SlideShare a Scribd company logo
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1033
DUAL AXIS SOLAR TRACKING SYSTEM USING ARDUINO
A. Karthika1, S. Jayanthi1, G. Deivamani2
1Undergraduate Students, Dept. of EEE, Paavai Engineering College, Namakkal
2Assistant Professor, Dept. of EEE, Paavai Engineering College, Namakkal
----------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - The world is now moving towards therenewable
energy source due to various factors like pollution and cost of
non-renewable energy sources. One of the major renewable
energy sources is Sun. In this paper Arduino based Dual-axis
solar tracking system proposed in order toget maximumsolar
energy. The Arduino is used to give command to rotate the
solar panel. Solar trackers are used to improve thepowergain
from solar energy. Solar power is changes due to the seasonal
variation and tilting of earth which changesthepositionof the
sun in the sky. In this regard dual axis solar tracking is
practically implemented and performance is compared with
fixed mount and single axis solar tracking system. Finally,
experimental result clearly evident that proposed method
gives better efficiency compared to fixed mountandsingleaxis
solar tracking system.
Key Words: Renewable Energy, Dual axis solar tracker,
Arduino, LDR, Solar power.
1. INTRODUCTION
Solar energy is emerged as a possible source of renewable
energy over the past two to three decades. This solar energy
is converted into electrical energy by using solar panel
according to the principle of photovoltaic effect. Out of
various renewable energy sources solar energy is widely
used. Because it is simple and it is easy to use in household
too. Solar Trackers is a device used for the rotation of solar
panel according to the sun’s rays. To utilize this renewable
solar energy solar trackers are employed [1]. Forstaticsolar
panel, there is no movement in the panel. But the position of
the sun changes during rising and setting (sun rises in the
east and sets in the west). Due to this reason, single axis
solar tracker is developed for rotation of solar panel in east
and west direction. But due to the rotation and revolution of
earth we cannot get equal amount of sunraysthroughoutthe
year. So that we adopted dual axis solar tracker to utilize the
solar energy effectively and efficiently by rotating the panel
in both horizontal and vertical direction. The main objective
of dual axis solar tracker is to increase the efficiency of the
solar panel by 30-45% when compared to the static and
single axis solar tracker. The literature survey clearly shows
the different methods of solar tracking for maximum
utilization of solar power [1-15].
The single axis tracker is able to rotate only on horizontal
(or) vertical. But this dual axis tracker is able to rotate on
both horizontal and vertical movement. This dual axis solar
tracker was implemented by using Arduino board [2]. Low
cost of implementation by Arduino is the reason behind
choosing Arduino in this project [3]. This was achieved even
by using microcontroller [4].
Figure.1 Mechanism of dual axis tracker
The above figure.1 shows the basic operating mechanism of
dual axis solar tracker. It is basically an Azimuth-Altitude
dual axis solar tracker [5]. Altitude refers to elevation of
angle between a substance and the observer’s location. It is
basically between the angles of 0-90◦. Zenith distance can
also be used instead of altitude. Then azimuth is usually
analysed from north and increasing towards east [6]. This is
mainly employed to get the maximum efficiency when
compared to the static and single-axis solar tracking system
[7]. To achieve this, we used Arduino UNO, LDRs, DC motor,
LCD and solar panel. In [8] automatic solar trackingandtwo
axis solar tracking is proposed in [9] forbettersolartracking
based on the position of sun.
The main contribution of proposed paper is given below:
•To trace more solar power in different location in different
time period in a day to get maximum efficiency.
•To develop the Arduino based Dual axis solar tracker.
•To compare the efficiency of dual axis tracker with single
axis tracker.
2. DUAL AXIS SOLAR TRACKER
The block diagram of our dual axis solar tracker system is
shown in Figure.2. It consists of an Arduino board, LDR, LCD
display, DC motor. An input command is given totheArduino
board. Four LDRs are connected to the light comparison unit
[14]. This unit gives signal to the Arduino. The Arduino in
turn command the motor driving circuit to rotate the solar
panel in horizontal or vertical position.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1034
Figure.2. Block diagram of dual axis solar tracker
3. WORKING
In this system, four LDRs are fixed to sense the intensity of
light (Two for Azimuth position sensor and another two for
Altitudeposition sensor). The analog signal from the sensors
is given to the in-built ADC (Analog to Digital Converter) and
light comparison unit. This output is given as an input to the
Arduino board along with the input command. The output of
the Arduino is given to the motor driving circuit. Two DC
motors are connected with thedrivingcircuit,oneforvertical
and another one forhorizontal movement.Themotorrotates
the solar panel perpendicular to the position of sun’s rays.
Then finally the output power is displayed in the LCD. In this
project, LDR combination plays an important role. The
combination of signals is fed to the Arduino and this bit
pattern is shown in table 1.
Table.1 Desired Bit Pattern
LDR 1 LDR 2 LDR 3 LDR 4
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1
When the motor gets the last bit pattern in the table 1, the
motor will move the panel to its initial position and again
follow these steps, when sun starts rising in the next day.
Even a load is taken from the solar panel by connecting the
panel with battery and inverter. The battery is used to store
and give the DC supply to the inverter, which is taken from
the solar panel. Then the output DC supply was given to the
inverter which converts DC to AC. Then a load is connected
along with it. This function is represented in the Figure.3
which is shown below.
Figure.3 Block diagram of Output side of solar panel
The major components which are used in dual axis solar
tracking system are:
1. Solar panel
2. Arduino board
3. LDRs
4. Motor driver
5. DC motor
6. Lead Acid battery
7. Inverter
3.1 Solar panel
The solar panel works based on the principle of photovoltaic
effect which converts the solar energy into electrical energy
[10]. There are various types of panels are available like
monocrystalline, polycrystalline, amorphous, and hybrid. In
this project we use 40W 12V amorphous solar panel is
considered.
Figure.4. Amorphous solar panel
The Amorphous solar panel was shown in above Figure.4.
The cost and silicon requirement of amorphous panel is low
when compared with the other types of solar panel.
3.2 Arduino
In our project, we proposed Arduino based dual axis solar
tracker [11]. Arduino board unit controls the movement of
solar panel that rotates and traces the direction of sun [12].
Arduino board uses variety of microcontrollers and
controllers. It is equipped with both analog and digital
input/output. It has 14 digital input/output pins (of which
six is used as PWM output), six analog inputs, a 16 MHz
crystal oscillator, a USB connection, a power jack and a reset
button is used. The input command wasgiventotheArduino
using Integrated Development Environment platform. The
Arduino Uno differs from all preceding boards because it
does not use the FTDI USB-to-serial driver chip. Instead, it
features the ATmega8U2 programmed as a USB-to-serial
converter.
Vertical
direction DC
motor
Horizontal
direction DC
motor
Motor driving
circuit
LDR (2)
Azimuth position
sensor
LDR (2)
Altitude position
sensor
Arduino
Controller Solar
panel
LCD
display
Input
command
Power
supply
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1035
The Arduino board was shown in the Figure.5:
Figure.5. Arduino board
The specifications of Arduino board are listed in table.2
below:
Table.2 Arduino Uno specifications
Parameters of microcontroller ATmega328
Operating Voltage 5V
Supply Voltage
(recommended)
7-12V
Maximum supply Voltage (not
recommended)
20V
Digital I/O Pins 14(of which 6 provide
PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40mA
DC Current for 3.3V Pin 50mA
Flash Memory 32KB of which 0.5KB
used by boot loader
SRAM 2KB
EEPROM 1KB
Clock Speed 16MHz
3.3 Advantages
The advantages of tracking solar energy among various
sources are:
•Solar energy is a pollution free form of source.
•There is no noise pollution as in wind energy.
•Once the solar power plant is fixed, maintenance
cost is relatively low when compared to other existing
sources.
•Solar energy can be used in very remote areas
where extension of the electricity power grid is costly.
4. RESULT AND DISCUSSION
This section presents and discuss the performance of
different tracking system and proposed system with respect
to different time period in a day.
Table.3 Output power obtained in Fixed Mount, single-axis
and Dual axis
Hours Power for
Fixed Mount
in W
Power for
Single-Axis
in W
Power for
Dual-Axis in
W
07.00 0.09 0.35 0.68
08.00 0.25 0.47 0.87
09.00 0.75 1.02 1.55
10.00 0.98 1.23 1.78
11.00 1.58 2.24 2.86
12.00 2.5 3.1 3.15
13.00 2.22 2.54 2.98
14.00 1.88 2.11 2.44
15.00 1.58 1.86 2.3
16.00 1.56 1.7 2.01
17.00 0.78 0.98 1.56
18.00 0.44 0.65 0.78
Sum=
12 hrs.
Sum=14.61W Sum=18.25W Sum=22.96W
Solar
Energy
in
W/hr.
(Day
Time)
1.2175 W/hr 1.5208 W/hr 1.9130 W/hr
All
Day
Solar
Energy
Output
0.6087
W/hr
0.7604
W/hr
0.9566
W/hr
The powers tracking of solar panel with different positions
are tabulated above in table 3. It is clearly evident that the
proposed dual axis tracker perfectly aligns with the sun
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1036
direction and tracks the sun movement in a more efficient
way and has a tremendous performance improvement. The
experimental results clearly show that dual axis tracker is
superior to single axis tracker and fixed systems. Power
Captured by dual axis solar tracker is high during the whole
observation time period and it maximizes the conversion of
solar irradiance into electrical energy output is shownin the
table.3. As a result, it creates a solution for effective
utilization of solar energy and thus helps in creating smart
houses.
Figure.6 Bar Chart comparison for different tracking
system
Bar chart comparison of solar power with different tracking
methods is shown above figure.6. It is clearly showing that
proposed method yields better output power compared to
existing method.
5. CONCLUSION
The Arduino based dual axis solar trackingbasedsolarpanel
is designed and successfully implemented to increase the
efficiency of solar panel. The proposed dual axis solar
tracker is more effective than the existing single axis solar
tracker and fixed mount. The proposed solar tracker which
automatically tracks the sun to grab maximum solar power
with the help of Arduino board was effectivelyachieved. The
implementation cost of Arduino board for tracking solar
power is low and it is implementation is simple. Finally,
experimental system clearly reveals that proposed system
effectively tracks the sun in both good and bad weather
conditions. During different time periods in a day compared
with the existing system and efficiency of solar panel is
effectively improved.
REFERENCES
[1] Juang, J.N. and Radharamanan, R., 2014. Design of solar
tracking system for renewable energy.Inproceedingsof
the 2014 Zone 1 conference of the American society for
engineering education (pp. 1-8). IEEE.
[2] Pradeep, K., Reddy, K.S.P., Mouli, C.C and Raju, K.N.,
2014. Development of dual-axis solar tracking using
Arduino with lab view. International Journal of
Engineering Trends and Technology,17(7),pp.321-324.
[3] Kaur, T., Mahajan, S., Verma, S. and Gambhit, J., 2016.
Arduino based low cost active dual axis solar tacker. In
2016 IEEE 1st International conference on Power
Electronics, Intelligent Control and Energy Systems
(ICPEICES) (pp. 1-5). IEEE.
[4] Das, S., Chakraborty, S., Sadhu, P.K. and Sastry, O.S.,
2015. Design and experimental execution of a
microcontroller (µC)-based smart dual-axis automatic
solar tracking system. Energy Science & Engineering,
3(6), pp.558-564.
[5] Catarius, A.M. and Christiner, M.P., 2010. Azimuth -
altitude dual axis solar tracker.
[6] Sidek, M.H.M., Azis, N., Hasan, W.Z.W., Ab kadir, M.Z.A.,
Shafie, S. and Radzi, M.A.M., 2017. Automated
positioning dual-axis solar tracking system with
precision elevation and azimuth angle control. Energy,
124, pp.160-170.
[7] Vieira, R.G., Guerra, F.K.O.M.V., Vale,M.R.B.G.andAraujo,
M.M., 2016. Comparative performanceanalysisbetween
static solar panels and single-axis tracking system on a
hot climate region near to the equator. Renewable and
Sustainable Energy Reviews, 64, pp.672-681.
[8] Reddy, J.S., Chakraborti, A. and Das, B., 2016. November.
Implementationandpractical evaluationofanautomatic
solar tracking system for different weather conditions.
In 2016 IEEE 7th Power India International Conference
(PIICON) (pp. 1-6). IEEE.
[9] Hoffmann, F.M., Molz, R.F., Kothe, J.V., Nara, E.O.B. and
Tedesco, L.P.C., 2018. Monthly profile analysis based on
a two-axis solar tracker proposal for photovoltaic
panels. Renewable energy, 115, pp.750-759.
[10] Singh, P., Pahuja, R., Karwasra, M., Beniwal, S., Bansal,M.
and Dadhich, A., 2016. Dual Axis Solar Tracking System
for Solar panel. Bulletin of Electrical Engineering and
Informatics, 5(4), pp.403-411.
[11] Das, A. and Swthika, O.V., 2016. Arduino BasedDual Axis
Sun Tracking System. AdvancedScienceLetters,22(10),
pp.2837-2840.
[12] Fuentes, M., Vivar, M., Burgos, J.M.,Aguilera, J.andVacas,
J.A., 2014. Design of an accurate, low-cost autonomous
data logger for PV systemmonitoringusingArduinothat
complies with IEC standards. SolarEnergyMaterialsand
Solar Cells, 130. Pp.529-543.
[13] Rosenblatt, A. and Aaron, N., 2014. Solar Tracking
System (2014).
[14] Barsoum, N., Nizam, R. and Gerard, E., 2016. New
approach on development a dual axis solar tracking
prototype. Wireless Engineering and Technology, 7(1),
pp. 1-11.
[15] Vit, J. and Krejcar, O., 2016. Smart solution of alternative
energy source for smart houses. In International
conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (pp. 830-
840). Springer, Cham.s.
[16]

More Related Content

PPTX
Dual axis solar tracking using arduino with lab view (1)
PDF
IRJET- Smart and Intelligent Dual Axis Solar Tracker using Arduino Micro-Cont...
PDF
Dual Axis Solar Tracker Using Microcontroller
PDF
Self-sustaining and externally-powered fixed, single, and dual-axis solar tra...
PDF
Dual axis
PDF
Dual axis solar tracker with IoT monitoring system using arduino
DOCX
single axis solar tracker with out micro controller
DOCX
Iv sem report project final report[735] 1
Dual axis solar tracking using arduino with lab view (1)
IRJET- Smart and Intelligent Dual Axis Solar Tracker using Arduino Micro-Cont...
Dual Axis Solar Tracker Using Microcontroller
Self-sustaining and externally-powered fixed, single, and dual-axis solar tra...
Dual axis
Dual axis solar tracker with IoT monitoring system using arduino
single axis solar tracker with out micro controller
Iv sem report project final report[735] 1

What's hot (20)

PPTX
Effects of dual axis solar tracker
PDF
Design of Dual Axis Solar Tracker System Based on Fuzzy Inference Systems
PDF
Design and Construction of Automatic Dual-Axis Solar Tracking System Using Li...
PDF
Project Report
PDF
DUAL AXIS SOLAR TRACKING SYSTEM
DOCX
Arduino solar tracker using ldr sensor & servo motor
PPTX
Single AXIs Smart SOLAR TRACKING SYSTEM USING ARDUINO
PPTX
solar tracker by kanav mansotra
PDF
Microcontroller based automatic solar power tracking system
DOCX
Maximum solar absorption using dual axis solar panel report
PDF
Solar Tracking System
PPSX
Single Axis Solar Tracking Systems
PDF
Solar Powered Sensor Base Irrigation System
PPTX
Dual axis solar tracker
PDF
DUAL AXIS SOLAR TRACKER USING LDR AS A SENSOR
PDF
Making model of dual axis solar tracking with Maximum Power Point Tracking
PPTX
Presentration dual axis solar tracking system.
PDF
Universal solar tracker final report
PDF
The Short and Long Term Peace Strategies: "Anglophone" Crisis, Cameroon
PDF
Design and Implementation of Dual Axis Solar Tracking system
Effects of dual axis solar tracker
Design of Dual Axis Solar Tracker System Based on Fuzzy Inference Systems
Design and Construction of Automatic Dual-Axis Solar Tracking System Using Li...
Project Report
DUAL AXIS SOLAR TRACKING SYSTEM
Arduino solar tracker using ldr sensor & servo motor
Single AXIs Smart SOLAR TRACKING SYSTEM USING ARDUINO
solar tracker by kanav mansotra
Microcontroller based automatic solar power tracking system
Maximum solar absorption using dual axis solar panel report
Solar Tracking System
Single Axis Solar Tracking Systems
Solar Powered Sensor Base Irrigation System
Dual axis solar tracker
DUAL AXIS SOLAR TRACKER USING LDR AS A SENSOR
Making model of dual axis solar tracking with Maximum Power Point Tracking
Presentration dual axis solar tracking system.
Universal solar tracker final report
The Short and Long Term Peace Strategies: "Anglophone" Crisis, Cameroon
Design and Implementation of Dual Axis Solar Tracking system
Ad

Similar to IRJET- Dual Axis Solar Tracking System using Arduino (20)

PDF
IRJET-Design and Implementation of Automatic Dual Axis Solar Tracking System
PDF
Dual Axis Solar Tracking PV System using Arduino UNO
PPTX
SolarTracker PPT.pptx
PDF
IRJET- IoT based Dual Axis Solar Tracker System
PDF
IRJET - Two Axis with Four Sensors Solar Tracking System
PDF
Arduino based Dual Axis Smart Solar Tracker
PDF
IRJET- Smart Alignment System
PDF
Design of Arduino Based Solar Tracker for Renewable Energy
PDF
Fresnel lens and tracking to improve the solar panel efficiency
PDF
Design and Development of Reliable Solar Tracking System with Rotation and Ti...
PDF
00.pdf'lk,;'mjl'l;":?;lkj;hgfdtryuiopl;'lk
PDF
IRJET- Automatic Solar Tracker
PDF
IRJET - Dual Axis Solar Tracking System
PDF
Vision based solar tracking system for efficient energy harvesting
PDF
IRJET - The Implementation of Arduino based Single Axis Solar Tracking Sy...
PDF
Intelligent Microcontroller Solar 12V Battery Charger
PDF
I1103035156
PDF
IRJET- Sun Tracking Solar Panel
PDF
Solar Tracking For Maximum Utilization Of Solar Energy
PDF
Astronomical Almanac’s Algorithm Based Dual Axis Solar Tracker
IRJET-Design and Implementation of Automatic Dual Axis Solar Tracking System
Dual Axis Solar Tracking PV System using Arduino UNO
SolarTracker PPT.pptx
IRJET- IoT based Dual Axis Solar Tracker System
IRJET - Two Axis with Four Sensors Solar Tracking System
Arduino based Dual Axis Smart Solar Tracker
IRJET- Smart Alignment System
Design of Arduino Based Solar Tracker for Renewable Energy
Fresnel lens and tracking to improve the solar panel efficiency
Design and Development of Reliable Solar Tracking System with Rotation and Ti...
00.pdf'lk,;'mjl'l;":?;lkj;hgfdtryuiopl;'lk
IRJET- Automatic Solar Tracker
IRJET - Dual Axis Solar Tracking System
Vision based solar tracking system for efficient energy harvesting
IRJET - The Implementation of Arduino based Single Axis Solar Tracking Sy...
Intelligent Microcontroller Solar 12V Battery Charger
I1103035156
IRJET- Sun Tracking Solar Panel
Solar Tracking For Maximum Utilization Of Solar Energy
Astronomical Almanac’s Algorithm Based Dual Axis Solar Tracker
Ad

More from IRJET Journal (20)

PDF
Enhanced heart disease prediction using SKNDGR ensemble Machine Learning Model
PDF
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
PDF
Kiona – A Smart Society Automation Project
PDF
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
PDF
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
PDF
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
PDF
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
PDF
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
PDF
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
PDF
BRAIN TUMOUR DETECTION AND CLASSIFICATION
PDF
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
PDF
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
PDF
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
PDF
Breast Cancer Detection using Computer Vision
PDF
Auto-Charging E-Vehicle with its battery Management.
PDF
Analysis of high energy charge particle in the Heliosphere
PDF
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
PDF
Auto-Charging E-Vehicle with its battery Management.
PDF
Analysis of high energy charge particle in the Heliosphere
PDF
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Enhanced heart disease prediction using SKNDGR ensemble Machine Learning Model
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Kiona – A Smart Society Automation Project
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
BRAIN TUMOUR DETECTION AND CLASSIFICATION
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Breast Cancer Detection using Computer Vision
Auto-Charging E-Vehicle with its battery Management.
Analysis of high energy charge particle in the Heliosphere
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
Auto-Charging E-Vehicle with its battery Management.
Analysis of high energy charge particle in the Heliosphere
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPT
introduction to datamining and warehousing
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPT
Mechanical Engineering MATERIALS Selection
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Construction Project Organization Group 2.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Well-logging-methods_new................
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Artificial Intelligence
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
introduction to datamining and warehousing
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
bas. eng. economics group 4 presentation 1.pptx
Current and future trends in Computer Vision.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Mechanical Engineering MATERIALS Selection
Model Code of Practice - Construction Work - 21102022 .pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Construction Project Organization Group 2.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
Well-logging-methods_new................
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Lecture Notes Electrical Wiring System Components
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Artificial Intelligence
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf

IRJET- Dual Axis Solar Tracking System using Arduino

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1033 DUAL AXIS SOLAR TRACKING SYSTEM USING ARDUINO A. Karthika1, S. Jayanthi1, G. Deivamani2 1Undergraduate Students, Dept. of EEE, Paavai Engineering College, Namakkal 2Assistant Professor, Dept. of EEE, Paavai Engineering College, Namakkal ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The world is now moving towards therenewable energy source due to various factors like pollution and cost of non-renewable energy sources. One of the major renewable energy sources is Sun. In this paper Arduino based Dual-axis solar tracking system proposed in order toget maximumsolar energy. The Arduino is used to give command to rotate the solar panel. Solar trackers are used to improve thepowergain from solar energy. Solar power is changes due to the seasonal variation and tilting of earth which changesthepositionof the sun in the sky. In this regard dual axis solar tracking is practically implemented and performance is compared with fixed mount and single axis solar tracking system. Finally, experimental result clearly evident that proposed method gives better efficiency compared to fixed mountandsingleaxis solar tracking system. Key Words: Renewable Energy, Dual axis solar tracker, Arduino, LDR, Solar power. 1. INTRODUCTION Solar energy is emerged as a possible source of renewable energy over the past two to three decades. This solar energy is converted into electrical energy by using solar panel according to the principle of photovoltaic effect. Out of various renewable energy sources solar energy is widely used. Because it is simple and it is easy to use in household too. Solar Trackers is a device used for the rotation of solar panel according to the sun’s rays. To utilize this renewable solar energy solar trackers are employed [1]. Forstaticsolar panel, there is no movement in the panel. But the position of the sun changes during rising and setting (sun rises in the east and sets in the west). Due to this reason, single axis solar tracker is developed for rotation of solar panel in east and west direction. But due to the rotation and revolution of earth we cannot get equal amount of sunraysthroughoutthe year. So that we adopted dual axis solar tracker to utilize the solar energy effectively and efficiently by rotating the panel in both horizontal and vertical direction. The main objective of dual axis solar tracker is to increase the efficiency of the solar panel by 30-45% when compared to the static and single axis solar tracker. The literature survey clearly shows the different methods of solar tracking for maximum utilization of solar power [1-15]. The single axis tracker is able to rotate only on horizontal (or) vertical. But this dual axis tracker is able to rotate on both horizontal and vertical movement. This dual axis solar tracker was implemented by using Arduino board [2]. Low cost of implementation by Arduino is the reason behind choosing Arduino in this project [3]. This was achieved even by using microcontroller [4]. Figure.1 Mechanism of dual axis tracker The above figure.1 shows the basic operating mechanism of dual axis solar tracker. It is basically an Azimuth-Altitude dual axis solar tracker [5]. Altitude refers to elevation of angle between a substance and the observer’s location. It is basically between the angles of 0-90◦. Zenith distance can also be used instead of altitude. Then azimuth is usually analysed from north and increasing towards east [6]. This is mainly employed to get the maximum efficiency when compared to the static and single-axis solar tracking system [7]. To achieve this, we used Arduino UNO, LDRs, DC motor, LCD and solar panel. In [8] automatic solar trackingandtwo axis solar tracking is proposed in [9] forbettersolartracking based on the position of sun. The main contribution of proposed paper is given below: •To trace more solar power in different location in different time period in a day to get maximum efficiency. •To develop the Arduino based Dual axis solar tracker. •To compare the efficiency of dual axis tracker with single axis tracker. 2. DUAL AXIS SOLAR TRACKER The block diagram of our dual axis solar tracker system is shown in Figure.2. It consists of an Arduino board, LDR, LCD display, DC motor. An input command is given totheArduino board. Four LDRs are connected to the light comparison unit [14]. This unit gives signal to the Arduino. The Arduino in turn command the motor driving circuit to rotate the solar panel in horizontal or vertical position.
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1034 Figure.2. Block diagram of dual axis solar tracker 3. WORKING In this system, four LDRs are fixed to sense the intensity of light (Two for Azimuth position sensor and another two for Altitudeposition sensor). The analog signal from the sensors is given to the in-built ADC (Analog to Digital Converter) and light comparison unit. This output is given as an input to the Arduino board along with the input command. The output of the Arduino is given to the motor driving circuit. Two DC motors are connected with thedrivingcircuit,oneforvertical and another one forhorizontal movement.Themotorrotates the solar panel perpendicular to the position of sun’s rays. Then finally the output power is displayed in the LCD. In this project, LDR combination plays an important role. The combination of signals is fed to the Arduino and this bit pattern is shown in table 1. Table.1 Desired Bit Pattern LDR 1 LDR 2 LDR 3 LDR 4 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 When the motor gets the last bit pattern in the table 1, the motor will move the panel to its initial position and again follow these steps, when sun starts rising in the next day. Even a load is taken from the solar panel by connecting the panel with battery and inverter. The battery is used to store and give the DC supply to the inverter, which is taken from the solar panel. Then the output DC supply was given to the inverter which converts DC to AC. Then a load is connected along with it. This function is represented in the Figure.3 which is shown below. Figure.3 Block diagram of Output side of solar panel The major components which are used in dual axis solar tracking system are: 1. Solar panel 2. Arduino board 3. LDRs 4. Motor driver 5. DC motor 6. Lead Acid battery 7. Inverter 3.1 Solar panel The solar panel works based on the principle of photovoltaic effect which converts the solar energy into electrical energy [10]. There are various types of panels are available like monocrystalline, polycrystalline, amorphous, and hybrid. In this project we use 40W 12V amorphous solar panel is considered. Figure.4. Amorphous solar panel The Amorphous solar panel was shown in above Figure.4. The cost and silicon requirement of amorphous panel is low when compared with the other types of solar panel. 3.2 Arduino In our project, we proposed Arduino based dual axis solar tracker [11]. Arduino board unit controls the movement of solar panel that rotates and traces the direction of sun [12]. Arduino board uses variety of microcontrollers and controllers. It is equipped with both analog and digital input/output. It has 14 digital input/output pins (of which six is used as PWM output), six analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack and a reset button is used. The input command wasgiventotheArduino using Integrated Development Environment platform. The Arduino Uno differs from all preceding boards because it does not use the FTDI USB-to-serial driver chip. Instead, it features the ATmega8U2 programmed as a USB-to-serial converter. Vertical direction DC motor Horizontal direction DC motor Motor driving circuit LDR (2) Azimuth position sensor LDR (2) Altitude position sensor Arduino Controller Solar panel LCD display Input command Power supply
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1035 The Arduino board was shown in the Figure.5: Figure.5. Arduino board The specifications of Arduino board are listed in table.2 below: Table.2 Arduino Uno specifications Parameters of microcontroller ATmega328 Operating Voltage 5V Supply Voltage (recommended) 7-12V Maximum supply Voltage (not recommended) 20V Digital I/O Pins 14(of which 6 provide PWM output) Analog Input Pins 6 DC Current per I/O Pin 40mA DC Current for 3.3V Pin 50mA Flash Memory 32KB of which 0.5KB used by boot loader SRAM 2KB EEPROM 1KB Clock Speed 16MHz 3.3 Advantages The advantages of tracking solar energy among various sources are: •Solar energy is a pollution free form of source. •There is no noise pollution as in wind energy. •Once the solar power plant is fixed, maintenance cost is relatively low when compared to other existing sources. •Solar energy can be used in very remote areas where extension of the electricity power grid is costly. 4. RESULT AND DISCUSSION This section presents and discuss the performance of different tracking system and proposed system with respect to different time period in a day. Table.3 Output power obtained in Fixed Mount, single-axis and Dual axis Hours Power for Fixed Mount in W Power for Single-Axis in W Power for Dual-Axis in W 07.00 0.09 0.35 0.68 08.00 0.25 0.47 0.87 09.00 0.75 1.02 1.55 10.00 0.98 1.23 1.78 11.00 1.58 2.24 2.86 12.00 2.5 3.1 3.15 13.00 2.22 2.54 2.98 14.00 1.88 2.11 2.44 15.00 1.58 1.86 2.3 16.00 1.56 1.7 2.01 17.00 0.78 0.98 1.56 18.00 0.44 0.65 0.78 Sum= 12 hrs. Sum=14.61W Sum=18.25W Sum=22.96W Solar Energy in W/hr. (Day Time) 1.2175 W/hr 1.5208 W/hr 1.9130 W/hr All Day Solar Energy Output 0.6087 W/hr 0.7604 W/hr 0.9566 W/hr The powers tracking of solar panel with different positions are tabulated above in table 3. It is clearly evident that the proposed dual axis tracker perfectly aligns with the sun
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1036 direction and tracks the sun movement in a more efficient way and has a tremendous performance improvement. The experimental results clearly show that dual axis tracker is superior to single axis tracker and fixed systems. Power Captured by dual axis solar tracker is high during the whole observation time period and it maximizes the conversion of solar irradiance into electrical energy output is shownin the table.3. As a result, it creates a solution for effective utilization of solar energy and thus helps in creating smart houses. Figure.6 Bar Chart comparison for different tracking system Bar chart comparison of solar power with different tracking methods is shown above figure.6. It is clearly showing that proposed method yields better output power compared to existing method. 5. CONCLUSION The Arduino based dual axis solar trackingbasedsolarpanel is designed and successfully implemented to increase the efficiency of solar panel. The proposed dual axis solar tracker is more effective than the existing single axis solar tracker and fixed mount. The proposed solar tracker which automatically tracks the sun to grab maximum solar power with the help of Arduino board was effectivelyachieved. The implementation cost of Arduino board for tracking solar power is low and it is implementation is simple. Finally, experimental system clearly reveals that proposed system effectively tracks the sun in both good and bad weather conditions. During different time periods in a day compared with the existing system and efficiency of solar panel is effectively improved. REFERENCES [1] Juang, J.N. and Radharamanan, R., 2014. Design of solar tracking system for renewable energy.Inproceedingsof the 2014 Zone 1 conference of the American society for engineering education (pp. 1-8). IEEE. [2] Pradeep, K., Reddy, K.S.P., Mouli, C.C and Raju, K.N., 2014. Development of dual-axis solar tracking using Arduino with lab view. International Journal of Engineering Trends and Technology,17(7),pp.321-324. [3] Kaur, T., Mahajan, S., Verma, S. and Gambhit, J., 2016. Arduino based low cost active dual axis solar tacker. In 2016 IEEE 1st International conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (pp. 1-5). IEEE. [4] Das, S., Chakraborty, S., Sadhu, P.K. and Sastry, O.S., 2015. Design and experimental execution of a microcontroller (µC)-based smart dual-axis automatic solar tracking system. Energy Science & Engineering, 3(6), pp.558-564. [5] Catarius, A.M. and Christiner, M.P., 2010. Azimuth - altitude dual axis solar tracker. [6] Sidek, M.H.M., Azis, N., Hasan, W.Z.W., Ab kadir, M.Z.A., Shafie, S. and Radzi, M.A.M., 2017. Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy, 124, pp.160-170. [7] Vieira, R.G., Guerra, F.K.O.M.V., Vale,M.R.B.G.andAraujo, M.M., 2016. Comparative performanceanalysisbetween static solar panels and single-axis tracking system on a hot climate region near to the equator. Renewable and Sustainable Energy Reviews, 64, pp.672-681. [8] Reddy, J.S., Chakraborti, A. and Das, B., 2016. November. Implementationandpractical evaluationofanautomatic solar tracking system for different weather conditions. In 2016 IEEE 7th Power India International Conference (PIICON) (pp. 1-6). IEEE. [9] Hoffmann, F.M., Molz, R.F., Kothe, J.V., Nara, E.O.B. and Tedesco, L.P.C., 2018. Monthly profile analysis based on a two-axis solar tracker proposal for photovoltaic panels. Renewable energy, 115, pp.750-759. [10] Singh, P., Pahuja, R., Karwasra, M., Beniwal, S., Bansal,M. and Dadhich, A., 2016. Dual Axis Solar Tracking System for Solar panel. Bulletin of Electrical Engineering and Informatics, 5(4), pp.403-411. [11] Das, A. and Swthika, O.V., 2016. Arduino BasedDual Axis Sun Tracking System. AdvancedScienceLetters,22(10), pp.2837-2840. [12] Fuentes, M., Vivar, M., Burgos, J.M.,Aguilera, J.andVacas, J.A., 2014. Design of an accurate, low-cost autonomous data logger for PV systemmonitoringusingArduinothat complies with IEC standards. SolarEnergyMaterialsand Solar Cells, 130. Pp.529-543. [13] Rosenblatt, A. and Aaron, N., 2014. Solar Tracking System (2014). [14] Barsoum, N., Nizam, R. and Gerard, E., 2016. New approach on development a dual axis solar tracking prototype. Wireless Engineering and Technology, 7(1), pp. 1-11. [15] Vit, J. and Krejcar, O., 2016. Smart solution of alternative energy source for smart houses. In International conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 830- 840). Springer, Cham.s. [16]