SlideShare a Scribd company logo
Discrete Mathematics
CSC 1700-4
Contact Information
Sherzod Turaev
Assistant Professor, Dr.
Department of Computer Science
Kulliyyah of Information & Communication Technology
Office: C3‐21
Email: sherzod@iium.edu.my
Web: www.sherzod.info
2© S. Turaev, CSC 1700 Discrete Mathematics
Classes
Lectures
 Time: 11.30 AM – 12.50 PM
 Date: Tuesday & Thursday
 Location: Level 4C, LR19
Tutorial Classes
 Time: 17.00 – 18.50 PM
 Date:  Thursday
 Location: Level 1C, LR1
3© S. Turaev, CSC 1700 Discrete Mathematics
Required Reference
Kolman, Busby, Ross
Discrete Mathematical 
Structures
6/E.
NJ: Pearson Prentice 
Hall
2013 (2009)
4© S. Turaev, CSC 1700 Discrete Mathematics
Recommended References
1. Rosen, K. (2013) Discrete Mathematics and Its 
Applications. 7/E. NY: McGraw Hill.
2. Epp, S. (2011) Discrete Mathematics with 
Applications. 4/E. Brooks/Cole Cengage 
Learning.
3. Johnsonbaugh, R. (2009) Discrete 
Mathematics. 6/E. NJ: Pearson Prentice Hall.
5© S. Turaev, CSC 1700 Discrete Mathematics
i‐Taleem System
http://italeem.iium.edu.my/
• Lecture Slides/Notes
• Home assignments
• Assessment Results
• Announcements, Discussions, Q&A, etc.
6© S. Turaev, CSC 1700 Discrete Mathematics
Course Assessments & Marking
7© S. Turaev, CSC 1700 Discrete Mathematics
METHOD MARKING (%)
Home assignments (5) 10
Quizzes (3) 30
Mid‐term examination 20
Final examination 40
Course Outline
Week Topics
1 Fundamentals
Sets and subsets. Operations on sets. 
Sequence. Properties of Integers. Matrices.
2‐3 Logic
Propositions and Logical operations. 
Conditional statements. Methods of proof. 
Mathematical induction.
8© S. Turaev, CSC 1700 Discrete Mathematics
Course Outline
Week Topics
4 Counting
Permutations. Combinations. Pigeonhole 
principle. Elements of probability. 
Recurrence relations. 
9© S. Turaev, CSC 1700 Discrete Mathematics
Course Outline
Week Topics
5‐6 Relations and Digraphs
Product sets and partitions. Relations and 
digraphs. Paths in relations and digraphs. 
Properties of relations. Equivalence 
relations. 
Data structures for relations and digraphs. 
Operations on relations. Transitive closure 
and Warshall’s algorithm.
10© S. Turaev, CSC 1700 Discrete Mathematics
Course Outline
11© S. Turaev, CSC 1700 Discrete Mathematics
Week Topics
7 Functions
Functions. Functions for computer science. 
Growth of functions. Permutation functions. 
8‐9 Order Relations and Structures 
Partially ordered sets. Lattices. Finite 
Boolean algebras. Functions of Boolean 
algebras. Circuit design.
Course Outline
12© S. Turaev, CSC 1700 Discrete Mathematics
Week Topics
10 Trees
Trees. Labeled trees. Tree searching. 
Undirected trees. Minimal spanning trees.
11‐12 Topics in Graph Theory 
Graphs. Euler paths and circuits. Transport 
networks. Matching problems. Coloring 
graphs.
Course Outline
13© S. Turaev, CSC 1700 Discrete Mathematics
Week Topics
13 Semigroups and Groups 
Binary operations. Semigroups. Products 
and quotients of semigroups. Groups. 
Products and quotients of groups. Other 
mathematical structures.
14 Groups and Coding
Coding of binary information and error 
detection. Decoding and error correction. 
Public key cryptography. 
Important Notes
! Attendance is compulsory (University Regulation)
! University dress code
! No mobiles/notes/tabs… (power off or mute mode)
! No late homework will be accepted. No exceptions
! No make‐up exams/quizzes will be given
! Do not be late
14© S. Turaev, CSC 1700 Discrete Mathematics
INTRODUCTION
What is Discrete Mathematics?
 Discrete Mathematics is the part of Mathematics 
devoted to the study of discrete (as opposed to 
continuous) objects.
 Examples of discrete objects: integers, steps taken by a 
computer program, distinct paths to travel from point 
A to point B on a map along a road network.
 A course in discrete mathematics provides the 
mathematical background needed for all subsequent 
courses in computer science.
16© S. Turaev, CSC 1700 Discrete Mathematics
Discrete Mathematics is a Gateway
Topics in discrete mathematics will be important in many 
courses that you will take in the future:
 Computer Architecture, 
 Data Structures and Algorithms, 
 Programming Languages and Compilers, 
 Computer Security, 
 Databases, 
 Artificial Intelligence, 
 Networking, 
 Theory of Computation, …
17© S. Turaev, CSC 1700 Discrete Mathematics
Problems of Discrete Mathematics
 How many ways can a password be chosen following 
specific rules?
 How many valid Internet addresses are there?
 What is the probability of winning a tournament?
 Is there a link between two computers in a network?
 How can I identify spam email messages?
 How can I encrypt a message so that no unintended 
recipient can read it?
18© S. Turaev, CSC 1700 Discrete Mathematics
Problems of Discrete Mathematics
 How can we build a circuit that adds two integers?
 What is the shortest path between two cities using a 
transportation system?
 How can we represent English sentences so that a 
computer can reason with them?
 How can we prove that there are infinitely many prime 
numbers?
 How can a list of integers be sorted so that the integers 
are in increasing order?
19© S. Turaev, CSC 1700 Discrete Mathematics
Goals of Discrete Mathematics Course
Discrete Structures:
Abstract mathematical structures that represent 
objects and the relationships between them. Examples 
are sets, strings, sequences, permutations, relations, 
graphs, trees, and finite state machines.
Combinatorial Analysis:
Techniques for counting objects of different kinds.
Mathematical Reasoning:
Ability to read, understand, and construct 
mathematical arguments and proofs.
20© S. Turaev, CSC 1700 Discrete Mathematics
Goals of Discrete Mathematics Course
Algorithmic Thinking:
 One way to solve many problems is to specify an 
algorithm.
 An algorithm is a sequence of steps that can be 
followed to solve any instance of a particular 
problem.
 Algorithmic thinking involves specifying algorithms, 
analyzing the memory and time required by an 
execution of the algorithm, and verifying that the 
algorithm will produce the correct answer.
21© S. Turaev, CSC 1700 Discrete Mathematics
Goals of Discrete Mathematics Course
Applications and Modeling:
 It is important to appreciate and understand the 
wide range of applications of the topics in discrete 
mathematics and develop the ability to develop 
new models in various domains.
 Concepts from discrete mathematics have not only 
been used to address problems in computing, but 
have been applied to solve problems in many areas 
such as chemistry, biology, linguistics, geography, 
business, etc.
22© S. Turaev, CSC 1700 Discrete Mathematics
FUNDAMENTALS
Sets and Subsets
Definition: A set is any well‐defined collection of objects, 
called the elements or members of the set.
Examples:
 the collection of computers in the Lab;
 the collection of students in IIUM.
Well‐defined: it is possible to decide if a given object 
belongs to the collection or not.
The description of a set: to list the elements of the set 
between braces:
24© S. Turaev, CSC 1700 Discrete Mathematics
Sets
Notes:
 the listing order of the elements is not important:
 the repetition of the elements can be ignored:
Notations:
 uppercase letters,  denote sets
 lowercase letters,  denote the elements 
of sets
25© S. Turaev, CSC 1700 Discrete Mathematics
Sets
Notations:
 :  is an element of  .
 :  is not an element of  .
Example: 


26© S. Turaev, CSC 1700 Discrete Mathematics
Sets
Q: how to describe a set if it is impossible or inconvenient
to list its elements?
A: define a set by specifying a property that the elements 
of the set have in common.
 “the set of all  such that  ”
 denotes a statement concerning to 
Example: ?
27© S. Turaev, CSC 1700 Discrete Mathematics
Sets





 The empty set, denoted by  or  , has no elements 
28© S. Turaev, CSC 1700 Discrete Mathematics
Empty Set
Exercise: Which of the following sets are the empty set?
1.
2.
3.
4.
29© S. Turaev, CSC 1700 Discrete Mathematics
Sets
Definition: Two sets  and  are equal if they have the 
same elements, we write  . 
Example: 


30© S. Turaev, CSC 1700 Discrete Mathematics
Subsets
Definition: If every element of  is also an element of  , 
then we say that  is a subset of  , and we write  . 
• Venn diagrams show relationships between sets.
Example:  ,  ,
Example:  ,  , 
Example:  ,  Q:    ?       ?
• A “universal set”  contains all objects for which the 
discussion is meaningful.
31© S. Turaev, CSC 1700 Discrete Mathematics
Subsets
Definition: A set  is called finite if it has  distinct
elements, and  is called the cardinality of  , and is 
denoted by  . 
Definition: A set that is not finite is called infinite.
Definition: The set of all subsets of  is called the power 
set of  , and is denoted by  or  . 
Example: Let 
32© S. Turaev, CSC 1700 Discrete Mathematics
Subsets
Exercise: Let  . Identify each 
of the following is true or false.
1.
2.
3.
4.
33© S. Turaev, CSC 1700 Discrete Mathematics
Operations on Sets
Definition: If  and  are sets, we define their union as 
the set consisting of all elements that belong to  or
and denote it by  . 
Example: Let  and  .
• Venn diagram?
34© S. Turaev, CSC 1700 Discrete Mathematics
Operations on Sets
Definition: If  and  are sets, we define their 
intersection as the set consisting of all elements that 
belong to both and  and denote it by  . 
Example: Let  and  .
Example: Let  and  .
• Venn diagram?
35© S. Turaev, CSC 1700 Discrete Mathematics
Operations on Sets


 The union of 
 The intersection of 
36© S. Turaev, CSC 1700 Discrete Mathematics
Operations on Sets
Definition: If  and  are sets, we define the 
complement of  w.r.t.  (or the difference) as the set 
consisting of all elements that belong to  but not to 
and denote it by  (or  ). 
Example: Let  and  .
• Venn diagram?
37© S. Turaev, CSC 1700 Discrete Mathematics
Operations on Sets
Definition: If  is a universal set containing  ,  is 
called the complement of  and is denoted by  . 
Example: Let  and  .
• Venn diagram?
38© S. Turaev, CSC 1700 Discrete Mathematics
Operations on Sets
Definition: If  and  are sets, we define the symmetric 
difference as the set consisting of all elements that 
belong to  or to  , but not to both  and  , and denote 
it by  . 
Example: Let  and  .
• Venn diagram?
39© S. Turaev, CSC 1700 Discrete Mathematics
Algebraic Properties
Commutative properties:


Associative properties:


Distributive properties:


40© S. Turaev, CSC 1700 Discrete Mathematics
Algebraic Properties
Idempotent properties:


Properties of a universal set:


Properties of the empty set:


41© S. Turaev, CSC 1700 Discrete Mathematics
Algebraic Properties
Properties of the complement:






42© S. Turaev, CSC 1700 Discrete Mathematics
Exercise
Let  ,  , 
,  , 
and  . Compute:
1.  2.  3. 
4.  5.  6. 
7.  8.  9. 
43© S. Turaev, CSC 1700 Discrete Mathematics
The Addition Principle
Theorem (addition principle): If   and  are finite sets, 
then 
Example: Let  and 
Theorem: If   and  are finite sets, then 
44© S. Turaev, CSC 1700 Discrete Mathematics
Exercise
In a survey of 260 college students, the following date were 
obtained:
• 64 had taken MATH, 
• 94 had taken CS, 
• 58 had taken IT, 
• 28 had taken both MATH and IT, 
• 26 had taken both MATH and CS
• 22 had taken both CS and IT
• 14 had taken all three courses
How many students surveyed had taken none of the three courses?
45© S. Turaev, CSC 1700 Discrete Mathematics
Sequences
Definition: A sequence is a list of objects arranged in a 
definite order: a first element, a second element, and so 
on.
 If the list stops after  steps, then it is finite; if 
does not stop in any  , then it is infinite.
Example:
 (finite)
 (infinite)
46© S. Turaev, CSC 1700 Discrete Mathematics
Sequences
Sequences can be described by formulas:
 recursive formula: refers to previous terms to 
define the next term
 explicit formula: describes a term using only its 
position number.
47© S. Turaev, CSC 1700 Discrete Mathematics
Sequences
Example: define recursive formulas for


Example: write explicit formulas for


48© S. Turaev, CSC 1700 Discrete Mathematics

More Related Content

PPT
PPT of Improper Integrals IMPROPER INTEGRAL
PDF
A study on number theory and its applications
PPTX
logic and set theory
PPT
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
PDF
Chapter 2: Relations
PPTX
CMSC 56 | Lecture 1: Propositional Logic
PDF
Math induction principle (slides)
PPT
Integration and its basic rules and function.
PPT of Improper Integrals IMPROPER INTEGRAL
A study on number theory and its applications
logic and set theory
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Chapter 2: Relations
CMSC 56 | Lecture 1: Propositional Logic
Math induction principle (slides)
Integration and its basic rules and function.

What's hot (20)

PPTX
Topological sort
PDF
Recurrence relations
PPT
Graph theory
PPTX
7.5 graphing square root and cube root functions
PPS
SET THEORY
PPTX
Mathematical analysis
PPTX
Logic simplification sop and pos forms
PDF
Basic Logic Gates with Truth Tables.pdf
PPT
Branch and bound
PDF
COMPILER DESIGN- Syntax Directed Translation
PDF
Kmap..(karnaugh map)
PPTX
Complex Numbers
PDF
Introduction to Graph Theory
PPTX
Type Theory and Practical Application
PDF
Time and Space Complexity
PPT
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
PPTX
TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
PPTX
Real life use of Discrete Mathematics and Digital electronics.
PPTX
Mathematical induction and divisibility rules
PPTX
Linear algebra and vector analysis presentation
Topological sort
Recurrence relations
Graph theory
7.5 graphing square root and cube root functions
SET THEORY
Mathematical analysis
Logic simplification sop and pos forms
Basic Logic Gates with Truth Tables.pdf
Branch and bound
COMPILER DESIGN- Syntax Directed Translation
Kmap..(karnaugh map)
Complex Numbers
Introduction to Graph Theory
Type Theory and Practical Application
Time and Space Complexity
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
Real life use of Discrete Mathematics and Digital electronics.
Mathematical induction and divisibility rules
Linear algebra and vector analysis presentation
Ad

Similar to Introduction fundamentals sets and sequences (20)

PDF
Introduction fundamentals sets and sequences (notes)
PPTX
Lecture1_Introduction.pptx by doctor ahikisKye Emmanuel
PPTX
Lesson 1 - Chapter0_Introductory Lecture.pptx
PPTX
Applications of Discrete Structures
PPTX
Chapter0.pptx
PPTX
Lection 1.pptx
PPTX
DisMath-lecture-1-Introduction-to-Discrete-Maths-08032022-114934am.pptx
PPTX
Application of Discrete Mathematics in CSE
PDF
Mat1830 notes2014
PPT
DS Lecture-1 about discrete structure .ppt
PDF
SMIU Lecture #1 & 2 Introduction to Discrete Structure and Truth Table.pdf
DOCX
sample course outline in discrete mathematics.docx
PDF
set 1.pdf
PPTX
Dms introduction Sharmila Chidaravalli
PPTX
Discrete Mathematics Course Outline
DOCX
Class7 converted
PPT
lecture07 dicrete mathematics relation .ppt
PPTX
Business mathematics is a very powerful tools and analytic process that resul...
DOC
Hand out dm
PDF
Discrete Structured Mathematics Subject COSC 50A
Introduction fundamentals sets and sequences (notes)
Lecture1_Introduction.pptx by doctor ahikisKye Emmanuel
Lesson 1 - Chapter0_Introductory Lecture.pptx
Applications of Discrete Structures
Chapter0.pptx
Lection 1.pptx
DisMath-lecture-1-Introduction-to-Discrete-Maths-08032022-114934am.pptx
Application of Discrete Mathematics in CSE
Mat1830 notes2014
DS Lecture-1 about discrete structure .ppt
SMIU Lecture #1 & 2 Introduction to Discrete Structure and Truth Table.pdf
sample course outline in discrete mathematics.docx
set 1.pdf
Dms introduction Sharmila Chidaravalli
Discrete Mathematics Course Outline
Class7 converted
lecture07 dicrete mathematics relation .ppt
Business mathematics is a very powerful tools and analytic process that resul...
Hand out dm
Discrete Structured Mathematics Subject COSC 50A
Ad

More from IIUM (20)

PDF
How to use_000webhost
PDF
Chapter 2
PDF
Chapter 1
PDF
Kreydle internship-multimedia
PDF
03phpbldgblock
PDF
Chap2 practice key
PDF
Group p1
PDF
Tutorial import n auto pilot blogspot friendly seo
PDF
Visual sceneperception encycloperception-sage-oliva2009
PDF
03 the htm_lforms
PDF
Exercise on algo analysis answer
PDF
Redo midterm
PDF
Heaps
PDF
Report format
PDF
Edpuzzle guidelines
PDF
Final Exam Paper
PDF
Final Exam Paper
PDF
Group assignment 1 s21516
PDF
Avl tree-rotations
PDF
Week12 graph
How to use_000webhost
Chapter 2
Chapter 1
Kreydle internship-multimedia
03phpbldgblock
Chap2 practice key
Group p1
Tutorial import n auto pilot blogspot friendly seo
Visual sceneperception encycloperception-sage-oliva2009
03 the htm_lforms
Exercise on algo analysis answer
Redo midterm
Heaps
Report format
Edpuzzle guidelines
Final Exam Paper
Final Exam Paper
Group assignment 1 s21516
Avl tree-rotations
Week12 graph

Recently uploaded (20)

PPTX
Cell Types and Its function , kingdom of life
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Complications of Minimal Access Surgery at WLH
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Institutional Correction lecture only . . .
PDF
Pre independence Education in Inndia.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
GDM (1) (1).pptx small presentation for students
PDF
RMMM.pdf make it easy to upload and study
Cell Types and Its function , kingdom of life
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Final Presentation General Medicine 03-08-2024.pptx
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Complications of Minimal Access Surgery at WLH
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Basic Mud Logging Guide for educational purpose
TR - Agricultural Crops Production NC III.pdf
Institutional Correction lecture only . . .
Pre independence Education in Inndia.pdf
O7-L3 Supply Chain Operations - ICLT Program
Microbial diseases, their pathogenesis and prophylaxis
PPH.pptx obstetrics and gynecology in nursing
2.FourierTransform-ShortQuestionswithAnswers.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
GDM (1) (1).pptx small presentation for students
RMMM.pdf make it easy to upload and study

Introduction fundamentals sets and sequences