SlideShare a Scribd company logo
Implementation
• A Comprehensive Overview with a Focus on
Big Data
Introduction
• • What is 'Implementation'?
• • Why implementation matters in tech
projects
• • Focus of this presentation: Big Data
implementation
Objectives
• • Understand 'implementation' in Big Data
• • Explore process, tools, and architecture
• • Real-world case studies
• • Challenges and best practices
What is Big Data?
• • Definition: Massive volume of structured &
unstructured data
• • Key sources: Social Media, IoT, Banking,
Healthcare
Need for Big Data Implementation
• • Manage high-volume, high-velocity data
• • Derive insights for decisions
• • Enable real-time processing and automation
Phases in Big Data Implementation
• 1. Planning and Requirement Analysis
• 2. Infrastructure Setup
• 3. Data Ingestion
• 4. Storage & Processing
• 5. Analytics & Reporting
• 6. Deployment
• 7. Maintenance
Big Data Architecture
• • Source Systems → Ingestion Layer → Storage
→ Processing → Visualization
• • Tools used in each layer
Data Ingestion Tools
• • Apache Kafka
• • Apache NiFi
• • Apache Flume
• • Apache Sqoop
Storage Technologies
• • Hadoop HDFS
• • MongoDB
• • Cassandra
• • Amazon S3
Processing Engines
• • Batch: Hadoop MapReduce
• • Real-time: Apache Spark, Flink
• • Interactive: Presto, Druid
Big Data Implementation on Cloud
• • AWS: EMR, S3, Glue
• • Google Cloud: BigQuery, Dataflow
• • Azure: HDInsight, Data Lake
Security in Implementation
• • Data encryption
• • Role-based access control
• • Audit logging and compliance
Challenges in Implementation
• • Infrastructure cost
• • Data quality issues
• • Skill gaps
• • Legacy system integration
Best Practices
• • Begin with a clear business use case
• • Use scalable tools
• • Ensure governance
• • Adopt agile methodology
Case Study – Netflix
• • Personalized recommendations
• • Real-time tracking
• • Tools: Spark, Kafka, AWS
Case Study – Healthcare
• • Patient analytics via wearable devices
• • Predictive alerts
• • Tools: Hadoop, Python, Tableau
Future of Big Data Implementation
• • AI & Machine Learning
• • Edge Computing
• • Federated Data Processing
Summary
• • Big Data implementation: challenging but
rewarding
• • Requires tools, planning, execution
• • Evolving with trends
Q&A
• Thank you!
• Open to questions.

More Related Content

PPTX
MS Azure with IoT - Final Version
PPTX
MS Azure with IoT - Final Version
PPTX
Real Time Big Data Processing on AWS
PPTX
20160000 Cloud Discovery Event - Cloud Access Security Brokers
PDF
UI Dev in Big data world using open source
PPTX
In-Stream Processing Service Blueprint, Reference architecture for real-time ...
PPTX
Big data
PPTX
Deep thoughts from the real world of azure
MS Azure with IoT - Final Version
MS Azure with IoT - Final Version
Real Time Big Data Processing on AWS
20160000 Cloud Discovery Event - Cloud Access Security Brokers
UI Dev in Big data world using open source
In-Stream Processing Service Blueprint, Reference architecture for real-time ...
Big data
Deep thoughts from the real world of azure

Similar to Implementation_Big_Data_Presentation.pptx (20)

PPTX
Breed data scientists_ A Presentation.pptx
PPTX
Architecting a datalake
PPTX
Big data analytics and machine intelligence v5.0
PDF
Challenges of Operationalising Data Science in Production
PDF
Social Media, Cloud Computing, Machine Learning, Open Source, and Big Data An...
PDF
Open Data Summit Presentation by Joe Olsen
PPTX
Efficient & effective data management for research projects : ILRI's Data Ma...
PPTX
Techniques for scaling application with security and visibility in cloud
PPTX
Lecture 5- Data Collection and Storage.pptx
PDF
Agile Big Data Analytics Development: An Architecture-Centric Approach
PDF
Architect’s Open-Source Guide for a Data Mesh Architecture
PDF
Control and monitor_microservices_with_microprofile
PDF
Monitor Microservices with MicroProfile Metrics
PDF
Monitor Micro-service with MicroProfile metrics
PPTX
How and why you need to build a big data lab
PPTX
Introduction to Data Engineering
PDF
Big data and cloud computing 9 sep-2017
PDF
Hadoop and SAP BI
PPTX
Visual Studio LightSwitch (Beta 1) Overview
PPTX
Big Data is a term used to describe vast and complicated collections of data
Breed data scientists_ A Presentation.pptx
Architecting a datalake
Big data analytics and machine intelligence v5.0
Challenges of Operationalising Data Science in Production
Social Media, Cloud Computing, Machine Learning, Open Source, and Big Data An...
Open Data Summit Presentation by Joe Olsen
Efficient & effective data management for research projects : ILRI's Data Ma...
Techniques for scaling application with security and visibility in cloud
Lecture 5- Data Collection and Storage.pptx
Agile Big Data Analytics Development: An Architecture-Centric Approach
Architect’s Open-Source Guide for a Data Mesh Architecture
Control and monitor_microservices_with_microprofile
Monitor Microservices with MicroProfile Metrics
Monitor Micro-service with MicroProfile metrics
How and why you need to build a big data lab
Introduction to Data Engineering
Big data and cloud computing 9 sep-2017
Hadoop and SAP BI
Visual Studio LightSwitch (Beta 1) Overview
Big Data is a term used to describe vast and complicated collections of data
Ad

Recently uploaded (20)

PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
Database Infoormation System (DBIS).pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
1_Introduction to advance data techniques.pptx
PPT
Quality review (1)_presentation of this 21
PPTX
Global journeys: estimating international migration
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
Lecture1 pattern recognition............
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Business Ppt On Nestle.pptx huunnnhhgfvu
Database Infoormation System (DBIS).pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
IB Computer Science - Internal Assessment.pptx
1_Introduction to advance data techniques.pptx
Quality review (1)_presentation of this 21
Global journeys: estimating international migration
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Lecture1 pattern recognition............
Supervised vs unsupervised machine learning algorithms
Introduction-to-Cloud-ComputingFinal.pptx
Major-Components-ofNKJNNKNKNKNKronment.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Ad

Implementation_Big_Data_Presentation.pptx

  • 1. Implementation • A Comprehensive Overview with a Focus on Big Data
  • 2. Introduction • • What is 'Implementation'? • • Why implementation matters in tech projects • • Focus of this presentation: Big Data implementation
  • 3. Objectives • • Understand 'implementation' in Big Data • • Explore process, tools, and architecture • • Real-world case studies • • Challenges and best practices
  • 4. What is Big Data? • • Definition: Massive volume of structured & unstructured data • • Key sources: Social Media, IoT, Banking, Healthcare
  • 5. Need for Big Data Implementation • • Manage high-volume, high-velocity data • • Derive insights for decisions • • Enable real-time processing and automation
  • 6. Phases in Big Data Implementation • 1. Planning and Requirement Analysis • 2. Infrastructure Setup • 3. Data Ingestion • 4. Storage & Processing • 5. Analytics & Reporting • 6. Deployment • 7. Maintenance
  • 7. Big Data Architecture • • Source Systems → Ingestion Layer → Storage → Processing → Visualization • • Tools used in each layer
  • 8. Data Ingestion Tools • • Apache Kafka • • Apache NiFi • • Apache Flume • • Apache Sqoop
  • 9. Storage Technologies • • Hadoop HDFS • • MongoDB • • Cassandra • • Amazon S3
  • 10. Processing Engines • • Batch: Hadoop MapReduce • • Real-time: Apache Spark, Flink • • Interactive: Presto, Druid
  • 11. Big Data Implementation on Cloud • • AWS: EMR, S3, Glue • • Google Cloud: BigQuery, Dataflow • • Azure: HDInsight, Data Lake
  • 12. Security in Implementation • • Data encryption • • Role-based access control • • Audit logging and compliance
  • 13. Challenges in Implementation • • Infrastructure cost • • Data quality issues • • Skill gaps • • Legacy system integration
  • 14. Best Practices • • Begin with a clear business use case • • Use scalable tools • • Ensure governance • • Adopt agile methodology
  • 15. Case Study – Netflix • • Personalized recommendations • • Real-time tracking • • Tools: Spark, Kafka, AWS
  • 16. Case Study – Healthcare • • Patient analytics via wearable devices • • Predictive alerts • • Tools: Hadoop, Python, Tableau
  • 17. Future of Big Data Implementation • • AI & Machine Learning • • Edge Computing • • Federated Data Processing
  • 18. Summary • • Big Data implementation: challenging but rewarding • • Requires tools, planning, execution • • Evolving with trends
  • 19. Q&A • Thank you! • Open to questions.