SlideShare a Scribd company logo
Bipolar Junction
Transistor:
Hybrid Parameter
Arpan Deyasi
Dept of ECE, RCCIIT, Kolkata, India
12/27/2020 Arpan Deyasi, RCCIIT 1
12/27/2020 Arpan Deyasi, RCCIIT 2
Hybrid Parameter
1 11 1 12 2V h I h V= + 2 21 1 22 2I h I h V= +
12/27/2020 Arpan Deyasi, RCCIIT 3
Hybrid Parameter
2
1
11
1 0V
V
h
I =
=
1
1
12
2 0I
V
h
V =
=
2
2
21
1 0V
I
h
I =
=
1
2
22
2 0I
I
h
V =
=
12/27/2020 Arpan Deyasi, RCCIIT 4
Hybrid Parameter: Notations used in transistor circuits
11 ih h=
short-circuit
input impedance
21 fh h=
short-circuit
forward current gain
12 rh h=
open-circuit
reverse voltage transfer ratio
22 oh h=
open-circuit
output admittance
12/27/2020 Arpan Deyasi, RCCIIT 5
12/27/2020 Arpan Deyasi, RCCIIT 6
Transistor Hybrid Model
1 1 1 2( , )v f i v=
2 2 1 2( , )i f i v=
1 1 2i rv hi h v= +
2 1 2f oi h i h v= +
12/27/2020 Arpan Deyasi, RCCIIT 7
Complete Hybrid Parameter Circuit
12/27/2020 Arpan Deyasi, RCCIIT 8
CurrentGain
2 1 2f oI h I h V= +
2 1f o L LI h I h I Z= +
2 1 2f o LI h I h I Z= −
2 2 1o L fI h I Z h I+ =
12/27/2020 Arpan Deyasi, RCCIIT 9
CurrentGain
2
1 1 (1 )
fL
I
o L
hI I
A
I I h Z
= =− =−
+
2 1(1 )o L fI h Z h I+ =
2
1 (1 )
f
o L
hI
I h Z
=
+
(1 )
f
I
o L
h
A
h Z
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 10
InputImpedance
1 1 2i rV h I h V= +
1 1i r L LV h I h I Z= +
1 1 1i r I LV h I h A I Z= +
1 1 2i r LV h I h I Z= −
12/27/2020 Arpan Deyasi, RCCIIT 11
InputImpedance
1
1
I i r I L
V
Z h h A Z
I
= = +
(1 )
f
I i r L
o L
h
Z h h Z
h Z
= −
+
f r
I i
L o
h h
Z h
Y h
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 12
VoltageGain
2 2 LV I Z= −
2 1I LV A I Z=
2 1
1 1
I L
V
V A I Z
A
V V
= =
2
1
I L
V
I
V A Z
A
V Z
= =
12/27/2020 Arpan Deyasi, RCCIIT 13
VoltageGain
.
(1 )
f L
V
o L I
h Z
A
h Z Z
= −
+
.
(1 )
(1 )
f L
V
fo L
i r L
o L
h Z
A
hh Z
h h Z
h Z
= −
+  
− 
+ 
12/27/2020 Arpan Deyasi, RCCIIT 14
OutputAdmittance
2 1 2f oI h I h V= +
2 1
2 2
f o
I I
h h
V V
= +
With VS = 0 1 1 2 0S i rR I h I h V+ + =
1
2
r
S i
I h
V R h
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 15
2
2
r
f o
S i
I h
h h
V R h
=− +
+
OutputAdmittance
0
r f
o
S i
h h
Y h
R h
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 16
CurrentGainwithSourceResistance
1 1I S S SI Z I R I R+ =
1( )I S S SI Z R I R+ =
1
( )
S
S I S
RI
I Z R
=
+
12/27/2020 Arpan Deyasi, RCCIIT 17
CurrentGainwithSourceResistance 2 2 1
1
IS
S S
I I I
A
I I I
=− =−
S
IS I
R
A A
→∝
→
( )
S
IS I
I S
R
A A
Z R
=
+
.
(1 ) ( )
f S
IS
o L I S
h R
A
h Z Z R
= −
+ +
1
IS I
S
I
A A
I
=
12/27/2020 Arpan Deyasi, RCCIIT 18
VoltageGainwithSourceResistance
1 1I S S IV Z V R V Z+ =
1( )I S S IV Z R V Z+ =
1
( )
S I
I S
V Z
V
Z R
=
+
12/27/2020 Arpan Deyasi, RCCIIT 19
VoltageGainwithSourceResistance
2 2 1
1
VS
S S
V V V
A
V V V
= =
1
VS V
S
V
A A
V
=
( )
S I
VS V
I S
V Z
A A
Z R
=
+
12/27/2020 Arpan Deyasi, RCCIIT 20
VoltageGainwithSourceResistance
.
( ) (1 )
.
(1 )
fS I
VS
I S o L
L
f
i r L
o L
hV Z
A
Z R h Z
Z
h
h h Z
h Z
= −
+ +
×
 
− 
+ 
0S
VS V
R
A A
→
→
12/27/2020 Arpan Deyasi, RCCIIT 21
PowerGain
2
1
P
P
A
P
=
2 2
1 1
P
V I
A
V I
= −
P V IA A A=
12/27/2020 Arpan Deyasi, RCCIIT 22
PowerGain
2
(1 )
(1 )
f
P
o L
L
f
i r L
o L
h
A
h Z
Z
h
h h Z
h Z
 
= × 
+ 
 
− 
+ 
12/27/2020 Arpan Deyasi, RCCIIT 23
Calculation of Hybrid Parameters [NPN]
IB
VBE
VCE1
11
C
BE
i
B V const
V
h h
I =
∆
= =
∆
Input Resistance
2 1
2 1
BE BE
i
B B
V V
h
I I
−
=
−
VBE1 VBE2
IB2
IB1
12/27/2020 Arpan Deyasi, RCCIIT 24
Calculation of Hybrid Parameters [NPN]
IB
VBE
VCE2VCE1
Reverse Transfer Ratio
12
B
BE
r
CE I const
V
h h
V =
∆
= =
∆
2 1
2 1
BE BE
r
CE CE
V V
h
V V
−
=
−
VBE1 VBE2
12/27/2020 25Arpan Deyasi, RCCIIT
VCE
IC
IB1
IB2
Calculation of Hybrid Parameters [NPN]
Forward Current Transfer Ratio
21
C
C
f
B V const
I
h h
I =
∆
= =
∆
2 1
2 1 C
C C
f
B B V const
I I
h
I I =
−
=
−
IC2
IC1
12/27/2020 26Arpan Deyasi, RCCIIT
VCE
IC
IB2
Calculation of Hybrid Parameters [NPN]
Output Transconductance
22
B
C
o
C I const
I
h h
V =
∆
= =
∆
2 1
2 1 C
C C
o
CE CE V const
I I
h
V V =
−
=
−
IC2
IC1
VCE1 VCE2
12/27/2020 Arpan Deyasi, RCCIIT 27
h-parameters are Real Numbers up to radio frequency
They are easy to measure
They can be determined from transistor static characteristic
They are convenient to use in circuit analysis and design
Easily convertible from one configuration to other
Readily supplied by manufacturers
What are the salient features of hybrid parameters?
12/27/2020 Arpan Deyasi, RCCIIT 28
Dataset for Different Configurations
12/27/2020 Arpan Deyasi, RCCIIT 29
Conversation of h-parameters

More Related Content

PPTX
Hybrid model for Transistor, small signal Analysis
PPTX
Small signal analysis of bjt amplifiers
PPTX
Transistor cb cc ce power point transistor
PPT
Bio-polar junction transistor (edc)
PPTX
Load line analysis
PPTX
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 2
PDF
Regions of operation of bjt and mosfet
PPT
EST 130, Transistor Biasing and Amplification.
Hybrid model for Transistor, small signal Analysis
Small signal analysis of bjt amplifiers
Transistor cb cc ce power point transistor
Bio-polar junction transistor (edc)
Load line analysis
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 2
Regions of operation of bjt and mosfet
EST 130, Transistor Biasing and Amplification.

What's hot (20)

PPT
36.voltage divider bias
PPT
PPTX
PPTX
DIFFERENTIAL AMPLIFIER using MOSFET
PPT
DAC-digital to analog converter
PPTX
Bipolar Junction Transistor (BJT) DC and AC Analysis
PDF
Negative feedback Amplifiers
PPTX
Diodes and Its Application
PPT
BJT.ppt
PPTX
MOS as Diode, Switch and Active Resistor
PPT
Operational amplifier
PPTX
555 Timer (detailed presentation)
PPSX
PPTX
Negative amplifiers and its types Positive feedback and Negative feedback
PPTX
Static Noise margin
PPTX
Clipper and Clamper
PPTX
Transistor biasing
PPTX
Oscillators
PPT
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
PPTX
Two port network
36.voltage divider bias
DIFFERENTIAL AMPLIFIER using MOSFET
DAC-digital to analog converter
Bipolar Junction Transistor (BJT) DC and AC Analysis
Negative feedback Amplifiers
Diodes and Its Application
BJT.ppt
MOS as Diode, Switch and Active Resistor
Operational amplifier
555 Timer (detailed presentation)
Negative amplifiers and its types Positive feedback and Negative feedback
Static Noise margin
Clipper and Clamper
Transistor biasing
Oscillators
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
Two port network
Ad

Similar to Hybrid Parameter in BJT (20)

PPTX
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
PDF
Ec8353 edc unit3
PDF
Lecture 08 hibridequivalentmodel
PPT
electronic-circuits_unit-4 small signal analysis.ppt
PDF
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
PPTX
PPTX
ch2-BJTremaining.pptx
PPTX
A presentation on inverter by manoj
PPTX
Bjt session 6
PPTX
Hybrid model analog electronics
PDF
EC8351-Electronic Circuits-I study material.pdf
PPTX
BIPOLAR JUNCTION(BJT AMPLIFIERS 1-1.pptx
PDF
Solutions for Problems in Microelectronic Circuits, 8th International Edition...
PDF
module2.pdf
PDF
Ac/AC conveter
PDF
J-601-1448_lec04.pdf
PPT
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
PPTX
PPTX
TWO - PORT NETWORK for Engineering .pptx
PPTX
Multisim_simulation_project_3_^0_4[1]-2.pptx
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
Ec8353 edc unit3
Lecture 08 hibridequivalentmodel
electronic-circuits_unit-4 small signal analysis.ppt
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
ch2-BJTremaining.pptx
A presentation on inverter by manoj
Bjt session 6
Hybrid model analog electronics
EC8351-Electronic Circuits-I study material.pdf
BIPOLAR JUNCTION(BJT AMPLIFIERS 1-1.pptx
Solutions for Problems in Microelectronic Circuits, 8th International Edition...
module2.pdf
Ac/AC conveter
J-601-1448_lec04.pdf
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
TWO - PORT NETWORK for Engineering .pptx
Multisim_simulation_project_3_^0_4[1]-2.pptx
Ad

More from RCC Institute of Information Technology (20)

PDF
classification of cubic lattice structure
PDF
Scaling in conventional MOSFET for constant electric field and constant voltage
PDF
Carrier scattering and ballistic transport
PDF
Electromagnetic Wave Propagations
PDF
PDF
Reflection and Transmission coefficients in transmission line
PDF
Impedance in transmission line
PDF
Distortionless Transmission Line
PDF
PDF
Electrical Properties of Dipole
PDF
Application of Gauss' Law
PDF
Fundamentals of Gauss' Law
PDF
Fundamentals of Coulomb's Law
PDF
Scalar and vector differentiation
classification of cubic lattice structure
Scaling in conventional MOSFET for constant electric field and constant voltage
Carrier scattering and ballistic transport
Electromagnetic Wave Propagations
Reflection and Transmission coefficients in transmission line
Impedance in transmission line
Distortionless Transmission Line
Electrical Properties of Dipole
Application of Gauss' Law
Fundamentals of Gauss' Law
Fundamentals of Coulomb's Law
Scalar and vector differentiation

Recently uploaded (20)

PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
PPT on Performance Review to get promotions
PPT
Mechanical Engineering MATERIALS Selection
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Welding lecture in detail for understanding
PDF
Well-logging-methods_new................
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
UNIT 4 Total Quality Management .pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
DOCX
573137875-Attendance-Management-System-original
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPT on Performance Review to get promotions
Mechanical Engineering MATERIALS Selection
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
OOP with Java - Java Introduction (Basics)
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Welding lecture in detail for understanding
Well-logging-methods_new................
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Operating System & Kernel Study Guide-1 - converted.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
UNIT 4 Total Quality Management .pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Foundation to blockchain - A guide to Blockchain Tech
573137875-Attendance-Management-System-original

Hybrid Parameter in BJT

  • 1. Bipolar Junction Transistor: Hybrid Parameter Arpan Deyasi Dept of ECE, RCCIIT, Kolkata, India 12/27/2020 Arpan Deyasi, RCCIIT 1
  • 2. 12/27/2020 Arpan Deyasi, RCCIIT 2 Hybrid Parameter 1 11 1 12 2V h I h V= + 2 21 1 22 2I h I h V= +
  • 3. 12/27/2020 Arpan Deyasi, RCCIIT 3 Hybrid Parameter 2 1 11 1 0V V h I = = 1 1 12 2 0I V h V = = 2 2 21 1 0V I h I = = 1 2 22 2 0I I h V = =
  • 4. 12/27/2020 Arpan Deyasi, RCCIIT 4 Hybrid Parameter: Notations used in transistor circuits 11 ih h= short-circuit input impedance 21 fh h= short-circuit forward current gain 12 rh h= open-circuit reverse voltage transfer ratio 22 oh h= open-circuit output admittance
  • 6. 12/27/2020 Arpan Deyasi, RCCIIT 6 Transistor Hybrid Model 1 1 1 2( , )v f i v= 2 2 1 2( , )i f i v= 1 1 2i rv hi h v= + 2 1 2f oi h i h v= +
  • 7. 12/27/2020 Arpan Deyasi, RCCIIT 7 Complete Hybrid Parameter Circuit
  • 8. 12/27/2020 Arpan Deyasi, RCCIIT 8 CurrentGain 2 1 2f oI h I h V= + 2 1f o L LI h I h I Z= + 2 1 2f o LI h I h I Z= − 2 2 1o L fI h I Z h I+ =
  • 9. 12/27/2020 Arpan Deyasi, RCCIIT 9 CurrentGain 2 1 1 (1 ) fL I o L hI I A I I h Z = =− =− + 2 1(1 )o L fI h Z h I+ = 2 1 (1 ) f o L hI I h Z = + (1 ) f I o L h A h Z = − +
  • 10. 12/27/2020 Arpan Deyasi, RCCIIT 10 InputImpedance 1 1 2i rV h I h V= + 1 1i r L LV h I h I Z= + 1 1 1i r I LV h I h A I Z= + 1 1 2i r LV h I h I Z= −
  • 11. 12/27/2020 Arpan Deyasi, RCCIIT 11 InputImpedance 1 1 I i r I L V Z h h A Z I = = + (1 ) f I i r L o L h Z h h Z h Z = − + f r I i L o h h Z h Y h = − +
  • 12. 12/27/2020 Arpan Deyasi, RCCIIT 12 VoltageGain 2 2 LV I Z= − 2 1I LV A I Z= 2 1 1 1 I L V V A I Z A V V = = 2 1 I L V I V A Z A V Z = =
  • 13. 12/27/2020 Arpan Deyasi, RCCIIT 13 VoltageGain . (1 ) f L V o L I h Z A h Z Z = − + . (1 ) (1 ) f L V fo L i r L o L h Z A hh Z h h Z h Z = − +   −  + 
  • 14. 12/27/2020 Arpan Deyasi, RCCIIT 14 OutputAdmittance 2 1 2f oI h I h V= + 2 1 2 2 f o I I h h V V = + With VS = 0 1 1 2 0S i rR I h I h V+ + = 1 2 r S i I h V R h = − +
  • 15. 12/27/2020 Arpan Deyasi, RCCIIT 15 2 2 r f o S i I h h h V R h =− + + OutputAdmittance 0 r f o S i h h Y h R h = − +
  • 16. 12/27/2020 Arpan Deyasi, RCCIIT 16 CurrentGainwithSourceResistance 1 1I S S SI Z I R I R+ = 1( )I S S SI Z R I R+ = 1 ( ) S S I S RI I Z R = +
  • 17. 12/27/2020 Arpan Deyasi, RCCIIT 17 CurrentGainwithSourceResistance 2 2 1 1 IS S S I I I A I I I =− =− S IS I R A A →∝ → ( ) S IS I I S R A A Z R = + . (1 ) ( ) f S IS o L I S h R A h Z Z R = − + + 1 IS I S I A A I =
  • 18. 12/27/2020 Arpan Deyasi, RCCIIT 18 VoltageGainwithSourceResistance 1 1I S S IV Z V R V Z+ = 1( )I S S IV Z R V Z+ = 1 ( ) S I I S V Z V Z R = +
  • 19. 12/27/2020 Arpan Deyasi, RCCIIT 19 VoltageGainwithSourceResistance 2 2 1 1 VS S S V V V A V V V = = 1 VS V S V A A V = ( ) S I VS V I S V Z A A Z R = +
  • 20. 12/27/2020 Arpan Deyasi, RCCIIT 20 VoltageGainwithSourceResistance . ( ) (1 ) . (1 ) fS I VS I S o L L f i r L o L hV Z A Z R h Z Z h h h Z h Z = − + + ×   −  +  0S VS V R A A → →
  • 21. 12/27/2020 Arpan Deyasi, RCCIIT 21 PowerGain 2 1 P P A P = 2 2 1 1 P V I A V I = − P V IA A A=
  • 22. 12/27/2020 Arpan Deyasi, RCCIIT 22 PowerGain 2 (1 ) (1 ) f P o L L f i r L o L h A h Z Z h h h Z h Z   = ×  +    −  + 
  • 23. 12/27/2020 Arpan Deyasi, RCCIIT 23 Calculation of Hybrid Parameters [NPN] IB VBE VCE1 11 C BE i B V const V h h I = ∆ = = ∆ Input Resistance 2 1 2 1 BE BE i B B V V h I I − = − VBE1 VBE2 IB2 IB1
  • 24. 12/27/2020 Arpan Deyasi, RCCIIT 24 Calculation of Hybrid Parameters [NPN] IB VBE VCE2VCE1 Reverse Transfer Ratio 12 B BE r CE I const V h h V = ∆ = = ∆ 2 1 2 1 BE BE r CE CE V V h V V − = − VBE1 VBE2
  • 25. 12/27/2020 25Arpan Deyasi, RCCIIT VCE IC IB1 IB2 Calculation of Hybrid Parameters [NPN] Forward Current Transfer Ratio 21 C C f B V const I h h I = ∆ = = ∆ 2 1 2 1 C C C f B B V const I I h I I = − = − IC2 IC1
  • 26. 12/27/2020 26Arpan Deyasi, RCCIIT VCE IC IB2 Calculation of Hybrid Parameters [NPN] Output Transconductance 22 B C o C I const I h h V = ∆ = = ∆ 2 1 2 1 C C C o CE CE V const I I h V V = − = − IC2 IC1 VCE1 VCE2
  • 27. 12/27/2020 Arpan Deyasi, RCCIIT 27 h-parameters are Real Numbers up to radio frequency They are easy to measure They can be determined from transistor static characteristic They are convenient to use in circuit analysis and design Easily convertible from one configuration to other Readily supplied by manufacturers What are the salient features of hybrid parameters?
  • 28. 12/27/2020 Arpan Deyasi, RCCIIT 28 Dataset for Different Configurations
  • 29. 12/27/2020 Arpan Deyasi, RCCIIT 29 Conversation of h-parameters