SlideShare a Scribd company logo
#JSS2015
Les journées
SQL Server 2015
Un événement organisé par GUSS
@GUSS_FRANCE
#JSS2015
Les journées
SQL Server 2015
Un événement organisé par GUSS
In-Memory 2016
Operational Analytics
David Barbarin
Frédéric Pichaut
#JSS2015
Merci à nos sponsors
#JSS2015
Speakers
David Barbarin
http://blog.developpez.com/mikedavem/
david.barbarin@dbi-services.com
@mikedavem
Frédéric Pichaut
Senior Escalation Engineer EMEA, Microsoft France
@FPichaut
#JSS2015
Columnstore Architecture
C1 C2 C3 C4 C5
Row group
Set of rows (typically 1 million rows)
Segment
Contains values from one column for the row group
Unit of transfer between disk and memory
1- Encoding
Dictionary
> Value: Base / Scale
> Bit packing
> RLE
…
Vertipaq
2- Binary
compression
(3)- Archive
compression
Xpress 8
+
+
C1 C2 C3
C2 C4
C1 C5
C3
C5
LOB
C1 C2 C3 C4 C5
Tuple mover
#JSS2015
Columnstore & Batch mode
Scan
Predicate
I/O significantly reduced by
> Encoding & compression
> Segment elimination
Next challenge: CPU usage – how
to improve performance in this area?
Get row
Filtered row
X
X
X
Batch object
Column vector
C1 C2
Scan
Predicate
Get batch
Filtered batch
Process multiple rows in batch for efficiency (~1K rows)
> Using of SIMD instructions
> Optimized for 64 bits values of the register
> Significant reduction in function calls = less CPU time(7 – 40x)
Reduction of CPU latency and cache misses
> Optimized for CPU L2 cache and avoiding cache misses
> Aggressive memory pre-fetch (sequential vs random)
#JSS2015
SQL 2016 Columnstore Improvements
• Tables:
• Primary key, foreign keys, CDC, Triggers, temporal tables
• Change tracking (NCCI only)
• Transaction isolation level SI and RCSI
• Availability groups and readonly secondary replicas support
• CI introduced in operational analytics
• Disk-based table + NCCI (updatable and filter capabilities)
• CCI + nonclustered indexes
• In-memory table + NCCI
• ALTER TABLE .. REORGANIZE for dealing with fragmentation
• New or enhanced DMVS
• sys.dm_db_column_store_row_group_*
• sys.dm_db_index_* and sys.dm_xtp_*
#JSS2015
SQL 2016 Columnstore Improvements
• Batch mode
• Sort operator
• Aggregate operators and distinct
• AVG, SUM, COUNT, CHECKSUM_AGG, STDEV, STDEVP
• Windows functions
• COUNT, COUNT_BIG, SUM, AVG, MIN, MAX
• Analysis functions
• LAG, LEAD, FIRST_VALUE, LAST_VALUE, PERCENTILE_CONT,
PERCENTILE_DISC, CUME_DIST, PERCENT_RANK
• Batch mode with maxdop 1
• Parallelized insert into the delta stores
• String predicate pushdown
#JSS2015
Relational Table
(Clustered Index/Heap)
Btree Index
Hot
Deletebitmap
Delta rowgroups
Operational analytics: columnstore indexes & In-Memory tables
Unified view for OLTP & DW developers
High performance past period DW
Data Lifecycle
Real-time operational OLTP
Create Columnstore only on cold data – using filtered predicate to minimize maintenance
create nonclustered columnstore index ….. where order_status = ‘SHIPPED’
CCI w / High compression
Deletebitmap
Delta rowgroups
#JSS2015
#JSS2015
Memory-optimized Table
Filegroup
SQL Server.exe
Hekaton Engine: Memory_optimized Tables
& Indexes
TDS Handler and Session Management
OLTP In-Memory Architecture
Natively Compiled
SPs and Schema
Buffer Pool for Tables & Indexes
Proc/Plan cache for ad-hoc T-
SQL and SPs
Client App
Transaction Log
Query
Interop
Non-durable TableT1
T4T3
T2
T1
T4T3
T2
T1
Tables
Indexes
Interpreter for TSQL, query plans,
expressions
T1 T4T3
T4T3
Checkpoint & Recovery
Access Methods
Parser,
Catalog,
Algebrizer,
Optimizer
Hekaton
Compiler
Hekaton
Component
Key
Existing SQL
Component
Generated .dll
Data File Group
T4T3
T4T3
#JSS2015
SQL 2016 - Improved Scaling - Storage
• SQL Server 2014
• SQL Server 2016
– Multiple offline checkpoint threads
– Goal: 1GB/s of log generation [work in progress]
–
Single Offline Checkpoint Thread
Del Tran2
(TS 450)
Del Tran3
(TS 250)
Del
Tran1(TS150)
Insert into
Hekaton T1
Log in SQL
Table
Del Tran1
(TS150)
Del Tran2
(TS 450)
Del Tran3
(TS 250)
Insert into
Hekaton T1SQL Transaction log
disk
SQL Transaction log Del Tran2
(TS 450)
Del Tran3
(TS 250)
Del
Tran1(TS150)
Insert into
Hekaton T1
Log in SQL
Table
Del Tran1
(TS150)
Del Tran2
(TS 450)
Del Tran3
(TS 250)
Insert into
Hekaton T1
disk
Offline Checkpoint Thread Offline Checkpoint Thread Offline Checkpoint Thread
#JSS2015
SQL 2016 In-Memory Improvements
• Tables:
• ALTER TABLE (offline, requires 2X memory)
• Identity columns
• Indexes on NULLable columns
• COLUMNSTORE indexes
• FOREIGN KEY, CHECK, UNIQUE constraints.
• Change HASH index bucket_count through index REBUILD
• Add/drop index supported
• Stats improvements: auto-update and sampled stats
• More than 8 indexes.
• DML Triggers (Only AFTER triggers; no INSTEADOF; Natively compiled)
• 2TB of user data in durable tables (in SQL 2014 Max 256GB)
• Full collations support
#JSS2015
SQL 2016 In-Memory Improvements
• Native Procedure:
• ALTER PROC and sp_recompile (online and recompilation Durant execution)
• Nested native procedures
• Natively Compiled Scalar UDFs (Access from both native and interop)
• Native Inline Table-Valued Functions
• EXECUTE AS CALLER
• Security and math built-ins
• Full collations support in native modules
• Query surface area
• Subqueries
• LIKE operator
• {LEFT|RIGHT} OUTER JOIN
• Disjunction (OR, NOT)
• UNION [ALL]
• SELECT DISTINCT
• Subqueries (EXISTS, IN, scalar)
• Parallel scan for memory-optimized indexes
• MARS (Multiple Active Result Sets) support
• TDE (Transparent Data Encryption) (on-disk data files encrypted once TDE is enabled)
#JSS2015
Remaining In-Memory Unsupported Features
Tables
• DDL triggers and Transactional DDL
• Data types: XML, Spatial, CLR types,
datetimeoffset, rowversion, sql_variant
• ALTER TABLE ONLINE
• Cross-container transaction limitations:
snapshot/snapshot, serializable/serializable;
SAVEPOINT
• Online Migration of disk-based tables to
memory-optimized
Interop: cross-database queries, MERGE
INTO, locking hints
Native Compilation
• CASE, MERGE, JOIN in UPDATE/DELETE; DML
with OUTPUT; VIEWs
• Natively Compiled Table-Valued Functions
• Automatic and statement-level recompile
• Access to disk-based tables
• Must be schema-bound; no dynamic T-SQL
• Parallelism; limitations in query operators
(hash join/agg, merge join)
Management: replication; DB
snapshot; CDC; compression
#JSS2015
In-Memory OLTP Table
Updateable CCI
Tail
DRT
Range Index
Hash Index
Hot
Relational Table
(Clustered Index/Heap)
Btree Index
Hot
Deletebitmap
Delta rowgroups
Operational analytics: columnstore indexes & In-Memory tables
Unified view for OLTP & DW developers
High performance past period DW
Data Lifecycle
Real-time operational OLTP
Create Columnstore only on cold data – using filtered predicate to minimize maintenance
create nonclustered columnstore index ….. where order_status = ‘SHIPPED’
CCI w / High compression
Deletebitmap
Delta rowgroups
#JSS2015
#JSS2015#JSS2015
Les évaluations des sessions,
c’est important !!
http://GUSS.Pro/jss
#JSS2015
Merci à nos volontaires…
#JSS2015#JSS2015

More Related Content

PDF
MariaDB: Connect Storage Engine
PDF
PDF
Clustered Columnstore Introduction
PDF
Columnstore improvements in SQL Server 2016
PDF
The architecture of SkySQL
PPTX
Ibm datastage online training in hyderabad
PDF
Elephants vs. Dolphins: Comparing PostgreSQL and MySQL for use in the DoD
PDF
Scylla Summit 2022: Migrating SQL Schemas for ScyllaDB: Data Modeling Best Pr...
MariaDB: Connect Storage Engine
Clustered Columnstore Introduction
Columnstore improvements in SQL Server 2016
The architecture of SkySQL
Ibm datastage online training in hyderabad
Elephants vs. Dolphins: Comparing PostgreSQL and MySQL for use in the DoD
Scylla Summit 2022: Migrating SQL Schemas for ScyllaDB: Data Modeling Best Pr...

What's hot (20)

PDF
Introducing the ultimate MariaDB cloud, SkySQL
PDF
MySQL as a Document Store
PDF
MariaDB 10.2 & MariaDB 10.1 by Michael Monty Widenius at Database Camp 2016 @ UN
PDF
In-memory ColumnStore Index
PPTX
CCV: migrating our payment processing system to MariaDB
PDF
A short introduction to Vertica
PDF
What to expect from MariaDB Platform X5, part 1
PPTX
ClustrixDB: how distributed databases scale out
PPTX
Novedades SQL Server 2014
PPT
Scaling MySQL using Fabric
PDF
01 upgrade to my sql8
PDF
Global Data Replication with Galera for Ansell Guardian®
PPT
Making MySQL Great For Business Intelligence
PDF
Exploring T-SQL Anti-Patterns
PDF
Scylla Summit 2016: ScyllaDB, Present and Future
PPTX
Sql Server 2014 In Memory
PPTX
Oracle OpenWo2014 review part 03 three_paa_s_database
PDF
Migrating Apache Hive Workload to Apache Spark: Bridge the Gap with Zhan Zhan...
PDF
Oracle 12c New Features For Better Performance
PPTX
Scylla Summit 2018: Grab and Scylla: Driving Southeast Asia Forward
Introducing the ultimate MariaDB cloud, SkySQL
MySQL as a Document Store
MariaDB 10.2 & MariaDB 10.1 by Michael Monty Widenius at Database Camp 2016 @ UN
In-memory ColumnStore Index
CCV: migrating our payment processing system to MariaDB
A short introduction to Vertica
What to expect from MariaDB Platform X5, part 1
ClustrixDB: how distributed databases scale out
Novedades SQL Server 2014
Scaling MySQL using Fabric
01 upgrade to my sql8
Global Data Replication with Galera for Ansell Guardian®
Making MySQL Great For Business Intelligence
Exploring T-SQL Anti-Patterns
Scylla Summit 2016: ScyllaDB, Present and Future
Sql Server 2014 In Memory
Oracle OpenWo2014 review part 03 three_paa_s_database
Migrating Apache Hive Workload to Apache Spark: Bridge the Gap with Zhan Zhan...
Oracle 12c New Features For Better Performance
Scylla Summit 2018: Grab and Scylla: Driving Southeast Asia Forward
Ad

Viewers also liked (10)

PPTX
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
PDF
Getting Spark ready for real-time, operational analytics
PPTX
Breakout: Operational Analytics with Hadoop
PPTX
SplunkLive! Splunk for IT Operations
PDF
Operational-Analytics
PDF
Operational Analytics at Credit Suisse from ThousandEyes Connect
PPTX
Operational analytics overview
PPTX
Operational Analytics Using Spark and NoSQL Data Stores
PPTX
Operational Analytics
PPTX
10 best practices in operational analytics
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
Getting Spark ready for real-time, operational analytics
Breakout: Operational Analytics with Hadoop
SplunkLive! Splunk for IT Operations
Operational-Analytics
Operational Analytics at Credit Suisse from ThousandEyes Connect
Operational analytics overview
Operational Analytics Using Spark and NoSQL Data Stores
Operational Analytics
10 best practices in operational analytics
Ad

Similar to Jss 2015 in memory and operational analytics (20)

PPTX
SQL Server 2022 Programmability & Performance
PDF
SQL Server 2014 Mission Critical Performance - Level 300 Presentation
PPTX
How SQL Server 2016 SP1 Changes the Game
PDF
[DBA]_HiramFleitas_SQL_PASS_Summit_2017_Summary
PDF
SQL Server 2019 CTP2.4
PPTX
3 CityNetConf - sql+c#=u-sql
PPTX
Machine Learning on Distributed Systems by Josh Poduska
PDF
An Approach to Sql tuning - Part 1
PPTX
Experience sql server on l inux and docker
PPT
Designing, Building, and Maintaining Large Cubes using Lessons Learned
PDF
COUG_AAbate_Oracle_Database_12c_New_Features
PPTX
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
PPTX
U-SQL - Azure Data Lake Analytics for Developers
PDF
Real-time Big Data Analytics Engine using Impala
PPTX
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
PDF
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
PDF
Storage Optimization and Operational Simplicity in SAP Adaptive Server Enter...
PPTX
Migrating on premises workload to azure sql database
PDF
ScaleDB Technical Presentation
PDF
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
SQL Server 2022 Programmability & Performance
SQL Server 2014 Mission Critical Performance - Level 300 Presentation
How SQL Server 2016 SP1 Changes the Game
[DBA]_HiramFleitas_SQL_PASS_Summit_2017_Summary
SQL Server 2019 CTP2.4
3 CityNetConf - sql+c#=u-sql
Machine Learning on Distributed Systems by Josh Poduska
An Approach to Sql tuning - Part 1
Experience sql server on l inux and docker
Designing, Building, and Maintaining Large Cubes using Lessons Learned
COUG_AAbate_Oracle_Database_12c_New_Features
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
U-SQL - Azure Data Lake Analytics for Developers
Real-time Big Data Analytics Engine using Impala
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Storage Optimization and Operational Simplicity in SAP Adaptive Server Enter...
Migrating on premises workload to azure sql database
ScaleDB Technical Presentation
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...

Recently uploaded (20)

PDF
annual-report-2024-2025 original latest.
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PDF
Mega Projects Data Mega Projects Data
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
Introduction to machine learning and Linear Models
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PDF
Foundation of Data Science unit number two notes
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
Clinical guidelines as a resource for EBP(1).pdf
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPT
Quality review (1)_presentation of this 21
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
annual-report-2024-2025 original latest.
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Mega Projects Data Mega Projects Data
oil_refinery_comprehensive_20250804084928 (1).pptx
Introduction to machine learning and Linear Models
IBA_Chapter_11_Slides_Final_Accessible.pptx
Supervised vs unsupervised machine learning algorithms
Qualitative Qantitative and Mixed Methods.pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Foundation of Data Science unit number two notes
STUDY DESIGN details- Lt Col Maksud (21).pptx
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Clinical guidelines as a resource for EBP(1).pdf
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Business Ppt On Nestle.pptx huunnnhhgfvu
Quality review (1)_presentation of this 21
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...

Jss 2015 in memory and operational analytics

  • 1. #JSS2015 Les journées SQL Server 2015 Un événement organisé par GUSS @GUSS_FRANCE
  • 2. #JSS2015 Les journées SQL Server 2015 Un événement organisé par GUSS In-Memory 2016 Operational Analytics David Barbarin Frédéric Pichaut
  • 5. #JSS2015 Columnstore Architecture C1 C2 C3 C4 C5 Row group Set of rows (typically 1 million rows) Segment Contains values from one column for the row group Unit of transfer between disk and memory 1- Encoding Dictionary > Value: Base / Scale > Bit packing > RLE … Vertipaq 2- Binary compression (3)- Archive compression Xpress 8 + + C1 C2 C3 C2 C4 C1 C5 C3 C5 LOB C1 C2 C3 C4 C5 Tuple mover
  • 6. #JSS2015 Columnstore & Batch mode Scan Predicate I/O significantly reduced by > Encoding & compression > Segment elimination Next challenge: CPU usage – how to improve performance in this area? Get row Filtered row X X X Batch object Column vector C1 C2 Scan Predicate Get batch Filtered batch Process multiple rows in batch for efficiency (~1K rows) > Using of SIMD instructions > Optimized for 64 bits values of the register > Significant reduction in function calls = less CPU time(7 – 40x) Reduction of CPU latency and cache misses > Optimized for CPU L2 cache and avoiding cache misses > Aggressive memory pre-fetch (sequential vs random)
  • 7. #JSS2015 SQL 2016 Columnstore Improvements • Tables: • Primary key, foreign keys, CDC, Triggers, temporal tables • Change tracking (NCCI only) • Transaction isolation level SI and RCSI • Availability groups and readonly secondary replicas support • CI introduced in operational analytics • Disk-based table + NCCI (updatable and filter capabilities) • CCI + nonclustered indexes • In-memory table + NCCI • ALTER TABLE .. REORGANIZE for dealing with fragmentation • New or enhanced DMVS • sys.dm_db_column_store_row_group_* • sys.dm_db_index_* and sys.dm_xtp_*
  • 8. #JSS2015 SQL 2016 Columnstore Improvements • Batch mode • Sort operator • Aggregate operators and distinct • AVG, SUM, COUNT, CHECKSUM_AGG, STDEV, STDEVP • Windows functions • COUNT, COUNT_BIG, SUM, AVG, MIN, MAX • Analysis functions • LAG, LEAD, FIRST_VALUE, LAST_VALUE, PERCENTILE_CONT, PERCENTILE_DISC, CUME_DIST, PERCENT_RANK • Batch mode with maxdop 1 • Parallelized insert into the delta stores • String predicate pushdown
  • 9. #JSS2015 Relational Table (Clustered Index/Heap) Btree Index Hot Deletebitmap Delta rowgroups Operational analytics: columnstore indexes & In-Memory tables Unified view for OLTP & DW developers High performance past period DW Data Lifecycle Real-time operational OLTP Create Columnstore only on cold data – using filtered predicate to minimize maintenance create nonclustered columnstore index ….. where order_status = ‘SHIPPED’ CCI w / High compression Deletebitmap Delta rowgroups
  • 11. #JSS2015 Memory-optimized Table Filegroup SQL Server.exe Hekaton Engine: Memory_optimized Tables & Indexes TDS Handler and Session Management OLTP In-Memory Architecture Natively Compiled SPs and Schema Buffer Pool for Tables & Indexes Proc/Plan cache for ad-hoc T- SQL and SPs Client App Transaction Log Query Interop Non-durable TableT1 T4T3 T2 T1 T4T3 T2 T1 Tables Indexes Interpreter for TSQL, query plans, expressions T1 T4T3 T4T3 Checkpoint & Recovery Access Methods Parser, Catalog, Algebrizer, Optimizer Hekaton Compiler Hekaton Component Key Existing SQL Component Generated .dll Data File Group T4T3 T4T3
  • 12. #JSS2015 SQL 2016 - Improved Scaling - Storage • SQL Server 2014 • SQL Server 2016 – Multiple offline checkpoint threads – Goal: 1GB/s of log generation [work in progress] – Single Offline Checkpoint Thread Del Tran2 (TS 450) Del Tran3 (TS 250) Del Tran1(TS150) Insert into Hekaton T1 Log in SQL Table Del Tran1 (TS150) Del Tran2 (TS 450) Del Tran3 (TS 250) Insert into Hekaton T1SQL Transaction log disk SQL Transaction log Del Tran2 (TS 450) Del Tran3 (TS 250) Del Tran1(TS150) Insert into Hekaton T1 Log in SQL Table Del Tran1 (TS150) Del Tran2 (TS 450) Del Tran3 (TS 250) Insert into Hekaton T1 disk Offline Checkpoint Thread Offline Checkpoint Thread Offline Checkpoint Thread
  • 13. #JSS2015 SQL 2016 In-Memory Improvements • Tables: • ALTER TABLE (offline, requires 2X memory) • Identity columns • Indexes on NULLable columns • COLUMNSTORE indexes • FOREIGN KEY, CHECK, UNIQUE constraints. • Change HASH index bucket_count through index REBUILD • Add/drop index supported • Stats improvements: auto-update and sampled stats • More than 8 indexes. • DML Triggers (Only AFTER triggers; no INSTEADOF; Natively compiled) • 2TB of user data in durable tables (in SQL 2014 Max 256GB) • Full collations support
  • 14. #JSS2015 SQL 2016 In-Memory Improvements • Native Procedure: • ALTER PROC and sp_recompile (online and recompilation Durant execution) • Nested native procedures • Natively Compiled Scalar UDFs (Access from both native and interop) • Native Inline Table-Valued Functions • EXECUTE AS CALLER • Security and math built-ins • Full collations support in native modules • Query surface area • Subqueries • LIKE operator • {LEFT|RIGHT} OUTER JOIN • Disjunction (OR, NOT) • UNION [ALL] • SELECT DISTINCT • Subqueries (EXISTS, IN, scalar) • Parallel scan for memory-optimized indexes • MARS (Multiple Active Result Sets) support • TDE (Transparent Data Encryption) (on-disk data files encrypted once TDE is enabled)
  • 15. #JSS2015 Remaining In-Memory Unsupported Features Tables • DDL triggers and Transactional DDL • Data types: XML, Spatial, CLR types, datetimeoffset, rowversion, sql_variant • ALTER TABLE ONLINE • Cross-container transaction limitations: snapshot/snapshot, serializable/serializable; SAVEPOINT • Online Migration of disk-based tables to memory-optimized Interop: cross-database queries, MERGE INTO, locking hints Native Compilation • CASE, MERGE, JOIN in UPDATE/DELETE; DML with OUTPUT; VIEWs • Natively Compiled Table-Valued Functions • Automatic and statement-level recompile • Access to disk-based tables • Must be schema-bound; no dynamic T-SQL • Parallelism; limitations in query operators (hash join/agg, merge join) Management: replication; DB snapshot; CDC; compression
  • 16. #JSS2015 In-Memory OLTP Table Updateable CCI Tail DRT Range Index Hash Index Hot Relational Table (Clustered Index/Heap) Btree Index Hot Deletebitmap Delta rowgroups Operational analytics: columnstore indexes & In-Memory tables Unified view for OLTP & DW developers High performance past period DW Data Lifecycle Real-time operational OLTP Create Columnstore only on cold data – using filtered predicate to minimize maintenance create nonclustered columnstore index ….. where order_status = ‘SHIPPED’ CCI w / High compression Deletebitmap Delta rowgroups
  • 18. #JSS2015#JSS2015 Les évaluations des sessions, c’est important !! http://GUSS.Pro/jss
  • 19. #JSS2015 Merci à nos volontaires…

Editor's Notes

  • #20: On parlait des speakers, il y a une chose qui leur tient à cœur !