SlideShare a Scribd company logo
Image Understanding and Artificial Intelligence
Isabelle Bloch
LTCI, T´el´ecom ParisTech, Universit´e Paris-Saclay
isabelle.bloch@telecom-paristech.fr
2019
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 1 / 22
What is image understanding?
From the 1960’s to today:
Miller and Shaw (1968): survey of linguistic methods for picture
processing, defined as analysis and generation of pictures by
computers, with or without human interaction.
Clowes (1971): linguistic approach for picture interpretation (pattern
description language).
Reiter (1989): interpretation = logical model of sets of axioms.
Ralescu (1995): image understanding = verbal description of the
image contents.
Bateman (2010): needs for a semantic layer for spatial language.
Xu et al. (2014): image interpretation = assigning labels or semantics
representations to regions of a scene.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 2 / 22
What is image understanding?
Here:
Beyond individual object recognition.
Objects in their context, spatial arrangement.
Global scene interpretation.
Semantics extraction.
Providing verbal descriptions of image content.
Dynamic scenes: recognition and description of actions, gestures,
emotions..
Inference, higher level reasoning.
Important role of Artificial Intelligence.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 2 / 22
A few examples
A lot of work on image annotation: object → several objects → scene.
Magritte, 1928
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
A few examples
A lot of work on image annotation: object → several objects → scene.
Millet et al., 2005
(rules, spatial reasoning...)
Region without spatial relations with spatial relations
1 sky sky
2 grass tree
3 tree tree
4 building building
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
A few examples
A lot of work on image annotation: object → several objects → scene.
Venus?
Thanks to H. Maˆıtre
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
A few examples
A lot of work on image annotation: object → several objects → scene.
“Show and tell”:
Vinyals et al., 2015
(convolutional neural networks, deep learning)
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
A few examples
A lot of work on image annotation: object → several objects → scene.
Kulkarni et al., 2013
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
Skubic et al., 2003
(fuzzy modeling of spatial relations)
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 4 / 22
Ogiela et al. 2002, Trzupek et al. 2010
(graphs and grammars)
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 5 / 22
An abnormal structure is present in the brain.
A peripheral non-enhanced tumor is present in the left hemisphere.
Atif et al., 2014
(spatial reasoning, abduction)
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 6 / 22
Morimitsu et al., 2015
(graphs, Bayesian tracking, hidden Markov models)
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 7 / 22
Data vs. knowledge
Is everything in the data?
Powerful methods and impressive results.
Accessibility of data.
Size and number of data.
Cost of learning.
Importance of knowledge.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 8 / 22
Imperfect information, multiple nature of information
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 9 / 22
Models for image understanding
From models to interpretation
Develop mathematical models to represent
knowledge (context, expert, spatial organization...),
information contained in images (geometry, statistics, shape,
appearance...),
and to combine them (fusion process),
⇒ operational and efficient algorithms for image understanding
Semantic gap.
Knowlegde representation and reasoning.
Pathological or unexpected cases.
Conversely: from images to models
example: individual anatomical models, virtual patient.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 10 / 22
CdR
LVR
ThR
PuR
GPR
ClR
V3
CC
icR
Knowledge
Graphs
[COLLIOT, DERUYVER, ...]
Stochastic grammars
[ZHU, MUMFORD,..]
Ontologies
[DAMERON,HU,...]
Formal
representation
Data
Reasoning
Decision
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 11 / 22
Examples, within various collaborations with hospitals and companies:
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 12 / 22
Symbolic and structural representations and reasoning
Morphology
Duality
Mathematical
Adjunction
Uncertainty modeling
Spatial relations
Knowledge representation
Reasoning (revision, fusion,
abduction, spatial reasoning)
Preference modeling
Image understanding
Math−Music
...
Set, functions
Images
Fuzzy sets
Graphs
Hypergraphs
FCA
Logics
Satisfaction systems
CNN
Image processing
and analysis
Structural representations
(data and knowledge)
Lattices
Learning
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 13 / 22
Modeling fuzzy spatial relations
Mathematical models: combining fuzzy sets and mathematical
morphology.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 14 / 22
With Alessandro Delmonte and Pietro Gori
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 15 / 22
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 16 / 22
Graph-based reasoning and constraint satisfaction problem, with Jamal
Atif, Geoffroy Fouquier and Olivier Nempont
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 17 / 22
Conceptual graphs and complex spatial relations, with Carolina Vanegas
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 18 / 22
Image interpretation as an abduction problem, with Jamal Atif and Yifan
Yang
K |= (γ → ϕ)
Finding the “best” explanation to the observations taking into account
expert knowledge.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 19 / 22
With Yongchao Xu, Thierry G´eraud, Hadrien Bertrand, Roberto Ardon,
Matthieu Perrot
Specialized
Layers
Fine feature maps Coarse feature maps
Base network architecture n
0
n-1R
nG
n+1B
N
SegmentationInput Original
3D volume
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 20 / 22
Adult Child Ref. segmentation 3D U-Net Transfer learning
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 21 / 22
Research in Artificial Intelligence at LTCI - IMAGES Team
Covers several topics in the general AI cartography (see #FranceIA):
Machine learning.
Pattern recognition.
Interaction.
Knowledge representation.
Decision and uncertainty management.
Reasoning.
I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 22 / 22

More Related Content

PDF
2020 State of the Art of Neural Rendering
DOC
MSWord
PDF
An Abstract Framework for Agent-Based Explanations in AI
PDF
AI Use Cases: Special Attention on Semantic Segmentation
PDF
Derix 2010: mediating spatial phenomena through computational heuristics
PPTX
Computer science Information Technology (By Aparna Vilas Desai)
PPTX
Introduction to Segmentation in Computer vision
PDF
Innovative design methods for data science - beyond brainstorming
2020 State of the Art of Neural Rendering
MSWord
An Abstract Framework for Agent-Based Explanations in AI
AI Use Cases: Special Attention on Semantic Segmentation
Derix 2010: mediating spatial phenomena through computational heuristics
Computer science Information Technology (By Aparna Vilas Desai)
Introduction to Segmentation in Computer vision
Innovative design methods for data science - beyond brainstorming

Similar to Image understanding and artificial intelligence (20)

PDF
Ex nihilo nihil fit: A COMMONSENSE REASONING FRAMEWORK FOR DYNAMIC KNOWLEDGE...
PDF
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
PDF
Human Computer Interaction Algorithm Based on Scene Situation Awareness
PDF
The Role of Hand Drawing in Basic Design Education in the Digital Age
PDF
Derix 2010: mediating spatial phenomena through computational heuristics
PDF
Seminar CCC
PDF
Understanding everyday users’ perception of socio-technical issues through s...
PPTX
Open Mining Education, Ethics & AI
PDF
A Study on Youth Violence and Aggression using DEMATEL with FCM Methods
PDF
Computer model
PDF
Towards XMAS: eXplainability through Multi-Agent Systems
PDF
The I in AI (or why there is still none)
DOCX
EducationAlthough formal training, such as a Bachelors or Mast.docx
PDF
Will Robots Take all the Jobs? Not yet.
PDF
Artificial intelligence, its application and development prospects in the con...
DOCX
Ip vi sem-vsj final
PDF
070624-ai-for-real-world-applications-prof-ciprian-neagu.pdf
PDF
Intelligence, the elusive concept and general capability still not found in m...
PDF
COVID-19 digital x-rays forgery classification model using deep learning
PDF
Pierre tchounikine
Ex nihilo nihil fit: A COMMONSENSE REASONING FRAMEWORK FOR DYNAMIC KNOWLEDGE...
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
Human Computer Interaction Algorithm Based on Scene Situation Awareness
The Role of Hand Drawing in Basic Design Education in the Digital Age
Derix 2010: mediating spatial phenomena through computational heuristics
Seminar CCC
Understanding everyday users’ perception of socio-technical issues through s...
Open Mining Education, Ethics & AI
A Study on Youth Violence and Aggression using DEMATEL with FCM Methods
Computer model
Towards XMAS: eXplainability through Multi-Agent Systems
The I in AI (or why there is still none)
EducationAlthough formal training, such as a Bachelors or Mast.docx
Will Robots Take all the Jobs? Not yet.
Artificial intelligence, its application and development prospects in the con...
Ip vi sem-vsj final
070624-ai-for-real-world-applications-prof-ciprian-neagu.pdf
Intelligence, the elusive concept and general capability still not found in m...
COVID-19 digital x-rays forgery classification model using deep learning
Pierre tchounikine
Ad

More from I MT (20)

PDF
Colloque Healthcare 4.0 : "Soufflez, c’est dépisté"
PDF
Colloque Healthcare 4.0 : "Accompagnement des troubles du sommeil : la recher...
PDF
Colloque Healthcare 4.0 : "HospiT'Win"
PDF
Colloque Healthcare 4.0 : « Vous ne devriez pas autant être sur les écrans ! »
PDF
Colloque Healthcare 4.0 : "NeuroLife : Interfaces Cerveau Machine pour la San...
PDF
Colloque Healthcare 4.0 : "La protection de données en santé"
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « EIT Health : un tremplin europ...
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Modélisation semi-analytique ...
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Développement de la caméra XE...
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Le suivi géographique des per...
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Pilotage intelligent du servic...
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Quantification of idiopathic i...
PDF
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - "Machine...
PDF
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Contrôle...
PPTX
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Interopé...
PPTX
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Machine ...
PPTX
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - TeraLab,...
PPSX
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Session ...
PDF
Colloque IMT - L'IA au cœur des mutations industrielles - Session Robotique, ...
PDF
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Focus CE...
Colloque Healthcare 4.0 : "Soufflez, c’est dépisté"
Colloque Healthcare 4.0 : "Accompagnement des troubles du sommeil : la recher...
Colloque Healthcare 4.0 : "HospiT'Win"
Colloque Healthcare 4.0 : « Vous ne devriez pas autant être sur les écrans ! »
Colloque Healthcare 4.0 : "NeuroLife : Interfaces Cerveau Machine pour la San...
Colloque Healthcare 4.0 : "La protection de données en santé"
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « EIT Health : un tremplin europ...
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Modélisation semi-analytique ...
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Développement de la caméra XE...
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Le suivi géographique des per...
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Pilotage intelligent du servic...
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Quantification of idiopathic i...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - "Machine...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Contrôle...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Interopé...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Machine ...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - TeraLab,...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Session ...
Colloque IMT - L'IA au cœur des mutations industrielles - Session Robotique, ...
Colloque IMT -04/04/2019- L'IA au cœur des mutations industrielles - Focus CE...
Ad

Recently uploaded (20)

PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
introduction to high performance computing
PPTX
communication and presentation skills 01
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
PPT on Performance Review to get promotions
PDF
Soil Improvement Techniques Note - Rabbi
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
Artificial Intelligence
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Current and future trends in Computer Vision.pptx
III.4.1.2_The_Space_Environment.p pdffdf
introduction to high performance computing
communication and presentation skills 01
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Fundamentals of safety and accident prevention -final (1).pptx
Exploratory_Data_Analysis_Fundamentals.pdf
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Visual Aids for Exploratory Data Analysis.pdf
Information Storage and Retrieval Techniques Unit III
PPT on Performance Review to get promotions
Soil Improvement Techniques Note - Rabbi
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
R24 SURVEYING LAB MANUAL for civil enggi
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Artificial Intelligence
UNIT 4 Total Quality Management .pptx
Current and future trends in Computer Vision.pptx

Image understanding and artificial intelligence

  • 1. Image Understanding and Artificial Intelligence Isabelle Bloch LTCI, T´el´ecom ParisTech, Universit´e Paris-Saclay isabelle.bloch@telecom-paristech.fr 2019 I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 1 / 22
  • 2. What is image understanding? From the 1960’s to today: Miller and Shaw (1968): survey of linguistic methods for picture processing, defined as analysis and generation of pictures by computers, with or without human interaction. Clowes (1971): linguistic approach for picture interpretation (pattern description language). Reiter (1989): interpretation = logical model of sets of axioms. Ralescu (1995): image understanding = verbal description of the image contents. Bateman (2010): needs for a semantic layer for spatial language. Xu et al. (2014): image interpretation = assigning labels or semantics representations to regions of a scene. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 2 / 22
  • 3. What is image understanding? Here: Beyond individual object recognition. Objects in their context, spatial arrangement. Global scene interpretation. Semantics extraction. Providing verbal descriptions of image content. Dynamic scenes: recognition and description of actions, gestures, emotions.. Inference, higher level reasoning. Important role of Artificial Intelligence. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 2 / 22
  • 4. A few examples A lot of work on image annotation: object → several objects → scene. Magritte, 1928 I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
  • 5. A few examples A lot of work on image annotation: object → several objects → scene. Millet et al., 2005 (rules, spatial reasoning...) Region without spatial relations with spatial relations 1 sky sky 2 grass tree 3 tree tree 4 building building I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
  • 6. A few examples A lot of work on image annotation: object → several objects → scene. Venus? Thanks to H. Maˆıtre I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
  • 7. A few examples A lot of work on image annotation: object → several objects → scene. “Show and tell”: Vinyals et al., 2015 (convolutional neural networks, deep learning) I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
  • 8. A few examples A lot of work on image annotation: object → several objects → scene. Kulkarni et al., 2013 I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 3 / 22
  • 9. Skubic et al., 2003 (fuzzy modeling of spatial relations) I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 4 / 22
  • 10. Ogiela et al. 2002, Trzupek et al. 2010 (graphs and grammars) I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 5 / 22
  • 11. An abnormal structure is present in the brain. A peripheral non-enhanced tumor is present in the left hemisphere. Atif et al., 2014 (spatial reasoning, abduction) I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 6 / 22
  • 12. Morimitsu et al., 2015 (graphs, Bayesian tracking, hidden Markov models) I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 7 / 22
  • 13. Data vs. knowledge Is everything in the data? Powerful methods and impressive results. Accessibility of data. Size and number of data. Cost of learning. Importance of knowledge. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 8 / 22
  • 14. Imperfect information, multiple nature of information I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 9 / 22
  • 15. Models for image understanding From models to interpretation Develop mathematical models to represent knowledge (context, expert, spatial organization...), information contained in images (geometry, statistics, shape, appearance...), and to combine them (fusion process), ⇒ operational and efficient algorithms for image understanding Semantic gap. Knowlegde representation and reasoning. Pathological or unexpected cases. Conversely: from images to models example: individual anatomical models, virtual patient. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 10 / 22
  • 16. CdR LVR ThR PuR GPR ClR V3 CC icR Knowledge Graphs [COLLIOT, DERUYVER, ...] Stochastic grammars [ZHU, MUMFORD,..] Ontologies [DAMERON,HU,...] Formal representation Data Reasoning Decision I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 11 / 22
  • 17. Examples, within various collaborations with hospitals and companies: I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 12 / 22
  • 18. Symbolic and structural representations and reasoning Morphology Duality Mathematical Adjunction Uncertainty modeling Spatial relations Knowledge representation Reasoning (revision, fusion, abduction, spatial reasoning) Preference modeling Image understanding Math−Music ... Set, functions Images Fuzzy sets Graphs Hypergraphs FCA Logics Satisfaction systems CNN Image processing and analysis Structural representations (data and knowledge) Lattices Learning I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 13 / 22
  • 19. Modeling fuzzy spatial relations Mathematical models: combining fuzzy sets and mathematical morphology. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 14 / 22
  • 20. With Alessandro Delmonte and Pietro Gori I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 15 / 22
  • 21. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 16 / 22
  • 22. Graph-based reasoning and constraint satisfaction problem, with Jamal Atif, Geoffroy Fouquier and Olivier Nempont I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 17 / 22
  • 23. Conceptual graphs and complex spatial relations, with Carolina Vanegas I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 18 / 22
  • 24. Image interpretation as an abduction problem, with Jamal Atif and Yifan Yang K |= (γ → ϕ) Finding the “best” explanation to the observations taking into account expert knowledge. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 19 / 22
  • 25. With Yongchao Xu, Thierry G´eraud, Hadrien Bertrand, Roberto Ardon, Matthieu Perrot Specialized Layers Fine feature maps Coarse feature maps Base network architecture n 0 n-1R nG n+1B N SegmentationInput Original 3D volume I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 20 / 22
  • 26. Adult Child Ref. segmentation 3D U-Net Transfer learning I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 21 / 22
  • 27. Research in Artificial Intelligence at LTCI - IMAGES Team Covers several topics in the general AI cartography (see #FranceIA): Machine learning. Pattern recognition. Interaction. Knowledge representation. Decision and uncertainty management. Reasoning. I. Bloch (LTCI, T´el´ecom ParisTech) Image Understanding and AI 2019 22 / 22