SlideShare a Scribd company logo
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 712
UNDERGROUND CABLE FAULT DETECTION AND TRANSMISSION
OF INTIMATION THROUGH SOIL WIRELESS TRANSCEIVER
GUNASEKHAR.B1, HARISH.T2, JAYASURYA.S3, ANBARASAN.A4
1,2,3Student, Dept. of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India
4Professor, Dept of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract – The project is intended inordertofindasolution
to detect the fault in underground supply lines in an efficient
manner and in less cost. For this purpose, we use the Wireless
Underground Sensor Networks to transmit the data from
transmitter side to receiver side. Whenever the fault occurs in
the underground cable it is transmitted to the PC using this
WUSN. It is used in this fault detection because of its less
complexity and less cost. WUSN mainly makes use of the
moisture present in the soil. This does not involve any kind of
waves to transmit the data and it makes the detection
harmless. Arduino microcontroller plays a major role anditis
coded with the embedded C to detect the fault in the
underground supply lines with the help of AC current sensor
connected to the supply lines. Wireless soil transmitter and
receiver is used to transmit the data from the Arduino
microcontroller connected to the supply lines via current
sensor to the pc via serial converter
Key Words: WUSN, Arduino microcontroller, soil
wireless transmitter.
1. INTRODUCTION
An embedded system is so important in today’s automation
as it has been widely used in all kind of industries and
automation. This project is to determine the distance of
underground cable fault from base station in kilometers
using an PIC Microcontroller. Generally, we use overhead
lines were we can easily identify the faults but in rushed
places or familiar cities we couldn’t use overhead lines. So,
we are going to use underground cables. Underground
cables are used largely in urban area instead of overhead
lines. We cannot easily identify thefaultsintheunderground
cables. This project deals with PIC microcontroller, current
sensor, soil wireless transceiver, serial convertor. This
project greatly reduces the time and operates effectively.
Many types of faults occur due to construction works and
other reasons. At this time, it is difficult to dig out cable due
to not knowing the exact location of the cable fault. Many
urban areas follow the underground cabling system.
Sometimes faults occur due to construction worksandother
reasons. Nowadays the world is becoming digitalized so the
project was intended to detect the location of fault in digital
way.
2. OBJECTIVES
The main objective is to establish an efficient wireless
communication between the transceivers in challenging
underground medium.
To detect any fault in underground power supply lines and
to indicate the precise location of the fault.
To detect the location that where the cable has gotdamaged.
To reduce the cost and making it more effective in long
distance applications and to reduce the complexity.
3. RELATED WORKS:
In this work, the recent advances in MI-WUSNs and related
areas (WUSNs, NFC, magnetic communication in liquids)
have been reviewed [1]. The advances in the related areas
provide an important insight into the typical problems of
system modeling and design. For MI-WUSNs, the advances
are related to various aspects of wireless communication
and networking.
In particular, the important aspects of channel modeling,
digital signal transmission and processing, synchronization,
network design, WPT, and localization, havebeendiscussed.
Through this, a better understanding of the underlying
research challenges and design problems has been
elaborated.
These interfaces might give rise to some novel applications
of IoT.
The development of an outdoor WUSN test bed and the
realization of WUSN experiments are challenging [2]. This
work provides a set of guidelines that result in a balanced
approach between high accuracy and a practical
implementation of a WUSN test bed. The identification and
elimination/mitigation of each variable which significantly
affects the experiment results is the basic approach behind
the proposed guideline.
The main aim of this paper is to detect the fault in a cable
using Arduino microcontroller kit [3]. The cable is placed
underground of the farming land. Usually it is difficult to
detect the fault but this paper uses a simple solution such as
Wireless underground sensor networks to detect the fault. It
simply uses the soil wireless transmitter and receivertopass
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 713
the information that where the fault occurs by placing the
sensors to a particular range. The main advantage is that it
does not use any kind of waves inside the soil, it uses the
electrons to transmit the information obtained from the
microcontroller kit.
This work introduces theconceptofa WirelessUnderground
Sensor Network (WUSN) that can be used to monitor a
variety of conditions, such as soil properties for agricultural
applications and toxic substances for environmental
monitoring [4]. WUSN devices does not require any wired
networks and it is completely laid below ground. All
necessary sensors, memory, a processor,a radio,anantenna,
and a power source are needed for each device that makes
the deployment much simpler than existing underground
sensing solutions. Wireless communication is significantly
more challenging within a dense substance such as soil or
rock than through air. This factor requires that
communication protocols, that combined with the necessity
to conserve energy due to the difficulty of unearthing and
recharging WUSN devices.
4. PROPOSED SYSTEM
Our system is intended to locate the fault in underground
cable line from the base station to exact location in
kilometers using an Arduino Microcontroller kit. Whenever
the fault occurs in underground cable it is difficult to detect
the location of fault for process of repairing the particular
cable.
The proposed technology used is controller (PIC
Microcontroller) to identify thefaultanditisindicatedusing.
WUSN have many application wireless soil transmitter and
receiver. WUSN is defined as a group of nodes whose means
of data transmission and reception is completely
subterranean like infrastructures, security, environmental,
monitoring.
5. BLOCK DIAGRAM
Fig -1: Transmitter Unit
Fig -2: Receiver Unit
5.1 BLOCK DIAGRAM DESCRIPTION
Initially the current sensors are connected to the
underground cables and it is kept to a certain range o cables
depending on the current sensor used. Then the current
sensors are connected to the PIC16F877A Arduino
microcontroller.
This microcontroller continuously monitors the readings
given by the current sensors connected to the underground
cables. this gained information is transmitted to the receiver
PC via the soil wireless transmitter and receiver.
Microcontroller iscoded usingtheembeddedcprogramming
language to detect any kind of changes from current sensors.
Embedded C is a set of language extensions for the C
programming language by the c standards committee to
address commonality issues that exist betweenCextensions
for different embedded systems. Embedded C programming
support exotic features such as fixed-point arithmetic,
multiple distinct memory banks and basic I/O operations.It
has a number of features that are not available in normal C
programming, suchasfixed-pointarithmetic,namedaddress
spaces and basic I/O hardware addressing.
Then the information is transmitted to the receiver unit
which comprises of soil wireless receiver, to the serial
converter and connected to the personal computer.
The serial converter uses the UART protocol. The pc has an
output displayed in the spreadsheet which just shows
whether the current is flowing between the various nodes.
This done using coding language C. C programming is a
very simple language used in order to simplify the work of
the user.
6. INTERNAL CIRCUIT DIAGRAM
The PIC16F877A is a microcontroller board based on thePIC
Series controller. It has33digitalinput/outputpins(ofwhich
can be used as PWM outputs), and 8 analog inputs. It alsohas
16 MHz crystal oscillator, a USB connection, a power jack, an
ICSP header, and a reset button.
PIC16F877A is 8bit microcontroller packs Microchip’s
powerful PIC architecture into a 40 package and is upwards
compatible with the PIC16C5X, PIC12CXXX and PIC16C7X
devices.
The underground cable lines are continuously monitored by
the current sensors if there is any leakage or fault in cable
lines. The current sensor generatesasignalproportionaltoit.
PERSONAL
COMPUTER
WIRELESS
SOIL
(RECIEVER)
SERIAL
CONVERTOR
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 714
The generated signalcould be analog output and even digital
output. The signal is passed to the PIC16F877A which
identify the exact location of the fault in the cable lines. This
information is transmitted and received via using WUSN and
the displayed in PC.
Fig -3: Internal Circuit Diagram
7. DESIGN FLOW
The flow chart is diagrammatical representation aboutthe
working of underground cable fault detection using the
Wireless underground sensor networks.
The current sensor 1 which is attached between node 1 to 2
sends information whether the current flows in the node
which it is attached to, then current sensor 2 sends the
information as same as current sensor 1 to the
microcontroller and the as many as nodes we require also
does the something. TheArduinomicrocontrollerfetched the
information from the various currentsensorswhichiscoded
with embedded c and transmits the information’s using the
WUSN.
No
Yes
NO
Yes
Chart-1: Flow Chart representation
The computer is attachedtotheWUSN usingserial converter
displays the live information about the underground cables
in a spreadsheet which is coded with c programming
language. In the flow chart ‘n’ represents that any numberof
nodes can be connected depending upon the value of the
current sensor used. The exact node where the current
doesn’t flow is displayed in the spreadsheet else it just
displays that there is no fault in the underground cable.
8. METHODOLOGIES
8.1. Embedded C Programming
Embedded C programming want to have a nonstandard
extension to the C programming language in order to
support exotic features such as fixed-point arithmetic,
multiple distinct memory banks and basic I/O operations.It
has a number of features that are not available in normal C,
such as fixed-point arithmetic, named address spaces and
basic I/O hardware addressing. Lot of syntax and standards
are used by embedded C was main () function, variable
definition, data type declaration, conditional statements (if,
switch case), loops (while, for), functions (), arrays, strings,
structures, union, bit operations, macros, etc.
8.2 WUSN
Wireless underground sensor networks are a way of
transmitting the information’s or data from soil wireless
transmitter to receiver using the moisture of soil present in
it. The transmitter transmits the information from source
node to receiver attached to the destination node using
electrons inside the moisture of soil.
8.3 BASIC METHOD
The AC current sensor is connected to the cable which islaid
underground and the informationwhetherthecurrentflows
through the cable or not is transmitted to the wireless soil
transmitter using the Arduino microcontroller kit which is
connected to the AC current sensor. The microcontroller kit
is coded using the Embedded C.
The soil wireless receiver receives the data from the
transmitter through the soil which contains moisture and it
is connected to the serial converter which uses the UART
protocol. It is coded using the Embedded C programming.
The personal Computer is device used here in order to
display the output from the microcontroller.Itisdisplayedin
the spread sheet in the form of table. The Output has three
columns in which one displays number of nodes and the
current sensor and status of the node whether the current
flows between the nodes or not.
Start
If current flows in
node 1 to 2
If current flows in
node 2 to n
No fault in any nodes of
the UG cable Notes down the nodes
PC connected via serial
converter
Stop
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 715
8.4 Power Supply
Electrical power is a reference to a source of electrical
power. The component that supplies electrical power to the
devices is called a power supply unit or PSU. This is
commonly applied to most of the electrical energy supplies,
less often to mechanical ones, and rarely to others. Power
supply unit is the combination of Step down transformer,
Bridge rectifier, filter circuit and the voltage regulator
Fig -4: Power Supply Unit
8.5 PIC MICROCONTROLLER
PIC stands for Peripheral Interface Microcontroller which
was developed by the general instrumentsmicrocontrollers.
It is controlled by software and programmed in such a way
that it performs different tasks and control a generationline.
PIC microcontrollers are used in different new applications
like audio accessories, advanced medical devices, and smart
devices. This device is accessible in 40 pin and 44 pin
packages. All devices within this family share common
design with subsequent differences.
Fig-5: PIC Microcontroller
8.6 CURRENT SENSOR
Current detector could be a device that detects electric
current in a wire and generates a signal proportional to that
current. The generated signal could be analog output and
even digital output. The generated signal may be then used
to display the measured current in an ammeter or may be
stored for any further analysis within the data or
information acquisition system, or may be used for
controlling purpose. The detected current and also the
output signal may be alternating current input and direct
current input.
Fig -6: Current sensor
9. ADVANTAGES
The main advantage of this paper is, WUSNisharmlesstothe
living beings. It does not use any kind of waystotransmit the
information from the cable laid underground to the output
device above ground. The cost is less and can be placed in
any places like power station and it is risk free. Depending
on the range of current sensor it can be used for long
distance application. It is less complex circuit to build and it
does not involve any radiation. The circuit built to detectthe
underground cable fault detection is radiation less and it is
harmless.
10. CONCLUSIONS
In this work the short circuit fault at a particular distance in
the Underground Cables can be detected using Ohm’s Law
which enables to rectify fault efficiently.
This system can be beneficial to underground cables fault
finding as it is cost effective and can be accessed remotely.
This system will help to implement the system to regulate
the industrial use of underground cables and avoid power
losses.
It gives the new dimensions in the field of underground
cables fault finding with minimum cost and less time.
The circuit uses WUSN in an efficient mannertotransmit the
information from current sensor to the microcontroller
without any harmful radiation.
REFERENCES
[1] SURVEY ON ADVANCES IN MAGNETIC INDUCTION
BASED WIRELESS UNDERGROUND SENSOR
NETWORKS, Steven Kisseleff, Member, IEEE, Ian F.
Akyildiz, Fellow, IEEE, and Wolfgang H. Gerstacker,
Senior Member, IEEE, 2014
[2] DEVELOPMENT FOR A TESTBOD FOR WIRELESS
UNDERGROUND SENSOR NET WORKS, Agnelo R. Silva
and Mehmet C. Vuran, Department of Computer Science
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 716
and Engineering, University of Nebraska-Lincoln,
Lincoln, NE 68588, USA, 2009
[3] INDUSTRIAL UNDERGROUND POWER CABLE FAULT
IDENTIFICATION USING ARDUINO CONTROLLER,
Prabakaran K, Assistant Professor, Department of
Electronics and Instrumentation Engineering, Erode
Sengunthar Engineering College, Tamilnadu,India,2018
[4] WIRELESS UNDERGROUND SENSOR NETWORKS:
RESEARCH CHALLENGES, Ian F. Akyildiz, Erich P.,
Broadband Wireless Networking Laboratory,
Stuntebeck, School of Electrical and Computer
Engineering, Georgia Institute of Technology, 75 5th St.
NW, Atlanta, GA 30308, United States,2006.
[5] K.K. Kuan, Prof. K. Warwick, “Real-time expert system
for fault location on high voltage underground
distribution cables”,IEEEPROCEEDINGS-C,Vol.139,No.
3, MAY 1992.
[6] Tarlochan S. Sidhu, Zhihan Xu, “Detection of Incipient
Faults in Distribution Underground Cables”, IEEE
Transactions on Power Delivery, Vol. 25, NO. 3, JULY
2010.

More Related Content

PDF
IRJET- A Review on Intelligent Agriculture Service Platform with Lora Bas...
PPTX
Presentacion invento redes de sensores inalambricas
PDF
Cabling Standards Update 2014
DOC
complet finalised
PDF
Petro IndustryNews | 'Full redundant field wireless automation solutions base...
PDF
Low cost smart weather station using Arduino and ZigBee
PDF
Como abordar los retos de los grandes proyectos de IoT
PDF
Low power wireless technologies for connecting embedded sensors in the IoT: A...
IRJET- A Review on Intelligent Agriculture Service Platform with Lora Bas...
Presentacion invento redes de sensores inalambricas
Cabling Standards Update 2014
complet finalised
Petro IndustryNews | 'Full redundant field wireless automation solutions base...
Low cost smart weather station using Arduino and ZigBee
Como abordar los retos de los grandes proyectos de IoT
Low power wireless technologies for connecting embedded sensors in the IoT: A...

What's hot (19)

PDF
Wireless Technology in Industrial Automation
PDF
Intelligently connecting our world in the 5G era
PDF
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
PDF
Border security
PPTX
Bluetooth Network security
PDF
Projects wavedigitech-2013
PDF
D017532629
PPTX
5G for Reliable Industrial Wireless Networks
PDF
Implementation of embedded real time monitoring temperature and humidity system
PDF
Track 2 session 7 - st dev con 2016 - witricity - wireless power revolution...
PDF
Scientific_Project_Report_on Wireless Monitoring and Control in Industries
PDF
Kv2518941899
PDF
USN Services
PDF
5 g communication with ai & iot
PPSX
6G Technology
PPTX
border-security-using-wins
PDF
5G + AI: The Ingredients For Next Generation Wireless Innovation
PPT
Border security using wireless integrated network sensors(wins)
PDF
The essential role of AI in the 5G future
Wireless Technology in Industrial Automation
Intelligently connecting our world in the 5G era
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
Border security
Bluetooth Network security
Projects wavedigitech-2013
D017532629
5G for Reliable Industrial Wireless Networks
Implementation of embedded real time monitoring temperature and humidity system
Track 2 session 7 - st dev con 2016 - witricity - wireless power revolution...
Scientific_Project_Report_on Wireless Monitoring and Control in Industries
Kv2518941899
USN Services
5 g communication with ai & iot
6G Technology
border-security-using-wins
5G + AI: The Ingredients For Next Generation Wireless Innovation
Border security using wireless integrated network sensors(wins)
The essential role of AI in the 5G future
Ad

Similar to IRJET- Underground Cable Fault Detection and Transmission of Intimation through Soil Wireless Transceiver (20)

PPTX
cable fault.pptx
PDF
IRJET- Iot Based Underground Cable Line Fault Detection
PDF
IRJET- IoT based Fault Finding of an Underground Cable
PDF
IRJET - Detection of Foible Point Locating System for Hypogen Transmission Lines
PDF
IOT BASED UNDER GROUND CABLE FAULT DETECTION AND LOCATOR
PDF
IRJET- Design of Arduino based Underground Cable Fault Detector
PDF
Arduino based-underground-cable-fault-detector
PDF
Underground Cable Fault Detection Using Arduino
PPTX
under grund fault ppt (1).pptx
PDF
IRJET- Cable Fault Detection using IoT
PPTX
newppt undergsjsoaosjfzyidulflround.pptx
PDF
Analysis of Fault Detection and its Location using Microcontroller for Underg...
PPTX
DESIGN AND CONSTRUCTION OF UNDERGROUNG CABLE FAULT DETECTION SYSTEM
PPTX
UNDERGROUND CABLE FAULT DISTANCE DETECTOR
PPTX
Under Ground Fault Distance Detection using IOT
PPS
Wireless Mesh Networking - A development path
PDF
Digital underground cable fault locator (dufcl).
PDF
smartcities-03-00072.pdf
PPT
Zuned ppt.ppt
PDF
A ZigBee Based Wireless Sensor Network for an Agricultural Environment
cable fault.pptx
IRJET- Iot Based Underground Cable Line Fault Detection
IRJET- IoT based Fault Finding of an Underground Cable
IRJET - Detection of Foible Point Locating System for Hypogen Transmission Lines
IOT BASED UNDER GROUND CABLE FAULT DETECTION AND LOCATOR
IRJET- Design of Arduino based Underground Cable Fault Detector
Arduino based-underground-cable-fault-detector
Underground Cable Fault Detection Using Arduino
under grund fault ppt (1).pptx
IRJET- Cable Fault Detection using IoT
newppt undergsjsoaosjfzyidulflround.pptx
Analysis of Fault Detection and its Location using Microcontroller for Underg...
DESIGN AND CONSTRUCTION OF UNDERGROUNG CABLE FAULT DETECTION SYSTEM
UNDERGROUND CABLE FAULT DISTANCE DETECTOR
Under Ground Fault Distance Detection using IOT
Wireless Mesh Networking - A development path
Digital underground cable fault locator (dufcl).
smartcities-03-00072.pdf
Zuned ppt.ppt
A ZigBee Based Wireless Sensor Network for an Agricultural Environment
Ad

More from IRJET Journal (20)

PDF
Enhanced heart disease prediction using SKNDGR ensemble Machine Learning Model
PDF
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
PDF
Kiona – A Smart Society Automation Project
PDF
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
PDF
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
PDF
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
PDF
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
PDF
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
PDF
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
PDF
BRAIN TUMOUR DETECTION AND CLASSIFICATION
PDF
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
PDF
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
PDF
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
PDF
Breast Cancer Detection using Computer Vision
PDF
Auto-Charging E-Vehicle with its battery Management.
PDF
Analysis of high energy charge particle in the Heliosphere
PDF
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
PDF
Auto-Charging E-Vehicle with its battery Management.
PDF
Analysis of high energy charge particle in the Heliosphere
PDF
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Enhanced heart disease prediction using SKNDGR ensemble Machine Learning Model
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Kiona – A Smart Society Automation Project
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
BRAIN TUMOUR DETECTION AND CLASSIFICATION
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Breast Cancer Detection using Computer Vision
Auto-Charging E-Vehicle with its battery Management.
Analysis of high energy charge particle in the Heliosphere
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
Auto-Charging E-Vehicle with its battery Management.
Analysis of high energy charge particle in the Heliosphere
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...

Recently uploaded (20)

PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
PPT on Performance Review to get promotions
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT
introduction to datamining and warehousing
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
86236642-Electric-Loco-Shed.pdf jfkduklg
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Artificial Intelligence
PPT
Total quality management ppt for engineering students
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Abrasive, erosive and cavitation wear.pdf
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Nature of X-rays, X- Ray Equipment, Fluoroscopy
Categorization of Factors Affecting Classification Algorithms Selection
PPT on Performance Review to get promotions
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
introduction to datamining and warehousing
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
86236642-Electric-Loco-Shed.pdf jfkduklg
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Artificial Intelligence
Total quality management ppt for engineering students
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Fundamentals of safety and accident prevention -final (1).pptx
III.4.1.2_The_Space_Environment.p pdffdf
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Abrasive, erosive and cavitation wear.pdf

IRJET- Underground Cable Fault Detection and Transmission of Intimation through Soil Wireless Transceiver

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 712 UNDERGROUND CABLE FAULT DETECTION AND TRANSMISSION OF INTIMATION THROUGH SOIL WIRELESS TRANSCEIVER GUNASEKHAR.B1, HARISH.T2, JAYASURYA.S3, ANBARASAN.A4 1,2,3Student, Dept. of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India 4Professor, Dept of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract – The project is intended inordertofindasolution to detect the fault in underground supply lines in an efficient manner and in less cost. For this purpose, we use the Wireless Underground Sensor Networks to transmit the data from transmitter side to receiver side. Whenever the fault occurs in the underground cable it is transmitted to the PC using this WUSN. It is used in this fault detection because of its less complexity and less cost. WUSN mainly makes use of the moisture present in the soil. This does not involve any kind of waves to transmit the data and it makes the detection harmless. Arduino microcontroller plays a major role anditis coded with the embedded C to detect the fault in the underground supply lines with the help of AC current sensor connected to the supply lines. Wireless soil transmitter and receiver is used to transmit the data from the Arduino microcontroller connected to the supply lines via current sensor to the pc via serial converter Key Words: WUSN, Arduino microcontroller, soil wireless transmitter. 1. INTRODUCTION An embedded system is so important in today’s automation as it has been widely used in all kind of industries and automation. This project is to determine the distance of underground cable fault from base station in kilometers using an PIC Microcontroller. Generally, we use overhead lines were we can easily identify the faults but in rushed places or familiar cities we couldn’t use overhead lines. So, we are going to use underground cables. Underground cables are used largely in urban area instead of overhead lines. We cannot easily identify thefaultsintheunderground cables. This project deals with PIC microcontroller, current sensor, soil wireless transceiver, serial convertor. This project greatly reduces the time and operates effectively. Many types of faults occur due to construction works and other reasons. At this time, it is difficult to dig out cable due to not knowing the exact location of the cable fault. Many urban areas follow the underground cabling system. Sometimes faults occur due to construction worksandother reasons. Nowadays the world is becoming digitalized so the project was intended to detect the location of fault in digital way. 2. OBJECTIVES The main objective is to establish an efficient wireless communication between the transceivers in challenging underground medium. To detect any fault in underground power supply lines and to indicate the precise location of the fault. To detect the location that where the cable has gotdamaged. To reduce the cost and making it more effective in long distance applications and to reduce the complexity. 3. RELATED WORKS: In this work, the recent advances in MI-WUSNs and related areas (WUSNs, NFC, magnetic communication in liquids) have been reviewed [1]. The advances in the related areas provide an important insight into the typical problems of system modeling and design. For MI-WUSNs, the advances are related to various aspects of wireless communication and networking. In particular, the important aspects of channel modeling, digital signal transmission and processing, synchronization, network design, WPT, and localization, havebeendiscussed. Through this, a better understanding of the underlying research challenges and design problems has been elaborated. These interfaces might give rise to some novel applications of IoT. The development of an outdoor WUSN test bed and the realization of WUSN experiments are challenging [2]. This work provides a set of guidelines that result in a balanced approach between high accuracy and a practical implementation of a WUSN test bed. The identification and elimination/mitigation of each variable which significantly affects the experiment results is the basic approach behind the proposed guideline. The main aim of this paper is to detect the fault in a cable using Arduino microcontroller kit [3]. The cable is placed underground of the farming land. Usually it is difficult to detect the fault but this paper uses a simple solution such as Wireless underground sensor networks to detect the fault. It simply uses the soil wireless transmitter and receivertopass
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 713 the information that where the fault occurs by placing the sensors to a particular range. The main advantage is that it does not use any kind of waves inside the soil, it uses the electrons to transmit the information obtained from the microcontroller kit. This work introduces theconceptofa WirelessUnderground Sensor Network (WUSN) that can be used to monitor a variety of conditions, such as soil properties for agricultural applications and toxic substances for environmental monitoring [4]. WUSN devices does not require any wired networks and it is completely laid below ground. All necessary sensors, memory, a processor,a radio,anantenna, and a power source are needed for each device that makes the deployment much simpler than existing underground sensing solutions. Wireless communication is significantly more challenging within a dense substance such as soil or rock than through air. This factor requires that communication protocols, that combined with the necessity to conserve energy due to the difficulty of unearthing and recharging WUSN devices. 4. PROPOSED SYSTEM Our system is intended to locate the fault in underground cable line from the base station to exact location in kilometers using an Arduino Microcontroller kit. Whenever the fault occurs in underground cable it is difficult to detect the location of fault for process of repairing the particular cable. The proposed technology used is controller (PIC Microcontroller) to identify thefaultanditisindicatedusing. WUSN have many application wireless soil transmitter and receiver. WUSN is defined as a group of nodes whose means of data transmission and reception is completely subterranean like infrastructures, security, environmental, monitoring. 5. BLOCK DIAGRAM Fig -1: Transmitter Unit Fig -2: Receiver Unit 5.1 BLOCK DIAGRAM DESCRIPTION Initially the current sensors are connected to the underground cables and it is kept to a certain range o cables depending on the current sensor used. Then the current sensors are connected to the PIC16F877A Arduino microcontroller. This microcontroller continuously monitors the readings given by the current sensors connected to the underground cables. this gained information is transmitted to the receiver PC via the soil wireless transmitter and receiver. Microcontroller iscoded usingtheembeddedcprogramming language to detect any kind of changes from current sensors. Embedded C is a set of language extensions for the C programming language by the c standards committee to address commonality issues that exist betweenCextensions for different embedded systems. Embedded C programming support exotic features such as fixed-point arithmetic, multiple distinct memory banks and basic I/O operations.It has a number of features that are not available in normal C programming, suchasfixed-pointarithmetic,namedaddress spaces and basic I/O hardware addressing. Then the information is transmitted to the receiver unit which comprises of soil wireless receiver, to the serial converter and connected to the personal computer. The serial converter uses the UART protocol. The pc has an output displayed in the spreadsheet which just shows whether the current is flowing between the various nodes. This done using coding language C. C programming is a very simple language used in order to simplify the work of the user. 6. INTERNAL CIRCUIT DIAGRAM The PIC16F877A is a microcontroller board based on thePIC Series controller. It has33digitalinput/outputpins(ofwhich can be used as PWM outputs), and 8 analog inputs. It alsohas 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. PIC16F877A is 8bit microcontroller packs Microchip’s powerful PIC architecture into a 40 package and is upwards compatible with the PIC16C5X, PIC12CXXX and PIC16C7X devices. The underground cable lines are continuously monitored by the current sensors if there is any leakage or fault in cable lines. The current sensor generatesasignalproportionaltoit. PERSONAL COMPUTER WIRELESS SOIL (RECIEVER) SERIAL CONVERTOR
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 714 The generated signalcould be analog output and even digital output. The signal is passed to the PIC16F877A which identify the exact location of the fault in the cable lines. This information is transmitted and received via using WUSN and the displayed in PC. Fig -3: Internal Circuit Diagram 7. DESIGN FLOW The flow chart is diagrammatical representation aboutthe working of underground cable fault detection using the Wireless underground sensor networks. The current sensor 1 which is attached between node 1 to 2 sends information whether the current flows in the node which it is attached to, then current sensor 2 sends the information as same as current sensor 1 to the microcontroller and the as many as nodes we require also does the something. TheArduinomicrocontrollerfetched the information from the various currentsensorswhichiscoded with embedded c and transmits the information’s using the WUSN. No Yes NO Yes Chart-1: Flow Chart representation The computer is attachedtotheWUSN usingserial converter displays the live information about the underground cables in a spreadsheet which is coded with c programming language. In the flow chart ‘n’ represents that any numberof nodes can be connected depending upon the value of the current sensor used. The exact node where the current doesn’t flow is displayed in the spreadsheet else it just displays that there is no fault in the underground cable. 8. METHODOLOGIES 8.1. Embedded C Programming Embedded C programming want to have a nonstandard extension to the C programming language in order to support exotic features such as fixed-point arithmetic, multiple distinct memory banks and basic I/O operations.It has a number of features that are not available in normal C, such as fixed-point arithmetic, named address spaces and basic I/O hardware addressing. Lot of syntax and standards are used by embedded C was main () function, variable definition, data type declaration, conditional statements (if, switch case), loops (while, for), functions (), arrays, strings, structures, union, bit operations, macros, etc. 8.2 WUSN Wireless underground sensor networks are a way of transmitting the information’s or data from soil wireless transmitter to receiver using the moisture of soil present in it. The transmitter transmits the information from source node to receiver attached to the destination node using electrons inside the moisture of soil. 8.3 BASIC METHOD The AC current sensor is connected to the cable which islaid underground and the informationwhetherthecurrentflows through the cable or not is transmitted to the wireless soil transmitter using the Arduino microcontroller kit which is connected to the AC current sensor. The microcontroller kit is coded using the Embedded C. The soil wireless receiver receives the data from the transmitter through the soil which contains moisture and it is connected to the serial converter which uses the UART protocol. It is coded using the Embedded C programming. The personal Computer is device used here in order to display the output from the microcontroller.Itisdisplayedin the spread sheet in the form of table. The Output has three columns in which one displays number of nodes and the current sensor and status of the node whether the current flows between the nodes or not. Start If current flows in node 1 to 2 If current flows in node 2 to n No fault in any nodes of the UG cable Notes down the nodes PC connected via serial converter Stop
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 715 8.4 Power Supply Electrical power is a reference to a source of electrical power. The component that supplies electrical power to the devices is called a power supply unit or PSU. This is commonly applied to most of the electrical energy supplies, less often to mechanical ones, and rarely to others. Power supply unit is the combination of Step down transformer, Bridge rectifier, filter circuit and the voltage regulator Fig -4: Power Supply Unit 8.5 PIC MICROCONTROLLER PIC stands for Peripheral Interface Microcontroller which was developed by the general instrumentsmicrocontrollers. It is controlled by software and programmed in such a way that it performs different tasks and control a generationline. PIC microcontrollers are used in different new applications like audio accessories, advanced medical devices, and smart devices. This device is accessible in 40 pin and 44 pin packages. All devices within this family share common design with subsequent differences. Fig-5: PIC Microcontroller 8.6 CURRENT SENSOR Current detector could be a device that detects electric current in a wire and generates a signal proportional to that current. The generated signal could be analog output and even digital output. The generated signal may be then used to display the measured current in an ammeter or may be stored for any further analysis within the data or information acquisition system, or may be used for controlling purpose. The detected current and also the output signal may be alternating current input and direct current input. Fig -6: Current sensor 9. ADVANTAGES The main advantage of this paper is, WUSNisharmlesstothe living beings. It does not use any kind of waystotransmit the information from the cable laid underground to the output device above ground. The cost is less and can be placed in any places like power station and it is risk free. Depending on the range of current sensor it can be used for long distance application. It is less complex circuit to build and it does not involve any radiation. The circuit built to detectthe underground cable fault detection is radiation less and it is harmless. 10. CONCLUSIONS In this work the short circuit fault at a particular distance in the Underground Cables can be detected using Ohm’s Law which enables to rectify fault efficiently. This system can be beneficial to underground cables fault finding as it is cost effective and can be accessed remotely. This system will help to implement the system to regulate the industrial use of underground cables and avoid power losses. It gives the new dimensions in the field of underground cables fault finding with minimum cost and less time. The circuit uses WUSN in an efficient mannertotransmit the information from current sensor to the microcontroller without any harmful radiation. REFERENCES [1] SURVEY ON ADVANCES IN MAGNETIC INDUCTION BASED WIRELESS UNDERGROUND SENSOR NETWORKS, Steven Kisseleff, Member, IEEE, Ian F. Akyildiz, Fellow, IEEE, and Wolfgang H. Gerstacker, Senior Member, IEEE, 2014 [2] DEVELOPMENT FOR A TESTBOD FOR WIRELESS UNDERGROUND SENSOR NET WORKS, Agnelo R. Silva and Mehmet C. Vuran, Department of Computer Science
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 716 and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA, 2009 [3] INDUSTRIAL UNDERGROUND POWER CABLE FAULT IDENTIFICATION USING ARDUINO CONTROLLER, Prabakaran K, Assistant Professor, Department of Electronics and Instrumentation Engineering, Erode Sengunthar Engineering College, Tamilnadu,India,2018 [4] WIRELESS UNDERGROUND SENSOR NETWORKS: RESEARCH CHALLENGES, Ian F. Akyildiz, Erich P., Broadband Wireless Networking Laboratory, Stuntebeck, School of Electrical and Computer Engineering, Georgia Institute of Technology, 75 5th St. NW, Atlanta, GA 30308, United States,2006. [5] K.K. Kuan, Prof. K. Warwick, “Real-time expert system for fault location on high voltage underground distribution cables”,IEEEPROCEEDINGS-C,Vol.139,No. 3, MAY 1992. [6] Tarlochan S. Sidhu, Zhihan Xu, “Detection of Incipient Faults in Distribution Underground Cables”, IEEE Transactions on Power Delivery, Vol. 25, NO. 3, JULY 2010.