The C Standards Committee created the Embedded C as a collection of language extensions for the C programming language to address commonality concerns that emerge with C extensions for various embedded systems. It's used to create microcontroller programming software Fixed-point arithmetic, named address spaces, and essential I/O hardware addressing are all characteristics not accessible in normal C. In simple words, Embedded C is a set of language extensions for the C programming language by the C Standards Committee to address commonality issues that exist between C extensions for different embedded systems.
C is a general-purpose programming language that is frequently used to create desktop programs of all types. Dennis Ritchie created it to design the operating system as a system programming language. Low-level memory access, a basic set of keywords, and a clean style are all properties of the C programming language that make it suited for system programming such as OS or compiler development. In its natural state, it employs a native platform development strategy, meaning that the application's development is platform-dependent and limited to a single platform. Embedded C is a microcontroller-based programming language that is an extension of the C language. I/O Hardware Addressing, fixed-point arithmetic operations, accessing address spaces, and other features distinguish the Embedded C language from traditional C programming. The Basic Structures of an Embedded C Program are organized in five tiers.
Embedded C is unarguably the most popular languages among Embedded Programmers for programming Embedded Systems. There are many popular programming languages like Assembly, BASIC, C++, Python etc. that are often used for developing Embedded Systems but Embedded C remains popular due to its efficiency, less development time and portability.
An Embedded System can be best described as a system which has both the hardware and software and is designed to do a specific task. Some examples of the embedded systems in a modern-age car are Anti-lock Braking System (ABS), Temperature Monitoring System, Automatic Climate Control, Tire Pressure Monitoring System, Engine Oil Level Monitor, etc.
Embedded Systems consists of both hardware and software. If we consider a simple Embedded System, the primary hardware module is the Processor. The Processor is the heart of the Embedded System and it can be anything like a Microprocessor, Microcontroller, DSP, CPLD (Complex Programmable Logic Device) or an FPGA (Field Programmable Gated Array). All these devices have one thing in common: they are programmable i.e., we can write a program (which is the software part of the Embedded System) to define how the device actually works.
Embedded software/program allows hardware to monitor external events (Inputs / Sensors) and control external devices (outputs) accordingly. During this process, the program for an embedded system may have to directly manipulate the i