SlideShare a Scribd company logo
INFLUENCE LINES FOR STATICALLY
DETERMINATE STRUCTURES
 !   Influence Lines for Beams
 !   Influence Lines for Floor Girders
 !   Influence Lines for Trusses
 !   Maximum Influence at a Point Due to a Series
     of Concentrated Loads
 !   Absolute Maximum Shear and Moment




                                                    1
Influence Line



                 Unit moving load


          A
                                    B




                                        2
Example 6-1

Construct the influence line for
          a) reaction at A and B
          b) shear at point C
          c) bending moment at point C
          d) shear before and after support B
          e) moment at point B
of the beam in the figure below.

                          C
        A

                                         B
                4m              4m              4m




                                                     3
SOLUTION
      • Reaction at A
                                 1
                           x         C
                  A

                  Ay                                 By
                                     8m                         4m
x       Ay
0        1                                                                     1
                        + ΣMB = 0:         − Ay (8) + 1(8 − x ) = 0,    Ay = 1− x
4       0.5                                                                    8
8        0
                    Ay
12      -0.5
                   1
                                         0.5
                                                       8m              12 m
                                                                              x
                                     4m
                                                                       -0.5

                                                                                    4
• Reaction at B

                               1
                          x          C
                 A

                 Ay                            By
                                   8m                        4m
x       By
0       0
                                                                          1
4       0.5             + ΣMA = 0:       B y (8) − 1x = 0,         By =     x
                                                                          8
8       1
12      1.5        By                                             1.5
                                                    1
                                   0.5

                                                                          x
                                   4m             8m              12 m



                                                                                5
• Shear at C
                                     0≤ x<4                4 < x ≤ 12

                                              1
                                     x            C
                            A

                            Ay                              By
                                         4m           4m                4m

                                 1
                      x              C                                      1
                                                      + ΣFy = 0:         1 − x − 1 − VC = 0
0≤ x≤4         A                              MC                            8
                          1                                                            1
                   Ay = 1− x                                                   VC = − x
                          8           VC                                               8
                        4m

                      x              C
                                                                                1
4 < x ≤ 12     A                              MC      + ΣFy = 0:             1 − x − VC = 0
                          1                                                     8
                   Ay = 1− x                                                             1
                          8           VC                                          VC = 1− x
                        4m                                                               8
                                                                                              6
0≤ x<4                   4 < x ≤ 12                           x    VC
                  1                                              1     0     0
                                                           VC = − x
         x            C                                          8     4-   -0.5
A                                                                      4+   0.5
                                                                  1
                                                           VC = 1− x   8     0
                                                                  8
Ay                                 By
             4m              4m                4m                      12   -0.5



                                    1
    VC                       VC = 1− x
                                    8
                      0.5

                  4m                 8m             12 m
                                                            x


                      -0.5                          -0.5
           1
     VC = − x
           8


                                                                                   7
• Bending moment at C
                                   0≤ x<4                4 < x ≤ 12
                                            1
                                   x            C
                          A

                          Ay                              By
                                       4m           4m                 4m

                               1
                      x            C
                                                                                           1
0≤ x≤4         A                            MC      + ΣMC = 0:        M C + 1(4 − x) − (1 − x )(4) = 0
                          1                                                                8
                   Ay = 1− x                                                             1
                          8         VC                                           MC = x
                        4m                                                               2

                      x            C
                                                                                     1
4 < x ≤ 12     A                            MC      + ΣMC = 0:             M C − (1 − x)( 4) = 0
                          1                                                          8
                   Ay = 1− x                                                            1
                          8         VC                                         MC = 4 − x
                        4m                                                              2
                                                                                                    8
0≤ x<4                     4 < x ≤ 12
                                                                           x    MC
               1
                                                                     1     0    0
      x                                                       MC =     x
                     C                                               2     4    2
A
                                                                     1     8    0
                                                          MC = 4 −     x
Ay                                  By                               2     12   -2
          4m                4m                4m


               1
       MC =      x                  1
               2         MC = 4 −     x
 MC                                 2
                   2
                                     8m            12 m
                                                          x
                   4m

                                                   -2



                                                                                     9
Or using equilibrium conditions:

          • Reaction at A
                                     1
                               x         C
                      A

                      Ay                                 By
                                         8m                         4m


                                                                                   1
                            + ΣMB = 0:         − Ay (8) + 1(8 − x ) = 0,    Ay = 1− x
                                                                                   8

                        Ay
                       1
                                             0.5
                                                           8m              12 m
                                                                                  x
                                         4m
                                                                           -0.5

                                                                                        10
• Reaction at B
                       1
                   x        C
            A

            Ay                        By
                           8m                  4m
              Ay
                                       + ΣFy = 0:      Ay + B y − 1 = 0
             1
                                0.5                            B y = 1 − Ay
                                       8m           12 m
                                                           x
                           4m
                                                    -0.5
              By       B y = 1 − Ay                 1.5
                                           1
                           0.5

                                                           x
                           4m          8m           12 m
                                                                          11
• Shear at C
                                     0≤ x<4                4 < x ≤ 12

                                              1
                                     x            C
                            A

                            Ay                              By
                                         4m           4m                4m

                                 1
                      x              C
                                                      + ΣFy = 0:             Ay − 1 − VC = 0
0≤ x≤4         A                              MC
                          1                                                      VC = Ay − 1
                   Ay = 1− x          VC
                          8
                        4m

                      x              C
4 < x ≤ 12     A                              MC      + ΣFy = 0:              Ay − VC = 0
                          1
                   Ay = 1− x
                          8           VC                                           VC = Ay
                        4m
                                                                                               12
C
A

                                       B
          4m                 4m             4m

    Ay
1
                       0.5
                                       8m        12 m
                                                        x
                  4m
         VC = Ay − 1         VC = Ay             -0.5
    VC
                   0.5

               4m                      8m        12 m
                                                        x


                   -0.5                          -0.5
                                                            13
• Bending moment at C
                                   0≤ x<4                4 < x ≤ 12
                                            1
                                   x            C
                          A

                          Ay                              By
                                       4m           4m                4m

                               1
                      x            C
0≤ x≤4         A                            MC      + ΣMC = 0:        Ay (4) + 1( 4 − x ) + M C = 0
                          1
                   Ay = 1− x        VC                                     M C = 4 Ay − (4 − x)
                          8
                        4m

                      x            C
4 < x ≤ 12     A                            MC      + ΣMC = 0:             − Ay (4) + M C = 0
                          1
                   Ay = 1− x                                                      M C = 4 Ay
                          8         VC
                        4m
                                                                                                      14
C
A

                                  B
         4m                 4m         4m

    Ay
 1
                      0.5
                                  8m        12 m
                                                   x
                   4m
M C = 4 Ay − (4 − x) M C = 4 Ay             -0.5

    MC
                  2
                                  8m        12 m
                                                   x
                 4m

                                            -2         15
• Shear before support B                    1
                  x
                           C
           A

          Ay                                     By
                      4m                    4m               4m

                             1
               x                     MB                                         MB

                 8m                                                  8m
Ay                                 VB   -
                                                          Ay                   VB-
               VB- = Ay-1                                           VB- = Ay

          Ay 1
                                   0.5               8m           12 m
                                                                           x
         VB-                 4m
                                                                  -0.5
                                                                           x

                            -0.5                      -1.0          -0.5
                                                                                     16
• Shear after support B                1
             x
                       C
      A

     Ay                                By
              4m                  4m            4m
                                                                 1
    MB                                          MB

                   4m                                       4m
            VB+                                      VB+
                  VB+ = 0                                  VB+ = 1

     Ay 1
                            0.5            8m         12 m
                                                                 x
                        4m
                                                       -0.5
    VB+                                     1
                                                                 x
                                                                     17
• Moment at support B                   1
                 x
                          C
          A

         Ay                                  By
                      4m                4m             4m

                           1
              x                  MB                                          MB

                 8m                                                8m
Ay                             VB   -
                                                      Ay                    VB-
           MB = 8Ay-(8-x)                                      MB = 8Ay

          Ay 1
                               0.5               8m            12 m
                                                                        x
        MB                 4m
                                                                -0.5
                                                                        x
                                                           1
                                                                  -4
                                                                                  18
Influence Line for Beam

  • Reaction                                      P=1
                                     C
               A                                                   B
                                                           x'

                                       L


                                                  P=1                  δy       1
                                                   δ y'         sB =        =
                   δy = 1                                              L        L
                                     C
               A                                                   B

                   Ay                                             By

                        Ay (1) − 1(δ y ' ) + B y (0) = 0

                                               Ay = δ y '


                                                                                    19
P=1
                        C
A                                              B
                  x'

                        L


                                     P=1


                                     δ y'     δy = 1
                        C
A                                             B
                        δy       1
                 sA =        =
    Ay                  L        L            By

         Ay (0) − 1(δ y ' ) + B y (1) = 0

                                 By = δ y '


                                                       20
- Pinned Support
            A               C       B

                    a           b

                        L




                                        B
        A

           RA


      RA        1

                        b
                        L
                                        x
                                            21
- Fixed Support
                     A               B


                             a               b

                                 L



                         A               B



                RA


           RA        1                           1

                                                     x


                                                         22
P=1
• Shear
               A                                      C                            B

                                a                                b

                                                L


                                                      VC              P=1
                                                                                       1
                                                                       δ y'     sB =
                                    δy=1                   δyR                         L
             A                                                                         B
                                             δyL
                 Ay             1                                                   By
                         sA =
                                L                    VC

 Ay (0) + VC (δ yL ) + VC (δ yR ) − 1(δ y ' ) + B y (0) = 0

                          VC (δ yL + δ yR ) = δ y '
                                                                     slopes :   s A = sB
                                    δy=1
                                        VC = δ y '
                                                                                           23
- Pinned Support

            A                           C                             B

                        a                           b

                                    L
                                   VC

            A                                                             B


                                            VC                        1
VC      1                                               Slope s B =
                                                                      L
                                   b
                             1      L
                                                                                   x
                                             -a
                            1                 L
                Slope s A =
                            L                                                 -1
                              Slope at A = Slope at B
                                                                                       24
- Fixed Support


                  A            B


                      a                 b

                          L


                          VB
                  A                B


                                   VB


           VB                  1            1

                                                x


                                                    25
• Bending Moment
                                                                          P=1
                  A                                    C                               B

                                  a                                  b

                                                  L
                                                             φ = θ A +θ B = 1
                                                                          P=1

                      h                        MC            MC           δ y'

                A                                                                          B
                                         h                                       h
                    Ay
                                  θA =                                    θB =
                                         a                                       b     By

Ay (0) + M C (θ A ) + M C (θ B ) + 1(δ y ' ) + B y (0) = 0                h h
                                                                         ( + ) =1
                                            1                             a b
                            M C (θ A + θ B ) = δ y '
                                                                      h( a + b)                     ab
                                                                                = 1,        h=
                                                                         ab                      ( a + b)
                                       M C = δ y'
                                                                                                            26
- Pinned Support

           A                       C                           B

                    a                           b

                               L


                                       Hinge
           A                                                       B
                              MC         MC
 MC

       a                                                               b
                                               φC = θA + θB = 1
                                       ab
                                       a+b
                                                                           x
                          b
                   θA =                                    a
                          L                         θA =
                                                           L
                                                                               27
- Fixed Support


                  A            B


                      a                 b

                           L



                  A            B

                          MC       MC


           MB

                                            x
                                    1

                                            -b
                                                 28
• General Shear
                        C          D          E           B              F         G         H
      A
            L/4             L/4        L/4          L/4            L/4       L/4       L/4
                                   L
      VC
                  3/4
                   1
                                                                                                 x
      VD                -1/4       2/4
                               1                                                                 x
      VE                           -2/4
                                              1/4
                                                                                                 x
                                          1
      VBL
                                                  -3/4
                                                                                                 x


                                                              -1                                     29
C         D         E         B              F         G         H
A
      L/4       L/4       L/4       L/4            L/4       L/4       L/4

VBL                   L

                                                                                 x


                                              -1
VBR                                                          1

                                                                                 x
VF                                                           1

                                                                                 x

VG                                                                     1

                                                                                 x
                                                                                     30
• General Bending Moment
                 C         D           E              B         F         G         H
      A
           L/4       L/4         L/4         L/4          L/4       L/4       L/4
                             L

     MC      3L/16     φ = sA + sB = 1

                                                                                        x
          θA = 3/4                         θB = 1/4

     MD              4L/16
                                   φ = sA + sB = 1

                                                                                        x
          θA = 1/2                          θB = 1/2
     ME                          3L/16
                                               φ = θA + θB = 1
                                                                                        x
          θA = 1/4                         θB = 3/4


                                                                                            31
C         D         E         B         F             G                 H
A
     L/4       L/4       L/4       L/4       L/4           L/4           L/4
                     L

MB

                                                                                         x
                                                       1

                                                                                       3L/4
MF

                                                                                         x
                                                                     1
                                                                                       2L/4
MG

                                                                                         x
                                                                               1
                                                                                       L/4
                                                                                              32
Example 6-2

Construct the influence line for
         - the reaction at A, C and E
         - the shear at D
         - the moment at D
         - shear before and after support C
         - moment at point C


     A             B     Hinge                D
                                  C                    E


           2m             2m             2m       4m




                                                           33
SOLUTION




                   B        C        D        E
 A

              2m       2m       2m       4m
     RA



RA        1


                                                  x




                                                      34
B                       C        D          E
A

     2m             2m                2m         4m

                         RC


              8/6
                              1
RC                                         4/6

                                                          x




                                                              35
A        B                        D
                              C
                                                           E

         2m              2m       2m         4m

                                                  RE


                                                       1
RE                                     2/6

                                                       x

                  -2/6




                                                               36
VD
     A        B                                       D
                             C                                              E


                                                    VD
         2m             2m          2m                      4m



                             1                  4/6
                  2/6




                                                            =
VD                                       1
                                                                                x
                                                                 sE = 1/6
                                   =
                             sC = 1/6                                       -1
                                             -2/6

                                                    • sE = sC

                                                                                    37
Or using equilibrium conditions:               1
          A            B          Hinge             D
                                           C                                  E


               2m                 2m           2m             4m
                                                                1
                           VD                                            x
                                  4m                         VD
                  MD                                                    4m
                                                    MD
                                          RE                             RE
                            VD = -RE                       VD = 1 -RE

                                                                              1
     RE                                             2/6

                                                                                  x

                           -2/6
                                                    4/6
     VD                    2/6
                                                                                  x
                                                    -2/6
                                                                                      38
A         B                        MD      MD
                               C                                      E

                                           D

         2m           2m           2m                  4m




                                   (2)(4)/6 = 1.33
                                                                          4
                           2                         φD = θC+θE = 1
MD
                                     θC = 4/6        2/6 = θE
                                                                          x



              -1.33
                                                                              39
Or using equilibrium conditions:                 1
          A              B          Hinge             D
                                             C                               E


               2m                   2m           2m            4m
                                                                 1
                             VD                                        x
                                    4m                        VD
                  MD                                                 4m
                                                      MD
                                            RE                          RE
                              MD = 4RE                    MD = -(4-x)+4RE

                                                                             1
     RE                                               2/6

                                                                                 x

                             -2/6
                                                      8/6
     MD

                                                                                 x

                       -8/6
                                                                                     40
VCL
      A
                               C                      E

                    B                        D

                              VCL
          2m            2m              2m       4m




VCL
                                                          x

               -1                  -1




                                                              41
Or using equilibrium conditions:
          A            B     1                        D
                                        C                                 E


                  2m           2m                2m            4m
                        1          MB                                MB


           RA                  VCL               RA              VCL
                VCL = RA - 1                              VCL = RA
    RA     1


                                                                              x


     VCL
                                                                              x

                        -1                  -1

                                                                                  42
VCR
      A
                         C                        E

               B                     D

                              VCR
          2m       2m           2m           4m




                              1
                                     0.667
VCR            0.333
                                                      x




                                                          43
Or using equilibrium conditions:
           A             B           1                     D
                                             C                                 E


                 2m              2m                  2m               4m

                                                                1
  MC                                                 MC

           VCR                                            VCR
                 VCR = -RE           RE                         VCR = 1 -RE   RE


                                                                               1
     RE                                                    2/6=0.33

                                                                                   x

                             -2/6 = -0.333
                                                 1
                                                            0.667
     VCR                     0.333
                                                                                   x
                                                                                       44
A        B                 MC C MC        D        E


         2m                2m             2m       4m




MC
                                                            x
                       1

                  -2




                                                                45
Or using equilibrium conditions:
          A               B             1                     D
                                              C                                      E


                2m                     2m              2m                4m
                                                                    1
                                                              x'
  MC                                              MC
                     6m                                              6m
          VCR                                           VCR
                MC = 6RE                RE                    M C = 6 RA − x'   RE

                                                                                     1
     RE                                                       2/6=0.33

                                                                                         x

                              -2/6 = -0.333
     MC
                                                                                         x
                                   1

                              -2
                                                                                             46
Example 6-3

Construct the influence line for
         - the reaction at A and C
         - shear at D, E and F
         - the moment at D, E and F




                              Hinge
        A        D        B           E        C        F


            2m       2m       2m          2m       2m       2m




                                                                 47
SOLUTION




               D        B            E        C           F
A


 RA       2m       2m           2m       2m       2m          2m




      1                     1
RA
                                     0.5
                                                                        x

                                                   -0.5
                                                                   -1



                                                                            48
A        D        B        E                      F
                                                  C


                                         RC

         2m       2m       2m       2m            2m       2m


                                                                2
                                                       1.5
                                              1
                                0.5
RC                                                              x




                                                                    49
VD

     A                  B            E        C        F
                   D



                   VD
         2m        2m           2m       2m       2m       2m



VD            1             1
                   =




                                     0.5
                                                                x
         =




                                                       -0.5     -1




                                                                     50
VE

     A        D        B         E        C           F



                                 VE
         2m       2m       2m        2m       2m          2m


                                0.5
VE


                                 =
                            1
                                                               x
                           =



                                -0.5           -0.5
                                                               -1



                                                                    51
VF

     A        D        B        E        C             F



                                                       VF

         2m       2m       2m       2m       2m            2m




                                                  1




                                                       =
VF

                                                                x

                                             =

                                                                    52
A        D         B        E         C            F

         MD        MD


         2m       2m        2m        2m       2m           2m

                                                                 2
MD
                                                    1

                                                                 x
                   θD = 1
                                     -1
                       -2


                                                                     53
A        D        B ME              ME C
                                   E                        F




         2m       2m      2m           2m         2m            2m




                        (2)(2)/4 = 1
ME                                      φE = 1

                                                                     x
                        θB = 0.5       θC = 0.5
                                                       -1
                                                                     -2
                                                                          54
A        D        B                 C ME       ME
                                E               F




         2m       2m       2m       2m     2m       2m

MF

                                                             x
                                                    θF = 1

                                                             -2




                                                                  55
Example 6-4

Determine the maximum reaction at support B, the maximum shear at point C and
the maximum positive moment that can be developed
at point C on the beam shown due to
          - a single concentrate live load of 8000 N
          - a uniform live load of 3000 N/m
          - a beam weight (dead load) of 1000 N/m



       A                 C                 B

               4m                4m                 4m




                                                                                56
SOLUTION                                            8000 N
                         3000 N/m

                                                               1000 N/m
   A
                     C                      B
             4m             4m                      4m



  RB
                                                         1.5
                                        1
                     0.5
                                 0.5(12)(1.5) = 9
                                                                  x




           (RB)max          = (1000)(9) + (3000)(9) + (8000)(1.5)

                            = 48000 N = 48 kN

                                                                          57
8000 N
     3000 N/m                                   3000 N/m

                                                                    1000 N/m
 A
                          C                 B
        4m                         4m               4m

VC
                          0.5


                          0.5(4)(0.5) = 1
                                                                           x
      0.5(4)(-0.5) = -1                         0.5(4)(-0.5) = -1


                          -0.5                                      -0.5


          (VC)max         = (1000)(-2+1) + (3000)(-2) + (8000)(-0.5)

                          = -11000 N = 11 kN

                                                                               58
8000 N                   3000 N/m

                                                  1000 N/m
A
                        C                     B
        4m                         4m               4m

MC
                        2

                +(1/2)(8)(2) = 8
                                                                         x
                                                  (1/2)(4)(2) = 4


                                                                    -2


     (MC)max positive          = (8000)(2) + (3000)(8) + (8-4)(1000)

                               = 44000 N•m = 44 kN•m

                                                                             59

More Related Content

PDF
Chapter 6-influence lines for statically determinate structures
PPT
Moment Distribution Method
PDF
Determinate structures
PPTX
Slope deflection method
PPTX
Topic1_Method of Virtual Work Beams and Frames.pptx
PPTX
determinate and indeterminate structures
PPTX
Slope Deflection Method
PDF
Structure analysis assignment 7 determinate frame analysis
Chapter 6-influence lines for statically determinate structures
Moment Distribution Method
Determinate structures
Slope deflection method
Topic1_Method of Virtual Work Beams and Frames.pptx
determinate and indeterminate structures
Slope Deflection Method
Structure analysis assignment 7 determinate frame analysis

What's hot (20)

PPTX
Analysis of non sway frame portal frames by slopeand deflection method
PPT
SINGLY REINFORCED BEAM
PDF
Portal and cantilever method
PDF
stress distribution in soils
PDF
Design for flexure and shear (rectangular & square section)
PPT
Advanced Structural Analysis.ppt
PPT
Retaining walls
PPTX
Design of shallow foundation slide share
PDF
Influence lines for_indeterminate_beams_and_frames
PPTX
Moment Distribution Method SA-2
PDF
Moment distribution method
PPTX
Design of RCC Column footing
PDF
Yield line theory
PDF
Bridge construction (RC girder bridges)
PDF
Chapter 4-internal loadings developed in structural members
PDF
Module3 direct stiffness- rajesh sir
PDF
Design of combined footing ppt
PDF
Structural engineering ii
PPT
The Pushover Analysis from basics - Rahul Leslie
Analysis of non sway frame portal frames by slopeand deflection method
SINGLY REINFORCED BEAM
Portal and cantilever method
stress distribution in soils
Design for flexure and shear (rectangular & square section)
Advanced Structural Analysis.ppt
Retaining walls
Design of shallow foundation slide share
Influence lines for_indeterminate_beams_and_frames
Moment Distribution Method SA-2
Moment distribution method
Design of RCC Column footing
Yield line theory
Bridge construction (RC girder bridges)
Chapter 4-internal loadings developed in structural members
Module3 direct stiffness- rajesh sir
Design of combined footing ppt
Structural engineering ii
The Pushover Analysis from basics - Rahul Leslie
Ad

Viewers also liked (8)

PPTX
Influence line for structure analysis in civil engineering
PPTX
IL of Reaction,shear,moment for indeterminate structure
PPTX
Influence line diagram for model arch bridge
PPTX
Lecture 4 (cen 309) IUBAT
PPTX
Lecture notes in influence lines
PPTX
Influence line of reaction for determinate structure: determining maximum /mi...
PPT
Influence line for indeterminate structures
PPTX
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
Influence line for structure analysis in civil engineering
IL of Reaction,shear,moment for indeterminate structure
Influence line diagram for model arch bridge
Lecture 4 (cen 309) IUBAT
Lecture notes in influence lines
Influence line of reaction for determinate structure: determining maximum /mi...
Influence line for indeterminate structures
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
Ad

Similar to Influence Line of Beams And Determinate Structures (20)

PDF
Linear law
PDF
Sommari.docx
PDF
Ism et chapter_12
PDF
Ism et chapter_12
PDF
Emat 213 midterm 2 winter 2006
XLS
Concrete beam
PDF
Chapter 15
PDF
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
PDF
Chapter 17
PDF
Figures
PPS
Data envelopment analysis
DOCX
ระบบเลขฐานนี้ใช้ตัวเลข
DOCX
ระบบเลขฐานนี้ใช้ตัวเลข
PDF
Figures
PDF
Figures
PDF
Calculo y geometria analitica (larson hostetler-edwards) 8th ed - solutions m...
PDF
Chapter 07
DOCX
ใบความรู้ฟิสิกส์ เสดพร้อมส่ง แสงจ้าา
DOCX
ใบความรู้ฟิสิกส์
PDF
TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance ...
Linear law
Sommari.docx
Ism et chapter_12
Ism et chapter_12
Emat 213 midterm 2 winter 2006
Concrete beam
Chapter 15
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
Chapter 17
Figures
Data envelopment analysis
ระบบเลขฐานนี้ใช้ตัวเลข
ระบบเลขฐานนี้ใช้ตัวเลข
Figures
Figures
Calculo y geometria analitica (larson hostetler-edwards) 8th ed - solutions m...
Chapter 07
ใบความรู้ฟิสิกส์ เสดพร้อมส่ง แสงจ้าา
ใบความรู้ฟิสิกส์
TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance ...

Influence Line of Beams And Determinate Structures

  • 1. INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES ! Influence Lines for Beams ! Influence Lines for Floor Girders ! Influence Lines for Trusses ! Maximum Influence at a Point Due to a Series of Concentrated Loads ! Absolute Maximum Shear and Moment 1
  • 2. Influence Line Unit moving load A B 2
  • 3. Example 6-1 Construct the influence line for a) reaction at A and B b) shear at point C c) bending moment at point C d) shear before and after support B e) moment at point B of the beam in the figure below. C A B 4m 4m 4m 3
  • 4. SOLUTION • Reaction at A 1 x C A Ay By 8m 4m x Ay 0 1 1 + ΣMB = 0: − Ay (8) + 1(8 − x ) = 0, Ay = 1− x 4 0.5 8 8 0 Ay 12 -0.5 1 0.5 8m 12 m x 4m -0.5 4
  • 5. • Reaction at B 1 x C A Ay By 8m 4m x By 0 0 1 4 0.5 + ΣMA = 0: B y (8) − 1x = 0, By = x 8 8 1 12 1.5 By 1.5 1 0.5 x 4m 8m 12 m 5
  • 6. • Shear at C 0≤ x<4 4 < x ≤ 12 1 x C A Ay By 4m 4m 4m 1 x C 1 + ΣFy = 0: 1 − x − 1 − VC = 0 0≤ x≤4 A MC 8 1 1 Ay = 1− x VC = − x 8 VC 8 4m x C 1 4 < x ≤ 12 A MC + ΣFy = 0: 1 − x − VC = 0 1 8 Ay = 1− x 1 8 VC VC = 1− x 4m 8 6
  • 7. 0≤ x<4 4 < x ≤ 12 x VC 1 1 0 0 VC = − x x C 8 4- -0.5 A 4+ 0.5 1 VC = 1− x 8 0 8 Ay By 4m 4m 4m 12 -0.5 1 VC VC = 1− x 8 0.5 4m 8m 12 m x -0.5 -0.5 1 VC = − x 8 7
  • 8. • Bending moment at C 0≤ x<4 4 < x ≤ 12 1 x C A Ay By 4m 4m 4m 1 x C 1 0≤ x≤4 A MC + ΣMC = 0: M C + 1(4 − x) − (1 − x )(4) = 0 1 8 Ay = 1− x 1 8 VC MC = x 4m 2 x C 1 4 < x ≤ 12 A MC + ΣMC = 0: M C − (1 − x)( 4) = 0 1 8 Ay = 1− x 1 8 VC MC = 4 − x 4m 2 8
  • 9. 0≤ x<4 4 < x ≤ 12 x MC 1 1 0 0 x MC = x C 2 4 2 A 1 8 0 MC = 4 − x Ay By 2 12 -2 4m 4m 4m 1 MC = x 1 2 MC = 4 − x MC 2 2 8m 12 m x 4m -2 9
  • 10. Or using equilibrium conditions: • Reaction at A 1 x C A Ay By 8m 4m 1 + ΣMB = 0: − Ay (8) + 1(8 − x ) = 0, Ay = 1− x 8 Ay 1 0.5 8m 12 m x 4m -0.5 10
  • 11. • Reaction at B 1 x C A Ay By 8m 4m Ay + ΣFy = 0: Ay + B y − 1 = 0 1 0.5 B y = 1 − Ay 8m 12 m x 4m -0.5 By B y = 1 − Ay 1.5 1 0.5 x 4m 8m 12 m 11
  • 12. • Shear at C 0≤ x<4 4 < x ≤ 12 1 x C A Ay By 4m 4m 4m 1 x C + ΣFy = 0: Ay − 1 − VC = 0 0≤ x≤4 A MC 1 VC = Ay − 1 Ay = 1− x VC 8 4m x C 4 < x ≤ 12 A MC + ΣFy = 0: Ay − VC = 0 1 Ay = 1− x 8 VC VC = Ay 4m 12
  • 13. C A B 4m 4m 4m Ay 1 0.5 8m 12 m x 4m VC = Ay − 1 VC = Ay -0.5 VC 0.5 4m 8m 12 m x -0.5 -0.5 13
  • 14. • Bending moment at C 0≤ x<4 4 < x ≤ 12 1 x C A Ay By 4m 4m 4m 1 x C 0≤ x≤4 A MC + ΣMC = 0: Ay (4) + 1( 4 − x ) + M C = 0 1 Ay = 1− x VC M C = 4 Ay − (4 − x) 8 4m x C 4 < x ≤ 12 A MC + ΣMC = 0: − Ay (4) + M C = 0 1 Ay = 1− x M C = 4 Ay 8 VC 4m 14
  • 15. C A B 4m 4m 4m Ay 1 0.5 8m 12 m x 4m M C = 4 Ay − (4 − x) M C = 4 Ay -0.5 MC 2 8m 12 m x 4m -2 15
  • 16. • Shear before support B 1 x C A Ay By 4m 4m 4m 1 x MB MB 8m 8m Ay VB - Ay VB- VB- = Ay-1 VB- = Ay Ay 1 0.5 8m 12 m x VB- 4m -0.5 x -0.5 -1.0 -0.5 16
  • 17. • Shear after support B 1 x C A Ay By 4m 4m 4m 1 MB MB 4m 4m VB+ VB+ VB+ = 0 VB+ = 1 Ay 1 0.5 8m 12 m x 4m -0.5 VB+ 1 x 17
  • 18. • Moment at support B 1 x C A Ay By 4m 4m 4m 1 x MB MB 8m 8m Ay VB - Ay VB- MB = 8Ay-(8-x) MB = 8Ay Ay 1 0.5 8m 12 m x MB 4m -0.5 x 1 -4 18
  • 19. Influence Line for Beam • Reaction P=1 C A B x' L P=1 δy 1 δ y' sB = = δy = 1 L L C A B Ay By Ay (1) − 1(δ y ' ) + B y (0) = 0 Ay = δ y ' 19
  • 20. P=1 C A B x' L P=1 δ y' δy = 1 C A B δy 1 sA = = Ay L L By Ay (0) − 1(δ y ' ) + B y (1) = 0 By = δ y ' 20
  • 21. - Pinned Support A C B a b L B A RA RA 1 b L x 21
  • 22. - Fixed Support A B a b L A B RA RA 1 1 x 22
  • 23. P=1 • Shear A C B a b L VC P=1 1 δ y' sB = δy=1 δyR L A B δyL Ay 1 By sA = L VC Ay (0) + VC (δ yL ) + VC (δ yR ) − 1(δ y ' ) + B y (0) = 0 VC (δ yL + δ yR ) = δ y ' slopes : s A = sB δy=1 VC = δ y ' 23
  • 24. - Pinned Support A C B a b L VC A B VC 1 VC 1 Slope s B = L b 1 L x -a 1 L Slope s A = L -1 Slope at A = Slope at B 24
  • 25. - Fixed Support A B a b L VB A B VB VB 1 1 x 25
  • 26. • Bending Moment P=1 A C B a b L φ = θ A +θ B = 1 P=1 h MC MC δ y' A B h h Ay θA = θB = a b By Ay (0) + M C (θ A ) + M C (θ B ) + 1(δ y ' ) + B y (0) = 0 h h ( + ) =1 1 a b M C (θ A + θ B ) = δ y ' h( a + b) ab = 1, h= ab ( a + b) M C = δ y' 26
  • 27. - Pinned Support A C B a b L Hinge A B MC MC MC a b φC = θA + θB = 1 ab a+b x b θA = a L θA = L 27
  • 28. - Fixed Support A B a b L A B MC MC MB x 1 -b 28
  • 29. • General Shear C D E B F G H A L/4 L/4 L/4 L/4 L/4 L/4 L/4 L VC 3/4 1 x VD -1/4 2/4 1 x VE -2/4 1/4 x 1 VBL -3/4 x -1 29
  • 30. C D E B F G H A L/4 L/4 L/4 L/4 L/4 L/4 L/4 VBL L x -1 VBR 1 x VF 1 x VG 1 x 30
  • 31. • General Bending Moment C D E B F G H A L/4 L/4 L/4 L/4 L/4 L/4 L/4 L MC 3L/16 φ = sA + sB = 1 x θA = 3/4 θB = 1/4 MD 4L/16 φ = sA + sB = 1 x θA = 1/2 θB = 1/2 ME 3L/16 φ = θA + θB = 1 x θA = 1/4 θB = 3/4 31
  • 32. C D E B F G H A L/4 L/4 L/4 L/4 L/4 L/4 L/4 L MB x 1 3L/4 MF x 1 2L/4 MG x 1 L/4 32
  • 33. Example 6-2 Construct the influence line for - the reaction at A, C and E - the shear at D - the moment at D - shear before and after support C - moment at point C A B Hinge D C E 2m 2m 2m 4m 33
  • 34. SOLUTION B C D E A 2m 2m 2m 4m RA RA 1 x 34
  • 35. B C D E A 2m 2m 2m 4m RC 8/6 1 RC 4/6 x 35
  • 36. A B D C E 2m 2m 2m 4m RE 1 RE 2/6 x -2/6 36
  • 37. VD A B D C E VD 2m 2m 2m 4m 1 4/6 2/6 = VD 1 x sE = 1/6 = sC = 1/6 -1 -2/6 • sE = sC 37
  • 38. Or using equilibrium conditions: 1 A B Hinge D C E 2m 2m 2m 4m 1 VD x 4m VD MD 4m MD RE RE VD = -RE VD = 1 -RE 1 RE 2/6 x -2/6 4/6 VD 2/6 x -2/6 38
  • 39. A B MD MD C E D 2m 2m 2m 4m (2)(4)/6 = 1.33 4 2 φD = θC+θE = 1 MD θC = 4/6 2/6 = θE x -1.33 39
  • 40. Or using equilibrium conditions: 1 A B Hinge D C E 2m 2m 2m 4m 1 VD x 4m VD MD 4m MD RE RE MD = 4RE MD = -(4-x)+4RE 1 RE 2/6 x -2/6 8/6 MD x -8/6 40
  • 41. VCL A C E B D VCL 2m 2m 2m 4m VCL x -1 -1 41
  • 42. Or using equilibrium conditions: A B 1 D C E 2m 2m 2m 4m 1 MB MB RA VCL RA VCL VCL = RA - 1 VCL = RA RA 1 x VCL x -1 -1 42
  • 43. VCR A C E B D VCR 2m 2m 2m 4m 1 0.667 VCR 0.333 x 43
  • 44. Or using equilibrium conditions: A B 1 D C E 2m 2m 2m 4m 1 MC MC VCR VCR VCR = -RE RE VCR = 1 -RE RE 1 RE 2/6=0.33 x -2/6 = -0.333 1 0.667 VCR 0.333 x 44
  • 45. A B MC C MC D E 2m 2m 2m 4m MC x 1 -2 45
  • 46. Or using equilibrium conditions: A B 1 D C E 2m 2m 2m 4m 1 x' MC MC 6m 6m VCR VCR MC = 6RE RE M C = 6 RA − x' RE 1 RE 2/6=0.33 x -2/6 = -0.333 MC x 1 -2 46
  • 47. Example 6-3 Construct the influence line for - the reaction at A and C - shear at D, E and F - the moment at D, E and F Hinge A D B E C F 2m 2m 2m 2m 2m 2m 47
  • 48. SOLUTION D B E C F A RA 2m 2m 2m 2m 2m 2m 1 1 RA 0.5 x -0.5 -1 48
  • 49. A D B E F C RC 2m 2m 2m 2m 2m 2m 2 1.5 1 0.5 RC x 49
  • 50. VD A B E C F D VD 2m 2m 2m 2m 2m 2m VD 1 1 = 0.5 x = -0.5 -1 50
  • 51. VE A D B E C F VE 2m 2m 2m 2m 2m 2m 0.5 VE = 1 x = -0.5 -0.5 -1 51
  • 52. VF A D B E C F VF 2m 2m 2m 2m 2m 2m 1 = VF x = 52
  • 53. A D B E C F MD MD 2m 2m 2m 2m 2m 2m 2 MD 1 x θD = 1 -1 -2 53
  • 54. A D B ME ME C E F 2m 2m 2m 2m 2m 2m (2)(2)/4 = 1 ME φE = 1 x θB = 0.5 θC = 0.5 -1 -2 54
  • 55. A D B C ME ME E F 2m 2m 2m 2m 2m 2m MF x θF = 1 -2 55
  • 56. Example 6-4 Determine the maximum reaction at support B, the maximum shear at point C and the maximum positive moment that can be developed at point C on the beam shown due to - a single concentrate live load of 8000 N - a uniform live load of 3000 N/m - a beam weight (dead load) of 1000 N/m A C B 4m 4m 4m 56
  • 57. SOLUTION 8000 N 3000 N/m 1000 N/m A C B 4m 4m 4m RB 1.5 1 0.5 0.5(12)(1.5) = 9 x (RB)max = (1000)(9) + (3000)(9) + (8000)(1.5) = 48000 N = 48 kN 57
  • 58. 8000 N 3000 N/m 3000 N/m 1000 N/m A C B 4m 4m 4m VC 0.5 0.5(4)(0.5) = 1 x 0.5(4)(-0.5) = -1 0.5(4)(-0.5) = -1 -0.5 -0.5 (VC)max = (1000)(-2+1) + (3000)(-2) + (8000)(-0.5) = -11000 N = 11 kN 58
  • 59. 8000 N 3000 N/m 1000 N/m A C B 4m 4m 4m MC 2 +(1/2)(8)(2) = 8 x (1/2)(4)(2) = 4 -2 (MC)max positive = (8000)(2) + (3000)(8) + (8-4)(1000) = 44000 N•m = 44 kN•m 59