Olteanu and Villa-Vialaneix, 2015] Data: (xi)i=1,...,n ∈ Rd 1: Initialization: randomly set p0 1 , ..., p0 U in Rd 2: for t = 1 → T do 3: pick at random i ∈ {1, . . . , n} 4: Assignment ft (xi) = arg min u=1,...,U xi − pt u 2 βt u 5: for all u = 1 → U do Representation 6: pt+1 u = pt u + µ(t)Ht (d(ft (xi), u)) 7: end for 8: end for Nathalie Vialaneix | Learning from (dis)similarity data 9/24
  • 17. Extension of SOM to data described by a kernel or a dissimilarity [Olteanu and Villa-Vialaneix, 2015] Data: (xi)i=1,...,n ∈ X 1: Initialization: randomly set p0 1 , ..., p0 U in Rd 2: for t = 1 → T do 3: pick at random i ∈ {1, . . . , n} 4: Assignment ft (xi) = arg min u=1,...,U xi − pt u 2 βt u 5: for all u = 1 → U do Representation 6: pt+1 u = pt u + µ(t)Ht (d(ft (xi), u)) 7: end for 8: end for Nathalie Vialaneix | Learning from (dis)similarity data 9/24
  • 18. Extension of SOM to data described by a kernel or a dissimilarity [Olteanu and Villa-Vialaneix, 2015] Data: (xi)i=1,...,n ∈ X 1: Initialization: p0 u ∼ n i=1 β0 ui xi (convex combination) 2: for t = 1 → T do 3: pick at random i ∈ {1, . . . , n} 4: Assignment ft (xi) = arg min u=1,...,U xi − pt u 2 βt u 5: for all u = 1 → U do Representation 6: pt+1 u = pt u + µ(t)Ht (d(ft (xi), u)) 7: end for 8: end for Nathalie Vialaneix | Learning from (dis)similarity data 9/24
  • 19. Extension of SOM to data described by a kernel or a dissimilarity [Olteanu and Villa-Vialaneix, 2015] Data: (xi)i=1,...,n ∈ X 1: Initialization: p0 u ∼ n i=1 β0 ui xi (convex combination) 2: for t = 1 → T do 3: pick at random i ∈ {1, . . . , n} 4: Assignment ft (xi) = arg min u=1,...,U βt uD(pt u, xi) 5: for all u = 1 → U do Representation 6: pt+1 u = pt u + µ(t)Ht (d(ft (xi), u)) 7: end for 8: end for Nathalie Vialaneix | Learning from (dis)similarity data 9/24
  • 20. Extension of SOM to data described by a kernel or a dissimilarity [Olteanu and Villa-Vialaneix, 2015] Data: (xi)i=1,...,n ∈ X 1: Initialization: p0 u ∼ n i=1 β0 ui xi (convex combination) 2: for t = 1 → T do 3: pick at random i ∈ {1, . . . , n} 4: Assignment ft (xi) = arg min u=1,...,U βt uD(pt u, xi) 5: for all u = 1 → U do Representation 6: pt+1 u = pt u + µ(t)Ht (d(ft (xi), u)) ∼ xi − pt u 7: end for 8: end for Nathalie Vialaneix | Learning from (dis)similarity data 9/24
  • 21. Extension of SOM to data described by a kernel or a dissimilarity [Olteanu and Villa-Vialaneix, 2015] Data: (xi)i=1,...,n ∈ X 1: Initialization: p0 u ∼ n i=1 β0 ui xi (convex combination) 2: for t = 1 → T do 3: pick at random i ∈ {1, . . . , n} 4: Assignment ft (xi) = arg min u=1,...,U βt u(βt u) D(., xi) − 1 2 (βt u) Dβt u 5: for all u = 1 → U do Representation 6: βt+1 u = βt u + µ(t)Ht (d(ft (xi), u)) 1i − βt u 7: end for 8: end for Nathalie Vialaneix | Learning from (dis)similarity data 9/24
  • 22. Note on drawbacks of RSOM Two main drawbacks: For T ∼ γn iterations, complexity of RSOM is O(γn3 U) (compared to O(γUdn) for numeric) [Rossi, 2014] Nathalie Vialaneix | Learning from (dis)similarity data 10/24
  • 23. Note on drawbacks of RSOM Two main drawbacks: For T ∼ γn iterations, complexity of RSOM is O(γn3 U) (compared to O(γUdn) for numeric) [Rossi, 2014] Exact solution proposed in [Mariette et al., 2017] to reduce the complexity to O(γn2 U) with additional storage memory of O(Un) Nathalie Vialaneix | Learning from (dis)similarity data 10/24
  • 24. Note on drawbacks of RSOM Two main drawbacks: For T ∼ γn iterations, complexity of RSOM is O(γn3 U) (compared to O(γUdn) for numeric) [Rossi, 2014] Exact solution proposed in [Mariette et al., 2017] to reduce the complexity to O(γn2 U) with additional storage memory of O(Un) For the non Euclidean case, the learning algorithm can be very unstable (saddle points) Nathalie Vialaneix | Learning from (dis)similarity data 10/24
  • 25. Note on drawbacks of RSOM Two main drawbacks: For T ∼ γn iterations, complexity of RSOM is O(γn3 U) (compared to O(γUdn) for numeric) [Rossi, 2014] Exact solution proposed in [Mariette et al., 2017] to reduce the complexity to O(γn2 U) with additional storage memory of O(Un) For the non Euclidean case, the learning algorithm can be very unstable (saddle points) clip or flip? [Chen et al., 2009] Nathalie Vialaneix | Learning from (dis)similarity data 10/24
  • 26. SOMbrero [Villa-Vialaneix, 2017] SOMbrero is an R package implementing stochastic variants of SOM for non vectorial data Specifically well adapted to... non expert use and teaching use with graphs and obtain simplified representations first release: March 2013; latest release: Feb. 2018 (version 1.2.3) depends on R (version ≥ 3.1.0) http://www.r-project.org and on several packages available on CRAN: wordcloud, igraph, RColorBrewer, scatterplot3d, knitr, shiny available at https://cran.r-project.org/package=SOMbrero (licence GPL) and can be installed from inside R using install.packages("SOMbrero") Nathalie Vialaneix | Learning from (dis)similarity data 11/24
  • 27. Training mysom <- trainSOM(iris[ ,1:4], ...) Options to train the SOM: grid: square grid, with arbitrary width and length distance between units: standard distances as in dist or "letremy" (Euclidean then "maximum") neighborhood relationship: Gaussian or "letremy" prototypes: initialized randomly, with a PCA, with random observations from the training sample preprocessing: centering, scaling to unit variance or nothing training: number of iterations, standard or Heskes’s assignment step ft (xi) ← arg min u=1,...,U U u =1 Ht (d(u, u )) xi − pt−1 u 2 Nathalie Vialaneix | Learning from (dis)similarity data 12/24
  • 28. Diagnostic tools quality(mysom) topographic error: average frequency (over the samples) for which the prototypes that comes closest is in the direct neighborhood on the grid of the BMU quantization error Q = 1 n n i=1 xi − pf(xi) 2 Nathalie Vialaneix | Learning from (dis)similarity data 13/24
  • 29. Plots... plot(mysom, what = c("observations", "prototypes", "add"), type = ..., ...) Nathalie Vialaneix | Learning from (dis)similarity data 14/24
  • 30. Super-clustering mysom.sc <- superClass(mysom) Nathalie Vialaneix | Learning from (dis)similarity data 15/24
  • 31. Start with SOMbrero 3 datasets corresponding to the three types of data that SOMbrero can handle (iris, presidentielles2002 and lesmis, a graph from “Les Misérables”) Nathalie Vialaneix | Learning from (dis)similarity data 16/24
  • 32. Start with SOMbrero 3 datasets corresponding to the three types of data that SOMbrero can handle (iris, presidentielles2002 and lesmis, a graph from “Les Misérables”) comprehensive (HTML) vignettes included in the package and available on the website Nathalie Vialaneix | Learning from (dis)similarity data 16/24
  • 33. Start with SOMbrero 3 datasets corresponding to the three types of data that SOMbrero can handle (iris, presidentielles2002 and lesmis, a graph from “Les Misérables”) comprehensive (HTML) vignettes included in the package and available on the website Web User Interface (made with shiny) for using the package even if you do not know R programming language (included in the package with sombreroGUI() Tested and approved on an historian! Nathalie Vialaneix | Learning from (dis)similarity data 16/24
  • 34. RSOM for mining a medieval social network with the heat kernel Individual Transaction q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Ratier Ratier (II) Castelnau Jean Laperarede Bertrande Audoy Gailhard Gourdon Guy Moynes (de) Pierre Piret (de) Bernard Audoy Hélène Castelnau Guiral Baro Bernard Audoy Arnaud Bernard Laperarede Guilhem Bernard Prestis Jean Manas Jean Laperarede Jean Laperarede Jean Roquefeuil Jean Pojols Ramond Belpech Raymond Laperarede Bertrand Prestis (de) Ratier (Monseigneur) Roquefeuil (de) Guilhem Bernard Prestis Arnaud Gasbert Castanhier (del) Ratier (III) Castelnau Pierre Prestis (de) P Valeribosc Guillaume Marsa Berenguier Roquefeuil Arnaud Bernard Perarede Jean Roquefeuil Arnaud I Audoy Arnaud Bernard Perarede [Boulet et al., 2008] Graph induced by clusters: has nice relations with space and time emphasizes leading people has helped to identify problems in the database (namesakes) But: biggest communities are still very complex Nathalie Vialaneix | Learning from (dis)similarity data 17/24
  • 35. RSOM for typology of Astraptes fulgerator from DNA barcoding Edit distances between DNA sequences [Olteanu and Villa-Vialaneix, 2015] Almost perfect clustering (identifying a possible label error on one sample) with (in addition) information on relations between species. Nathalie Vialaneix | Learning from (dis)similarity data 18/24
  • 36. RSOM for typology of school-to-time transitions Edit distance between 12,000 categorical time series Nathalie Vialaneix | Learning from (dis)similarity data 19/24
  • 37. Also in SOMbrero: KORRESP [Cottrell and Letrémy, 2005] Data: contingency table T = (nij)ij with p rows and q columns transformed into a numeric dataset X: X = columns rows columns rows column profile row profile with ∀ i = 1, . . . , p and ∀ j = 1, . . . , q, xij = nij ni. × n n.j Nathalie Vialaneix | Learning from (dis)similarity data 20/24
  • 38. Also in SOMbrero: KORRESP [Cottrell and Letrémy, 2005] Data: contingency table T = (nij)ij with p rows and q columns transformed into a numeric dataset X: X = columns rows columns rows augmented column profile augmented row profile with ∀ i = 1, . . . , p and ∀ j = q + 1, . . . , q + p, xij = xk(i)+p,j with k(i) = arg maxk=1,...,q xik Nathalie Vialaneix | Learning from (dis)similarity data 20/24
  • 39. Also in SOMbrero: KORRESP [Cottrell and Letrémy, 2005] Data: contingency table T = (nij)ij with p rows and q columns transformed into a numeric dataset X: X = columns rows columns rows augmented column profile augmented row profile column profile row profile assignment uses reduced profile representation uses augmented profile alternatively process row profiles and column profiles Nathalie Vialaneix | Learning from (dis)similarity data 20/24
  • 40. Also available in SOMbrero mysom <- trainSOM(presidentielles2002 , type = "korresp") plot(mysom, what = "obs", type = "names") Nathalie Vialaneix | Learning from (dis)similarity data 21/24
  • 41. SOMbrero Madalina Olteanu, Fabrice Rossi, Marie Cottrell, Laura Bendhaïba and Julien Boelaert SOMbrero and mixKernel Jérôme Mariette adjclust Pierre Neuvial, Guillem Rigail, Christophe Ambroise and Shubham Chaturvedi Nathalie Vialaneix | Learning from (dis)similarity data 22/24
  • 42. Don’t miss useR! 2019 user2019.r-project.org Nathalie Vialaneix | Learning from (dis)similarity data 23/24
  • 43. Credits for pictures Slide 2: Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/ Slide 3: Picture of Castelnau Montratier from https://commons.wikimedia.org/wiki/File: Place_Gambetta,_Castelnau-Montratier.JPG by Duch.seb CC BY-SA 3.0 Slide 4: image based on ENCODE project, by Darryl Leja (NHGRI), Ian Dunham (EBI) and Michael Pazin (NHGRI) Slide 6: Astraptes picture is from https://www.flickr.com/photos/39139121@N00/2045403823/ by Anne Toal (CC BY-SA 2.0), Hi-C experiment is taken from the article Matharu et al., 2015 DOI:10.1371/journal.pgen.1005640 (CC BY-SA 4.0) and metagenomics illustration is taken from the article Sommer et al., 2010 DOI:10.1038/msb.2010.16 (CC BY-NC-SA 3.0) Slide 12: TADS picture is from the article Fraser et al., 2015 DOI:10.15252/msb.20156492 (CC BY-SA 4.0) Nathalie Vialaneix | Learning from (dis)similarity data 24/24
  • 44. References Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008). Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing, 71(7-9):1257–1273. Chen, Y., Garcia, E., Gupta, M., Rahimi, A., and Cazzanti, L. (2009). Similarity-based classification: concepts and algorithm. Journal of Machine Learning Research, 10:747–776. Cottrell, M. and Letrémy, P. (2005). How to use the Kohonen algorithm to simultaneously analyse individuals in a survey. Neurocomputing, 63:193–207. Kohonen, T. (2001). Self-Organizing Maps, 3rd Edition, volume 30. Springer, Berlin, Heidelberg, New York. Mariette, J., Rossi, F., Olteanu, M., and Villa-Vialaneix, N. (2017). Accelerating stochastic kernel som. In Verleysen, M., editor, XXVth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2017), pages 269–274, Bruges, Belgium. i6doc. Needleman, S. and Wunsch, C. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453. Olteanu, M. and Villa-Vialaneix, N. (2015). On-line relational and multiple relational SOM. Neurocomputing, 147:15–30. Rossi, F. (2014). How many dissimilarity/kernel self organizing map variants do we need? Nathalie Vialaneix | Learning from (dis)similarity data 24/24
  • 45. In Villmann, T., Schleif, F., Kaden, M., and Lange, M., editors, Advances in Self-Organizing Maps and Learning Vector Quantization (Proceedings of WSOM 2014), volume 295 of Advances in Intelligent Systems and Computing, pages 3–23, Mittweida, Germany. Springer Verlag, Berlin, Heidelberg. Rossi, F., Villa-Vialaneix, N., and Hautefeuille, F. (2013). Exploration of a large database of French notarial acts with social network methods. Digital Medievalist, 9. Villa-Vialaneix, N. (2017). Stochastic self-organizing map variants with the R package SOMbrero. In Lamirel, J., Cottrell, M., and Olteanu, M., editors, 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (Proceedings of WSOM 2017), Nancy, France. IEEE. Nathalie Vialaneix | Learning from (dis)similarity data 24/24