SlideShare a Scribd company logo
IntrusionDetectionSystem (IDS)
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
Abstract
Abbreviations
IDSOverview
Principles&AssumptionsinIDS
ComponentsandTypesofIDS
HIDS(Host-basedIntrusionDetectionSystems)
NIDS(Network-basedIntrusionDetectionSystems)NIDS(Network-basedIntrusionDetectionSystems)
IntrusionDetectioninVirtualizedSystems
Anomaly-basedIDS
LimitationsofAnomalyDetection
Misuse-basedIDS
LimitationsofMisuseDetection
FutureDirections
ConclusionConclusion
Reference
AuthorInfo
3
3
4
4
4
5
66
6
8
9
9
9
9
1010
10
10
TableofContents
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
Due to the phenomenaldevelopmentofNetworking technology,applicationsand otherservices,IP
networksarepreferredforcommunication,butaremorevulnerabletoattacks.Tocopewiththegrowing-
menaceofsecuritythreats,securitysystemshavetobemademoreintelligentandrobustbyintroducing
IntrusionDetectionSystems(IDS)inthesecuritylayersofanetwork.IDSmonitortheuseofcomputersand
thenetworksoverwhichtheycommunicate,todetectunauthorizeduseandanomalousbehaviorbyidentify-
ingactivitiesthatviolatethesecuritypolicyinthesystem.Thereareseveralreasonsthatmake intrusion
detectionanecessarypartoftheentiredefensesystem.Moreimportantly,
Manylegacysystemsandapplicationsweredevelopedwithoutkeepingsecurityinmind
Computersystemsorapplicationsmayhavedesignflawsorbugsthatcanbeusedbyanintruderto
attackthesystem orapplications
AnIDSprovideswaystomonitor,identifyandrespondtoattacksagainstthesesystems.ThegoalofIDSisnot
onlytodetectattacksaccuratelyandnotifynetworkadministrators,butdetectthem atanearlystageto
minimizetheimpact.
Sl.No
1
2
3
4
5
IDS
HIDS
NIDS
VMM
VMI
IntrusionDetectionSystem
Host-basedIDS
Network-basedIDS
VirtualMachineMonitor
VirtualMachineIntrospection
FullFormAcronyms
Abstract
Abbreviations
IntrusionDetectionSystem (IDS)|3
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
IDSisusuallydeployedasasecondlineofdefensealongwithothersecuritymechanisms,suchasaccess
control,authenticationandfirewalls.ThoughIDSareoftenusedinconjunctionwithfirewalls,thetwotools
havecompletelydifferentfunctionalities.Forexample,thinkofIDSasasecurityguardinafactorypremises
andthefencesurroundingthefactoryasthefirewall.Nobodyisallowedinsidethefactorywithoutproper
authenticationandthefencekeepsallunwantedvisitorsoutsideofthepremises.Buttheholesinthefence
canbeusedbyunwantedvisitorstoenterthepremises.Thiskindofintrusioneventcanbemonitoredbya
securitysecurityguardwhoalertstheheadsecurityofficerorpreventsthepersonfrom enteringintothepremises.A
firewallessentiallyprotectsanetworkandattemptstopreventintrusionsbyusingnetworkorapplication
levelfiltering,whereasIDSdetectsanysecuritybreachinthesystem orwhenthenetworkisunderattack.IDS
usespoliciestodefinecertaineventsasthreats,raisealertsupondetection,andoftenrespondstotheevents
appropriately.
AnIDStypicallyconsistsofthreecomponents:
DataDataPreprocessor:Thiscomponentcollectsuser(audit)dataandpatternsfrom thedesiredsourceand
convertsitintoaformatcomprehensiblebythenextcomponenti.e.the‘analyzer’.Datausedfordetecting©
2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,
allrightsreserved.intrusionrangesfrom useraccesspatternstonetworkpacketlevelfeatures(sourceand
destinationIP,typesofpackets,etc.)alongwiththeapplicationandsystem levelbehaviors(sequenceof
system calls).
Thesystem isassumedtobesafeandhealthy,ifthefollowingconditionsaremetforuseractions.
Conformstostatisticallypredictablepatterns
Doesnotincludesequencesthatviolatethesecuritypolicy
Correspondstoasetofspecificationswhichdescribewhattheprocessisallowedtodo
Ifatleastoneoftheseconditionsarenotmeet,thenthesystem isassumedtobeunderattack.Further,intru-
siondetectionisbaseduponthefollowingassumptionsregardlessofthemethodsadoptedbytheIDS.
Asecuritypolicyisdefinedtodifferentiatethenormalandabnormalusageofeveryresource.
Thepatternsgeneratedforabnormalsystem usagearenoticeablydifferentfrom thoseofnormalsystem
usage,andresultsindifferentsystem behavior.Thisanomalyinbehaviorcanbeusedtodetectintrusions.
ThedetectionmechanismsusedbyIDSaremainlycategorizedintotwomethodologies:Anomalydetection,
andsignature/misusedetection.
Principles&AssumptionsinIDS
ComponentsandTypesofIDS
IDSOverview
IntrusionDetectionSystem (IDS)|4
Analyzer(IntrusionDetector):ThisisthecorecomponentinIDS,whichanalyzestheauditpatternssuchas
machinelearning,patternmatching,dataminingandstatisticaltechniquestodetectanattack.Itscapability
todetectanattackoftendeterminesthestrengthoftheoverallsystem.
ResponseEngine:Thiscomponentcontrolsthereactionmechanism anddeterminestheresponsewhenthe
analyzerdetectsanattack.Dependinguponthesecuritypolicyofthenetwork,itdecideswhethertoraisean
alertorblockthesourcetemporarily.IDScanbeeithernetwork-based,orhost-based.Eachhasdistinct
approachesformonitoringandsecuringdata.
HIDSpreventsthreatsthatarisefrom insidethenetworkbycollectingdataoriginatedonindividualhostsand
analyzingthem byadedicatedsystem.Thesesystemsresideontrustednetworksystemsandareaccessible
onlytoauthenticatedusers.Ifoneoftheseusersattemptunauthorizedactivity,HIDSdetectsitandcollects
themostpertinentinformationinthequickestpossiblemanner.Forexample,theOperatingSystemsaudit
logsarehighlyeffectivefordetectinginsiderabuse.AtypicalHIDSarchitectureisrepresentedinFigure1.The
bluecoloredmachinesrepresentHIDSthathavebeeninstalled.
Figure-1:HIDSArchitecture
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
HIDS(Host-basedIntrusionDetectionSystems)
IntrusionDetectionSystem (IDS)|5
NIDSanalyzedatapacketsthattravelovertheactualnetworkandoftencompareswithempiricaldatato
verifytheirnature.NIDSareplacedatstrategicpointswithinthenetworktomonitorit,andarebestatdetect-
ingthefollowingactivities:
Denialofservice:NIDSnoticesthepacketsthatinitiateattacksfrom outsideofthenetworkandsinglesout
networkresourcesforabuseoroverload.
Unauthorizedoutsideraccess:Detectsunauthorizedloginattemptsbyusersbeforetheactuallogin.NIDS
typicalarchitectureisrepresentedinFigure2.ThetraffichasbeenfunneledthroughtheNIDSdeviceinthe
network.Itdoesnotisolateanysinglehostmachineforintrusiondetection.
Figure-2:NIDSArchitecture
ThevirtualizedenvironmentprovidesprotectiontosystemswiththehelpofaVirtualMachineMonitor(VMM)
orHypervisorbyusingthebestofbothhost-andnetwork-basedIDS.TheVMM pullstheIDSoutsideofthe
monitoredhostintoacompletelydifferenthardwareprotectiondomain;thispropertyofVMM isknownas
isolation.TheVMMprovidesahugebarrierbetweentheIDSandtheattacker’smaliciouscode,whichensures
thattheIDScan’tbetamperedwithevenifthemonitoredhostiscompromised.Theabilitytodirectlyinspect
thehardwarestateofaVirtualMachine(VM)thatamonitoredhostisrunning,andtherebyprovidemonitor-
ingingofbothhardwareandsoftwarelevelevents,iscalledinspection.Anyattempttomodifyaregistercan
easilybedetectedbytheVMM;thisiscalledtheinterpositionpropertyofVMM.
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
NIDS(Network-basedIntrusionDetectionSystems)
IntrusionDetectioninVirtualizedSystems
IntrusionDetectionSystem (IDS)|6
TheOSInterfaceLibrary,whichprovidesanOS-levelviewofthevirtualmachine’sstateinordertofacilitate
easypolicydevelopmentandimplementation.Itinterpretslowlevelmachinestatesfrom theVMM interms
ofhigherlevelOSstructures,byusingknowledgeabouttheguestOSimplementationtointerprettheVM’s
machinestate,whichisexportedbytheVMM.
TheThePolicyEngineexecutesIDSpoliciesbyusingtheOSinterfacelibraryandtheVMM interface.Itprovides
aninterfaceformakinghigh-levelqueriesabouttheOSofthemonitoredhost,andinterpretssystem state
andeventsfrom theVMM interfaceandOSinterfacelibraryforanysecuritybreach.Thepolicyengine
respondsappropriatelyincaseofthreatsandisconsideredtobetheheartofIDS.
Figure3showshow theVM runs,thehostbeingmonitored,andtheVMI-basedIDSwithitsmajorcom-
ponents.
VirtualMachineIntrospection(VMI)inspectsaVM from outsideandanalyzesthesoftwarerunningonit.The
VMIIDSimplementsintrusiondetectionpoliciesbyanalyzingthemachinestateandtheeventsthroughthe
VMM interface.VMI-IDSusesthepropertiesoftheVMM toprovideaveryrobustarchitectureforintrusion
detection.
IDs
PolicyModules
PobeyFramework
OSInterfaceLib
PolicyEngine
MonitoredHost
GuestApps
GuestOS
VirtualMachine
H/W State
VirtualMachineMonitor
Response
Command
Query Response
Figure-3:VMI-basedIDS
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
TheVMI-IDSisdividedintotwoparts:
IntrusionDetectionSystem (IDS)|7
Thisisdesignedtouncoverabnormalpatterns.TheIDSestablishesabaselineofnormalusagepatterns,
whichismodeledonthebasisofauditdatacollectedoveraperiodthrough‘training’.Anythingthatwidely
deviatesfrom itgetsflaggedasapossibleintrusion.Whatisconsideredtobeanomalycanvary,butnormally
differentparameterssuchasbandwidth,protocols,portsanddevices,etc.arecomparedwiththebaselineto
seeifitcrossesathreshold,andthenananomalyisdetected.Anomalydetectioncanalsoinvestigateuser
patternsbyprofilingtheprogramsexecuteddaily.Thealgorithmsinthisapproachuse‘system callsequence’
andand‘program counters’tocalculatetheanomalyscore.Itraisesanalarm iftheanomalyscoredeviatesfrom
thethreshold.
Isolation:SoftwarerunninginavirtualmachinecannotaccessormodifyanythingrunninginVMM orother
VMs.Evenifanintruderhascompletelysubvertedthemonitoredhost,hestillcannottamperwiththeIDS.
Inspection:Beingabletodirectlyinspectthevirtualmachine’sCPU,memoryandI/Ostatus,thereisnostate
inthemonitoredsystem thatIDScannotsee.
Interposition:VMI-IDSleveragesthefunctionalityofVMM tointerposevirtualmachineoperations,sothat
anyattemptstomodifyahardwareregistercanbeeasilydetected.
AAVMIcompletelyencapsulatesthestateofaVMinsoftware,andcollectsthecheckpointsofaVMeasily.This
capabilitycanbeusedtocomparethestateofa‘VMunderobservation’forperformingofflineanalysis,orcap-
turingtheentirestateofthecompromisedmachineforforensicpurposes.
AVMIIDSoffersamorerobustviewofthesystem andutilizesthepropertyofVMM todirectlyobservehard-
warestatesandeventsofavirtualmachine.Itusestheinformationtoextrapolatethesoftwarestateofthe
hostsimilartothatofHIDS.Atamperedsshdprocesscanbedetectedbyperiodicallyperformingintegrity
checksonitscodesegment.AVMMcanprovideaccesstopagesofphysicalmemory/diskblocksinaVM,but
discoveringthecontentsofsshd’scodesegmentrequiresansweringqueriesaboutmachinestateinthe
contextofOSrunningintheVM.
VMI-basedVMI-basedIDSarestronglyisolatedfrom thehosttheyaremonitoring,givingahighdegreeofattackresis-
tance,providingcompleteprotectiontohardwareaccess,andmaintainingtheconstraintsimposedbytheOS
evenifthehosthasbeencompromised.VMI-basedIDSsuspendthehostswhiletheIDSrestartsincaseofa
fault,providinganeasymodelforfail-safefaultrecovery.
TheVMI-IDSleveragesthreepropertiesofavirtualizedenvironment:
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
Anomaly-basedIDS
IntrusionDetectionSystem (IDS)|8
Theconsofthisapproacharethebaselinecollectedthroughtraining.Asubject’snormalbehaviorusually
changesovertimeandtheIDSthatusesthisapproachusuallyallowsthesubject’sprofiletochange
gradually.AnintrudercanusethisloopholetotraintheIDSandmakeanintrusiveactivityacceptable.Addi-
tionally,itcangiveaseriesoffalsealarmsincaseofanoticeablechangeinthesystem environment.False
positivealertsareissuedwhennormalbehaviorisincorrectlyidentifiedasabnormal,andfalsenegative
alertsareissuedwhenabnormalbehaviorisincorrectlyidentifiedasnormal.Moreover,duringthetraining,
thetheinputparametersoftendonotcontainallthefeaturesrelatedtointrusiondetection.Thesemissing
featuresmakeitdifficulttodistinguishattacksfrom normalactivities.
©2015,HCLTechnologies.ReproductionProhibited.ThisdocumentisprotectedunderCopyrightbytheAuthor,allrightsreserved.
LimitationofAnomalyDetection
Thisiscomplementarytoanomalydetection.Theknownattackpatternscanbedetectedmoreeffectivelyby
usingtheknowledgeaboutthem.Thiswillmonitorpacketsonthenetworkandcomparethem againstadata-
baseofsignaturesorattributesfrom knownmaliciousthreats.Misusedetectionwilllookforwell-defined
patternsofknownattacksorvulnerabilities,evenaverytrivialintrusiveactivitythatisusuallyignoredby
anomalydetectioncanbedetectedbythesesystems.Thedetectionalgorithm usuallyfollowsdirectlyfrom
the representation mechanisms.Rule-based expertsystemsare used in misuse-basedalgorithms,in
whichrulesareappliedtoauditrecords,todetectintrusion.whichrulesareappliedtoauditrecords,todetectintrusion.
Misuse-basedIDS
Thismodelcannotdetectunknownattacks.Asystemprotectedbythismethodmayfacetheriskofbeingcom-
promisedwithoutdetectingtheattacks.Misusedetectionrequiresexplicitrepresentationofattackswhichis
notaneasytask,andthenatureoftheattacksalsoneedstobethoroughlyunderstoodtoraiseanalert.This
requireshuman/expertinterventionforanalysis,whichisbothtimeconsuminganderrorprone.
LimitationsofMisuseDetection
Intrusiondetectionisstillafledglingfieldofresearch.ThegrowthoftheInternet,thepossibilitiesopeningup
inelectronictradeandthelackoftrulysecuresystemsmakesitanimportantfieldofresearch.
Todetectunknownpatternsofattackswithoutgeneratingtoomanyfalsealarms,stillremainsanunre-
solvedproblem.Futureresearchtrendsseem tobeconvergingtowardsamodelthatisahybridofanomaly
andmisusedetection,sinceneitherofthemodelscandetectallintrusionattemptsontheirown.
Thedrasticincreaseinthenumberofintrusionincidentsinbusinessnetworkshaspushedenterprisesto
increasetheirITsecuritybudgetsbyadaptingtonew advancedsecuritytechnologies,whicheventually-
boostedthemarketofIDStoagreatextent.ThemarketrelatedtoIDSisexpectedtogrowfrom $2.716bil-
lionin2014to$5.042billionby2019,anestimatedgrowthrateof13.2%.
FutureDirectionsandBusinessRelevance
IntrusionDetectionSystem (IDS)|9
Formoredetailscontact:ers.info@hcl.com
Followusontwitter:http://twitter.com/hclersand
Ourbloghttp://www.hcltech.com/blogs/engineering-and-rd-services
Visitourwebsite:http://www.hcltech.com/engineering-rd-services
Hello,I’m from HCL’sEngineeringandR&DServices.Weenabletechnologyledorganizationstogotomarketwithinnovativeproducts
andsolutions.Wepatnerwithourcustomersinbuildingworldclassproductsandcreatingassociatedsolutiondeliveryecosystems
to help bringmarketleadership.Wedevelop engineeringproducts,solutionsand platformsacrossAerospaceand Defense,
Automotive,ConsumerElectronics,Software,Online,IndustrialManufacturing,MedicalDevices,NetworkingandTelecom,Office
Automation,SemiconductorandServers&Storageforourcustomers.
ThiswhitepaperispublishedbyHCLEngineeringandR&DServices.
Theviewsandopinionsinthisarticleareforinformationalpurposesonlyandshouldnotbeconsideredasasubstituteforprofessional
businessadvice.TheusehereinofanytrademarksisnotanassertionofownershipofsuchtrademarksbyHCLnorintendedtoimply
anyassociationbetweenHCLandlawfulownersofsuchtrademarks.
FormoreinformationaboutHCLEngineeringandR&DServices,
Pleasevisithttp://www.hcltech.com/engineering-rd-services
Copyright@ HCCopyright@ HCLTechnologies
Allrightsreserved.
SaumendraDash
HCLEngineeringandR&DServices
Reference
Conclusion
AuthorInfo
[1]http://packetstorm.igor.onlinedirect.bg/papers/IDS/nids/A-Framework-For-An-Adaptive-Intrusion-Detection-System.pdf
[2]http://static.usenix.org/event/lisa99/full_papers/roesch/roesch.pdf
[3]https://iseclab.org/papers/driveby.pdf
[4]http://www.cse.iitm.ac.in/~ravi/papers/Ranga_COMSNETS_12.pdf
Last,butnottheleast,byprovidingasecureinfrastructurewithbothHost-andNetwork-basedIDSforour
esteemedclientsinHCL,apprehensionsaboutthesecurityvulnerabilitieswillmitigate,boosttheirconfi-
dence,andcreateawin-winatmospherefornewopportunities.
Intrusiondetectionhasbecomeanecessaryadditiontothesecurityinfrastructureofalmosteveryorga-
nization.Thecriticalityofdetectingintrusioninnetworksandapplicationsleavesnomarginforerrors.The
effectivecostofasuccessfulintrusionovershadowsthecostofdevelopingIDS,andhence,itbecomescritical
toidentifythebestpossibleapproachfordevelopingabetterIDS.Everynetworkandapplicationisdifferently
designed,soitbecomesextremelydifficulttodevelopsinglegenericsolutionthatworksforall.Tokeeppace
withtheeverchangingnetworksandapplications,theIDSmustbeinsyncwiththem both.IDSmustintegrate
withwith wirelesstechnologies,removableand mobiledevices,and providesupportin acomprehensible
manner.EvaluationandbenchmarkingofIDSareimportantareasofconcernfororganizationaldecision
makersandendusers.Moreover,reconstructingattackscenariosfromintrusionalertsandintegratingIDSwill
improvebothitsusabilityandperformance. WeexpectIDStobecomeapracticalandeffectivesolution,
usingbothhost-andnetwork-basedIDSthatprovidecompletedefensetoinformationsystems.
IntrusionDetectionSystem (IDS)|10

More Related Content

PDF
Network cloaking sansv2_
DOCX
Five IDS mistakes people make
PPTX
Security assessment for financial institutions
PPTX
Cyber security assocham
PDF
Axoss Wireless Penetration Testing Services
PDF
karsof systems publication
PDF
Crypto regulations in Russia
PDF
Moving target-defense
Network cloaking sansv2_
Five IDS mistakes people make
Security assessment for financial institutions
Cyber security assocham
Axoss Wireless Penetration Testing Services
karsof systems publication
Crypto regulations in Russia
Moving target-defense

What's hot (20)

PDF
ccmigration_09186a008033a3b4
PDF
karsof systems brochure
PDF
Protecting Industrial Control Systems V1.2, Ahmad Alanazy, 2012
PPT
Cio ciso security_strategyv1.1
PDF
Clavister Csp Sit Group
PDF
Web-style Wireless IDS attacks, Sergey Gordeychik
PPTX
SCIT Labs - intrusion tolerant systems
PDF
ICS Cyber Security Effectiveness Measurement
PDF
Cat6500 Praesentation
PDF
The Top 20 Cyberattacks on Industrial Control Systems
PDF
VTI Learning Series Beyond the Convergence of Physical & Cyber Security
PDF
Regulatory Compliance Financial Institution
PDF
Ch13 Ids
PDF
An Internet of Things Reference Architecture
PDF
CDW Security Practice
PDF
Cyber Security Lecture at Rah Rah 7
PDF
Security 2 Q 07[1]
PDF
Sb fortinet-nozomi
PPT
iViZ Security : On Demand Penetration Testing
PDF
Secure Access – Anywhere by Prisma, PaloAlto
ccmigration_09186a008033a3b4
karsof systems brochure
Protecting Industrial Control Systems V1.2, Ahmad Alanazy, 2012
Cio ciso security_strategyv1.1
Clavister Csp Sit Group
Web-style Wireless IDS attacks, Sergey Gordeychik
SCIT Labs - intrusion tolerant systems
ICS Cyber Security Effectiveness Measurement
Cat6500 Praesentation
The Top 20 Cyberattacks on Industrial Control Systems
VTI Learning Series Beyond the Convergence of Physical & Cyber Security
Regulatory Compliance Financial Institution
Ch13 Ids
An Internet of Things Reference Architecture
CDW Security Practice
Cyber Security Lecture at Rah Rah 7
Security 2 Q 07[1]
Sb fortinet-nozomi
iViZ Security : On Demand Penetration Testing
Secure Access – Anywhere by Prisma, PaloAlto
Ad

Viewers also liked (16)

PDF
Développement d’un prototype logiciel pour l’analyse webométrique
PDF
Baudoin karle-ids-ips
PPTX
Sécurité des Systèmes d'Information et de l'Information
PDF
Mise en place d’un système de détection
PPTX
IDS,SNORT ET SÉCURITÉ RESEAU
PPTX
La sécurité informatique
PPT
Introduction à La Sécurité Informatique 1/2
PPTX
Intrusion detection system
PPTX
Intrusion Detection System(IDS)
PPT
Intrusion detection system ppt
PDF
Sécurité des systèmes d'information
PDF
Rapport Projet de fin d'etude sur le parc informatique
DOCX
Projet de fin d'etude gestion informatique
PPTX
Sécurité informatique
PDF
Rapport sécurité
PDF
sécurité informatique
Développement d’un prototype logiciel pour l’analyse webométrique
Baudoin karle-ids-ips
Sécurité des Systèmes d'Information et de l'Information
Mise en place d’un système de détection
IDS,SNORT ET SÉCURITÉ RESEAU
La sécurité informatique
Introduction à La Sécurité Informatique 1/2
Intrusion detection system
Intrusion Detection System(IDS)
Intrusion detection system ppt
Sécurité des systèmes d'information
Rapport Projet de fin d'etude sur le parc informatique
Projet de fin d'etude gestion informatique
Sécurité informatique
Rapport sécurité
sécurité informatique
Ad

Similar to Intrusion Detection System (IDS) (20)

PPTX
Intrusion dDetection
PPTX
Lecture-33 programming lacture notes.pptx
PDF
Survey on Host and Network Based Intrusion Detection System
PDF
Cyber Security Notes Unit 4 for Engineering
PDF
Automatic Intrusion Detection based on Artificial Intelligence Techniques: A ...
PPT
IDS and IPS
PPTX
Ids vs ips
PPTX
Intrusion Detection Systems (IDS)
PPTX
Intrusion detection system and intrusion prevention system
PPT
PPTX
speaking_skills IN english presentation speaking skills
PPTX
INTRUSION DETECTING SYSTEM INTRUSION DETECTING SYSTEM
PPTX
Dcit 418-Slide two presentation (1).pptx
PPSX
Ids 001 ids vs ips
PPTX
Intrusion detection system
PPSX
Intrusion detection system
PPTX
Intrusion detection
PPTX
Intrusion detection system
PDF
IDS (intrusion detection system)
PDF
A STUDY ON INTRUSION DETECTION
Intrusion dDetection
Lecture-33 programming lacture notes.pptx
Survey on Host and Network Based Intrusion Detection System
Cyber Security Notes Unit 4 for Engineering
Automatic Intrusion Detection based on Artificial Intelligence Techniques: A ...
IDS and IPS
Ids vs ips
Intrusion Detection Systems (IDS)
Intrusion detection system and intrusion prevention system
speaking_skills IN english presentation speaking skills
INTRUSION DETECTING SYSTEM INTRUSION DETECTING SYSTEM
Dcit 418-Slide two presentation (1).pptx
Ids 001 ids vs ips
Intrusion detection system
Intrusion detection system
Intrusion detection
Intrusion detection system
IDS (intrusion detection system)
A STUDY ON INTRUSION DETECTION

More from HCL Technologies (20)

PPT
Emergence of ITOA: An Evolution in IT Monitoring and Management
PDF
USING FACTORY DESIGN PATTERNS IN MAP REDUCE DESIGN FOR BIG DATA ANALYTICS
PPTX
HCL HELPS A US BASED WIRELINE TELECOM OPERATOR FOR BETTER LEAD-TO-CASH AND TH...
PPTX
HCL HELPS A LEADING US TELECOM PROTECT ITS MARKET SHARE AND MAINTAIN HIGH LEV...
PDF
Noise Control of Vacuum Cleaners
PDF
PDF
Cost-effective Video Analytics in Smart Cities
PDF
A novel approach towards a Smarter DSLR Camera
PDF
Security framework for connected devices
PDF
Connected Cars - Use Cases for Indian Scenario
PDF
A Sigh of Relief for Patients with Chronic Diseases
PDF
Painting a Social & Mobile Picture in Real Time
PDF
A Novel Design Approach for Electronic Equipment - FEA Based Methodology
PPT
Manufacturing Automation and Digitization
PDF
Managing Customer Care in Digital
PPT
Digital Customer Care Solutions, Smart Customer Care Solutions, Next Gen Cust...
PPTX
The Internet of Things. Wharton Guest Lecture by Sandeep Kishore – Corporate ...
PPTX
Be Digital or Be Extinct. Wharton Guest Lecture by Sandeep Kishore – Corporat...
PPT
Transform and Modernize -UK's leading specialists in Pension and Employee Ben...
PPT
"Cost Savings Enabled for European Financial Services company "
Emergence of ITOA: An Evolution in IT Monitoring and Management
USING FACTORY DESIGN PATTERNS IN MAP REDUCE DESIGN FOR BIG DATA ANALYTICS
HCL HELPS A US BASED WIRELINE TELECOM OPERATOR FOR BETTER LEAD-TO-CASH AND TH...
HCL HELPS A LEADING US TELECOM PROTECT ITS MARKET SHARE AND MAINTAIN HIGH LEV...
Noise Control of Vacuum Cleaners
Cost-effective Video Analytics in Smart Cities
A novel approach towards a Smarter DSLR Camera
Security framework for connected devices
Connected Cars - Use Cases for Indian Scenario
A Sigh of Relief for Patients with Chronic Diseases
Painting a Social & Mobile Picture in Real Time
A Novel Design Approach for Electronic Equipment - FEA Based Methodology
Manufacturing Automation and Digitization
Managing Customer Care in Digital
Digital Customer Care Solutions, Smart Customer Care Solutions, Next Gen Cust...
The Internet of Things. Wharton Guest Lecture by Sandeep Kishore – Corporate ...
Be Digital or Be Extinct. Wharton Guest Lecture by Sandeep Kishore – Corporat...
Transform and Modernize -UK's leading specialists in Pension and Employee Ben...
"Cost Savings Enabled for European Financial Services company "

Recently uploaded (20)

PPTX
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
PDF
Types of control:Qualitative vs Quantitative
PDF
Laughter Yoga Basic Learning Workshop Manual
PDF
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
PPTX
Lecture (1)-Introduction.pptx business communication
PPTX
ICG2025_ICG 6th steering committee 30-8-24.pptx
PPTX
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
PDF
MSPs in 10 Words - Created by US MSP Network
PPT
Data mining for business intelligence ch04 sharda
PDF
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
PDF
Roadmap Map-digital Banking feature MB,IB,AB
PPTX
5 Stages of group development guide.pptx
PPTX
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
PDF
A Brief Introduction About Julia Allison
PDF
Business model innovation report 2022.pdf
PDF
Reconciliation AND MEMORANDUM RECONCILATION
PDF
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
PPT
340036916-American-Literature-Literary-Period-Overview.ppt
PDF
WRN_Investor_Presentation_August 2025.pdf
DOCX
unit 1 COST ACCOUNTING AND COST SHEET
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
Types of control:Qualitative vs Quantitative
Laughter Yoga Basic Learning Workshop Manual
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
Lecture (1)-Introduction.pptx business communication
ICG2025_ICG 6th steering committee 30-8-24.pptx
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
MSPs in 10 Words - Created by US MSP Network
Data mining for business intelligence ch04 sharda
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
Roadmap Map-digital Banking feature MB,IB,AB
5 Stages of group development guide.pptx
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
A Brief Introduction About Julia Allison
Business model innovation report 2022.pdf
Reconciliation AND MEMORANDUM RECONCILATION
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
340036916-American-Literature-Literary-Period-Overview.ppt
WRN_Investor_Presentation_August 2025.pdf
unit 1 COST ACCOUNTING AND COST SHEET

Intrusion Detection System (IDS)