SlideShare a Scribd company logo
2
Most read
4
Most read
5
Most read
Course: Electromagnetic Theory
paper code: EI 503
Course Coordinator: Arpan Deyasi
Department of Electronics and Communication Engineering
RCC Institute of Information Technology
Kolkata, India
Topic: Magnetostatics – Magnetic Potential
03-12-2021 Arpan Deyasi, EM Theory 1
Arpan Deyasi
Electromagnetic
Theory
03-12-2021 Arpan Deyasi, EM Theory 2
Magnetic Scalar Potential
Magnetic field is related with scalar potential by the relation
m
B = −
where φm is the magnetic scalar potential
Arpan Deyasi
Electromagnetic
Theory
03-12-2021 Arpan Deyasi, EM Theory 3
Property of Magnetic Scalar Potential
We know from solenoidal property of magnetic field that
.B 0
 =
( )
m
. 0
 − =
2
m 0
  =
Arpan Deyasi
Electromagnetic
Theory
03-12-2021 Arpan Deyasi, EM Theory 4
Problem 1
Calculate magnetic scalar potential for infinite solenoid
Soln
ˆ
B NIz
= 
For infinite solenoid
Where ‘N’ is the umber of turns, ‘I’ is current in the winding
m
B = −
Also magnetic scalar potential is related with field as
Arpan Deyasi
Electromagnetic
Theory
03-12-2021 Arpan Deyasi, EM Theory 5
m m m
1
ˆ ˆ
ˆ ˆ
NIz z
z
 
  
 = −  + +
 
   
 
m
NI
z

= −

m NIz
 = −
Arpan Deyasi
Electromagnetic
Theory
Magnetic Vector Potential
We know from solenoidal property of magnetic field that
.B 0
 =
Let A be a differentiable vector
( )
. A 0
  =
Comparing
B A
= 
03-12-2021 Arpan Deyasi, EM Theory 6
Arpan Deyasi
Electromagnetic
Theory
Expression of Magnetic Vector Potential
According to Biot-Savart law
0
3
J r
B dv
4 r
 
=
 
Now
3
1 r
r r
 
 = −
 
 
03-12-2021 Arpan Deyasi, EM Theory 7
Arpan Deyasi
Electromagnetic
Theory
Expression of Magnetic Vector Potential
0 1
B J dv
4 r
  
 
 =  
 
  
 

Now
( )
J 1 1
J J
r r r
   
 =  +  
   
   
03-12-2021 Arpan Deyasi, EM Theory 8
Arpan Deyasi
Electromagnetic
Theory
Expression of Magnetic Vector Potential
Since
J 0
 =
J 1
J
r r
   
  =  
   
   
J 1
J
r r
   
 = − 
   
   
03-12-2021 Arpan Deyasi, EM Theory 9
Arpan Deyasi
Electromagnetic
Theory
Expression of Magnetic Vector Potential
0 J
B dv
4 r
 
 

 =  
 
  
 

0 J
B dv
4 r
 

=   
  

03-12-2021 Arpan Deyasi, EM Theory 10
Arpan Deyasi
Electromagnetic
Theory
Comparing with
B A
= 
0 J
A dv
4 r
 

=  
  

We get
Expression of Magnetic Vector Potential
03-12-2021 Arpan Deyasi, EM Theory 11
Arpan Deyasi
Electromagnetic
Theory
Property of magnetic vector potential: Solenoidal
0 J
A dv
4 r
 

=  
  

0 J
.A . dv
4 r
 

 =   
  

0 J
.A . dv
4 r
 

 =   
  

03-12-2021 Arpan Deyasi, EM Theory 12
Arpan Deyasi
Electromagnetic
Theory
Property of magnetic vector potential: Solenoidal
Applying divergence theorem
0 J
.A dS
4 r

 =
 
By expanding the surface, we can make
.A 0
 =
So, magnetic vector potential is solenoidal
03-12-2021 Arpan Deyasi, EM Theory 13
Arpan Deyasi
Electromagnetic
Theory
Problem 2
Calculate M.V.P in the region surrounding an infinitely long, straight, filamentary current I
Soln
For long straight wire carrying current I
enc
I ˆ
B
2


= 

enc
I ˆ
A
2

 = 

03-12-2021 Arpan Deyasi, EM Theory 14
Arpan Deyasi
Electromagnetic
Theory
enc
z
A I
A
z 2

 

− =
  
Since the filament is uniform along Z direction, so A should not be a function of Z
enc
z I
dA
d 2

 − =
 
Let at
0 z
A 0
 =  =
03-12-2021 Arpan Deyasi, EM Theory 15
Arpan Deyasi
Electromagnetic
Theory
enc 0
z
I
A ln
2
 
 
=  
 
 
enc 0
z
I
ˆ
A ln z
2
 
 
=  
 
 
03-12-2021 Arpan Deyasi, EM Theory 16
Arpan Deyasi
Electromagnetic
Theory
B J
 = 
Magnetic vector potential is given by
B A
= 
( )
B A
 =  
Ampere’s circuital law is given by
Property of magnetic vector potential: Laplacian
03-12-2021 Arpan Deyasi, EM Theory 17
Arpan Deyasi
Electromagnetic
Theory
Property of magnetic vector potential: Laplacian
Comparing
( )
A J
  = 
( ) 2
.A A J
  − = 
Since
.A 0
 =
2
A J
  = −
03-12-2021 Arpan Deyasi, EM Theory 18
Arpan Deyasi
Electromagnetic
Theory
Problem 3
Magnetic vector potential is given by
2
ˆ
A z Wb / m
4

= −
Calculate total magnetic flux crossing the surface 1m<ρ<2m, φ=π/2, 0<z<5m
Soln
z
A ˆ
B A

=  = − 

2
ˆ ˆ
B
4 2
 
  
= − −  = 
 
  
03-12-2021 Arpan Deyasi, EM Theory 19
Arpan Deyasi
Electromagnetic
Theory
Magnetic flux
m B.dS
 = 
5 2
m
z 0 1
ˆ ˆ
.d dz
2
= =

 =   
 
5 2
m
z 0 1
dz d
2
= =

 = 
 
m 3.75 Wb
 =
03-12-2021 Arpan Deyasi, EM Theory 20
Arpan Deyasi
Electromagnetic
Theory

More Related Content

What's hot (20)

PDF
Metal-Semiconductor Contact
PDF
Electromagnetic Wave Propagations
PDF
Density of states of bulk semiconductor
PDF
6 slides
PPTX
Maxwell's equation
PDF
Foundation of MOS Capacitor
PPTX
Metal semiconductor contacts
PDF
Electrical properties of p-n junction
PPT
Waveguide
PDF
Carrier transport processes
PPTX
Electromagnetic Theory
PDF
C-V characteristics of MOS Capacitor
PPTX
THE HALL EFFECT
PDF
Uniform plane wave equation
PPT
Maxwell equations and propagation in anisotropic media
PPTX
Optoelectronics
PDF
Direct and in direct band gap-Modern Physics
Metal-Semiconductor Contact
Electromagnetic Wave Propagations
Density of states of bulk semiconductor
6 slides
Maxwell's equation
Foundation of MOS Capacitor
Metal semiconductor contacts
Electrical properties of p-n junction
Waveguide
Carrier transport processes
Electromagnetic Theory
C-V characteristics of MOS Capacitor
THE HALL EFFECT
Uniform plane wave equation
Maxwell equations and propagation in anisotropic media
Optoelectronics
Direct and in direct band gap-Modern Physics
Ad

Similar to Magnetic Potentials (20)

PPTX
ppt2mine.pptx
PDF
Electrical Properties of Dipole
PDF
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
PPT
Preparatory_Notes_Exam2.ppt
PDF
Design of rotating electrical machines
PPT
class13.ppt
PDF
Level 3 engineering principles magnetism equations
PPTX
Magnetostatics.pptx
PDF
Ppt19 magnetic-potential
PPT
Emf applications
PPT
Amperes_Law.ppt
PDF
Pran Kanai L5.pdf
PDF
Chapter 5-Magnetostatics engineering electromagnetics
PDF
Antennas and Wave Propagation
PDF
Chapter 12 physics
PPTX
EMFT Lecture 3.pptx lecture no third best
PDF
Magnetic dipole moment due to bar magnet (1).pdf
PPTX
Basic Laws of Electrostatics
ppt2mine.pptx
Electrical Properties of Dipole
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
Preparatory_Notes_Exam2.ppt
Design of rotating electrical machines
class13.ppt
Level 3 engineering principles magnetism equations
Magnetostatics.pptx
Ppt19 magnetic-potential
Emf applications
Amperes_Law.ppt
Pran Kanai L5.pdf
Chapter 5-Magnetostatics engineering electromagnetics
Antennas and Wave Propagation
Chapter 12 physics
EMFT Lecture 3.pptx lecture no third best
Magnetic dipole moment due to bar magnet (1).pdf
Basic Laws of Electrostatics
Ad

More from RCC Institute of Information Technology (19)

PDF
classification of cubic lattice structure
PDF
Scaling in conventional MOSFET for constant electric field and constant voltage
PDF
Carrier scattering and ballistic transport
PDF
Reflection and Transmission coefficients in transmission line
PDF
Impedance in transmission line
PDF
Distortionless Transmission Line
PDF
PDF
Scalar and vector differentiation
PDF
Coordinate transformation
PDF
Single Electron Transistor
PDF
High Electron Mobility Transistor
classification of cubic lattice structure
Scaling in conventional MOSFET for constant electric field and constant voltage
Carrier scattering and ballistic transport
Reflection and Transmission coefficients in transmission line
Impedance in transmission line
Distortionless Transmission Line
Scalar and vector differentiation
Coordinate transformation
Single Electron Transistor
High Electron Mobility Transistor

Recently uploaded (20)

PDF
The scientific heritage No 166 (166) (2025)
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Sciences of Europe No 170 (2025)
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
2. Earth - The Living Planet earth and life
The scientific heritage No 166 (166) (2025)
bbec55_b34400a7914c42429908233dbd381773.pdf
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Classification Systems_TAXONOMY_SCIENCE8.pptx
INTRODUCTION TO EVS | Concept of sustainability
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Biophysics 2.pdffffffffffffffffffffffffff
Phytochemical Investigation of Miliusa longipes.pdf
ECG_Course_Presentation د.محمد صقران ppt
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Cell Membrane: Structure, Composition & Functions
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Sciences of Europe No 170 (2025)
7. General Toxicologyfor clinical phrmacy.pptx
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
HPLC-PPT.docx high performance liquid chromatography
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Derivatives of integument scales, beaks, horns,.pptx
2. Earth - The Living Planet earth and life

Magnetic Potentials

  • 1. Course: Electromagnetic Theory paper code: EI 503 Course Coordinator: Arpan Deyasi Department of Electronics and Communication Engineering RCC Institute of Information Technology Kolkata, India Topic: Magnetostatics – Magnetic Potential 03-12-2021 Arpan Deyasi, EM Theory 1 Arpan Deyasi Electromagnetic Theory
  • 2. 03-12-2021 Arpan Deyasi, EM Theory 2 Magnetic Scalar Potential Magnetic field is related with scalar potential by the relation m B = − where φm is the magnetic scalar potential Arpan Deyasi Electromagnetic Theory
  • 3. 03-12-2021 Arpan Deyasi, EM Theory 3 Property of Magnetic Scalar Potential We know from solenoidal property of magnetic field that .B 0  = ( ) m . 0  − = 2 m 0   = Arpan Deyasi Electromagnetic Theory
  • 4. 03-12-2021 Arpan Deyasi, EM Theory 4 Problem 1 Calculate magnetic scalar potential for infinite solenoid Soln ˆ B NIz =  For infinite solenoid Where ‘N’ is the umber of turns, ‘I’ is current in the winding m B = − Also magnetic scalar potential is related with field as Arpan Deyasi Electromagnetic Theory
  • 5. 03-12-2021 Arpan Deyasi, EM Theory 5 m m m 1 ˆ ˆ ˆ ˆ NIz z z       = −  + +         m NI z  = −  m NIz  = − Arpan Deyasi Electromagnetic Theory
  • 6. Magnetic Vector Potential We know from solenoidal property of magnetic field that .B 0  = Let A be a differentiable vector ( ) . A 0   = Comparing B A =  03-12-2021 Arpan Deyasi, EM Theory 6 Arpan Deyasi Electromagnetic Theory
  • 7. Expression of Magnetic Vector Potential According to Biot-Savart law 0 3 J r B dv 4 r   =   Now 3 1 r r r    = −     03-12-2021 Arpan Deyasi, EM Theory 7 Arpan Deyasi Electromagnetic Theory
  • 8. Expression of Magnetic Vector Potential 0 1 B J dv 4 r       =           Now ( ) J 1 1 J J r r r      =  +           03-12-2021 Arpan Deyasi, EM Theory 8 Arpan Deyasi Electromagnetic Theory
  • 9. Expression of Magnetic Vector Potential Since J 0  = J 1 J r r       =           J 1 J r r      = −          03-12-2021 Arpan Deyasi, EM Theory 9 Arpan Deyasi Electromagnetic Theory
  • 10. Expression of Magnetic Vector Potential 0 J B dv 4 r       =           0 J B dv 4 r    =        03-12-2021 Arpan Deyasi, EM Theory 10 Arpan Deyasi Electromagnetic Theory
  • 11. Comparing with B A =  0 J A dv 4 r    =       We get Expression of Magnetic Vector Potential 03-12-2021 Arpan Deyasi, EM Theory 11 Arpan Deyasi Electromagnetic Theory
  • 12. Property of magnetic vector potential: Solenoidal 0 J A dv 4 r    =       0 J .A . dv 4 r     =        0 J .A . dv 4 r     =        03-12-2021 Arpan Deyasi, EM Theory 12 Arpan Deyasi Electromagnetic Theory
  • 13. Property of magnetic vector potential: Solenoidal Applying divergence theorem 0 J .A dS 4 r   =   By expanding the surface, we can make .A 0  = So, magnetic vector potential is solenoidal 03-12-2021 Arpan Deyasi, EM Theory 13 Arpan Deyasi Electromagnetic Theory
  • 14. Problem 2 Calculate M.V.P in the region surrounding an infinitely long, straight, filamentary current I Soln For long straight wire carrying current I enc I ˆ B 2   =   enc I ˆ A 2   =   03-12-2021 Arpan Deyasi, EM Theory 14 Arpan Deyasi Electromagnetic Theory
  • 15. enc z A I A z 2     − =    Since the filament is uniform along Z direction, so A should not be a function of Z enc z I dA d 2   − =   Let at 0 z A 0  =  = 03-12-2021 Arpan Deyasi, EM Theory 15 Arpan Deyasi Electromagnetic Theory
  • 16. enc 0 z I A ln 2     =       enc 0 z I ˆ A ln z 2     =       03-12-2021 Arpan Deyasi, EM Theory 16 Arpan Deyasi Electromagnetic Theory
  • 17. B J  =  Magnetic vector potential is given by B A =  ( ) B A  =   Ampere’s circuital law is given by Property of magnetic vector potential: Laplacian 03-12-2021 Arpan Deyasi, EM Theory 17 Arpan Deyasi Electromagnetic Theory
  • 18. Property of magnetic vector potential: Laplacian Comparing ( ) A J   =  ( ) 2 .A A J   − =  Since .A 0  = 2 A J   = − 03-12-2021 Arpan Deyasi, EM Theory 18 Arpan Deyasi Electromagnetic Theory
  • 19. Problem 3 Magnetic vector potential is given by 2 ˆ A z Wb / m 4  = − Calculate total magnetic flux crossing the surface 1m<ρ<2m, φ=π/2, 0<z<5m Soln z A ˆ B A  =  = −   2 ˆ ˆ B 4 2      = − −  =       03-12-2021 Arpan Deyasi, EM Theory 19 Arpan Deyasi Electromagnetic Theory
  • 20. Magnetic flux m B.dS  =  5 2 m z 0 1 ˆ ˆ .d dz 2 = =   =      5 2 m z 0 1 dz d 2 = =   =    m 3.75 Wb  = 03-12-2021 Arpan Deyasi, EM Theory 20 Arpan Deyasi Electromagnetic Theory