The structure of media attention 
V.A. Traag, R. Reinanda, J. Hicks, G. Van Klinken 
KITLV, Leiden, the Netherlands 
e-Humanities, KNAW, Amsterdam, the Netherlands 
September 30, 2014 
e 
Humanities 
Royal Netherlands Academy of Arts and Sciences
Background 
Research focus 
 Study elite (network) behaviour. 
 Relation with political developments. 
 Data: newspaper articles. How can we use them? 
Data 
 Current corpus: Joyo/Indonesian News Service, 2004{2012. 
 Contains about 140 263 articles.
Network 
Building the network 
1 Detect names automatically . 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
2 Disambiguate names. 
I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 
3 Co-occurrence in sentence (record frequency). 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
K 
1 
B Y 
1 
1
Network 
Building the network 
1 Detect names automatically . 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
2 Disambiguate names. 
I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 
3 Co-occurrence in sentence (record frequency). 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
K 
1 
B Y 
1 
1
Network 
Building the network 
1 Detect names automatically . 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
2 Disambiguate names. 
I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 
3 Co-occurrence in sentence (record frequency). 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
K 
1 
B Y 
1 
1
Network 
Building the network 
1 Detect names automatically . 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
2 Disambiguate names. 
I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 
3 Co-occurrence in sentence (record frequency). 
I  Budhisantoso would ask Kalla to team up with Yudhoyono . 
K 
1 
B Y 
1 
1
Strength 
101 
100 
100 101 102 103 
Degree 
Average weight 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data 
Hubs co-occur more frequently.
Strength 
101 
100 
100 101 102 103 
Degree 
Average weight 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data Bipartite 
Hubs co-occur more frequently.
Clustering 
100 
10−1 
10−2 
100 101 102 103 10−3 
Degree 
Clustering 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data 
Hubs tend to cluster less.
Clustering 
100 
10−1 
10−2 
100 101 102 103 10−3 
Degree 
Clustering 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data Bipartite 
Hubs tend to cluster less.
Clustering 
100 
10−1 
100 101 102 103 
Degree 
Weighted Clustering 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data 
Hubs tend to cluster less (also weighted).
Clustering 
100 
10−1 
100 101 102 103 
Degree 
Weighted Clustering 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data Bipartite 
Hubs tend to cluster less (also weighted).
Neighbour degree 
103 
102 
100 101 102 103 101 
Degree 
Neighbour Degree 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data 
Hubs tend to connect to low degree nodes.
Neighbour degree 
103 
102 
100 101 102 103 101 
Degree 
Neighbour Degree 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data Bipartite 
Hubs tend to connect to low degree nodes.
Weighted Neighbour degree 
103 
102 
100 101 102 103 
Degree 
Weighted Neighbour Degree 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data 
But hubs connect much stronger to other hubs.
Weighted Neighbour degree 
103 
102 
100 101 102 103 
Degree 
Weighted Neighbour Degree 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data Bipartite 
But hubs connect much stronger to other hubs.
Predict weight 
100 101 102 103 104 
104 
103 
102 
101 
100 
Weight 
Predicted Weight 
Joyo 
NYT 
100 101 102 103 104 
Weight 
Data 
wij  J
 
ij exp((si sj )
)
Predict weight 
100 101 102 103 104 
104 
103 
102 
101 
100 
Weight 
Predicted Weight 
Joyo 
NYT 
100 101 102 103 104 
Weight 
Data Bipartite 
wij  J
 
ij exp((si sj )
)
Core-periphery 
Summary Results 
 Hubs attract much more weight. 
 Most of the weight between hubs. 
 Low degree node connect to hubs. 
 Low degree nodes cluster locally. 
Consistent with core-periphery structure. But, seems also present 
in bipartite randomisation. Largest deviations, empirically: 
 Degree is lower, average weight is higher. 
 Weighted neighbour degree increases.
Model 
Simple model to overcome deviations: 
1 Create empty sentence 
2 Add certain number of nodes 
1 Either random node (with PA) 
2 Or random neighbour (with PA) 
Probability (ki + 1)
. 
3 Repeat
Degree  Weight 
Empirical Bipartite Model 
Joyo 
Avg. Degree 12:4 22:1 12:2 
Avg. Weight 2:9 1:2 2:8 
NYT 
Avg. Degree 22:3 45:2 22:6 
Avg. Weight 2:01 1:11 1:31
Strength 
101 
100 
100 101 102 103 
Degree 
Average weight 
Joyo 
NYT 
100 101 102 103 104 
Degree 
Data Model 
Weight increases more in the model.

More Related Content

PDF
Polarization and consensus in citation networks
PDF
Complex contagion of campaign donations
PPTX
PPTX
Binomials x class unit iv
PDF
Kto12 print-component-as-of-september-28
PPT
YOU CAN DO THIS
Polarization and consensus in citation networks
Complex contagion of campaign donations
Binomials x class unit iv
Kto12 print-component-as-of-september-28
YOU CAN DO THIS

Viewers also liked (15)

PDF
3kto12curriculumguide 120819074611-phpapp01
PPTX
Kto12assessmentandrating 130719101325-phpapp02
PDF
Aaha presentation
PPTX
neuro-linguistic_programming
PDF
15分でざっくり分かるScala入門
PDF
13 fiches pratiques sur le préfinancement des commandes dans le commerce équi...
PPT
Les Médias Sociaux Sans Se Brûler
PDF
Rapport Projet de Fin d'Etudes
PDF
ANT2- Atelier 2: Communication stratégique efficace et planifiée
PDF
Google Plus et la visibilité: Pourquoi vous devez être sur Google Plus !
PDF
De l'Internet des Objets à l'Internet des Produits
PPTX
Droit des cartels et de la concurrence déloyale
PPTX
Développement commercial et marketing des marques
PPT
Renouveler la réflexion et l’action en bibliothèque autour de la notion de bi...
PDF
Guide du-routard-de-l-intelligence-economique-2012
3kto12curriculumguide 120819074611-phpapp01
Kto12assessmentandrating 130719101325-phpapp02
Aaha presentation
neuro-linguistic_programming
15分でざっくり分かるScala入門
13 fiches pratiques sur le préfinancement des commandes dans le commerce équi...
Les Médias Sociaux Sans Se Brûler
Rapport Projet de Fin d'Etudes
ANT2- Atelier 2: Communication stratégique efficace et planifiée
Google Plus et la visibilité: Pourquoi vous devez être sur Google Plus !
De l'Internet des Objets à l'Internet des Produits
Droit des cartels et de la concurrence déloyale
Développement commercial et marketing des marques
Renouveler la réflexion et l’action en bibliothèque autour de la notion de bi...
Guide du-routard-de-l-intelligence-economique-2012
Ad

More from Vincent Traag (20)

PPTX
Peer review uncertainty at the institutional level
PDF
Replacing peer review by metrics in the UK REF?
PDF
Use of the journal impact factor for assessing individual articles need not b...
PDF
Uncovering important intermediate publications
PDF
Community structure in complex networks
PDF
Introduction to complex networks
PDF
Public thesis defence: groups and reputation in social networks
PDF
Dynamics of Media Attention
PDF
Dynamical Models Explaining Social Balance
PDF
Significant scales in community structure
PDF
Reconstructing Third World Elite Rotation Events from Newspapers
PDF
Reputation Dynamics Through Gossiping
PDF
Limits of community detection
PDF
Cooperation, Reputation & Gossiping
PDF
Resolution-free community detection
PDF
Cooperation, Reputation & Gossiping
PDF
Exponential Ranking: Taking into account negative links.
PDF
Social Event Detection
PDF
Cooperation, Reputation & Gossiping
PDF
Exponential Ranking: Taking into account negative links.
Peer review uncertainty at the institutional level
Replacing peer review by metrics in the UK REF?
Use of the journal impact factor for assessing individual articles need not b...
Uncovering important intermediate publications
Community structure in complex networks
Introduction to complex networks
Public thesis defence: groups and reputation in social networks
Dynamics of Media Attention
Dynamical Models Explaining Social Balance
Significant scales in community structure
Reconstructing Third World Elite Rotation Events from Newspapers
Reputation Dynamics Through Gossiping
Limits of community detection
Cooperation, Reputation & Gossiping
Resolution-free community detection
Cooperation, Reputation & Gossiping
Exponential Ranking: Taking into account negative links.
Social Event Detection
Cooperation, Reputation & Gossiping
Exponential Ranking: Taking into account negative links.
Ad

Recently uploaded (20)

PDF
CuO Nps photocatalysts 15156456551564161
PPTX
Understanding the Circulatory System……..
PPTX
Introduction to Immunology (Unit-1).pptx
PPTX
limit test definition and all limit tests
PPT
Cell Structure Description and Functions
PPTX
A powerpoint on colorectal cancer with brief background
PPTX
gene cloning powerpoint for general biology 2
PPTX
Presentation1 INTRODUCTION TO ENZYMES.pptx
PPT
Mutation in dna of bacteria and repairss
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PPTX
Platelet disorders - thrombocytopenia.pptx
PPT
LEC Synthetic Biology and its application.ppt
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PDF
Chapter 3 - Human Development Poweroint presentation
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PDF
Cosmology using numerical relativity - what hapenned before big bang?
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
perinatal infections 2-171220190027.pptx
CuO Nps photocatalysts 15156456551564161
Understanding the Circulatory System……..
Introduction to Immunology (Unit-1).pptx
limit test definition and all limit tests
Cell Structure Description and Functions
A powerpoint on colorectal cancer with brief background
gene cloning powerpoint for general biology 2
Presentation1 INTRODUCTION TO ENZYMES.pptx
Mutation in dna of bacteria and repairss
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Platelet disorders - thrombocytopenia.pptx
LEC Synthetic Biology and its application.ppt
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Chapter 3 - Human Development Poweroint presentation
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
Cosmology using numerical relativity - what hapenned before big bang?
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
perinatal infections 2-171220190027.pptx

Structure of media attention

  • 1. The structure of media attention V.A. Traag, R. Reinanda, J. Hicks, G. Van Klinken KITLV, Leiden, the Netherlands e-Humanities, KNAW, Amsterdam, the Netherlands September 30, 2014 e Humanities Royal Netherlands Academy of Arts and Sciences
  • 2. Background Research focus Study elite (network) behaviour. Relation with political developments. Data: newspaper articles. How can we use them? Data Current corpus: Joyo/Indonesian News Service, 2004{2012. Contains about 140 263 articles.
  • 3. Network Building the network 1 Detect names automatically . I Budhisantoso would ask Kalla to team up with Yudhoyono . 2 Disambiguate names. I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 3 Co-occurrence in sentence (record frequency). I Budhisantoso would ask Kalla to team up with Yudhoyono . K 1 B Y 1 1
  • 4. Network Building the network 1 Detect names automatically . I Budhisantoso would ask Kalla to team up with Yudhoyono . 2 Disambiguate names. I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 3 Co-occurrence in sentence (record frequency). I Budhisantoso would ask Kalla to team up with Yudhoyono . K 1 B Y 1 1
  • 5. Network Building the network 1 Detect names automatically . I Budhisantoso would ask Kalla to team up with Yudhoyono . 2 Disambiguate names. I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 3 Co-occurrence in sentence (record frequency). I Budhisantoso would ask Kalla to team up with Yudhoyono . K 1 B Y 1 1
  • 6. Network Building the network 1 Detect names automatically . I Budhisantoso would ask Kalla to team up with Yudhoyono . 2 Disambiguate names. I Susilo Bambang Yudhoyono or Dr. Yudhoyono , etc. . . 3 Co-occurrence in sentence (record frequency). I Budhisantoso would ask Kalla to team up with Yudhoyono . K 1 B Y 1 1
  • 7. Strength 101 100 100 101 102 103 Degree Average weight Joyo NYT 100 101 102 103 104 Degree Data Hubs co-occur more frequently.
  • 8. Strength 101 100 100 101 102 103 Degree Average weight Joyo NYT 100 101 102 103 104 Degree Data Bipartite Hubs co-occur more frequently.
  • 9. Clustering 100 10−1 10−2 100 101 102 103 10−3 Degree Clustering Joyo NYT 100 101 102 103 104 Degree Data Hubs tend to cluster less.
  • 10. Clustering 100 10−1 10−2 100 101 102 103 10−3 Degree Clustering Joyo NYT 100 101 102 103 104 Degree Data Bipartite Hubs tend to cluster less.
  • 11. Clustering 100 10−1 100 101 102 103 Degree Weighted Clustering Joyo NYT 100 101 102 103 104 Degree Data Hubs tend to cluster less (also weighted).
  • 12. Clustering 100 10−1 100 101 102 103 Degree Weighted Clustering Joyo NYT 100 101 102 103 104 Degree Data Bipartite Hubs tend to cluster less (also weighted).
  • 13. Neighbour degree 103 102 100 101 102 103 101 Degree Neighbour Degree Joyo NYT 100 101 102 103 104 Degree Data Hubs tend to connect to low degree nodes.
  • 14. Neighbour degree 103 102 100 101 102 103 101 Degree Neighbour Degree Joyo NYT 100 101 102 103 104 Degree Data Bipartite Hubs tend to connect to low degree nodes.
  • 15. Weighted Neighbour degree 103 102 100 101 102 103 Degree Weighted Neighbour Degree Joyo NYT 100 101 102 103 104 Degree Data But hubs connect much stronger to other hubs.
  • 16. Weighted Neighbour degree 103 102 100 101 102 103 Degree Weighted Neighbour Degree Joyo NYT 100 101 102 103 104 Degree Data Bipartite But hubs connect much stronger to other hubs.
  • 17. Predict weight 100 101 102 103 104 104 103 102 101 100 Weight Predicted Weight Joyo NYT 100 101 102 103 104 Weight Data wij J ij exp((si sj )
  • 18. )
  • 19. Predict weight 100 101 102 103 104 104 103 102 101 100 Weight Predicted Weight Joyo NYT 100 101 102 103 104 Weight Data Bipartite wij J ij exp((si sj )
  • 20. )
  • 21. Core-periphery Summary Results Hubs attract much more weight. Most of the weight between hubs. Low degree node connect to hubs. Low degree nodes cluster locally. Consistent with core-periphery structure. But, seems also present in bipartite randomisation. Largest deviations, empirically: Degree is lower, average weight is higher. Weighted neighbour degree increases.
  • 22. Model Simple model to overcome deviations: 1 Create empty sentence 2 Add certain number of nodes 1 Either random node (with PA) 2 Or random neighbour (with PA) Probability (ki + 1)
  • 24. Degree Weight Empirical Bipartite Model Joyo Avg. Degree 12:4 22:1 12:2 Avg. Weight 2:9 1:2 2:8 NYT Avg. Degree 22:3 45:2 22:6 Avg. Weight 2:01 1:11 1:31
  • 25. Strength 101 100 100 101 102 103 Degree Average weight Joyo NYT 100 101 102 103 104 Degree Data Model Weight increases more in the model.
  • 26. Weighted neigbhour degree 103 102 100 101 102 103 Degree Weighted Neighbour Degree Joyo NYT 100 101 102 103 104 Degree Data Bipartite Weighted neighbour degree increases in the model.
  • 27. Conclusions Results: Network looks like core-periphery. Probably due to bipartite structure. But also to repetitive interaction. Further research: Basis for comparing elite networks. Compare networks across time and space. Dynamical, temporal aspects.
  • 28. Thank you! Questions? Presentation: SlideShare Paper: arXiv:1409.1744 Dynamics of network: arXiv:1409.2973 http://www.traag.net @vtraag