Indices, Surds &
Logarithms
Additional Math Notes
Indices
 54= 5 x 5 x 5 x 5 = 625
 5 is the base
 4 is the index or power
Laws of Indices
am
´ an
= am+n
am
¸ an
= am-n
(am
)n
= amn
am
´bm
= (a´b)m
am
¸ bm
= (
a
b
)m
a0
=1
a-m
=
1
am
(
a
b
)-m
= (
b
a
)m
a
1
m
= a
m
a
n
m
= ( a
m
)n
= an
m
(am
´ bn
)l
= aml
´bnl
Gotta Memorize these!!!
Example Questions
3x+y
´32x-y
= 3(x+y)+(2x-y)
= 33x
6x+y
¸ 6x-y
= 6(x+y)-(x-y)
= 62y
Q1 Q2
Example Questions
33
´ x3
= (3´ x)3
= (3x)3
x6
¸26
= (
x
2
)6
(215
)x
= 215x
3=7
=
1
37
(
16
7
)-3
= (
7
16
)3
Q3
Q4
Q5
Q6
Q7
Example Questions
1. Evaluate (18)
3
2
´(6)
-
1
2
´
1
27
= (2´32
)
3
2
´(2´3)
-
1
2
´
1
(33
)
1
2
= (2´32
)
3
2
´(2´3)
-
1
2
´(33
)
-
1
2
= 2
3
2
´33
´ 2
-
1
2
´3
-
1
2
´3
-
3
2
= 2
3
2
-
1
2
´3
3-
1
2
-
3
2
= 21
´31
= 6
2. Solve the equation 81n
= 9
81= 34
9 = 32
Hence, equation is (34
)n
= 32
34n
= 32
4n = 2
n =
1
2
Example Questions
3. Simplify
3n+1
´3n-1
9-n
=
3(n+1)+(n-1)
3-2n
=
3n+1+n-1
3-2n
= 32n-(-2n)
= 34n
4. Solve the equation 22x+1
-3(2x
)+1= 0
(22x
´ 21
)-3(2x
)+1= 0
Let 2x
be y
2y2
-3y +1= 0
(2y -1)(y -1) = 0
y =
1
2
, y =1
2x
=
1
2
® 2x
= 2-1
® x = -1
2x
=1® 2x
= 20
® x = 0
Example Questions
5. Solve the equation 9x
´ 22x
= 6
32x
´ 22x
= 6
(3´ 2)2x
= 6
62x
= 61
2x =1
x =
1
2
6. Solve the equation 81x
= 273x-5
34
= 33(3x-5)
34
= 39x-15
4 = 9x -15
9x =15+ 4
9x =19
x = 2
1
9
Surds
 surds is a subset of irrational numbers
 Eg √2, √3, √6 etc
 Multiplication of surds
 √a × √b = √ab
 Eg √5 × √7 = √30
 Addition and Subtraction of surds
 Eg 3√2 + 2√2 − 4√2 = 5√2 – 4√ 2 = √2
 Division of surds
 Eg √100 ÷ √25 = √(100÷25) = √4 = 2
Rationalizing Surds
Q2.
2 +1
11+3
=
( 2 +1)
( 11+3)
´
( 11-3)
( 11-3)
=
( 2 +1)( 11-3)
11-9
=
( 2 +1)( 11-3)
2
Q1.
2
3
=
2
3
´
3
3
=
2 3
3
Rationalize if there are
surds in the denominator
(a+b)(a-b) = a2 – b2
Example Questions
1. Simplify.
1
5
+ 20 + 125
=
1
5
*
5
5
+ 2´ 2´ 5 + 5´ 5´ 5
=
5
5
+ 2 5 + 5 5
= 5(
1
5
+ 2 + 5)
= 7
1
5
5
2. Simplify and express in the from a+b c
( 5 -2)2
= ( 5)2
- 2( 5)(2)+22
= 5- 4 5 + 4
= 9 - 4 5
Laws of Logarithm
If y=ax
, x is defined as the logarithm of y to the base a.
® x = loga y
1.loga xy = loga x + loga y
2.loga
x
y
= loga x - log a y
3.log(x)n
= nloga x
4.loga x
n
= loga x
1
n
=
1
n
loga x
Note:
- The log of any negative number to any base does not exist
eg. log5(-10) does not exist
- The log of 1 to any base is zero
eg. log31= 0
- logx x =1
Logarithm
 Logarithms to base 10 are called common logarithms
 Change of base
log10 a ®loga or lga
loga x =
logb x
logb a
loga x =
1
logx a
loga b =
logb
loga
How to calculate?
Example Questions
1. Solve the equation 2x
´3x
= 5x+1
2x
´3x
= 5x+1
6x
= 5x+1
xlog10 6 = (x +1)log10 5
x +1
x
=
log10 6
log10 5
=
0.7782
0.6990
=1.113
x +1=1.113x
(1.113-1)x =1
x = 8.85 (2d.p)
2. Simplify log3 2+ log3 5+ log3 20 - log3 25
= log3(
2´5´20
25
)
= log3(
200
25
)
= log3 8
= log3 23
= 3log3 2
Example Questions
3. Solve the equation
(log5 x)2
-3log5 x + 2 = 0
Let log5 x = y
y2
-3y + 2 = 0
(y - 2)(y -1) = 0
y = 2, y =1
log5 x = 2
x = 52
= 25
log5 x =1
x = 51
= 5
4. Solve the equation log4 x - logx 8 =
1
2
log4 x -
log4 8
log4 x
=
1
2
log4 x -
1.5
log4 x
=
1
2
let log4 x be y
y-
1.5
y
=
1
2
´ y : y2
-1.5 =
1
2
y
y2
-
1
2
y -1.5 = 0
´ 2: 2y2
- y -3= 0
(2y -3)(y+1) = 0
2y = 3, y = -1
y =
3
2
log4 x =
3
2
x = 4
3
2
x = 8
y = -1
log4 x = -1
x = 4-1
x =
1
4
Example Questions
5. Solve the equation
log9[log2 (4x -16)]= log16 4
log9[log2 (4x -16)]=
1
2
log9[log2 (4x -16)]= log3 9
log2 (4x -16) = 3
log2 (4x -16) = log2 8
4x -16 = 8
4x = 24
x = 6
6. Solve the simultaneous equations
log2x y = 2 ® eqn1
logx 4y = 6 ® eqn2
eqn1: y = (2x)2
y = 4x2
® eqn3
sub eqn3 into eqn2
logx 4(4x2
) = 6
logx 16x2
= 6
logx 16x2
= logx x6
16x2
= x6
16x2
- x6
= 0
x2
(16 - x4
) = 0
x2
= 0(rejected),16 - x4
= 0
16 = x4
x = 2,-2(rejected)
Exponential Function
 General form is ax where a is a positive constant and x is
a variable
 Important exponential functions
 10x
 ex
Example Questions
1. Solve the equation
e2ln x
+ lne2x
= 8
e2ln x
+ 2x = 8
e2ln x
= 8- 2x
2ln x = ln(8- 2x)
ln x2
= ln(8- 2x)
x2
= 8- 2x
x2
-8+ 2x = 0
(x + 4)(x - 2) = 0
x = -4(rejected), x = 2
2. Solve the equation
10x
= e2x+1
ln10x
= lne2x+!
xln10 = 2x +1
xln10 - 2x =1
x(ln10 - 2) =1
x =
1
ln10 - 2
x = 3.30
Example Questions
3. Solve the equation
2e2x+!
= ex+1
+15e
2e2x
*e = ex
*e+15e
let ex
be y
2ey2
= ey +15e
2ey2
-ey -15e = 0
e(2y2
- y -15) = 0
2y2
- y -15 = 0
(2y + 5)(y -3) = 0
y = -
5
2
, y = 3
ex
= -
5
2
(rejected)
ex
= 3
x =1.10
4. Solve the equation
ex
= 2e
x
2
+15
ex
= 2(ex
)
1
2
+15
let ex
be y
y=2y
1
2
+15
y - 2y
1
2
-15 = 0
(y
1
2
- 5)(y
1
2
+3) = 0
y
1
2
= 5,y
1
2
= -3(rejected)
y = 25
ex
= 25
x = ln25 = 3.22
5. Solve the equation
e3x-1
=148
lne3x-1
= ln148
3x -1= 5
3x = 6
x = 2

More Related Content

PDF
5indiceslogarithms 120909011915-phpapp02
PPT
Polynomial operations (1)
PDF
Questions and Solutions Logarithm.pdf
PPTX
GCSEYr9-SolvingQuadratics.pptx
PPTX
EPCA_MODULE-2.pptx
PDF
4.5 5.5 notes 1
PPT
9 2power Of Power
PPT
Ceramah Add Mth
5indiceslogarithms 120909011915-phpapp02
Polynomial operations (1)
Questions and Solutions Logarithm.pdf
GCSEYr9-SolvingQuadratics.pptx
EPCA_MODULE-2.pptx
4.5 5.5 notes 1
9 2power Of Power
Ceramah Add Mth

Similar to indice-ppt.ppt (20)

PPT
PPTX
1.2 algebraic expressions t
PPTX
Lecture 03 special products and factoring
PPTX
Polynomial Function and Synthetic Division
PPT
Algebra Revision.ppt
PDF
College algebra real mathematics real people 7th edition larson solutions manual
DOC
Skills In Add Maths
PPTX
8.1 8.4 quizzo
PPTX
Quadratic Functions.pptx
PPTX
Simultaneous equations
PPT
Factoring 15.3 and 15.4 Grouping and Trial and Error
PPT
New stack
PDF
Algebraic Simplification and evaluation
DOCX
Logarithma
PPT
Factoring and Box Method
PPT
Stacks image 1721_36
DOCX
Section 6.4 Logarithmic Equations and Inequalities, from Coll.docx
PPTX
G10 Mathematics Q1 Remainder Theorem.pptx
PDF
Unit2.polynomials.algebraicfractions
1.2 algebraic expressions t
Lecture 03 special products and factoring
Polynomial Function and Synthetic Division
Algebra Revision.ppt
College algebra real mathematics real people 7th edition larson solutions manual
Skills In Add Maths
8.1 8.4 quizzo
Quadratic Functions.pptx
Simultaneous equations
Factoring 15.3 and 15.4 Grouping and Trial and Error
New stack
Algebraic Simplification and evaluation
Logarithma
Factoring and Box Method
Stacks image 1721_36
Section 6.4 Logarithmic Equations and Inequalities, from Coll.docx
G10 Mathematics Q1 Remainder Theorem.pptx
Unit2.polynomials.algebraicfractions
Ad

Recently uploaded (20)

PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
My India Quiz Book_20210205121199924.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
IGGE1 Understanding the Self1234567891011
PPTX
20th Century Theater, Methods, History.pptx
Introduction to pro and eukaryotes and differences.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Uderstanding digital marketing and marketing stratergie for engaging the digi...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Computer Architecture Input Output Memory.pptx
Complications of Minimal Access-Surgery.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Hazard Identification & Risk Assessment .pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
My India Quiz Book_20210205121199924.pdf
Weekly quiz Compilation Jan -July 25.pdf
IGGE1 Understanding the Self1234567891011
20th Century Theater, Methods, History.pptx
Ad

indice-ppt.ppt

  • 2. Indices  54= 5 x 5 x 5 x 5 = 625  5 is the base  4 is the index or power
  • 3. Laws of Indices am ´ an = am+n am ¸ an = am-n (am )n = amn am ´bm = (a´b)m am ¸ bm = ( a b )m a0 =1 a-m = 1 am ( a b )-m = ( b a )m a 1 m = a m a n m = ( a m )n = an m (am ´ bn )l = aml ´bnl Gotta Memorize these!!!
  • 4. Example Questions 3x+y ´32x-y = 3(x+y)+(2x-y) = 33x 6x+y ¸ 6x-y = 6(x+y)-(x-y) = 62y Q1 Q2
  • 5. Example Questions 33 ´ x3 = (3´ x)3 = (3x)3 x6 ¸26 = ( x 2 )6 (215 )x = 215x 3=7 = 1 37 ( 16 7 )-3 = ( 7 16 )3 Q3 Q4 Q5 Q6 Q7
  • 6. Example Questions 1. Evaluate (18) 3 2 ´(6) - 1 2 ´ 1 27 = (2´32 ) 3 2 ´(2´3) - 1 2 ´ 1 (33 ) 1 2 = (2´32 ) 3 2 ´(2´3) - 1 2 ´(33 ) - 1 2 = 2 3 2 ´33 ´ 2 - 1 2 ´3 - 1 2 ´3 - 3 2 = 2 3 2 - 1 2 ´3 3- 1 2 - 3 2 = 21 ´31 = 6 2. Solve the equation 81n = 9 81= 34 9 = 32 Hence, equation is (34 )n = 32 34n = 32 4n = 2 n = 1 2
  • 7. Example Questions 3. Simplify 3n+1 ´3n-1 9-n = 3(n+1)+(n-1) 3-2n = 3n+1+n-1 3-2n = 32n-(-2n) = 34n 4. Solve the equation 22x+1 -3(2x )+1= 0 (22x ´ 21 )-3(2x )+1= 0 Let 2x be y 2y2 -3y +1= 0 (2y -1)(y -1) = 0 y = 1 2 , y =1 2x = 1 2 ® 2x = 2-1 ® x = -1 2x =1® 2x = 20 ® x = 0
  • 8. Example Questions 5. Solve the equation 9x ´ 22x = 6 32x ´ 22x = 6 (3´ 2)2x = 6 62x = 61 2x =1 x = 1 2 6. Solve the equation 81x = 273x-5 34 = 33(3x-5) 34 = 39x-15 4 = 9x -15 9x =15+ 4 9x =19 x = 2 1 9
  • 9. Surds  surds is a subset of irrational numbers  Eg √2, √3, √6 etc  Multiplication of surds  √a × √b = √ab  Eg √5 × √7 = √30  Addition and Subtraction of surds  Eg 3√2 + 2√2 − 4√2 = 5√2 – 4√ 2 = √2  Division of surds  Eg √100 ÷ √25 = √(100÷25) = √4 = 2
  • 10. Rationalizing Surds Q2. 2 +1 11+3 = ( 2 +1) ( 11+3) ´ ( 11-3) ( 11-3) = ( 2 +1)( 11-3) 11-9 = ( 2 +1)( 11-3) 2 Q1. 2 3 = 2 3 ´ 3 3 = 2 3 3 Rationalize if there are surds in the denominator (a+b)(a-b) = a2 – b2
  • 11. Example Questions 1. Simplify. 1 5 + 20 + 125 = 1 5 * 5 5 + 2´ 2´ 5 + 5´ 5´ 5 = 5 5 + 2 5 + 5 5 = 5( 1 5 + 2 + 5) = 7 1 5 5 2. Simplify and express in the from a+b c ( 5 -2)2 = ( 5)2 - 2( 5)(2)+22 = 5- 4 5 + 4 = 9 - 4 5
  • 12. Laws of Logarithm If y=ax , x is defined as the logarithm of y to the base a. ® x = loga y 1.loga xy = loga x + loga y 2.loga x y = loga x - log a y 3.log(x)n = nloga x 4.loga x n = loga x 1 n = 1 n loga x Note: - The log of any negative number to any base does not exist eg. log5(-10) does not exist - The log of 1 to any base is zero eg. log31= 0 - logx x =1
  • 13. Logarithm  Logarithms to base 10 are called common logarithms  Change of base log10 a ®loga or lga loga x = logb x logb a loga x = 1 logx a loga b = logb loga How to calculate?
  • 14. Example Questions 1. Solve the equation 2x ´3x = 5x+1 2x ´3x = 5x+1 6x = 5x+1 xlog10 6 = (x +1)log10 5 x +1 x = log10 6 log10 5 = 0.7782 0.6990 =1.113 x +1=1.113x (1.113-1)x =1 x = 8.85 (2d.p) 2. Simplify log3 2+ log3 5+ log3 20 - log3 25 = log3( 2´5´20 25 ) = log3( 200 25 ) = log3 8 = log3 23 = 3log3 2
  • 15. Example Questions 3. Solve the equation (log5 x)2 -3log5 x + 2 = 0 Let log5 x = y y2 -3y + 2 = 0 (y - 2)(y -1) = 0 y = 2, y =1 log5 x = 2 x = 52 = 25 log5 x =1 x = 51 = 5 4. Solve the equation log4 x - logx 8 = 1 2 log4 x - log4 8 log4 x = 1 2 log4 x - 1.5 log4 x = 1 2 let log4 x be y y- 1.5 y = 1 2 ´ y : y2 -1.5 = 1 2 y y2 - 1 2 y -1.5 = 0 ´ 2: 2y2 - y -3= 0 (2y -3)(y+1) = 0 2y = 3, y = -1 y = 3 2 log4 x = 3 2 x = 4 3 2 x = 8 y = -1 log4 x = -1 x = 4-1 x = 1 4
  • 16. Example Questions 5. Solve the equation log9[log2 (4x -16)]= log16 4 log9[log2 (4x -16)]= 1 2 log9[log2 (4x -16)]= log3 9 log2 (4x -16) = 3 log2 (4x -16) = log2 8 4x -16 = 8 4x = 24 x = 6 6. Solve the simultaneous equations log2x y = 2 ® eqn1 logx 4y = 6 ® eqn2 eqn1: y = (2x)2 y = 4x2 ® eqn3 sub eqn3 into eqn2 logx 4(4x2 ) = 6 logx 16x2 = 6 logx 16x2 = logx x6 16x2 = x6 16x2 - x6 = 0 x2 (16 - x4 ) = 0 x2 = 0(rejected),16 - x4 = 0 16 = x4 x = 2,-2(rejected)
  • 17. Exponential Function  General form is ax where a is a positive constant and x is a variable  Important exponential functions  10x  ex
  • 18. Example Questions 1. Solve the equation e2ln x + lne2x = 8 e2ln x + 2x = 8 e2ln x = 8- 2x 2ln x = ln(8- 2x) ln x2 = ln(8- 2x) x2 = 8- 2x x2 -8+ 2x = 0 (x + 4)(x - 2) = 0 x = -4(rejected), x = 2 2. Solve the equation 10x = e2x+1 ln10x = lne2x+! xln10 = 2x +1 xln10 - 2x =1 x(ln10 - 2) =1 x = 1 ln10 - 2 x = 3.30
  • 19. Example Questions 3. Solve the equation 2e2x+! = ex+1 +15e 2e2x *e = ex *e+15e let ex be y 2ey2 = ey +15e 2ey2 -ey -15e = 0 e(2y2 - y -15) = 0 2y2 - y -15 = 0 (2y + 5)(y -3) = 0 y = - 5 2 , y = 3 ex = - 5 2 (rejected) ex = 3 x =1.10 4. Solve the equation ex = 2e x 2 +15 ex = 2(ex ) 1 2 +15 let ex be y y=2y 1 2 +15 y - 2y 1 2 -15 = 0 (y 1 2 - 5)(y 1 2 +3) = 0 y 1 2 = 5,y 1 2 = -3(rejected) y = 25 ex = 25 x = ln25 = 3.22 5. Solve the equation e3x-1 =148 lne3x-1 = ln148 3x -1= 5 3x = 6 x = 2