SlideShare a Scribd company logo
3
Most read
8
Most read
13
Most read
Introduction to
CMOS VLSI
Design
Design for Low Power
CMOS VLSI Design
Design for Low Power Slide 2
Outline
 Power and Energy
 Dynamic Power
 Static Power
 Low Power Design
CMOS VLSI Design
Design for Low Power Slide 3
Power and Energy
 Power is drawn from a voltage source attached to
the VDD pin(s) of a chip.
 Instantaneous Power:
 Energy:
 Average Power:
( ) ( )
DD DD
P t i t V

0 0
( ) ( )
T T
DD DD
E P t dt i t V dt
 
 
avg
0
1
( )
T
DD DD
E
P i t V dt
T T
  
CMOS VLSI Design
Design for Low Power Slide 4
Dynamic Power
 Dynamic power is required to charge and discharge
load capacitances when transistors switch.
 One cycle involves a rising and falling output.
 On rising output, charge Q = CVDD is required
 On falling output, charge is dumped to GND
 This repeats Tfsw times
over an interval of T
C
fsw
iDD
(t)
VDD
CMOS VLSI Design
Design for Low Power Slide 5
Dynamic Power Cont.
C
fsw
iDD
(t)
VDD
dynamic
P 
CMOS VLSI Design
Design for Low Power Slide 6
Dynamic Power Cont.
C
fsw
iDD
(t)
VDD
 
dynamic
0
0
sw
2
sw
1
( )
( )
T
DD DD
T
DD
DD
DD
DD
DD
P i t V dt
T
V
i t dt
T
V
Tf CV
T
CV f






CMOS VLSI Design
Design for Low Power Slide 7
Activity Factor
 Suppose the system clock frequency = f
 Let fsw = af, where a = activity factor
– If the signal is a clock, a = 1
– If the signal switches once per cycle, a = ½
– Dynamic gates:
• Switch either 0 or 2 times per cycle, a = ½
– Static gates:
• Depends on design, but typically a = 0.1
 Dynamic power:
2
dynamic DD
P CV f
a

CMOS VLSI Design
Design for Low Power Slide 8
Short Circuit Current
 When transistors switch, both nMOS and pMOS
networks may be momentarily ON at once
 Leads to a blip of “short circuit” current.
 < 10% of dynamic power if rise/fall times are
comparable for input and output
CMOS VLSI Design
Design for Low Power Slide 9
Example
 200 Mtransistor chip
– 20M logic transistors
• Average width: 12 l
– 180M memory transistors
• Average width: 4 l
– 1.2 V 100 nm process
– Cg = 2 fF/mm
CMOS VLSI Design
Design for Low Power Slide 10
Dynamic Example
 Static CMOS logic gates: activity factor = 0.1
 Memory arrays: activity factor = 0.05 (many banks!)
 Estimate dynamic power consumption per MHz.
Neglect wire capacitance and short-circuit current.
CMOS VLSI Design
Design for Low Power Slide 11
Dynamic Example
 Static CMOS logic gates: activity factor = 0.1
 Memory arrays: activity factor = 0.05 (many banks!)
 Estimate dynamic power consumption per MHz.
Neglect wire capacitance.
    
    
 
6
logic
6
mem
2
dynamic logic mem
20 10 12 0.05 / 2 / 24
180 10 4 0.05 / 2 / 72
0.1 0.05 1.2 8.6 mW/MHz
C m fF m nF
C m fF m nF
P C C f
l m l m
l m l m
  
  
 
  
 
CMOS VLSI Design
Design for Low Power Slide 12
Static Power
 Static power is consumed even when chip is
quiescent.
– Ratioed circuits burn power in fight between ON
transistors
– Leakage draws power from nominally OFF
devices
0 1
gs t ds
T T
V V V
nv v
ds ds
I I e e
 
 
 
 
 
 
 
0
t t ds s sb s
V V V V
   
    
CMOS VLSI Design
Design for Low Power Slide 13
Ratio Example
 The chip contains a 32 word x 48 bit ROM
– Uses pseudo-nMOS decoder and bitline pullups
– On average, one wordline and 24 bitlines are high
 Find static power drawn by the ROM
– b = 75 mA/V2
– Vtp = -0.4V
CMOS VLSI Design
Design for Low Power Slide 14
Ratio Example
 The chip contains a 32 word x 48 bit ROM
– Uses pseudo-nMOS decoder and bitline pullups
– On average, one wordline and 24 bitlines are high
 Find static power drawn by the ROM
– b = 75 mA/V2
– Vtp = -0.4V
 Solution:  
2
pull-up
pull-up pull-up
static pull-up
24μA
2
29μW
(31 24) 1.6 mW
DD tp
DD
V V
I
P V I
P P
b

 
 
  
CMOS VLSI Design
Design for Low Power Slide 15
Leakage Example
 The process has two threshold voltages and two
oxide thicknesses.
 Subthreshold leakage:
– 20 nA/mm for low Vt
– 0.02 nA/mm for high Vt
 Gate leakage:
– 3 nA/mm for thin oxide
– 0.002 nA/mm for thick oxide
 Memories use low-leakage transistors everywhere
 Gates use low-leakage transistors on 80% of logic
CMOS VLSI Design
Design for Low Power Slide 16
Leakage Example Cont.
 Estimate static power:
CMOS VLSI Design
Design for Low Power Slide 17
Leakage Example Cont.
 Estimate static power:
– High leakage:
– Low leakage:
    
6 6
20 10 0.2 12 0.05 / 2.4 10
m m
l m l m
  
    
   
6
6 6
20 10 0.8 12 0.05 /
180 10 4 0.05 / 45.6 10
m
m m
l m l
l m l m
 
  
     
     
6
6
2.4 10 20 / / 2 3 /
45.6 10 0.02 / / 2 0.002 /
32
38
static
static static DD
I m nA m nA m
m nA m nA m
mA
P I V mW
m m m
m m m
   
 
 
 
 
 

 
CMOS VLSI Design
Design for Low Power Slide 18
Leakage Example Cont.
 Estimate static power:
– High leakage:
– Low leakage:
 If no low leakage devices, Pstatic = 749 mW (!)
    
6 6
20 10 0.2 12 0.05 / 2.4 10
m m
l m l m
  
    
   
6
6 6
20 10 0.8 12 0.05 /
180 10 4 0.05 / 45.6 10
m
m m
l m l
l m l m
 
  
     
     
6
6
2.4 10 20 / / 2 3 /
45.6 10 0.02 / / 2 0.002 /
32
38
static
static static DD
I m nA m nA m
m nA m nA m
mA
P I V mW
m m m
m m m
   
 
 
 
 
 

 
CMOS VLSI Design
Design for Low Power Slide 19
Low Power Design
 Reduce dynamic power
– a:
– C:
– VDD:
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 20
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C:
– VDD:
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 21
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD:
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 22
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD: lowest suitable voltage
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 23
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD: lowest suitable voltage
– f: lowest suitable frequency
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 24
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD: lowest suitable voltage
– f: lowest suitable frequency
 Reduce static power
– Selectively use ratioed circuits
– Selectively use low Vt devices
– Leakage reduction:
stacked devices, body bias, low temperature

More Related Content

PPT
Power
PPT
Lecture 9.ppt
PPT
Introduction to CMOS VLSI design Stick diagram.ppt
PPT
lecture 1 layout presentation of very large scale integration in digital elec...
PPT
RobertPresentation.ppt
PPT
Lecture 10.ppt
PPT
Dc Transfer characteristics in VLSI design
PPT
lecture 5_DC and Transient Response_VLSI.ppt
Power
Lecture 9.ppt
Introduction to CMOS VLSI design Stick diagram.ppt
lecture 1 layout presentation of very large scale integration in digital elec...
RobertPresentation.ppt
Lecture 10.ppt
Dc Transfer characteristics in VLSI design
lecture 5_DC and Transient Response_VLSI.ppt

Similar to Introduction to CMOS VLSI Design for Low Power (20)

PDF
2016 ch4 delay
PDF
CMOS Topic 6 -_designing_combinational_logic_circuits
PPT
CMOS VLSI Design.312313131312pp3213123213313123t
PPT
Introduction to cmos in vlsi to seek for knowledge
PDF
vlsi4unitpptfinal-240723145755-36f08a74.pdf
PDF
VLSI _4_UNIT PPT FINAL.pdf ppt for design
PPT
Lect 1 - cktlay.ppt
PPT
lect1-circuits and layout.ppt
PPT
Circuits layouts design in VLSI design and Testing
PPT
lect1-cktlay 12345678901222222222222222222222222
PPT
CMOS VLSI Design: Lecture 1: Circuit & Layout
PPT
lect1-Circuits and Layout_design and testing of VLSI.ppt
PPT
lec23Concl.ppt
PPT
EEE 4157_Lecture_10_11_12_13.ppt
PDF
Lecture on Introduction to VLSI circuits and layouts
PPT
CMOS Transistor
PPT
Circuit Elements CMOS Devices VLSI Technology.ppt
PPT
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
PPTX
cmos vlsi design for b.tech 4th year students
PPT
lecture 3-CMOS Transistor Theory_VLSI1.ppt
2016 ch4 delay
CMOS Topic 6 -_designing_combinational_logic_circuits
CMOS VLSI Design.312313131312pp3213123213313123t
Introduction to cmos in vlsi to seek for knowledge
vlsi4unitpptfinal-240723145755-36f08a74.pdf
VLSI _4_UNIT PPT FINAL.pdf ppt for design
Lect 1 - cktlay.ppt
lect1-circuits and layout.ppt
Circuits layouts design in VLSI design and Testing
lect1-cktlay 12345678901222222222222222222222222
CMOS VLSI Design: Lecture 1: Circuit & Layout
lect1-Circuits and Layout_design and testing of VLSI.ppt
lec23Concl.ppt
EEE 4157_Lecture_10_11_12_13.ppt
Lecture on Introduction to VLSI circuits and layouts
CMOS Transistor
Circuit Elements CMOS Devices VLSI Technology.ppt
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
cmos vlsi design for b.tech 4th year students
lecture 3-CMOS Transistor Theory_VLSI1.ppt
Ad

Recently uploaded (20)

PPTX
An introduction to AI in research and reference management
PDF
Phone away, tabs closed: No multitasking
PPTX
BSCS lesson 3.pptxnbbjbb mnbkjbkbbkbbkjb
PPT
EGWHermeneuticsffgggggggggggggggggggggggggggggggg.ppt
PPTX
rapid fire quiz in your house is your india.pptx
PPTX
AC-Unit1.pptx CRYPTOGRAPHIC NNNNFOR ALL
PDF
GREEN BUILDING MATERIALS FOR SUISTAINABLE ARCHITECTURE AND BUILDING STUDY
PDF
BRANDBOOK-Presidential Award Scheme-Kenya-2023
PDF
Integrated-2D-and-3D-Animation-Bridging-Dimensions-for-Impactful-Storytelling...
PDF
SEVA- Fashion designing-Presentation.pdf
PPTX
YV PROFILE PROJECTS PROFILE PRES. DESIGN
PPTX
DOC-20250430-WA0014._20250714_235747_0000.pptx
PDF
YOW2022-BNE-MinimalViableArchitecture.pdf
PDF
Interior Structure and Construction A1 NGYANQI
PDF
The Advantages of Working With a Design-Build Studio
PPTX
areprosthodontics and orthodonticsa text.pptx
DOCX
actividad 20% informatica microsoft project
PPTX
12. Community Pharmacy and How to organize it
PPTX
6- Architecture design complete (1).pptx
PDF
Trusted Executive Protection Services in Ontario — Discreet & Professional.pdf
An introduction to AI in research and reference management
Phone away, tabs closed: No multitasking
BSCS lesson 3.pptxnbbjbb mnbkjbkbbkbbkjb
EGWHermeneuticsffgggggggggggggggggggggggggggggggg.ppt
rapid fire quiz in your house is your india.pptx
AC-Unit1.pptx CRYPTOGRAPHIC NNNNFOR ALL
GREEN BUILDING MATERIALS FOR SUISTAINABLE ARCHITECTURE AND BUILDING STUDY
BRANDBOOK-Presidential Award Scheme-Kenya-2023
Integrated-2D-and-3D-Animation-Bridging-Dimensions-for-Impactful-Storytelling...
SEVA- Fashion designing-Presentation.pdf
YV PROFILE PROJECTS PROFILE PRES. DESIGN
DOC-20250430-WA0014._20250714_235747_0000.pptx
YOW2022-BNE-MinimalViableArchitecture.pdf
Interior Structure and Construction A1 NGYANQI
The Advantages of Working With a Design-Build Studio
areprosthodontics and orthodonticsa text.pptx
actividad 20% informatica microsoft project
12. Community Pharmacy and How to organize it
6- Architecture design complete (1).pptx
Trusted Executive Protection Services in Ontario — Discreet & Professional.pdf
Ad

Introduction to CMOS VLSI Design for Low Power

  • 2. CMOS VLSI Design Design for Low Power Slide 2 Outline  Power and Energy  Dynamic Power  Static Power  Low Power Design
  • 3. CMOS VLSI Design Design for Low Power Slide 3 Power and Energy  Power is drawn from a voltage source attached to the VDD pin(s) of a chip.  Instantaneous Power:  Energy:  Average Power: ( ) ( ) DD DD P t i t V  0 0 ( ) ( ) T T DD DD E P t dt i t V dt     avg 0 1 ( ) T DD DD E P i t V dt T T   
  • 4. CMOS VLSI Design Design for Low Power Slide 4 Dynamic Power  Dynamic power is required to charge and discharge load capacitances when transistors switch.  One cycle involves a rising and falling output.  On rising output, charge Q = CVDD is required  On falling output, charge is dumped to GND  This repeats Tfsw times over an interval of T C fsw iDD (t) VDD
  • 5. CMOS VLSI Design Design for Low Power Slide 5 Dynamic Power Cont. C fsw iDD (t) VDD dynamic P 
  • 6. CMOS VLSI Design Design for Low Power Slide 6 Dynamic Power Cont. C fsw iDD (t) VDD   dynamic 0 0 sw 2 sw 1 ( ) ( ) T DD DD T DD DD DD DD DD P i t V dt T V i t dt T V Tf CV T CV f      
  • 7. CMOS VLSI Design Design for Low Power Slide 7 Activity Factor  Suppose the system clock frequency = f  Let fsw = af, where a = activity factor – If the signal is a clock, a = 1 – If the signal switches once per cycle, a = ½ – Dynamic gates: • Switch either 0 or 2 times per cycle, a = ½ – Static gates: • Depends on design, but typically a = 0.1  Dynamic power: 2 dynamic DD P CV f a 
  • 8. CMOS VLSI Design Design for Low Power Slide 8 Short Circuit Current  When transistors switch, both nMOS and pMOS networks may be momentarily ON at once  Leads to a blip of “short circuit” current.  < 10% of dynamic power if rise/fall times are comparable for input and output
  • 9. CMOS VLSI Design Design for Low Power Slide 9 Example  200 Mtransistor chip – 20M logic transistors • Average width: 12 l – 180M memory transistors • Average width: 4 l – 1.2 V 100 nm process – Cg = 2 fF/mm
  • 10. CMOS VLSI Design Design for Low Power Slide 10 Dynamic Example  Static CMOS logic gates: activity factor = 0.1  Memory arrays: activity factor = 0.05 (many banks!)  Estimate dynamic power consumption per MHz. Neglect wire capacitance and short-circuit current.
  • 11. CMOS VLSI Design Design for Low Power Slide 11 Dynamic Example  Static CMOS logic gates: activity factor = 0.1  Memory arrays: activity factor = 0.05 (many banks!)  Estimate dynamic power consumption per MHz. Neglect wire capacitance.             6 logic 6 mem 2 dynamic logic mem 20 10 12 0.05 / 2 / 24 180 10 4 0.05 / 2 / 72 0.1 0.05 1.2 8.6 mW/MHz C m fF m nF C m fF m nF P C C f l m l m l m l m             
  • 12. CMOS VLSI Design Design for Low Power Slide 12 Static Power  Static power is consumed even when chip is quiescent. – Ratioed circuits burn power in fight between ON transistors – Leakage draws power from nominally OFF devices 0 1 gs t ds T T V V V nv v ds ds I I e e               0 t t ds s sb s V V V V         
  • 13. CMOS VLSI Design Design for Low Power Slide 13 Ratio Example  The chip contains a 32 word x 48 bit ROM – Uses pseudo-nMOS decoder and bitline pullups – On average, one wordline and 24 bitlines are high  Find static power drawn by the ROM – b = 75 mA/V2 – Vtp = -0.4V
  • 14. CMOS VLSI Design Design for Low Power Slide 14 Ratio Example  The chip contains a 32 word x 48 bit ROM – Uses pseudo-nMOS decoder and bitline pullups – On average, one wordline and 24 bitlines are high  Find static power drawn by the ROM – b = 75 mA/V2 – Vtp = -0.4V  Solution:   2 pull-up pull-up pull-up static pull-up 24μA 2 29μW (31 24) 1.6 mW DD tp DD V V I P V I P P b        
  • 15. CMOS VLSI Design Design for Low Power Slide 15 Leakage Example  The process has two threshold voltages and two oxide thicknesses.  Subthreshold leakage: – 20 nA/mm for low Vt – 0.02 nA/mm for high Vt  Gate leakage: – 3 nA/mm for thin oxide – 0.002 nA/mm for thick oxide  Memories use low-leakage transistors everywhere  Gates use low-leakage transistors on 80% of logic
  • 16. CMOS VLSI Design Design for Low Power Slide 16 Leakage Example Cont.  Estimate static power:
  • 17. CMOS VLSI Design Design for Low Power Slide 17 Leakage Example Cont.  Estimate static power: – High leakage: – Low leakage:      6 6 20 10 0.2 12 0.05 / 2.4 10 m m l m l m             6 6 6 20 10 0.8 12 0.05 / 180 10 4 0.05 / 45.6 10 m m m l m l l m l m                  6 6 2.4 10 20 / / 2 3 / 45.6 10 0.02 / / 2 0.002 / 32 38 static static static DD I m nA m nA m m nA m nA m mA P I V mW m m m m m m                 
  • 18. CMOS VLSI Design Design for Low Power Slide 18 Leakage Example Cont.  Estimate static power: – High leakage: – Low leakage:  If no low leakage devices, Pstatic = 749 mW (!)      6 6 20 10 0.2 12 0.05 / 2.4 10 m m l m l m             6 6 6 20 10 0.8 12 0.05 / 180 10 4 0.05 / 45.6 10 m m m l m l l m l m                  6 6 2.4 10 20 / / 2 3 / 45.6 10 0.02 / / 2 0.002 / 32 38 static static static DD I m nA m nA m m nA m nA m mA P I V mW m m m m m m                 
  • 19. CMOS VLSI Design Design for Low Power Slide 19 Low Power Design  Reduce dynamic power – a: – C: – VDD: – f:  Reduce static power
  • 20. CMOS VLSI Design Design for Low Power Slide 20 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: – VDD: – f:  Reduce static power
  • 21. CMOS VLSI Design Design for Low Power Slide 21 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: – f:  Reduce static power
  • 22. CMOS VLSI Design Design for Low Power Slide 22 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: lowest suitable voltage – f:  Reduce static power
  • 23. CMOS VLSI Design Design for Low Power Slide 23 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: lowest suitable voltage – f: lowest suitable frequency  Reduce static power
  • 24. CMOS VLSI Design Design for Low Power Slide 24 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: lowest suitable voltage – f: lowest suitable frequency  Reduce static power – Selectively use ratioed circuits – Selectively use low Vt devices – Leakage reduction: stacked devices, body bias, low temperature