I need An expert person in machine learning that can help me .
I need to differentiate between the two images by using CNN
code . I'm using google Colab for the execution , Also I need to
select my own images dataset
using Google Images .Also presentation from 8 to 10 slides .
this is CNN code :
# Convolutional Neural Network
# Installing Theano
# pip install --upgrade --no-deps
git+git://github.com/Theano/Theano.git
# Installing Tensorflow
# pip install tensorflow
# Installing Keras
# pip install --upgrade keras
# Part 1 - Building the CNN
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
# Add convolution Conv2D
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3),
activation =
'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32,(3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss =
'binary_crossentropy',
metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set =
train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)

More Related Content

PPTX
Training course lect1
PPTX
Final training course
PPTX
Tutorial: Image Generation and Image-to-Image Translation using GAN
PDF
From Zero to Hero - All you need to do serious deep learning stuff in R
PPTX
Digit recognizer
PDF
Machine learning 2 - Neural Networks
DOCX
Python program to build deep learning algorithm using a CNNs model to.docx
PDF
Keras and TensorFlow
Training course lect1
Final training course
Tutorial: Image Generation and Image-to-Image Translation using GAN
From Zero to Hero - All you need to do serious deep learning stuff in R
Digit recognizer
Machine learning 2 - Neural Networks
Python program to build deep learning algorithm using a CNNs model to.docx
Keras and TensorFlow

Similar to I need  An expert person in machine learning  that can help me . I n.docx (20)

PDF
Docker and DevOps --- new IT culture
DOCX
A local metric for defocus blur detection cnn feature learning screenshots
PDF
CI-Keras for deep learning by adrian.pdf
PDF
Lecture 4: Deep Learning Frameworks
PPTX
TYPO3 CMS deployment with Jenkins CI
PDF
Computer vision
PPTX
Tensorflow windows installation
PDF
running stable diffusion on android
PPTX
SeRanet introduction
PPTX
Smart Data Conference: DL4J and DataVec
PDF
Новый InterSystems: open-source, митапы, хакатоны
PDF
introduction-infra-as-a-code using terraform
PDF
Educating your app – adding ML edge to your apps - Maoz Tamir
PDF
PDF
Neural Networks from Scratch - TensorFlow 101
PPTX
Tensor flow
PDF
SCons an Introduction
PDF
DevOps Workflow: A Tutorial on Linux Containers
PDF
Deep Learning as a Cat/Dog Detector
PDF
Bol.com
Docker and DevOps --- new IT culture
A local metric for defocus blur detection cnn feature learning screenshots
CI-Keras for deep learning by adrian.pdf
Lecture 4: Deep Learning Frameworks
TYPO3 CMS deployment with Jenkins CI
Computer vision
Tensorflow windows installation
running stable diffusion on android
SeRanet introduction
Smart Data Conference: DL4J and DataVec
Новый InterSystems: open-source, митапы, хакатоны
introduction-infra-as-a-code using terraform
Educating your app – adding ML edge to your apps - Maoz Tamir
Neural Networks from Scratch - TensorFlow 101
Tensor flow
SCons an Introduction
DevOps Workflow: A Tutorial on Linux Containers
Deep Learning as a Cat/Dog Detector
Bol.com

More from elishaoatway (20)

DOCX
PROBLEM IDENTIFICATION AND RECOMMENDATIONS FOR SFK ORGANIZATION .docx
DOCX
Problem Set #2 SCOR470 Fall 2015 Topics Soil water pote.docx
DOCX
Problem descriptionThe Jim Thornton Coffee House chain is .docx
DOCX
Problem 5The probability distributions for inter-arrival a.docx
DOCX
Problem 4-6 Calculating Internal Growth [LO3]The most recent fin.docx
DOCX
PROBLEM 8-18a. Fill in the worksheet with the appropriate value.docx
DOCX
PROBLEM 5-5BPrepare a correct detailed multiple-step income st.docx
DOCX
Problem BackgroundYour project consists of six activities show.docx
DOCX
Problem 8-2B(a) Journalize the transactions, including explanati.docx
DOCX
Problem B Regulatory Compliance 1 No.docx
DOCX
PROBLEM 3-22EventProduct CostsPeriod Costsa.b..docx
DOCX
Problem 3 15 pointsThe following items were taken from the po.docx
DOCX
Problem 3-1A Identifying adjusting entries with explanations LO C3.docx
DOCX
Essay 21) Describe the opportunities and challenges posed by the d.docx
DOCX
Essay 11) Evaluate the Articles of Confederation as a guide for su.docx
DOCX
Essay (1) QuestionWhat is the so-called Machine Age How was it .docx
DOCX
Essay #2 addresses some topic in the broad scope of Transcendentalis.docx
DOCX
Essay # 2 The Tempest Prompt4-5 pages (MLA format)Char.docx
DOCX
Es la actividad que hacemos con pecesEs un animal blanco y negro q.docx
DOCX
Erving Goffman is one of the most important sociological thinkers in.docx
PROBLEM IDENTIFICATION AND RECOMMENDATIONS FOR SFK ORGANIZATION .docx
Problem Set #2 SCOR470 Fall 2015 Topics Soil water pote.docx
Problem descriptionThe Jim Thornton Coffee House chain is .docx
Problem 5The probability distributions for inter-arrival a.docx
Problem 4-6 Calculating Internal Growth [LO3]The most recent fin.docx
PROBLEM 8-18a. Fill in the worksheet with the appropriate value.docx
PROBLEM 5-5BPrepare a correct detailed multiple-step income st.docx
Problem BackgroundYour project consists of six activities show.docx
Problem 8-2B(a) Journalize the transactions, including explanati.docx
Problem B Regulatory Compliance 1 No.docx
PROBLEM 3-22EventProduct CostsPeriod Costsa.b..docx
Problem 3 15 pointsThe following items were taken from the po.docx
Problem 3-1A Identifying adjusting entries with explanations LO C3.docx
Essay 21) Describe the opportunities and challenges posed by the d.docx
Essay 11) Evaluate the Articles of Confederation as a guide for su.docx
Essay (1) QuestionWhat is the so-called Machine Age How was it .docx
Essay #2 addresses some topic in the broad scope of Transcendentalis.docx
Essay # 2 The Tempest Prompt4-5 pages (MLA format)Char.docx
Es la actividad que hacemos con pecesEs un animal blanco y negro q.docx
Erving Goffman is one of the most important sociological thinkers in.docx

Recently uploaded (20)

PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Trump Administration's workforce development strategy
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Virtual and Augmented Reality in Current Scenario
Chinmaya Tiranga quiz Grand Finale.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Complications of Minimal Access-Surgery.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
Introduction to pro and eukaryotes and differences.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Trump Administration's workforce development strategy
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
What if we spent less time fighting change, and more time building what’s rig...
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
A powerpoint presentation on the Revised K-10 Science Shaping Paper
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Practical Manual AGRO-233 Principles and Practices of Natural Farming

I need  An expert person in machine learning  that can help me . I n.docx

  • 1. I need An expert person in machine learning that can help me . I need to differentiate between the two images by using CNN code . I'm using google Colab for the execution , Also I need to select my own images dataset using Google Images .Also presentation from 8 to 10 slides . this is CNN code : # Convolutional Neural Network # Installing Theano # pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git # Installing Tensorflow # pip install tensorflow # Installing Keras # pip install --upgrade keras # Part 1 - Building the CNN # Importing the Keras libraries and packages from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D
  • 2. from keras.layers import Flatten from keras.layers import Dense # Initialising the CNN classifier = Sequential() # Step 1 - Convolution # Add convolution Conv2D classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) # Step 2 - Pooling classifier.add(MaxPooling2D(pool_size = (2, 2))) # Adding a second convolutional layer classifier.add(Conv2D(32,(3, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2))) # Step 3 - Flattening classifier.add(Flatten()) # Step 4 - Full connection classifier.add(Dense(units = 128, activation = 'relu'))
  • 3. classifier.add(Dense(units = 1, activation = 'sigmoid')) # Compiling the CNN classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) # Part 2 - Fitting the CNN to the images from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True) test_datagen = ImageDataGenerator(rescale = 1./255) training_set = train_datagen.flow_from_directory('dataset/training_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary') test_set = test_datagen.flow_from_directory('dataset/test_set',
  • 4. target_size = (64, 64), batch_size = 32, class_mode = 'binary') classifier.fit_generator(training_set, steps_per_epoch = 8000, epochs = 25, validation_data = test_set, validation_steps = 2000)