This document provides an introduction to deep reinforcement learning. It begins with an overview of reinforcement learning and its key characteristics such as using reward signals rather than supervision and sequential decision making. The document then covers the formulation of reinforcement learning problems using Markov decision processes and the typical components of an RL agent including policies, value functions, and models. It discusses popular RL algorithms like Q-learning, deep Q-networks, and policy gradient methods. The document concludes by outlining some potential applications of deep reinforcement learning and recommending further educational resources.