SlideShare a Scribd company logo
Intrusion Detection System
               with Artificial Intelligence
                                      Mario Castro Ponce

                 Universidad Pontificia Comillas de Madrid
                    FIST Conference - June 2004 edition
                   Sponsored by: MLP Private Finance




IDS with AI marioc@dsi.icai.upco.es                    FIST Conference - june 2004 edition– 1/28
Aim of the talk
1.      Showing you a different approach to Intrussion
        Detection based on Artificial Intelligence
2.      Contact experts in the field to exchange ideas and
        maybe creating a (pioneer!!!!) working group




     IDS with AI marioc@dsi.icai.upco.es         FIST Conference - june 2004 edition– 2/28
Sketch of the talk
   What is an IDS?
   Architecture of a Vulnerability Detector
   Why using A.I.?
   Neurons and other animals
   Neural-IDS
   Fuzzy-Correlator
   Conclusions




IDS with AI marioc@dsi.icai.upco.es       FIST Conference - june 2004 edition– 3/28
What is an IDS?
  Any hardware, software, or combination of thereof that
monitors a system or network of systems for malicious activity




   IDS with AI marioc@dsi.icai.upco.es       FIST Conference - june 2004 edition– 4/28
What is an IDS?
  Any hardware, software, or combination of thereof that
monitors a system or network of systems for malicious activity

      Main functions
          Dissuade
          Prevent
          Documentate




   IDS with AI marioc@dsi.icai.upco.es       FIST Conference - june 2004 edition– 4/28
What is an IDS?
  Any hardware, software, or combination of thereof that
monitors a system or network of systems for malicious activity

      Main functions
          Dissuade
          Prevent
          Documentate
      Two kinds of IDS
          Host based
          Network based




   IDS with AI marioc@dsi.icai.upco.es       FIST Conference - june 2004 edition– 4/28
Architecture of a Vulnerability Detector
     Example: OSSIM




                                        n




  IDS with AI marioc@dsi.icai.upco.es       FIST Conference - june 2004 edition– 5/28
Why using AI?
   The system manager nightmare: The false positives.




IDS with AI marioc@dsi.icai.upco.es        FIST Conference - june 2004 edition– 6/28
Why using AI?
   The system manager nightmare: The false positives.
   Then? A.I. for three main reasons
      Flexibility (vs threshold definition)
      Adaptability (vs specific rules)
      Pattern recognition (and detection of new patterns)




IDS with AI marioc@dsi.icai.upco.es        FIST Conference - june 2004 edition– 6/28
Why using AI?
   The system manager nightmare: The false positives.
   Then? A.I. for three main reasons
      Flexibility (vs threshold definition)
      Adaptability (vs specific rules)
      Pattern recognition (and detection of new patterns)
   Moreover
      Fast computing (faster than humans, actually)
      Learning abilities.




IDS with AI marioc@dsi.icai.upco.es        FIST Conference - june 2004 edition– 6/28
Neurons and other animals


                                      AI TOOLS




Neural Networks                       Fuzzy Logic                     Other...




IDS with AI marioc@dsi.icai.upco.es                 FIST Conference - june 2004 edition– 7/28
Artificial Neural networks
      Change of paradigm in computing science:


Many dummy processors with a simple task to do against one
         (or few) powerful versatile processors




   IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 8/28
Neurons and artificial neurons




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 9/28
Main types of ANN
    Multilayer perceptrons




                                                   OUTPUT
                                                   LAYER
                         INPUT
                         LAYER        HIDDEN
                                      LAYER

    Self-organized maps
    Radial basis neural networks
    Other


IDS with AI marioc@dsi.icai.upco.es            FIST Conference - june 2004 edition– 10/28
Neural IDS
    Designed for DoS and port scan attacks
    IDS based on a multilayer perceptron




IDS with AI marioc@dsi.icai.upco.es                FIST Conference - june 2004 edition– 11/28
Neural IDS
    Designed for DoS and port scan attacks
    IDS based on a multilayer perceptron
    Designing the tool
                                            Analysis




                                         Quantification




                                           Topology                      feed−back




                                      Learning & validation



IDS with AI marioc@dsi.icai.upco.es                           FIST Conference - june 2004 edition– 11/28
First scenario: Port scan
    Pouring rain analogy
                                Packets from the same source @IP




                21       22      23          25                80

                                        PORT NUMBERS




IDS with AI marioc@dsi.icai.upco.es                         FIST Conference - june 2004 edition– 12/28
Second scenario: Denial of Service
    Pouring rain analogy
                                Packets from the same source @IP




                21       22      23          25                80

                                        PORT NUMBERS




IDS with AI marioc@dsi.icai.upco.es                         FIST Conference - june 2004 edition– 13/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?




IDS with AI marioc@dsi.icai.upco.es              FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics




IDS with AI marioc@dsi.icai.upco.es              FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics

                                      Statistical Mechanics




              Order = Low Entropy                 Disorder = High Entropy




IDS with AI marioc@dsi.icai.upco.es                      FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics

                                  Solid State Physics (electronics)




ATOMS

                                           INSULATOR




ATOMS


                                           CONDUCTOR




IDS with AI marioc@dsi.icai.upco.es                        FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics



                                                                Packets from the same source @IP




                Disorder = High Entropy
                                                     21    22   23          25                80
                                                                       PORT NUMBERS




                   CONDUCTOR




IDS with AI marioc@dsi.icai.upco.es                       FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics




                                                             Packets from the same source @IP




                 Order = Low Entropy

                                                   21   22    23          25                    80

                                                                     PORT NUMBERS




                 INSULATOR




IDS with AI marioc@dsi.icai.upco.es               FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics
        Traffic parameters
            Packets per second
            Fraction of total packets to a port
            Inverse of the total number of packets




IDS with AI marioc@dsi.icai.upco.es              FIST Conference - june 2004 edition– 14/28
Measures
    Visually the difference between them is clear. . . but
    quantitatively?
        Measures borrowed from Physics
        Traffic parameters
            Packets per second
            Fraction of total packets to a port
            Inverse of the total number of packets
        All measures are evaluated within a time window.
        Parallel time windows: e.g., 15 sec, 30 sec, 5
        minutes, 30 minutes




IDS with AI marioc@dsi.icai.upco.es              FIST Conference - june 2004 edition– 14/28
Topology


                   ENTROPY

                                                              PORT SCAN
                         IPR


                                                              DENIAL OF SERVICE
               PACKETS/SEC



     FRACTION OF PACKETS
                                                              NONE


                 1/PACKETS




IDS with AI marioc@dsi.icai.upco.es              FIST Conference - june 2004 edition– 15/28
Learning and testing

TYPE OF ATTACK                        LEARNING PATTERNS         RATE OF SUCCESS
SEQUENCIAL SCAN                             20                             100 %
SEQUENCIAL SCAN                             50                             100 %
RANDOM SCAN                                 20                             100 %
RANDOM SCAN                                 50                             100 %
DoS                                         20                             70 %
DoS                                         50                             80 %
ALL                                         20                             60 %
ALL                                         50                             65 %




IDS with AI marioc@dsi.icai.upco.es                  FIST Conference - june 2004 edition– 16/28
Learning and testing

TYPE OF ATTACK                        LEARNING PATTERNS         RATE OF SUCCESS
SEQUENCIAL SCAN                             20                             100 %
SEQUENCIAL SCAN                             50                             100 %
RANDOM SCAN                                 20                             100 %
RANDOM SCAN                                 50                             100 %
DoS                                         20                             70 %
DoS                                         50                             80 %
ALL                                         20                             60 %
ALL                                         50                             65 %

      Best choice: Specialized neural detectors




IDS with AI marioc@dsi.icai.upco.es                  FIST Conference - june 2004 edition– 16/28
Fuzzy Logic
    Imitates human perception: Approximate reasoning




IDS with AI marioc@dsi.icai.upco.es             FIST Conference - june 2004 edition– 17/28
Fuzzy Logic
    Imitates human perception: Approximate reasoning
    Example: Air cooler
       Classical rules:
       IF Temperature > 25 THEN Switch-on
       IF Temperature < 21 THEN Switch-off
       ...




IDS with AI marioc@dsi.icai.upco.es             FIST Conference - june 2004 edition– 17/28
Fuzzy Logic
    Imitates human perception: Approximate reasoning
    Example: Air cooler
       Classical rules:
       IF Temperature > 25 THEN Switch-on
       IF Temperature < 21 THEN Switch-off
       ...
             Fuzzy rules:
             IF Temperature is high THEN Switch-on
             IF Temperature is too low THEN
             Switch-off
             ...




IDS with AI marioc@dsi.icai.upco.es             FIST Conference - june 2004 edition– 17/28
Fuzzy Logic
    Imitates human perception: Approximate reasoning
    Example: Air cooler
       Classical rules:
       IF Temperature > 25 THEN Switch-on
       IF Temperature < 21 THEN Switch-off
       ...
             Fuzzy rules:
             IF Temperature is high THEN Switch-on
             IF Temperature is too low THEN
             Switch-off
             ...
             More sofisticated fuzzy rules:
             IF Temperature is moderate AND my wife
             is very pregnant THEN Switch-on
             ...



IDS with AI marioc@dsi.icai.upco.es             FIST Conference - june 2004 edition– 17/28
Term sets and grade of membership
    Thresholds
        More than 3000 packets/sec ⇒ Possible DoS
        More than 5000 packets/sec ⇒ DoS!




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 18/28
Term sets:
                                                                                                                                                           Thresholds




                                                    0
                                                                                                                1




IDS with AI marioc@dsi.icai.upco.es
                                             0
                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      
                                             1000
                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      
                                                                                                                    low




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      
                                             2000




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      
                                                                                                                          VOLUME OF TRAFFIC




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      




                                                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡    ¡

                                                                                                                      
                                                                                                                                                               More than 5000 packets/sec ⇒ DoS!
                                                                                                                                                               More than 3000 packets/sec ⇒ Possible DoS
                                                                                                                                                                                                           Term sets and grade of membership




FIST Conference - june 2004 edition– 18/28
Fuzzy correlator: Preliminary work
    Aim of the research:

    Use the flexibility and human language features of Fuzzy
    Logic and include them in the OSSIM Correlation Engine




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 19/28
Fuzzy correlator: Preliminary work
    Aim of the research:

    Use the flexibility and human language features of Fuzzy
    Logic and include them in the OSSIM Correlation Engine

    Status: Preliminary definitions and precedures.




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 19/28
More on term sets
    Input variable: Volume of traffic

         very low             low            normal        high            very high
     1




     0
          0            1000           2000        3000     4000            5000




IDS with AI marioc@dsi.icai.upco.es                      FIST Conference - june 2004 edition– 20/28
More on term sets (II)
    Input variable: Number of visited ports

         very low            low          normal     high            very high
     1




     0
          0            2              4        6     8               10




IDS with AI marioc@dsi.icai.upco.es                FIST Conference - june 2004 edition– 21/28
More on term sets (III)
    Output variable: DoS Attack?
                         improbable   maybe   almost sure
                         1




                         0
                             0          0.5           1

    Rules (example):

                  IF traffic is high AND number of
                 destination ports is low THEN DoS

    Evaluating rules gives the required answer
    ’DoS Attack?’: almost sure

IDS with AI marioc@dsi.icai.upco.es           FIST Conference - june 2004 edition– 22/28
OSSIM Correlation Engine
    Characteristics
       Depends strongly on timers
       All the variants of an attack must be coded
       Cannot detect new attacks
       Complex sintax




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 23/28
Sample scenario:                         NETBIOS DCERPC ISystemActivator




   IDS with AI marioc@dsi.icai.upco.es               FIST Conference - june 2004 edition– 24/28
Sample scenario:                               NETBIOS DCERPC ISystemActivator


                                                                                                             TIME_OUT
  IF destination_ports = 135,445 THEN Generate Alarm with Reliability 1 and wait 60 seconds for next rule




                                                                                                             TIME_OUT
   AND IF DEST_IP and SRC_IP talk again THEN Alarm, Reliability 3 and wait 60 seconds for next rule




   AND IF DEST_PORT and SRC_PORT talk again AND plugin_sid=2123 (CMD.EXE) THEN Alarm                         TIME_OUT
   Reliability 6 and wait 60 seconds for next rule



                                                                                                             TIME_OUT
    AND FINALLY IF plugin_id=2002 and conection lasts more than 10 THEN Alarm with Reliability 10




       IDS with AI marioc@dsi.icai.upco.es                                    FIST Conference - june 2004 edition– 25/28
Fuzzy Correlator revisited: Objectives
     Going beyond the sequential arrival of packets
     Integrating different sensors:




 IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 26/28
Fuzzy Correlator revisited: Objectives
     Going beyond the sequential arrival of packets
     Integrating different sensors:
         SNORT
         Anomaly detection:
             Abnormal connection to an open port (firewall)
             Thresholds
             High traffic at nights or weekends, . . .
         Neural-IDS
         Other




 IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 26/28
Fuzzy Correlator revisited: Objectives
     Going beyond the sequential arrival of packets
     Integrating different sensors:
         SNORT
         Anomaly detection:
             Abnormal connection to an open port (firewall)
             Thresholds
             High traffic at nights or weekends, . . .
         Neural-IDS
         Other
     Defining rules according to Security Manager’s
     experience




 IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 26/28
Conclusions and open questions
    AI techniques are
         Flexible
         Suitable for pattern recognition
         Powerful (Neural-IDS)
         Easy to design (human language)




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 27/28
Conclusions and open questions
    AI techniques are
         Flexible
         Suitable for pattern recognition
         Powerful (Neural-IDS)
         Easy to design (human language)
    But there is still a lot of work to do. . .




IDS with AI marioc@dsi.icai.upco.es        FIST Conference - june 2004 edition– 27/28
Conclusions and open questions
    AI techniques are
         Flexible
         Suitable for pattern recognition
         Powerful (Neural-IDS)
         Easy to design (human language)
    But there is still a lot of work to do. . .
        We need more time.
        We need more people
           Students
           Security experts (working group?)
        And of course. . .




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 27/28
Conclusions and open questions
    AI techniques are
         Flexible
         Suitable for pattern recognition
         Powerful (Neural-IDS)
         Easy to design (human language)
    But there is still a lot of work to do. . .
        We need more time
        We need more people
           Students
           Security experts (working group?)
        And of course. . . some money to pay it




IDS with AI marioc@dsi.icai.upco.es   FIST Conference - june 2004 edition– 27/28
And that’s all folks. . .




IDS with AI marioc@dsi.icai.upco.es     FIST Conference - june 2004 edition– 28/28

More Related Content

PPT
Arrays Data Structure
PPT
B tree
PPTX
Resolution method in AI.pptx
PPTX
PDF
Programming in PHP Course Material BCA 6th Semester
PPTX
Hashing in datastructure
PPT
Deadlocks in operating system
PPTX
Definition of automation,finite automata,transition system
Arrays Data Structure
B tree
Resolution method in AI.pptx
Programming in PHP Course Material BCA 6th Semester
Hashing in datastructure
Deadlocks in operating system
Definition of automation,finite automata,transition system

What's hot (20)

PDF
Python Sequence Data types in Brief
PDF
Greedy algorithm activity selection fractional
PDF
backtracking algorithms of ada
PPTX
Cellular automata : A simple Introduction
PDF
Binary Search - Design & Analysis of Algorithms
PPT
Introduction to design and analysis of algorithm
DOC
CS8391 Data Structures Part B Questions Anna University
PPTX
Counting Sort
PDF
Ch 2 State Space Search - slides part 1.pdf
PDF
PPT
Searching algorithms
PPTX
input buffering in lexical analysis in CD
PPTX
Deciability (automata presentation)
PPTX
PDF
Java Linked List Tutorial | Edureka
PPTX
First order logic
PPTX
4-Regular expression to Deterministic Finite Automata (Direct method)-05-05-2...
PPT
Randomized algorithms ver 1.0
PDF
8 python data structure-1
Python Sequence Data types in Brief
Greedy algorithm activity selection fractional
backtracking algorithms of ada
Cellular automata : A simple Introduction
Binary Search - Design & Analysis of Algorithms
Introduction to design and analysis of algorithm
CS8391 Data Structures Part B Questions Anna University
Counting Sort
Ch 2 State Space Search - slides part 1.pdf
Searching algorithms
input buffering in lexical analysis in CD
Deciability (automata presentation)
Java Linked List Tutorial | Edureka
First order logic
4-Regular expression to Deterministic Finite Automata (Direct method)-05-05-2...
Randomized algorithms ver 1.0
8 python data structure-1
Ad

Viewers also liked (8)

PDF
IDS - Fact, Challenges and Future
PDF
Cyber Security - IDS/IPS is not enough
PPTX
Snort IDS/IPS Basics
PDF
Snort IPS
PPTX
PDF
Lecture artificial neural networks and pattern recognition
PPTX
Cyber security presentation
PPTX
Cyber crime and security ppt
IDS - Fact, Challenges and Future
Cyber Security - IDS/IPS is not enough
Snort IDS/IPS Basics
Snort IPS
Lecture artificial neural networks and pattern recognition
Cyber security presentation
Cyber crime and security ppt
Ad

Similar to IDS with Artificial Intelligence (20)

PDF
Soft computing and artificial intelligence techniques for intrusion
PDF
Monitoring Smart Grid Operations and Maintaining Missions Assurance
PDF
OSS Presentation Keynote by Hal Stern
PDF
Ceis 9 padeep kumar_final_paper
PPTX
AI & ML in Cyber Security - Welcome Back to 1999 - Security Hasn't Changed
PPT
SoleraNetworks
PDF
PIDapalooza 2016 Keynote
PDF
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
PDF
2020-04-29 SIT Insights in Technology - Serguei Beloussov
PDF
System monitoring and network intrusion using DDS and CEP
PDF
AI and Cybersecurity - Food for Thought
PDF
Advancements In Smart Computing And Information Security Ascis 2022 Sridaran ...
PPTX
Herklotz - Information Operations & Security - Spring Review 2012
PDF
CERT Data Science in Cybersecurity Symposium
PDF
Defending against Adversarial Cyberspace Participants
PDF
INTRUSION DETECTION SYSTEM
PDF
Machine Learning for Application-Layer Intrusion Detection
PDF
Security in the age of Artificial Intelligence
PDF
Advances in Computers 80 1st Edition Marvin Zelkowitz Ph.D. Ms Bs.
PPT
Artificial neural network for misuse detection
Soft computing and artificial intelligence techniques for intrusion
Monitoring Smart Grid Operations and Maintaining Missions Assurance
OSS Presentation Keynote by Hal Stern
Ceis 9 padeep kumar_final_paper
AI & ML in Cyber Security - Welcome Back to 1999 - Security Hasn't Changed
SoleraNetworks
PIDapalooza 2016 Keynote
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
2020-04-29 SIT Insights in Technology - Serguei Beloussov
System monitoring and network intrusion using DDS and CEP
AI and Cybersecurity - Food for Thought
Advancements In Smart Computing And Information Security Ascis 2022 Sridaran ...
Herklotz - Information Operations & Security - Spring Review 2012
CERT Data Science in Cybersecurity Symposium
Defending against Adversarial Cyberspace Participants
INTRUSION DETECTION SYSTEM
Machine Learning for Application-Layer Intrusion Detection
Security in the age of Artificial Intelligence
Advances in Computers 80 1st Edition Marvin Zelkowitz Ph.D. Ms Bs.
Artificial neural network for misuse detection

More from Conferencias FIST (20)

PDF
Seguridad en Open Solaris
PDF
Seguridad en Entornos Web Open Source
PDF
Spanish Honeynet Project
PDF
Seguridad en Windows Mobile
PDF
SAP Security
PDF
Que es Seguridad
PDF
Network Access Protection
PDF
Las Evidencias Digitales en la Informática Forense
PDF
Evolución y situación actual de la seguridad en redes WiFi
PDF
El Information Security Forum
PDF
Criptografia Cuántica
PDF
Inseguridad en Redes Wireless
PDF
Mas allá de la Concienciación
PDF
Security Metrics
PDF
PKI Interoperability
PDF
Wifislax 3.1
PDF
Network Forensics
PDF
Riesgo y Vulnerabilidades en el Desarrollo
PDF
Demostracion Hacking Honeypot y Análisis Forense
PDF
Security Maturity Model
Seguridad en Open Solaris
Seguridad en Entornos Web Open Source
Spanish Honeynet Project
Seguridad en Windows Mobile
SAP Security
Que es Seguridad
Network Access Protection
Las Evidencias Digitales en la Informática Forense
Evolución y situación actual de la seguridad en redes WiFi
El Information Security Forum
Criptografia Cuántica
Inseguridad en Redes Wireless
Mas allá de la Concienciación
Security Metrics
PKI Interoperability
Wifislax 3.1
Network Forensics
Riesgo y Vulnerabilidades en el Desarrollo
Demostracion Hacking Honeypot y Análisis Forense
Security Maturity Model

Recently uploaded (20)

PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Approach and Philosophy of On baking technology
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPT
Teaching material agriculture food technology
PPTX
Big Data Technologies - Introduction.pptx
PDF
Machine learning based COVID-19 study performance prediction
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Approach and Philosophy of On baking technology
NewMind AI Weekly Chronicles - August'25 Week I
Network Security Unit 5.pdf for BCA BBA.
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
20250228 LYD VKU AI Blended-Learning.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Teaching material agriculture food technology
Big Data Technologies - Introduction.pptx
Machine learning based COVID-19 study performance prediction
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Encapsulation theory and applications.pdf
Dropbox Q2 2025 Financial Results & Investor Presentation
Encapsulation_ Review paper, used for researhc scholars
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Unlocking AI with Model Context Protocol (MCP)
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...

IDS with Artificial Intelligence

  • 1. Intrusion Detection System with Artificial Intelligence Mario Castro Ponce Universidad Pontificia Comillas de Madrid FIST Conference - June 2004 edition Sponsored by: MLP Private Finance IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 1/28
  • 2. Aim of the talk 1. Showing you a different approach to Intrussion Detection based on Artificial Intelligence 2. Contact experts in the field to exchange ideas and maybe creating a (pioneer!!!!) working group IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 2/28
  • 3. Sketch of the talk What is an IDS? Architecture of a Vulnerability Detector Why using A.I.? Neurons and other animals Neural-IDS Fuzzy-Correlator Conclusions IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 3/28
  • 4. What is an IDS? Any hardware, software, or combination of thereof that monitors a system or network of systems for malicious activity IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 4/28
  • 5. What is an IDS? Any hardware, software, or combination of thereof that monitors a system or network of systems for malicious activity Main functions Dissuade Prevent Documentate IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 4/28
  • 6. What is an IDS? Any hardware, software, or combination of thereof that monitors a system or network of systems for malicious activity Main functions Dissuade Prevent Documentate Two kinds of IDS Host based Network based IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 4/28
  • 7. Architecture of a Vulnerability Detector Example: OSSIM n IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 5/28
  • 8. Why using AI? The system manager nightmare: The false positives. IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 6/28
  • 9. Why using AI? The system manager nightmare: The false positives. Then? A.I. for three main reasons Flexibility (vs threshold definition) Adaptability (vs specific rules) Pattern recognition (and detection of new patterns) IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 6/28
  • 10. Why using AI? The system manager nightmare: The false positives. Then? A.I. for three main reasons Flexibility (vs threshold definition) Adaptability (vs specific rules) Pattern recognition (and detection of new patterns) Moreover Fast computing (faster than humans, actually) Learning abilities. IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 6/28
  • 11. Neurons and other animals AI TOOLS Neural Networks Fuzzy Logic Other... IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 7/28
  • 12. Artificial Neural networks Change of paradigm in computing science: Many dummy processors with a simple task to do against one (or few) powerful versatile processors IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 8/28
  • 13. Neurons and artificial neurons IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 9/28
  • 14. Main types of ANN Multilayer perceptrons OUTPUT LAYER INPUT LAYER HIDDEN LAYER Self-organized maps Radial basis neural networks Other IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 10/28
  • 15. Neural IDS Designed for DoS and port scan attacks IDS based on a multilayer perceptron IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 11/28
  • 16. Neural IDS Designed for DoS and port scan attacks IDS based on a multilayer perceptron Designing the tool Analysis Quantification Topology feed−back Learning & validation IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 11/28
  • 17. First scenario: Port scan Pouring rain analogy Packets from the same source @IP 21 22 23 25 80 PORT NUMBERS IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 12/28
  • 18. Second scenario: Denial of Service Pouring rain analogy Packets from the same source @IP 21 22 23 25 80 PORT NUMBERS IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 13/28
  • 19. Measures Visually the difference between them is clear. . . but quantitatively? IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 20. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 21. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics Statistical Mechanics Order = Low Entropy Disorder = High Entropy IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 22. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics Solid State Physics (electronics) ATOMS INSULATOR ATOMS CONDUCTOR IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 23. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics Packets from the same source @IP Disorder = High Entropy 21 22 23 25 80 PORT NUMBERS CONDUCTOR IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 24. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics Packets from the same source @IP Order = Low Entropy 21 22 23 25 80 PORT NUMBERS INSULATOR IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 25. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics Traffic parameters Packets per second Fraction of total packets to a port Inverse of the total number of packets IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 26. Measures Visually the difference between them is clear. . . but quantitatively? Measures borrowed from Physics Traffic parameters Packets per second Fraction of total packets to a port Inverse of the total number of packets All measures are evaluated within a time window. Parallel time windows: e.g., 15 sec, 30 sec, 5 minutes, 30 minutes IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 14/28
  • 27. Topology ENTROPY PORT SCAN IPR DENIAL OF SERVICE PACKETS/SEC FRACTION OF PACKETS NONE 1/PACKETS IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 15/28
  • 28. Learning and testing TYPE OF ATTACK LEARNING PATTERNS RATE OF SUCCESS SEQUENCIAL SCAN 20 100 % SEQUENCIAL SCAN 50 100 % RANDOM SCAN 20 100 % RANDOM SCAN 50 100 % DoS 20 70 % DoS 50 80 % ALL 20 60 % ALL 50 65 % IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 16/28
  • 29. Learning and testing TYPE OF ATTACK LEARNING PATTERNS RATE OF SUCCESS SEQUENCIAL SCAN 20 100 % SEQUENCIAL SCAN 50 100 % RANDOM SCAN 20 100 % RANDOM SCAN 50 100 % DoS 20 70 % DoS 50 80 % ALL 20 60 % ALL 50 65 % Best choice: Specialized neural detectors IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 16/28
  • 30. Fuzzy Logic Imitates human perception: Approximate reasoning IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 17/28
  • 31. Fuzzy Logic Imitates human perception: Approximate reasoning Example: Air cooler Classical rules: IF Temperature > 25 THEN Switch-on IF Temperature < 21 THEN Switch-off ... IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 17/28
  • 32. Fuzzy Logic Imitates human perception: Approximate reasoning Example: Air cooler Classical rules: IF Temperature > 25 THEN Switch-on IF Temperature < 21 THEN Switch-off ... Fuzzy rules: IF Temperature is high THEN Switch-on IF Temperature is too low THEN Switch-off ... IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 17/28
  • 33. Fuzzy Logic Imitates human perception: Approximate reasoning Example: Air cooler Classical rules: IF Temperature > 25 THEN Switch-on IF Temperature < 21 THEN Switch-off ... Fuzzy rules: IF Temperature is high THEN Switch-on IF Temperature is too low THEN Switch-off ... More sofisticated fuzzy rules: IF Temperature is moderate AND my wife is very pregnant THEN Switch-on ... IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 17/28
  • 34. Term sets and grade of membership Thresholds More than 3000 packets/sec ⇒ Possible DoS More than 5000 packets/sec ⇒ DoS! IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 18/28
  • 35. Term sets: Thresholds 0 1 IDS with AI marioc@dsi.icai.upco.es 0 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   1000 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   low ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   2000 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   VOLUME OF TRAFFIC ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                                   More than 5000 packets/sec ⇒ DoS! More than 3000 packets/sec ⇒ Possible DoS Term sets and grade of membership FIST Conference - june 2004 edition– 18/28
  • 36. Fuzzy correlator: Preliminary work Aim of the research: Use the flexibility and human language features of Fuzzy Logic and include them in the OSSIM Correlation Engine IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 19/28
  • 37. Fuzzy correlator: Preliminary work Aim of the research: Use the flexibility and human language features of Fuzzy Logic and include them in the OSSIM Correlation Engine Status: Preliminary definitions and precedures. IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 19/28
  • 38. More on term sets Input variable: Volume of traffic very low low normal high very high 1 0 0 1000 2000 3000 4000 5000 IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 20/28
  • 39. More on term sets (II) Input variable: Number of visited ports very low low normal high very high 1 0 0 2 4 6 8 10 IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 21/28
  • 40. More on term sets (III) Output variable: DoS Attack? improbable maybe almost sure 1 0 0 0.5 1 Rules (example): IF traffic is high AND number of destination ports is low THEN DoS Evaluating rules gives the required answer ’DoS Attack?’: almost sure IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 22/28
  • 41. OSSIM Correlation Engine Characteristics Depends strongly on timers All the variants of an attack must be coded Cannot detect new attacks Complex sintax IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 23/28
  • 42. Sample scenario: NETBIOS DCERPC ISystemActivator IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 24/28
  • 43. Sample scenario: NETBIOS DCERPC ISystemActivator TIME_OUT IF destination_ports = 135,445 THEN Generate Alarm with Reliability 1 and wait 60 seconds for next rule TIME_OUT AND IF DEST_IP and SRC_IP talk again THEN Alarm, Reliability 3 and wait 60 seconds for next rule AND IF DEST_PORT and SRC_PORT talk again AND plugin_sid=2123 (CMD.EXE) THEN Alarm TIME_OUT Reliability 6 and wait 60 seconds for next rule TIME_OUT AND FINALLY IF plugin_id=2002 and conection lasts more than 10 THEN Alarm with Reliability 10 IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 25/28
  • 44. Fuzzy Correlator revisited: Objectives Going beyond the sequential arrival of packets Integrating different sensors: IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 26/28
  • 45. Fuzzy Correlator revisited: Objectives Going beyond the sequential arrival of packets Integrating different sensors: SNORT Anomaly detection: Abnormal connection to an open port (firewall) Thresholds High traffic at nights or weekends, . . . Neural-IDS Other IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 26/28
  • 46. Fuzzy Correlator revisited: Objectives Going beyond the sequential arrival of packets Integrating different sensors: SNORT Anomaly detection: Abnormal connection to an open port (firewall) Thresholds High traffic at nights or weekends, . . . Neural-IDS Other Defining rules according to Security Manager’s experience IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 26/28
  • 47. Conclusions and open questions AI techniques are Flexible Suitable for pattern recognition Powerful (Neural-IDS) Easy to design (human language) IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 27/28
  • 48. Conclusions and open questions AI techniques are Flexible Suitable for pattern recognition Powerful (Neural-IDS) Easy to design (human language) But there is still a lot of work to do. . . IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 27/28
  • 49. Conclusions and open questions AI techniques are Flexible Suitable for pattern recognition Powerful (Neural-IDS) Easy to design (human language) But there is still a lot of work to do. . . We need more time. We need more people Students Security experts (working group?) And of course. . . IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 27/28
  • 50. Conclusions and open questions AI techniques are Flexible Suitable for pattern recognition Powerful (Neural-IDS) Easy to design (human language) But there is still a lot of work to do. . . We need more time We need more people Students Security experts (working group?) And of course. . . some money to pay it IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 27/28
  • 51. And that’s all folks. . . IDS with AI marioc@dsi.icai.upco.es FIST Conference - june 2004 edition– 28/28