SlideShare a Scribd company logo
CAREER POINT UNIVERSITY
MAJOR ASSIGNMENT
ON
CONTROLABILITY AND OBSERVABILITY
SUBMITTED TO
MR. SOMESH CHATURVEDY
SUBMITTED BY
Deepak Nagar
KID-K10880
B.Tech. (M.E.)
6th
Semester
Motivation1
[ ] 





=






+











−
−
=





2
1
2
1
2
1
01
)(
0
1
10
12
x
x
y
tu
x
x
x
x


1−
s 1−
s 1
1− 2−
u y1x2x
s
x )0(2
s
x )0(1
1 1x2x
1
controllable
uncontrollable
Motivation2
[ ] 





=






+











−
−
=





2
1
2
1
2
1
01
)(
1
3
10
02
x
x
y
tu
x
x
x
x


1−
s 1−
s 1
1− 2−
u y1x2x
s
x )0(2
s
x )0(1
1 1x2x
3
observable
unobservable
Definition
A linear system is said to be completely controllable if, for all
initial times and all initial states , there exists some input
function (or sequence for discrete systems) that drives the state
vector to any final state at some finite time .
0t )( 0tx
)( 1tx 10 tt <
A linear system is said to be completely observable if, for all
initial times , the state vector can be determined from the
output function (or sequence) , defined over a finite time
.
Definition
0t )( 0tx
)( 1ty
10 tt <
Proof of controllability matrix
[ ]














=−
++++=−
+++++=
++=++=
+=
+=
−+
−+
−
+
−+−++
−−
+
−+−++
−−
+
+++
+++
+
)1(
)2(
1
)1()2(1
21
)1()2(1
21
1
2
12
112
1
)(
nk
nk
k
n
k
n
nk
nknkk
n
k
n
k
n
nk
nknkk
n
k
n
k
n
nk
kkkkkkk
kkk
kkk
u
u
u
BABBAxAx
BuABuBuABuAxAx
BuABuBuABuAxAx
BuABuxABuBuAxAx
BuAxx
BuAxx




Initial condition
Proof of observability matrix
( )
[ ])1()2()3(11
1
)1()2(1
321
1
111
111
1
)(),2(),1(
)(
)2()(
)1(
−+−+−+++
−
−+−++
−−−
−+
+++
+++
+
−−−−−=












⇒
+++++=
++=++=
+=
+=
+=
nknknkkkkkk
k
n
nknkk
n
k
n
k
n
nk
kkkkkkk
kkk
kkk
kkk
DuCBuCABuDuCBuyDuy
x
CA
CA
C
n
nDuCBuBuCABuCAxCAy
DuCBuCAxDuBuAxCy
DuCxy
DuCxy
BuAxx






Inputs & outputs
)()()(
)()()(
tDutCxty
tButAxtx
+=
+=
[ ]














=
=
−
−
1
2
12
n
n
CA
CA
CA
C
V
BABAABBU

Controllability matrix
Observability matrix
Then: (1) controllable
(2) observable nVrank
nUrank
=
=
)(
)(
[ ] 





=






+











−
−
=





2
1
2
1
2
1
01
)(
0
1
10
12
x
x
y
tu
x
x
x
x


Example 1
2][
12
01
1][
00
21
][
=





−
=





=
=




 −
==
Vrank
CA
C
V
UrankABBU uncontrollable
observable
The rank of a matrix is defined by the number of
linearly independent rows and/or the number of
linearly independent columns
Example 2
[ ] 





=






+











−
−
=





2
1
2
1
2
1
01
)(
1
3
10
02
x
x
y
tu
x
x
x
x


1][
02
01
2][
11
63
][
=





−
=





=
=





−
−
==
Vrank
CA
C
V
UrankABBU controllable
unobservable
Theorem III
)()()( tuBtxAtx cccc +=
Controllable canonical form Controllable
Theorem IV
)()(
)()()(
txCty
tuBtxAtx
oo
oooo
=
+=
Observable canonical form Observable
example
[ ] c
cc
xy
uxx
12
1
0
32
10
=






+





−−
=
Controllable canonical form
[ ]






−−
=





=






−
==
12
12
31
10
CA
C
V
ABBU
nVrank
nUrank
≠=
==
1][
2][
[ ] o
oo
xy
uxx
10
1
2
31
20
=






+





−
−
=
Observable canonical form
[ ]






−
=





=






−
−
==
31
10
11
22
CA
C
V
ABBU
nVrank
nUrank
==
≠=
2][
1][
)2)(1(
2
)(
++
+
=
ss
s
sT
Theorem V
)()()(
)()()(
tDutCxty
tButJxtx
+=
+=
Jordan form
[ ]321
3
2
1
3
2
1
CCCC
B
B
B
B
J
J
J
J
=










=










=
Jordan block
Least row
has no zero
row
First column has no zero column
Example
[ ]xccy
ub
b
xx
3
1100
020
012
1211
12
11
=










+










=
If 012 =b uncontrollable
If 011 =c unobservable
xy
uxx










=




























+




















=
2
1
0
203
102
200
201
101
211
100
010
211
100
010
001
000
1
1
1
2
2
2
1
1
1
1
λ
λ
λ
λ
λ
λ
λ

11b
12b
13b
21b
11C 12C 13C 21C
{ } { }
{ } { } ....
....
21131211
21131211
ILCILCCC
ILbILbbb
+
+ controllable
observable
In the previous example
{ } { }
{ } { } ....
....
21131211
21131211
DLCILCCC
ILbILbbb
+
+ controllable
unobservable









 −
=




















−
+




















=
0
0
1
001
002
113
111
111
122
0
1
0
0
1
1
001
123
111
112
112
1
1
11
2
2
2
12
y
uxx
L.I.
L.I.
L.I. L.D.
Example
K10880 deepaknagar control slide share

More Related Content

PDF
Feedback linearisation
PDF
Matrix Methods of Structural Analysis
PDF
Introduction to FEM
PPTX
Lect21
PPTX
LYAPUNOV STABILITY PROBLEM SOLUTION
PPTX
Finite element analysis of space truss by abaqus
PPT
Lyapunov stability
Feedback linearisation
Matrix Methods of Structural Analysis
Introduction to FEM
Lect21
LYAPUNOV STABILITY PROBLEM SOLUTION
Finite element analysis of space truss by abaqus
Lyapunov stability

What's hot (19)

PPTX
Two queue tandem resim 16 presentatio
PPSX
Project Presentation
PDF
Optimal c ontrol
PPT
Introduction to finite element method(fem)
PPT
PDF
PPTX
Higher order elements
PDF
Finite elements for 2‐d problems
PPTX
PPT
1 d analysis
PDF
Ece4510 notes02
PDF
G03402048053
PDF
Tensor 1
PPT
PDF
Lecture 5 backpropagation
PDF
solution for 2D truss1
PPTX
Finite Element Analysis of Truss Structures
PDF
Chapter6 stiffness method
PPTX
deep_coders(sourav,nitin)
Two queue tandem resim 16 presentatio
Project Presentation
Optimal c ontrol
Introduction to finite element method(fem)
Higher order elements
Finite elements for 2‐d problems
1 d analysis
Ece4510 notes02
G03402048053
Tensor 1
Lecture 5 backpropagation
solution for 2D truss1
Finite Element Analysis of Truss Structures
Chapter6 stiffness method
deep_coders(sourav,nitin)
Ad

Similar to K10880 deepaknagar control slide share (20)

PPT
lecture1 (10).ppt
PPTX
Week 16 controllability and observability june 1 final
PDF
Controllability and observability
PDF
Friedland_Ch5 controllability observavability.pdf
PPTX
lecture_18-19_state_observer_design.pptx
PPT
IC-6501-CS-UNIT-V.ppt
PPTX
Modern control 2
PDF
Observability for modern applications
PDF
Am04 ch5 24oct04-stateand integral
PDF
507Lecture08.pdf
PPTX
state space representation,State Space Model Controllability and Observabilit...
PPTX
PTA EE group Ch12 Controller Design via State Space - Copy (2).pptx
PPTX
PPT on STATE VARIABLE ANALYSIS for Engineering.pptx
PPT
14599404.ppt
PDF
controllability-and-observability.pdf
PPT
2008 "An overview of Methods for analysis of Identifiability and Observabilit...
PPTX
State space analysis.pptx
PPTX
concept of Controllability .pptx
PDF
Distributed Resilient Interval Observers for Bounded-Error LTI Systems Subjec...
PPSX
linear algebra in control systems
lecture1 (10).ppt
Week 16 controllability and observability june 1 final
Controllability and observability
Friedland_Ch5 controllability observavability.pdf
lecture_18-19_state_observer_design.pptx
IC-6501-CS-UNIT-V.ppt
Modern control 2
Observability for modern applications
Am04 ch5 24oct04-stateand integral
507Lecture08.pdf
state space representation,State Space Model Controllability and Observabilit...
PTA EE group Ch12 Controller Design via State Space - Copy (2).pptx
PPT on STATE VARIABLE ANALYSIS for Engineering.pptx
14599404.ppt
controllability-and-observability.pdf
2008 "An overview of Methods for analysis of Identifiability and Observabilit...
State space analysis.pptx
concept of Controllability .pptx
Distributed Resilient Interval Observers for Bounded-Error LTI Systems Subjec...
linear algebra in control systems
Ad

More from gurjarajeet (6)

PPTX
K10875 ajeet singh gurjar ( i c engine)
PPTX
K10880 deepaknagar jit ppt deepak
PPTX
K10880 deepaknagar vehicle accident information deepak
PPTX
K10880 deepaknagar vapour absorption technology deepak
PPTX
K10880 deepaknagar vapour absorption technology
PPTX
k10880-deepaknagar(OPC:J.I.T.)
K10875 ajeet singh gurjar ( i c engine)
K10880 deepaknagar jit ppt deepak
K10880 deepaknagar vehicle accident information deepak
K10880 deepaknagar vapour absorption technology deepak
K10880 deepaknagar vapour absorption technology
k10880-deepaknagar(OPC:J.I.T.)

Recently uploaded (20)

PPTX
UNIT 4 Total Quality Management .pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
737-MAX_SRG.pdf student reference guides
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPT
introduction to datamining and warehousing
PPT
Occupational Health and Safety Management System
PDF
86236642-Electric-Loco-Shed.pdf jfkduklg
PPTX
Artificial Intelligence
PPT
Total quality management ppt for engineering students
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
UNIT 4 Total Quality Management .pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
737-MAX_SRG.pdf student reference guides
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Abrasive, erosive and cavitation wear.pdf
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
introduction to datamining and warehousing
Occupational Health and Safety Management System
86236642-Electric-Loco-Shed.pdf jfkduklg
Artificial Intelligence
Total quality management ppt for engineering students
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Fundamentals of safety and accident prevention -final (1).pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...

K10880 deepaknagar control slide share